51
|
Sruthi TV, Edatt L, Raji GR, Kunhiraman H, Shankar SS, Shankar V, Ramachandran V, Poyyakkara A, Kumar SVB. Horizontal transfer of miR-23a from hypoxic tumor cell colonies can induce angiogenesis. J Cell Physiol 2017; 233:3498-3514. [PMID: 28929578 DOI: 10.1002/jcp.26202] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
Abstract
Neo vessel formation by angiogenesis is an important event during many pathological conditions including cancer, where it is indispensable for tumor growth and survival. Although, various pro-angiogenic cytokines and soluble factors, secreted by tumor cells, have been reported to promote angiogenesis, recent studies have shown regulatory role of exosomes, secreted by tumor cells in the process of angiogenesis. These exosomes are capable of carrying nucleic acids, proteins, etc., as their cargo. Under the light of these facts and considering the presence of miRNAs, the non-coding RNAs capable of regulating target gene expression, as one of the major cargos in the exosomes, we investigated, whether exosomes derived from normoxic and hypoxic tumor cell colonies exhibit difference in levels of miR-23∼27∼24 cluster members and if so, to check the significance of their horizontal transfer on the process of angiogenesis. Results of our study showed that exosomes secreted by hypoxic tumor cell colonies possess significantly higher levels of miR23a and can induce angiogenesis. Further, we have shown that exosomes secreted by cells that ectopically over express miR23a is capable of inducing angiogenesis in different angiogenic model systems such as CAM, in ovo Xenograft and HUVEC models systems. Further, mechanistic analysis revealed that miR23a driven regulation of angiogenesis is brought about by down regulation of SIRT1 in the recipient cells. Collectively, the results presented here suggest that exosomal transfer of miR23a from tumor cell colonies can induce the process of angiogenesis by targeting SIRT1 in the recipient endothelial cells.
Collapse
Affiliation(s)
- T V Sruthi
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Nileshwar, Kasargod, Kerala, India
| | - Lincy Edatt
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Nileshwar, Kasargod, Kerala, India
| | - Grace R Raji
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Nileshwar, Kasargod, Kerala, India
| | - Haritha Kunhiraman
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Nileshwar, Kasargod, Kerala, India
| | - Sharath S Shankar
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Nileshwar, Kasargod, Kerala, India.,Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum, Kerala, India
| | - Vandana Shankar
- Agroprocessing and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum, Kerala, India
| | - Vishnu Ramachandran
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Nileshwar, Kasargod, Kerala, India
| | - Aswini Poyyakkara
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Nileshwar, Kasargod, Kerala, India
| | - Sameer V B Kumar
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Nileshwar, Kasargod, Kerala, India
| |
Collapse
|
52
|
Ng CF, Frieboes HB. Model of vascular desmoplastic multispecies tumor growth. J Theor Biol 2017; 430:245-282. [PMID: 28529153 PMCID: PMC5614902 DOI: 10.1016/j.jtbi.2017.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 03/07/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
We present a three-dimensional nonlinear tumor growth model composed of heterogeneous cell types in a multicomponent-multispecies system, including viable, dead, healthy host, and extra-cellular matrix (ECM) tissue species. The model includes the capability for abnormal ECM dynamics noted in tumor development, as exemplified by pancreatic ductal adenocarcinoma, including dense desmoplasia typically characterized by a significant increase of interstitial connective tissue. An elastic energy is implemented to provide elasticity to the connective tissue. Cancer-associated fibroblasts (myofibroblasts) are modeled as key contributors to this ECM remodeling. The tumor growth is driven by growth factors released by these stromal cells as well as by oxygen and glucose provided by blood vasculature which along with lymphatics are stimulated to proliferate in and around the tumor based on pro-angiogenic factors released by hypoxic tissue regions. Cellular metabolic processes are simulated, including respiration and glycolysis with lactate fermentation. The bicarbonate buffering system is included for cellular pH regulation. This model system may be of use to simulate the complex interactions between tumor and stromal cells as well as the associated ECM and vascular remodeling that typically characterize malignant cancers notorious for poor therapeutic response.
Collapse
Affiliation(s)
- Chin F Ng
- Department of Bioengineering, University of Louisville, Lutz Hall 419, KY 40208, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Lutz Hall 419, KY 40208, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA.
| |
Collapse
|
53
|
Tateishi H, Tsuji AB, Kato K, Sudo H, Sugyo A, Hanakawa T, Zhang MR, Saga T, Arano Y, Higashi T. Synthesis and evaluation of 11C-labeled coumarin analog as an imaging probe for detecting monocarboxylate transporters expression. Bioorg Med Chem Lett 2017; 27:4893-4897. [PMID: 28951078 DOI: 10.1016/j.bmcl.2017.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022]
Abstract
Upregulated monocarboxylate transporters (MCTs) in tumors are considered diagnostic imaging targets. Herein, we synthesized the positron emission tomography probe candidates coumarin analogs 2 and 3, and showed 55 times higher affinity of 2 for MCTs than a representative MCT inhibitor. Whereas [11C]2 showed low tumor accumulation, probably due to adduct formation with plasma proteins, [11C]2 showed high initial brain uptake, suggesting that the scaffold of 2 has properties that are preferable in imaging probes for the astrocyte-neuron lactate shuttle. Although further optimization of 2 is required, our findings can be used to inform the development of MCT-targeted imaging agents.
Collapse
Affiliation(s)
- Hiroyuki Tateishi
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Atsushi B Tsuji
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Koichi Kato
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Integrative Brain Imaging, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-5551, Japan.
| | - Hitomi Sudo
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Aya Sugyo
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takashi Hanakawa
- Department of Integrative Brain Imaging, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-5551, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tsuneo Saga
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Diagnostic Radiology, Kyoto University Hospital, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasushi Arano
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tatsuya Higashi
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
54
|
San-Millán I, Brooks GA. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 2017; 38:119-133. [PMID: 27993896 PMCID: PMC5862360 DOI: 10.1093/carcin/bgw127] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022] Open
Abstract
Herein, we use lessons learned in exercise physiology and metabolism to propose that augmented lactate production (‘lactagenesis’), initiated by gene mutations, is the reason and purpose of the Warburg Effect and that dysregulated lactate metabolism and signaling are the key elements in carcinogenesis. Lactate-producing (‘lactagenic’) cancer cells are characterized by increased aerobic glycolysis and excessive lactate formation, a phenomenon described by Otto Warburg 93 years ago, which still remains unexplained. After a hiatus of several decades, interest in lactate as a player in cancer has been renewed. In normal physiology, lactate, the obligatory product of glycolysis, is an important metabolic fuel energy source, the most important gluconeogenic precursor, and a signaling molecule (i.e. a ‘lactormone’) with major regulatory properties. In lactagenic cancers, oncogenes and tumor suppressor mutations behave in a highly orchestrated manner, apparently with the purpose of increasing glucose utilization for lactagenesis purposes and lactate exchange between, within and among cells. Five main steps are identified (i) increased glucose uptake, (ii) increased glycolytic enzyme expression and activity, (iii) decreased mitochondrial function, (iv) increased lactate production, accumulation and release and (v) upregulation of monocarboxylate transporters MTC1 and MCT4 for lactate exchange. Lactate is probably the only metabolic compound involved and necessary in all main sequela for carcinogenesis, specifically: angiogenesis, immune escape, cell migration, metastasis and self-sufficient metabolism. We hypothesize that lactagenesis for carcinogenesis is the explanation and purpose of the Warburg Effect. Accordingly, therapies to limit lactate exchange and signaling within and among cancer cells should be priorities for discovery.
Collapse
Affiliation(s)
- Iñigo San-Millán
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Physiology Laboratory, CU Sports Medicine and Performance Center, Boulder, CO 80309, USA and
| | - George A Brooks
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
55
|
Pedersen AK, Mendes Lopes de Melo J, Mørup N, Tritsaris K, Pedersen SF. Tumor microenvironment conditions alter Akt and Na +/H + exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer. BMC Cancer 2017; 17:542. [PMID: 28806945 PMCID: PMC5556346 DOI: 10.1186/s12885-017-3532-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic angiogenesis is a hallmark of most tumors and takes place in a hostile tumor microenvironment (TME) characterized by hypoxia, low nutrient and glucose levels, elevated lactate and low pH. Despite this, most studies addressing angiogenic signaling use hypoxia as a proxy for tumor conditions. Here, we compared the effects of hypoxia and TME conditions on regulation of the Na+/H+ exchanger NHE1, Ser/Thr kinases Akt1-3, and downstream effectors in endothelial cells. METHODS Human umbilical vein endothelial cells (HUVEC) and Ea.hy926 endothelial cells were exposed to simulated TME (1% hypoxia, low serum, glucose, pH, high lactate) or 1% hypoxia for 24 or 48 h, with or without NHE1 inhibition or siRNA-mediated knockdown. mRNA and protein levels of NHE1, Akt1-3, and downstream effectors were assessed by qPCR and Western blotting, vascular endothelial growth factor (VEGF) release by ELISA, and motility by scratch assay. RESULTS Within 24 h, HIF-1α level and VEGF mRNA level were increased robustly by TME and modestly by hypoxia alone. The NHE1 mRNA level was decreased by both hypoxia and TME, and NHE1 protein was reduced by TME in Ea.hy926 cells. Akt1-3 mRNA was detected in HUVEC and Ea.hy926 cells, Akt1 most abundantly. Akt1 protein expression was reduced by TME yet unaffected by hypoxia, while Akt phosphorylation was increased by TME. The Akt loss was partly reversed by MCF-7 human breast cancer cell conditioned medium, suggesting that in vivo, the cancer cell secretome may compensate for adverse effects of TME on endothelial cells. TME, yet not hypoxia, reduced p70S6 kinase activity and ribosomal protein S6 phosphorylation and increased eIF2α phosphorylation, consistent with inhibition of protein translation. Finally, TME reduced Retinoblastoma protein phosphorylation and induced poly-ADP-ribose polymerase (PARP) cleavage consistent with inhibition of proliferation and induction of apoptosis. NHE1 knockdown, mimicking the effect of TME on NHE1 expression, reduced Ea.hy926 migration. TME effects on HIF-1α, VEGF, Akt, translation, proliferation or apoptosis markers were unaffected by NHE1 knockdown/inhibition. CONCLUSIONS NHE1 and Akt are downregulated by TME conditions, more potently than by hypoxia alone. This inhibits endothelial cell migration and growth in a manner likely modulated by the cancer cell secretome.
Collapse
Affiliation(s)
- A K Pedersen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - J Mendes Lopes de Melo
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - N Mørup
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - K Tritsaris
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
56
|
Jiang B. Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis 2017; 4:25-27. [PMID: 30258905 PMCID: PMC6136593 DOI: 10.1016/j.gendis.2017.02.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/04/2017] [Indexed: 12/18/2022] Open
Abstract
Metabolic abnormalities is a hallmark of cancer. About 100 years ago, Nobel laureate Otto Heinrich Warburg first described high rate of glycolysis in cancer cells. Recently more and more novel opinions about cancer metabolism supplement to this hypothesis, consist of glucose uptake, lactic acid generation and secretion, acidification of the microenvironment and cancer immune evasion. Here we briefly review metabolic pathways generating lactate, and discuss the function of higher lactic acid in cancer microenvironments.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Oncology, Avis General Hospital, Beijing, China
| |
Collapse
|
57
|
Abstract
Angiogenesis has traditionally been viewed from the perspective of how endothelial cells (ECs) coordinate migration and proliferation in response to growth factor activation to form new vessel branches. However, ECs must also coordinate their metabolism and adapt metabolic fluxes to the rising energy and biomass demands of branching vessels. Recent studies have highlighted the importance of such metabolic regulation in the endothelium and uncovered core metabolic pathways and mechanisms of regulation that drive the angiogenic process. In this review, we discuss our current understanding of EC metabolism, how it intersects with angiogenic signal transduction, and how alterations in metabolic pathways affect vessel morphogenesis. Understanding EC metabolism promises to reveal new perspectives on disease mechanisms in the vascular system with therapeutic implications for disorders with aberrant vessel growth and function.
Collapse
Affiliation(s)
- Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany; .,International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.,German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, D-13347 Berlin, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| |
Collapse
|
58
|
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are uniquely required to balance the formation of new blood vessels with the maintenance and remodelling of existing ones, during development and in adult tissues. Recent advances have greatly expanded our understanding of the tight and multi-level regulation of VEGFR2 signalling, which is the primary focus of this Review. Important insights have been gained into the regulatory roles of VEGFR-interacting proteins (such as neuropilins, proteoglycans, integrins and protein tyrosine phosphatases); the dynamics of VEGFR2 endocytosis, trafficking and signalling; and the crosstalk between VEGF-induced signalling and other endothelial signalling cascades. A clear understanding of this multifaceted signalling web is key to successful therapeutic suppression or stimulation of vascular growth.
Collapse
|
59
|
Kunhiraman H, Edatt L, Thekkeveedu S, Poyyakkara A, Raveendran V, Kiran MS, Sudhakaran P, Kumar SVB. 2-Deoxy Glucose Modulates Expression and Biological Activity of VEGF in a SIRT-1 Dependent Mechanism. J Cell Biochem 2016; 118:252-262. [PMID: 27302189 DOI: 10.1002/jcb.25629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 01/24/2023]
Abstract
Reprogramming of energy metabolism particularly switching over of cells to aerobic glycolysis leading to accumulation of lactate is a hallmark of cancer. Lactate can induce angiogenesis, an important process underlying tumor growth and metastasis. VEGF is one of the most important cytokines which regulate this process and the present study was designed to examine if blocking glycolytic pathway in tumor cells can affect its angiogenic potency with respect to VEGF. For this, the expression and biological activity of VEGF synthesized and secreted by tumor derived cell lines in the presence or absence of 2-deoxy glucose (2-DG), an inhibitor of glycolysis was determined. The results suggested that inhibition of glycolysis using sub-lethal doses of 2-DG down-regulated the expression of VEGF and also significantly reduced its biological activity. Further mechanistic studies revealed that the down regulation of VEGF gene expression by 2-DG was due to an increase in SIRT-1 activity and the reduced biological activity was found to be due to an increase in the PAR modification of VEGF. Activity of SIRT-1 and PAR modification of VEGF in turn, was found to be correlated to the cellular NAD+ levels. The results presented here therefore suggest that treatment of cancer cells with 2-DG can significantly reduce its overall angiogenic potency through transcriptional and post-translational mechanisms. J. Cell. Biochem. 118: 252-262, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haritha Kunhiraman
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| | - Lincy Edatt
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| | - Sruthi Thekkeveedu
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| | - Aswini Poyyakkara
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| | - Viji Raveendran
- Department of Plant Science, Central University of Kerala, Kasargod, India
- IUCGGT, University of Kerala, Karyavattom, Trivandrum, India
| | | | - Perumana Sudhakaran
- IUCGGT, University of Kerala, Karyavattom, Trivandrum, India
- Department of Computational Biology and Bioinformatics, University of Kerala, Karyavattom, Trivandrum, India
| | - Sameer V B Kumar
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| |
Collapse
|
60
|
Abstract
Hypoxia is a characteristic of tumors and wounds. Hypoxic cells develop 2 common strategies to face hypoxia: the glycolytic switch and the angiogenic switch. At the onset of hypoxia, alleviation of the Pasteur effect ensures short-term cell survival. Long-term hypoxic cell survival requires a further acceleration of the glycolytic flux under the control of hypoxia-inducible factor 1 that stimulates the expression of most glycolytic transporters and enzymes, uncouples glycolysis from the TCA cycle, and rewires glycolysis to lactic fermentation. Hypoxic cells also trigger angiogenesis, a process that aims to restore normal microenvironmental conditions. Transcription factors (hypoxia-inducible factor 1, nuclear factor κB, activator protein 1) and lactate cooperate to stimulate the expression of proangiogenic agents. Cancer cells differ from normal hypoxic cells by their proliferative agenda and by a high metabolic heterogeneity. These effects in tumor account for further molecular and metabolic changes and for a persistent stimulation of angiogenesis.
Collapse
|
61
|
Shereema RM, Sruthi TV, Kumar VBS, Rao TP, Shankar SS. Angiogenic Profiling of Synthesized Carbon Quantum Dots. Biochemistry 2015; 54:6352-6. [DOI: 10.1021/acs.biochem.5b00781] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. M. Shereema
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - T. V. Sruthi
- Department
of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, India
| | - V. B. Sameer Kumar
- Department
of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, India
| | - T. P. Rao
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | | |
Collapse
|
62
|
Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ. The Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in Brain Tumor. Brain Pathol 2015; 26:3-17. [PMID: 26269128 PMCID: PMC8029296 DOI: 10.1111/bpa.12299] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022] Open
Abstract
There are over 120 types of brain tumor and approximately 45% of primary brain tumors are gliomas, of which glioblastoma multiforme (GBM) is the most common and aggressive with a median survival rate of 14 months. Despite progress in our knowledge, current therapies are unable to effectively combat primary brain tumors and patient survival remains poor. Tumor metabolism is important to consider in therapeutic approaches and is the focus of numerous research investigations. Lactate dehydrogenase A (LDHA) is a cytosolic enzyme, predominantly involved in anaerobic and aerobic glycolysis (the Warburg effect); however, it has multiple additional functions in non‐neoplastic and neoplastic tissues, which are not commonly known or discussed. This review summarizes what is currently known about the function of LDHA and identifies areas that would benefit from further exploration. The current knowledge of the role of LDHA in the brain and its potential as a therapeutic target for brain tumors will also be highlighted. The Warburg effect appears to be universal in tumors, including primary brain tumors, and LDHA (because of its involvement with this process) has been identified as a potential therapeutic target. Currently, there are, however, no suitable LDHA inhibitors available for tumor therapies in the clinic.
Collapse
Affiliation(s)
- Cara J Valvona
- Cellular & Molecular Neuro-oncology Research Group, University of Portsmouth, School of Pharmacy & Biomedical Sciences, Portsmouth, UK
| | - Helen L Fillmore
- Cellular & Molecular Neuro-oncology Research Group, University of Portsmouth, School of Pharmacy & Biomedical Sciences, Portsmouth, UK
| | - Peter B Nunn
- Cellular & Molecular Neuro-oncology Research Group, University of Portsmouth, School of Pharmacy & Biomedical Sciences, Portsmouth, UK
| | - Geoffrey J Pilkington
- Cellular & Molecular Neuro-oncology Research Group, University of Portsmouth, School of Pharmacy & Biomedical Sciences, Portsmouth, UK
| |
Collapse
|
63
|
Chereddy KK, Lopes A, Koussoroplis S, Payen V, Moia C, Zhu H, Sonveaux P, Carmeliet P, des Rieux A, Vandermeulen G, Préat V. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1975-84. [PMID: 26238081 DOI: 10.1016/j.nano.2015.07.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/01/2015] [Accepted: 07/08/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Growth factor therapies to induce angiogenesis and thereby enhance the blood perfusion, hold tremendous potential to address the shortcomings of current impaired wound care modalities. Vascular endothelial growth factor stimulates (VEGF) wound healing via multiple mechanisms. Poly(lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. Hence, we hypothesized that the administration of VEGF encapsulated in PLGA nanoparticles (PLGA-VEGF NP) would promote fast healing due to the sustained and combined effects of VEGF and lactate. In a splinted mouse full thickness excision model, compared with untreated, VEGF and PLGA NP, PLGA-VEGF NP treated wounds showed significant granulation tissue formation with higher collagen content, re-epithelialization and angiogenesis. The cellular and molecular studies revealed that PLGA-VEGF NP enhanced the proliferation and migration of keratinocytes and upregulated the expression of VEGFR2 at mRNA level. We demonstrated the combined effects of lactate and VEGF for active healing of non-diabetic and diabetic wounds. FROM THE CLINICAL EDITOR The study of wound healing has been under a tremendous amount of research over recent years. In diabetic wounds, vasculopathy leading to localized ischemia would often result in delayed
wound healing. In this article, the authors encapsulated vascular endothelial growth factor stimulates (VEGF) in PLGA nanoparticles and studies the potential pro-healing effects. It was found that the combination of these two components provided synergistic actions for healing. The encouraging results should provide a basis for combination therapy in the future.
Collapse
Affiliation(s)
- Kiran Kumar Chereddy
- Louvain Drug Research Institute (LDRI) Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium
| | - Alessandra Lopes
- Louvain Drug Research Institute (LDRI) Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium
| | - Salome Koussoroplis
- Louvain Drug Research Institute (LDRI) Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium
| | - Valéry Payen
- Institut de Recherche Expérimentale et Clinique (IREC) Pole of Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Claudia Moia
- Environmental Technology Department, School of Energy, Environment and Agrifood, Cranfield University, Bedford, UK
| | - Huijun Zhu
- Environmental Technology Department, School of Energy, Environment and Agrifood, Cranfield University, Bedford, UK
| | - Pierre Sonveaux
- Institut de Recherche Expérimentale et Clinique (IREC) Pole of Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | | | - Anne des Rieux
- Louvain Drug Research Institute (LDRI) Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium
| | - Gaëlle Vandermeulen
- Louvain Drug Research Institute (LDRI) Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium
| | - Véronique Préat
- Louvain Drug Research Institute (LDRI) Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
64
|
Regulation of vascular endothelial growth factor by metabolic context of the cell. Glycoconj J 2015; 31:427-34. [PMID: 25214198 DOI: 10.1007/s10719-014-9547-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Expression of vascular endothelial growth factor, major endothelial specific glycoprotein growth factor that promotes angiogenesis is regulated at transcriptional, post transcriptional and posttranslational levels. One of the key posttranslational modifications involved in regulating the angiogenic potential of VEGF is covalent modification involving polyADP ribosylation. Major factors contributing to the regulation of VEGF include factors relating to hypoxia, growth factors and cytokines and hormones. Apart from these, the metabolite status of the cell as sensed by various metabolite regulators can influence the angiogenic potential. Changes in the metabolite status of the cell occur during different conditions associated with excessive or insufficient angiogenesis contributing to pathology. Effect of metabolites, as exemplified by certain metabolites such as lactate, citrate, sarcosine, metabolites of arachidonic acid on angiogenesis through the regulation of expression of VEGF as well as its angiogenic potential through polyADP ribosylation is discussed.
Collapse
|
65
|
Rodríguez MI, Majuelos-Melguizo J, Martí Martín-Consuegra JM, Ruiz de Almodóvar M, López-Rivas A, Javier Oliver F. Deciphering the insights of poly(ADP-ribosylation) in tumor progression. Med Res Rev 2015; 35:678-97. [PMID: 25604534 DOI: 10.1002/med.21339] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are particularly efficient against tumors with defects in the homologous recombination repair pathway. Nonetheless poly(ADP-ribosylation) (PARylation) modulates prometastasic activities and adaptation of tumor to a hostile microenvironment. Modulation of metastasis-promoting traits is possible through the alteration of key transcription factors involved in the regulation of the hypoxic response, the recruitment of new vessels (or angiogenesis), and the stimulation of epithelial to mesenchymal transition (EMT). In this review, we summarized some of the findings that focalize on PARP-1's action on tumor aggressiveness, suggesting new therapeutic opportunities against an assembly of tumors not necessarily bearing DNA repair defects. Metastasis accounts for the vast majority of mortality derived from solid cancer. PARP-1 is an active player in tumor adaptation to metastasis and PARP inhibitors, recognized as promising therapeutic agents against homologous recombination deficient tumors, has novel properties responsible for the antimetastatic actions in different tumor settings.
Collapse
Affiliation(s)
- María Isabel Rodríguez
- Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain, 18016
| | - Jara Majuelos-Melguizo
- Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain, 18016
| | | | | | - Abelardo López-Rivas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Sevilla, Spain, 41092
| | | |
Collapse
|
66
|
Goodwin ML, Jin H, Straessler K, Smith-Fry K, Zhu JF, Monument MJ, Grossmann A, Randall RL, Capecchi MR, Jones KB. Modeling alveolar soft part sarcomagenesis in the mouse: a role for lactate in the tumor microenvironment. Cancer Cell 2014; 26:851-862. [PMID: 25453902 PMCID: PMC4327935 DOI: 10.1016/j.ccell.2014.10.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/08/2014] [Accepted: 10/03/2014] [Indexed: 12/16/2022]
Abstract
Alveolar soft part sarcoma (ASPS), a deadly soft tissue malignancy with a predilection for adolescents and young adults, associates consistently with t(X;17) translocations that generate the fusion gene ASPSCR1-TFE3. We proved the oncogenic capacity of this fusion gene by driving sarcomagenesis in mice from conditional ASPSCR1-TFE3 expression. The completely penetrant tumors were indistinguishable from human ASPS by histology and gene expression. They formed preferentially in the anatomic environment highest in lactate, the cranial vault, expressed high levels of lactate importers, harbored abundant mitochondria, metabolized lactate as a metabolic substrate, and responded to the administration of exogenous lactate with tumor cell proliferation and angiogenesis. These data demonstrate lactate's role as a driver of alveolar soft part sarcomagenesis.
Collapse
Affiliation(s)
- Matthew L Goodwin
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Huifeng Jin
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Center for Children's Cancer Research at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Krystal Straessler
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyllie Smith-Fry
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Center for Children's Cancer Research at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ju-Fen Zhu
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Center for Children's Cancer Research at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael J Monument
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Center for Children's Cancer Research at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Allie Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - R Lor Randall
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Center for Children's Cancer Research at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Mario R Capecchi
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kevin B Jones
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Center for Children's Cancer Research at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
67
|
ALPHA Glycolytic Vasculogenesis Better Correlates With MRI and CT Imaging Techniques Than the Traditional Oxygen Vasculogenesis Theory. AJR Am J Roentgenol 2014; 203:W724-34. [DOI: 10.2214/ajr.13.11762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
68
|
Fosen KM, Thom SR. Hyperbaric oxygen, vasculogenic stem cells, and wound healing. Antioxid Redox Signal 2014; 21:1634-47. [PMID: 24730726 PMCID: PMC4175035 DOI: 10.1089/ars.2014.5940] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Oxidative stress is recognized as playing a role in stem cell mobilization from peripheral sites and also cell function. RECENT ADVANCES This review focuses on the impact of hyperoxia on vasculogenic stem cells and elements of wound healing. CRITICAL ISSUES Components of the wound-healing process in which oxidative stress has a positive impact on the various cells involved in wound healing are highlighted. A slightly different view of wound-healing physiology is adopted by departing from the often used notion of sequential stages: hemostatic, inflammatory, proliferative, and remodeling and instead organizes the cascade of wound healing as overlapping events or waves pertaining to reactive oxygen species, lactate, and nitric oxide. This was done because hyperoxia has effects of a number of cell signaling events that converge to influence cell recruitment/chemotaxis and gene regulation/protein synthesis responses which mediate wound healing. FUTURE DIRECTIONS Our alternative perspective of the stages of wound healing eases recognition of the multiple sites where oxidative stress has an impact on wound healing. This aids the focus on mechanistic events and the interplay among various cell types and biochemical processes. It also highlights the areas where additional research is needed.
Collapse
Affiliation(s)
- Katina M. Fosen
- Department of Emergency Medicine, Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania
| | - Stephen R. Thom
- Department of Emergency Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
69
|
PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J Control Release 2014; 194:138-47. [PMID: 25173841 DOI: 10.1016/j.jconrel.2014.08.016] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 11/23/2022]
Abstract
Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Poly (lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. LL37 is an endogenous human host defense peptide that modulates wound healing and angiogenesis and fights infection. Hence, we hypothesized that the administration of LL37 encapsulated in PLGA nanoparticles (PLGA-LL37 NP) promotes wound closure due to the sustained release of both LL37 and lactate. In full thickness excisional wounds, the treatment with PLGA-LL37 NP significantly accelerated wound healing compared to PLGA or LL37 administration alone. PLGA-LL37 NP-treated wounds displayed advanced granulation tissue formation by significant higher collagen deposition, re-epithelialized and neovascularized composition. PLGA-LL37 NP improved angiogenesis, significantly up-regulated IL-6 and VEGFa expression, and modulated the inflammatory wound response. In vitro, PLGA-LL37 NP induced enhanced cell migration but had no effect on the metabolism and proliferation of keratinocytes. It displayed antimicrobial activity on Escherichia coli. In conclusion, we developed a biodegradable drug delivery system that accelerated healing processes due to the combined effects of lactate and LL37 released from the nanoparticles.
Collapse
|
70
|
Abstract
Rock climbers perform repeated isometric forearm muscle contractions subjecting the vasculature to repeated ischaemia and distorted haemodynamic signals. This study investigated forearm vascular characteristics in rock climbers compared to healthy untrained controls. Eight climbers (CLIMB) (BMI; 22.3, s = 2.0 kg/m(2), isometric handgrip strength; 46, s = 8 kg) were compared against eight untrained controls (CON) (BMI; 23.8, s = 2.6 kg/m(2), isometric handgrip strength; 37, s = 9 kg). Brachial artery diameter and blood flow were measured, using Doppler ultrasound, at rest and following 5-mins ischaemia (peak diameter) and ischaemic exercise (maximal dilation) to calculate flow mediated dilation (FMD) and dilatory capacity (DC). Capillary filtration capacity was assessed using venous occlusion plethysmography. Resting (4.30, s = 0.26 vs. 3.79, s = 0.39 mm), peak (4.67, s = 0.31 vs. 4.12, s = 0.45 mm) and maximal (5.14, s = 0.42 vs. 4.35, s = 0.47 mm) diameters were greater (P < 0.05) in CLIMB than CON, respectively, despite no difference in FMD (9.2, s = 2.6 vs. 8.7, s = 2.9%). Peak reactive hyperaemic blood flow (1136, s = 504 vs. 651, s = 221 ml/min) and capillary filtration capacity (3.8, s = 0.9 vs. 5.2, s = 0.7 ml.min(-1).mmHg(-1).100 ml tissue(-1) × 10(-3)) were greater (P < 0.05) in CLIMB compared to CON, respectively. Rock climbers exhibit structural vascular adaptation compared to untrained control participants but have similar vascular function. This may contribute to the enhanced ability of climbers to perform repeated isometric contractions.
Collapse
|
71
|
Nagarajan S, Kiran MS, Tsibouklis J, Reddy BSR. Multifunctional star-shaped polylactic acid implants for use in angioplasty. J Mater Chem B 2014; 2:6549-6559. [DOI: 10.1039/c4tb00272e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Star-shaped polylactic acids with different tacticity were synthesized and both polymers are capable of bestowing properties of anticoagulation and angiogenesis to their living host.
Collapse
Affiliation(s)
- Selvaraj Nagarajan
- Materials Science and Technology Division
- National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram-695019, India
- Industrial Chemistry Laboratory
- Central Leather Research Institute
| | - M. S. Kiran
- Biomaterials
- Central Leather Research Institute
- Chennai-600 020, India
| | - John Tsibouklis
- Biomaterials and Drug Delivery Research Group
- School of Pharmacy and Biomedical Sciences
- University of Portsmouth
- Portsmouth, UK
| | | |
Collapse
|
72
|
Ruan GX, Kazlauskas A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. J Biol Chem 2013; 288:21161-21172. [PMID: 23754286 DOI: 10.1074/jbc.m113.474619] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although a high level of lactate is quintessential to both tumors and wound healing, the manner by which lactate impacts endothelial cells to promote angiogenesis and thereby create or restore vascular perfusion to growing tissues has not been fully elucidated. Here we report that lactate activated the PI3K/Akt pathway in primary human endothelial cells. Furthermore, activating this signaling pathway was required for lactate-stimulated organization of endothelial cells into tubes and for sprouting of vessels from mouse aortic explants. Lactate engaged the PI3K/Akt pathway via ligand-mediated activation of the three receptor tyrosine kinases Axl, Tie2, and VEGF receptor 2. Neutralizing the ligands for these receptor tyrosine kinases, pharmacologically inhibiting their kinase activity or suppressing their expression largely eliminated the ability of cells and explants to respond to lactate. Elucidating the mechanism by which lactate communicates with endothelial cells presents a previously unappreciated opportunity to improve our understanding of the angiogenic program and to govern it.
Collapse
Affiliation(s)
- Guo-Xiang Ruan
- From the Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Andrius Kazlauskas
- From the Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114.
| |
Collapse
|
73
|
Miranda-Gonçalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Pinheiro C, Cordeiro M, Bebiano G, Costa P, Palmeirim I, Reis RM, Baltazar F. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro Oncol 2012; 15:172-88. [PMID: 23258846 DOI: 10.1093/neuonc/nos298] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Gliomas exhibit high glycolytic rates, and monocarboxylate transporters (MCTs) play a major role in the maintenance of the glycolytic metabolism through the proton-linked transmembrane transport of lactate. However, their role in gliomas is poorly studied. Thus, we aimed to characterize the expression of MCT1, MCT4, and their chaperone CD147 and to assess the therapeutic impact of MCT inhibition in gliomas. METHODS MCTs and CD147 expressions were characterized by immunohistochemistry in nonneoplastic brain and glioma samples. The effect of CHC (MCT inhibitor) and MCT1 silencing was assessed in in vitro and in vivo glioblastoma models. RESULTS MCT1, MCT4, and CD147 were overexpressed in the plasma membrane of glioblastomas, compared with diffuse astrocytomas and nonneoplastic brain. CHC decreased glycolytic metabolism, migration, and invasion and induced cell death in U251 cells (more glycolytic) but only affected proliferation in SW1088 (more oxidative). The effectiveness of CHC in glioma cells appears to be dependent on MCT membrane expression. MCT1 downregulation showed similar effects on different glioma cells, supporting CHC as an MCT1 inhibitor. There was a synergistic effect when combining CHC with temozolomide treatment in U251 cells. In the CAM in vivo model, CHC decreased the size of tumors and the number of blood vessels formed. CONCLUSIONS This is the most comprehensive study reporting the expression of MCTs and CD147 in gliomas. The MCT1 inhibitor CHC exhibited anti-tumoral and anti-angiogenic activity in gliomas and, of importance, enhanced the effect of temozolomide. Thus, our results suggest that development of therapeutic approaches targeting MCT1 may be a promising strategy in glioblastoma treatment.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Metabolite control of angiogenesis: angiogenic effect of citrate. J Physiol Biochem 2012; 69:383-95. [PMID: 23161184 DOI: 10.1007/s13105-012-0220-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 10/30/2012] [Indexed: 12/27/2022]
Abstract
Endothelial cells respond to hypoxic changes with resultant accumulation of several metabolites and switch over to angiogenic phenotype. Although certain intermediates of glycolytic and oxidative metabolic pathways have been known to affect angiogenesis, the effect of citrate, which accumulates in certain tumors, on angiogenesis is not known. Therefore, the effect of citrate on angiogenesis was studied using different model systems. Increased vascularization in chorioallantoic membrane assay, increased endothelial sprouting in rat aortic rings, and increased expression of CD31, E-selectin in endothelial cells suggested a possible proangiogenic effect of citrate. Upregulation of angiogenic factors such as vascular endothelial growth factor and fibroblast growth factor suggested that the effect of citrate involves modulation of expression of angiogenic growth factors. LY 294002, an inhibitor of PI3K-Akt pathway, and wortmannin, an inhibitor of Akt pathway, reversed the effect of citrate in human umbilical vein endothelial cells. Citrate induced significant upregulation and activation of Akt in endothelial cells. Rapamycin, an inhibitor of mTOR, also reversed the effect of citrate in human umbilical vein endothelial cells and sprouting of aortic rings suggesting that the angiogenic effect of citrate involves activation of PI3K-Akt-mTOR pathway.
Collapse
|
75
|
Schmitt CP, Nau B, Gemulla G, Bonzel KE, Hölttä T, Testa S, Fischbach M, John U, Kemper MJ, Sander A, Arbeiter K, Schaefer F. Effect of the dialysis fluid buffer on peritoneal membrane function in children. Clin J Am Soc Nephrol 2012; 8:108-15. [PMID: 23124784 DOI: 10.2215/cjn.00690112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Double-chamber peritoneal dialysis fluids exert less toxicity by their neutral pH and reduced glucose degradation product content. The role of the buffer compound (lactate and bicarbonate) has not been defined in humans. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A multicenter randomized controlled trial in 37 children on automated peritoneal dialysis was performed. After a 2-month run-in period with conventional peritoneal dialysis fluids, patients were randomized to neutral-pH, low-glucose degradation product peritoneal dialysis fluids with 35 mM lactate or 34 mM bicarbonate content. Clinical and biochemical monitoring was performed monthly, and peritoneal equilibration tests and 24-hour clearance studies were performed at 0, 3, 6, and 10 months. RESULTS No statistically significant difference in capillary blood pH, serum bicarbonate, or oral buffer supplementation emerged during the study. At baseline, peritoneal solute equilibration and clearance rates were similar. During the study, 4-hour dialysis to plasma ratio of creatinine tended to increase, and 24-hour dialytic creatinine and phosphate clearance increased with lactate peritoneal dialysis fluid but not with bicarbonate peritoneal dialysis fluid. Daily net ultrafiltration, which was similar at baseline (lactate fluid=5.4±2.6 ml/g glucose exposure, bicarbonate fluid=4.9±1.9 ml/g glucose exposure), decreased to 4.6±1.0 ml/g glucose exposure in the lactate peritoneal dialysis fluid group, whereas it increased to 5.1±1.7 ml/g glucose exposure in the bicarbonate content peritoneal dialysis fluid group (P=0.006 for interaction). CONCLUSIONS When using biocompatible peritoneal dialysis fluids, equally good acidosis control is achieved with lactate and bicarbonate buffers. Improved long-term preservation of peritoneal membrane function may, however, be achieved with bicarbonate-based peritoneal dialysis fluids.
Collapse
|
76
|
Pinheiro C, Longatto-Filho A, Azevedo-Silva J, Casal M, Schmitt FC, Baltazar F. Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr 2012; 44:127-39. [PMID: 22407107 DOI: 10.1007/s10863-012-9428-1] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monocarboxylate transporters (MCTs) belong to the SLC16 gene family, presently composed by 14 members. MCT1-MCT4 are proton symporters, which mediate the transmembrane transport of pyruvate, lactate and ketone bodies. The role of MCTs in cell homeostasis has been characterized in detail in normal tissues, however, their role in cancer is still far from understood. Most solid tumors are known to rely on glycolysis for energy production and this activity leads to production of important amounts of lactate, which are exported into the extracellular milieu, contributing to the acidic microenvironment. In this context, MCTs will play a dual role in the maintenance of the hyper-glycolytic acid-resistant phenotype of cancer, allowing the maintenance of the high glycolytic rates by performing lactate efflux, and pH regulation by the co-transport of protons. Thus, they constitute attractive targets for cancer therapy, which have been little explored. Here we review the literature on the role of MCTs in solid tumors in different locations, such as colon, central nervous system, breast, lung, gynecologic tract, prostate, stomach, however, there are many conflicting results and in most cases there are no functional studies showing the dependence of the tumors on MCT expression and activity. Additional studies on MCT expression in other tumor types, confirmation of the results already published as well as additional functional studies are needed to deeply understand the role of MCTs in cancer maintenance and aggressiveness.
Collapse
Affiliation(s)
- Céline Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
77
|
Porporato PE, Payen VL, De Saedeleer CJ, Préat V, Thissen JP, Feron O, Sonveaux P. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis 2012; 15:581-92. [PMID: 22660894 DOI: 10.1007/s10456-012-9282-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/18/2012] [Indexed: 11/24/2022]
Abstract
Wounds notoriously accumulate lactate as a consequence of both anaerobic and aerobic glycolysis following microcirculation disruption, immune activation, and increased cell proliferation. Several pieces of evidence suggest that lactate actively participates in the healing process through the activation of several molecular pathways that collectively promote angiogenesis. Lactate indeed stimulates endothelial cell migration and tube formation in vitro, as well as the recruitment of circulating vascular progenitor cells and vascular morphogenesis in vivo. In this study, we examined whether the pro-angiogenic potential of lactate may be exploited therapeutically to accelerate wound healing. We show that lactate delivered from a Matrigel matrix improves reperfusion and opposes muscular atrophy in ischemic hindlimb wounds in mice. Both responses involve lactate-induced reparative angiogenesis. Using microdialysis and enzymatic measurements, we found that, contrary to poly-L-lactide (PLA), a subcutaneous implant of poly-D,L-lactide-co-glycolide (PLGA) allows sustained local and systemic lactate release. PLGA promoted angiogenesis and accelerated the closure of excisional skin wounds in different mouse strains. This polymer is FDA-approved for other applications, emphasizing the possibility of exploiting PLGA therapeutically to improve wound healing.
Collapse
Affiliation(s)
- Paolo E Porporato
- Pole of Pharmacology, Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 53 box B1.53.09, 1200, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
78
|
Soumya SJ, Binu S, Helen A, Anil Kumar K, Reddanna P, Sudhakaran PR. Effect of 15-lipoxygenase metabolites on angiogenesis: 15(S)-HPETE is angiostatic and 15(S)-HETE is angiogenic. Inflamm Res 2012; 61:707-18. [PMID: 22450700 DOI: 10.1007/s00011-012-0463-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 12/10/2011] [Accepted: 03/08/2012] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE 15(S)-Hydroxyeicosatetraenoic acid [15(S)-HETE] and 15(S)-hydroperoxyeicosatetraenoic acid [15(S)-HPETE] are the products of arachidonic acid formed in the 15-lipoxygenase pathway. They have opposing effects on the inflammatory process. The present study was designed to examine the role of these metabolites on angiogenesis, which is critically associated with inflammatory conditions. METHODS Chick chorio-allantoic membrane (CAM), rat aortic rings and human umbilical vein endothelial cells (HUVECs) in culture were used to study the effect of 15(S)-HETE and 15(S)-HPETE on angiogenesis. Biochemical markers of angiogenesis were analysed by ELISA. RESULTS 15(S)-HETE increased vessel density in chick CAM, induced sprouting in rat aortic rings and increased endothelial cell-cell contact and formation of tubular network-like structures in HUVECs. Furthermore, it up-regulated the expression of CD31, E-selectin and vascular endothelial growth factor (VEGF) in HUVECs, indicating its pro-angiogenic effect. 15(S)-HPETE, on the other hand, decreased vessel density in chick CAM, down-regulated the expression of E-selectin (<35 %), VEGF (<90 %) and CD31 (<50 %) and did not produce sprouting in aortic rings, suggesting an anti-angiogenic property. 15(S)-HETE-mediated up-regulation of CD 31 and VEGF was reversed by treatment with 15(S)-HPETE. CONCLUSION These results indicate the divergent effects of hydroxy and hydroperoxy products of 15-LOX on angiogenesis, highlighting the role of these products in the co-dependence of inflammation and angiogenesis.
Collapse
Affiliation(s)
- Sasikumar J Soumya
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, 695581 Kerala, India
| | | | | | | | | | | |
Collapse
|
79
|
Binu S, Soumya SJ, Kumar VBS, Sudhakaran PR. Poly-ADP-ribosylation of vascular endothelial growth factor and its implications on angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:269-78. [PMID: 22695851 DOI: 10.1007/978-1-4614-3381-1_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- S Binu
- Department of Biochemistry, University of Kerala, Karyavattom, Thiruvananthapuram, Kerala, India
| | | | | | | |
Collapse
|
80
|
Angiogenic response of endothelial cells to fibronectin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:131-51. [PMID: 22695843 DOI: 10.1007/978-1-4614-3381-1_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
81
|
Végran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 2011; 71:2550-60. [PMID: 21300765 DOI: 10.1158/0008-5472.can-10-2828] [Citation(s) in RCA: 568] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lactate generated from pyruvate fuels production of intracellular NAD(+) as an end result of the glycolytic process in tumors. Elevated lactate concentration represents a good indicator of the metabolic adaptation of tumors and is actually correlated to clinical outcome in a variety of human cancers. In this study, we investigated whether lactate could directly modulate the endothelial phenotype and thereby tumor vascular morphogenesis and perfusion. We found that lactate could enter endothelial cells through the monocarboxylate transporter MCT-1, trigger the phosphorylation/degradation of IκBα, and then stimulate an autocrine NF-κB/IL-8 (CXCL8) pathway driving cell migration and tube formation. These effects were prevented by 2-oxoglutarate and reactive oxygen species (ROS) inhibitors, pointing to a role for prolyl-hydroxylase and ROS in the integration of lactate signaling in endothelial cells. PHD2 silencing in endothelial cells recapitulated the proangiogenic effects of lactate, whereas a blocking IL-8 antibody or IL-8-targeting siRNA prevented them. Finally, we documented in mouse xenograft models of human colorectal and breast cancer that lactate release from tumor cells through the MCT4 (and not MCT1) transporter is sufficient to stimulate IL-8-dependent angiogenesis and tumor growth. In conclusion, our findings establish a signaling role for lactate in endothelial cells and they identify the lactate/NF-κB/IL-8 pathway as an important link between tumor metabolism and angiogenesis.
Collapse
Affiliation(s)
- Frédérique Végran
- Université catholique de Louvain, Pole of Pharmacology & Therapeutics (UCL-FATH), Angiogenesis & Cancer Research Laboratory, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| | | | | | | | | |
Collapse
|
82
|
Devi MS, Sudhakaran PR. Differential modulation of angiogenesis by advanced glycation end products. Exp Biol Med (Maywood) 2011; 236:52-61. [DOI: 10.1258/ebm.2010.010087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Divergent angiogenic responses occur in different organs in a diabetic state. Many of the pathological effects were mediated by the advanced glycation end products (AGEs) of non-enzymatically glycated molecules. Investigations were carried out using different angiogenic model systems to examine whether the angiogenic response to AGEs is influenced by the cellular microenvironment. AGE-albumin increased angiogenesis in chick chorioallantoic membrane (CAM). It also increased sprouting in rat aortic rings and the expression of angiogenic markers CD31 and E-selectin and the angiogenic growth factor, vascular endothelial growth factor (VEGF) in human umbilical vein endothelial cells (HUVECs) in culture, suggesting a proangiogenic effect. But in a serum-supplemented condition, AGE-albumin inhibited aortic sprouting and expression of angiogenic markers and VEGF production by HUVECs, suggesting an antiangiogenic effect in the presence of serum. Blocking of the AGE effect by the antioxidants, N-acetyl cysteine and ascorbic acid, suggested that the AGE effect involved oxidant stress. Reversal of the AGE effect by LY 294 002, an inhibitor of the Akt pathway and increased phosphorylation of Akt in cells maintained in serum-free medium, suggested the involvement of the Akt pathway in mediating the AGE effect; such an effect was absent in a serum-supplemented condition. These opposing effects of AGE-albumin on angiogenesis in the presence and absence of serum suggested that the AGE accumulated in a hyperglycemic condition can affect angiogenesis depending on the microenvironment of the cells.
Collapse
Affiliation(s)
- Manju S Devi
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695 581, India
| | - Perumana R Sudhakaran
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695 581, India
| |
Collapse
|
83
|
Kumar VBS, Viji RI, Kiran MS, Sudhakaran PR. Angiogenic effect of laminin involves modulation of cyclooxygenase-2 and prostaglandin levels. Exp Biol Med (Maywood) 2010; 236:44-51. [PMID: 21148739 DOI: 10.1258/ebm.2010.010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The molecular mechanism of the angiogenic effect of laminin (Ln) was studied using human umbilical vein endothelial cells (HUVECs) maintained in culture on Ln-1 substratum. High-pressure liquid chromatography analysis showed that in cells maintained on Ln, the levels of proangiogenic prostaglandin E(2) (PGE(2)) increased and that of antiangiogenic PGD(2) decreased. The angiogenic effect of PGE(2) and PGD(2) was confirmed by assessing the expression of CD31 and E-selectin in HUVECs. Immunoblot analysis, reverse transcription-polymerase chain reaction and cyclooxygenase (COX) assay showed increase in the expression and activity of COX-2 in cells maintained on Ln. Use of pharmacological inhibitors suggested that the modulation in the expression of COX-2 and thereby the levels of PGE(2) and PGD(2) in endothelial cells by Ln is mediated through the α(6)β(4) integrin-p38MAPK (mitogen-activated protein kinase)-NF-κB signaling pathway.
Collapse
Affiliation(s)
- V B Sameer Kumar
- Department of Biochemistry, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | | | | | | |
Collapse
|
84
|
Grotius J, Dittfeld C, Huether M, Mueller-Klieser W, Baumann M, Kunz-Schughart LA. Impact of exogenous lactate on survival and radioresponse of carcinoma cells in vitro. Int J Radiat Biol 2009; 85:989-1001. [DOI: 10.3109/09553000903242156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
85
|
Peralta-Leal A, Rodríguez-Vargas JM, Aguilar-Quesada R, Rodríguez MI, Linares JL, de Almodóvar MR, Oliver FJ. PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med 2009; 47:13-26. [PMID: 19362586 DOI: 10.1016/j.freeradbiomed.2009.04.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 12/21/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are defined as cell signaling enzymes that catalyze the transfer of ADP-ribose units from NAD(+) to a number of acceptor proteins. PARP-1, the best characterized member of the PARP family, which currently comprises 18 members, is an abundant nuclear enzyme implicated in cellular responses to DNA injury provoked by genotoxic stress. PARP is involved in DNA repair and transcriptional regulation and is now recognized as a key regulator of cell survival and cell death as well as a master component of a number of transcription factors involved in tumor development and inflammation. PARP-1 is essential to the repair of DNA single-strand breaks via the base excision repair pathway. Inhibitors of PARP-1 have been shown to enhance the cytotoxic effects of ionizing radiation and DNA-damaging chemotherapy agents, such as the methylating agents and topoisomerase I inhibitors. There are currently at least five PARP inhibitors in clinical trial development. Recent in vitro and in vivo evidence suggests that PARP inhibitors could be used not only as chemo/radiotherapy sensitizers, but also as single agents to selectively kill cancers defective in DNA repair, specifically cancers with mutations in the breast cancer-associated genes (BRCA1 and BRCA2). PARP becomes activated in response to oxidative DNA damage and depletes cellular energy pools, thus leading to cellular dysfunction in various tissues. The activation of PARP may also induce various cell death processes and promotes an inflammatory response associated with multiple organ failure. Inhibition of PARP activity is protective in a wide range of inflammatory and ischemia-reperfusion-associated diseases, including cardiovascular diseases, diabetes, rheumatoid arthritis, endotoxic shock, and stroke. The aim of this review is to overview the emerging data in the literature showing the role of PARP in the pathogenesis of cancer and inflammatory diseases and unravel the solid body of literature that supports the view that PARP is an important target for therapeutic intervention in critical illness.
Collapse
Affiliation(s)
- Andreína Peralta-Leal
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Cientificas (CSIC), Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
86
|
Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol Cell Biol 2009; 29:4080-90. [PMID: 19470762 DOI: 10.1128/mcb.00483-09] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an inherited cancer syndrome linked to biallelic inactivation of the gene encoding the tricarboxylic acid cycle enzyme fumarate hydratase (FH). Individuals with HLRCC are at risk to develop cutaneous and uterine leiomyomas and an aggressive form of kidney cancer. Pseudohypoxic drive-the aberrant activation of cellular hypoxia response pathways despite normal oxygen tension-is considered to be a likely mechanism underlying the etiology of this tumor. Pseudohypoxia requires the oxygen-independent stabilization of the alpha subunit of the hypoxia-inducible transcription factor (HIF-1alpha). Under normoxic conditions, proline hydroxylation of HIF-1alpha permits VHL recognition and subsequent targeting for proteasomal degradation. Here, we demonstrate that inactivating mutations of FH in an HLRCC-derived cell line result in glucose-mediated generation of cellular reactive oxygen species (ROS) and ROS-dependent HIF-1alpha stabilization. Additionally, we demonstrate that stable knockdown of FH in immortalized renal epithelial cells results in ROS-dependent HIF-1alpha stabilization. These data reveal that the obligate glycolytic switch present in HLRCC is critical to HIF stabilization via ROS generation.
Collapse
|
87
|
Kumar VS, Viji R, Kiran M, Sudhakaran P. Negative modulation of eNOS by laminin involving post-translational phosphorylation. J Cell Physiol 2009; 219:123-31. [DOI: 10.1002/jcp.21659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
88
|
Fraisl P, Mazzone M, Schmidt T, Carmeliet P. Regulation of angiogenesis by oxygen and metabolism. Dev Cell 2009; 16:167-79. [PMID: 19217420 DOI: 10.1016/j.devcel.2009.01.003] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Blood vessels form an important interface between the environment and the organism by carrying oxygen and nutrients to all cells and thus determining cellular metabolism. It is therefore not surprising that oxygen and metabolism influence the development of the vascular network. Here, we discuss recent insights regarding the emerging crosstalk between angiogenesis and metabolism. We will highlight advances in how oxygen and metabolism regulate angiogenesis as well as how angiogenic factors in turn also regulate metabolism.
Collapse
|
89
|
Viji RI, Sameer Kumar VB, Kiran MS, Sudhakaran PR. Modulation of endothelial nitric oxide synthase by fibronectin. Mol Cell Biochem 2008; 323:91-100. [DOI: 10.1007/s11010-008-9967-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Accepted: 11/13/2008] [Indexed: 11/30/2022]
|
90
|
Milovanova TN, Bhopale VM, Sorokina EM, Moore JS, Hunt TK, Hauer-Jensen M, Velazquez OC, Thom SR. Hyperbaric oxygen stimulates vasculogenic stem cell growth and differentiation in vivo. J Appl Physiol (1985) 2008; 106:711-28. [PMID: 19023021 DOI: 10.1152/japplphysiol.91054.2008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We hypothesized that oxidative stress from hyperbaric oxygen (HBO(2), 2.8 ATA for 90 min daily) exerts a trophic effect on vasculogenic stem cells. In a mouse model, circulating stem/progenitor cell (SPC) recruitment and differentiation in subcutaneous Matrigel were stimulated by HBO(2) and by a physiological oxidative stressor, lactate. In combination, HBO(2) and lactate had additive effects. Vascular channels lined by CD34(+) SPCs were identified. HBO(2) and lactate accelerated channel development, cell differentiation based on surface marker expression, and cell cycle entry. CD34(+) SPCs exhibited increases in thioredoxin-1 (Trx1), Trx reductase, hypoxia-inducible factors (HIF)-1, -2, and -3, phosphorylated mitogen-activated protein kinases, vascular endothelial growth factor, and stromal cell-derived factor-1. Cell recruitment to Matrigel and protein synthesis responses were abrogated by N-acetyl cysteine, dithioerythritol, oxamate, apocynin, U-0126, neutralizing anti-vascular endothelial growth factor, or anti-stromal cell-derived factor-1 antibodies, and small inhibitory RNA to Trx reductase, lactate dehydrogenase, gp91(phox), HIF-1 or -2, and in mice conditionally null for HIF-1 in myeloid cells. By causing an oxidative stress, HBO(2) activates a physiological redox-active autocrine loop in SPCs that stimulates vasculogenesis. Thioredoxin system activation leads to elevations in HIF-1 and -2, followed by synthesis of HIF-dependent growth factors. HIF-3 has a negative impact on SPCs.
Collapse
Affiliation(s)
- Tatyana N Milovanova
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6068, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Viji RI, Kumar VBS, Kiran MS, Sudhakaran PR. Modulation of cyclooxygenase in endothelial cells by fibronectin: relevance to angiogenesis. J Cell Biochem 2008; 105:158-66. [PMID: 18459145 DOI: 10.1002/jcb.21808] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cyclooxygenases (COX), which catalyze the formation of prostaglandins (PGs), have been implicated in angiogenesis. Adhesion of endothelial cells (ECs) to extracellular matrix (ECM) induces the expression of COX-2 and PG production. The present study was carried out to analyze the influence of the adhesive ECM protein, fibronectin (FN), in modulating COX expression and its implications to angiogenesis using in vitro cultures of human umbilical vein ECs. RT-PCR analysis showed that the level of COX-2 mRNA was significantly high while that of COX-1 decreased in ECs maintained on FN. On treatment with p38 MAPK inhibitor and anti-alpha(5)beta(1) integrin antibody, FN dependent effect on COX expression was not observed. Analysis by ELISA and immunoblotting confirmed FN-dependent upregulation of COX-2 protein. The ratio of PG E(2):PG D(2) was significantly high in cells maintained on FN and on treatment with p38 MAPK inhibitor, the relative level of PG D(2) increased and that of PG E(2) decreased. Concomitant with the modulation of COX-2 and changes in PGs, ECs maintained on FN showed angiogenic response in an alpha(5)beta(1) integrin/p38 MAPK dependent manner as evidenced by the expression of angiogenic markers, CD 31 and E-selectin. These results suggest a FN-alpha(5)beta(1)/FAK/p38 MAPK dependent upregulation of COX-2 causing a shift in the relative levels of PGs in HUVECs which contributes to the angiogenic effect of FN.
Collapse
Affiliation(s)
- R I Viji
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695 581, India
| | | | | | | |
Collapse
|
92
|
Endothelial cell-laminin interaction: modulation of LDH expression involves alpha6beta4 integrin-FAK-p38MAPK pathway. Glycoconj J 2008; 26:697-704. [PMID: 18814027 DOI: 10.1007/s10719-008-9188-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/25/2022]
Abstract
One of the possible mechanisms of the angiogenic effect of laminin (Ln) involves modulation of the biological activity of VEGF by regulating poly ADP ribosylation (PAR). PAR modification of VEGF was found to be related with the changes in NAD(+) associated with a shift in LDH isoenzymes. Further investigations on LDH gene expression in HUVECs suggested that the effect of Ln was mediated through alpha(6)beta(4) integrin-FAK-src-p38 MAPK pathway. This was evidenced by (a) co-immunoprecipitation of beta(4) integrin with alpha(6) subunit, (b) activation by tyrosine phosphorylation of beta(4) integrin and FAK, (c) co-immunoprecipitation of FAK with beta(4) and with adapter protein, src, (d) increased phosphorylation of p38 MAPK in cells maintained on Ln and (e) blocking of effect of Ln on LDH-B gene expression by inhibition of p38 MAPK. Increase in serine phosphorylation of c-fos and c-jun and higher levels of heterodimers of AP-1 in the nucleus in cells maintained on Ln suggested activation of AP-1 transcription factor. These results provide evidence for modulation of endothelial cell function relevant to angiogenesis by Ln through alpha(6)beta(4) integrin.
Collapse
|
93
|
Kumar VBS, Viji RI, Kiran MS, Sudhakaran PR. Modulation of expression of LDH isoenzymes in endothelial cells by laminin: implications for angiogenesis. J Cell Biochem 2008; 103:1808-25. [PMID: 18092337 DOI: 10.1002/jcb.21567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cell (EC) matrix interaction is critical in angiogenesis. Although matrix components can regulate the process of angiogenesis by acting as a reservoir of various cytokines, it is not clear if extracellular matrix (ECM) can modulate the production and activity of angiogenic cytokines. Investigations were therefore carried out to study the influence of the basement membrane (BM) protein, laminin (Ln) on the activity of vascular endothelial growth factor (VEGF), the major angiogenic cytokine, using isolated human umbilical vein ECs (HUVECs) in culture. Analysis of the biochemical markers of angiogenesis confirmed proangiogenic effect of Ln. The levels of VEGF protein and mRNA were not different in cells maintained on Ln, collagen I or polylysine substrata. Chorioallantoic membrane assay using VEGF isolated from cell extracts however revealed that Ln increased its angiogenic potency. Immunoblotting and HPLC analysis showed considerable reduction in poly adenosyl ribosylation of VEGF associated with a significant decrease in the levels of NAD+, in cells maintained on Ln substrata. Further, a shift in the isoenzymic pattern of LDH towards the B rich forms and an upregulation of LDH B gene were observed in cells maintained on Ln. Ln modulates expression of LDH gene through alpha(6)beta(4) integrin mediated downstream signaling involving p38 mitogen activated protein kinases (MAPK) pathway. It thus appears that Ln can affect aerobic metabolism of ECs by modulating the expression of LDH isoenzymes resulting in a decrease in the level of NAD+ that can cause a reduction in the poly adenosyl ribosylation of VEGF altering its angiogenic potency.
Collapse
Affiliation(s)
- V B Sameer Kumar
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | | | | | | |
Collapse
|
94
|
Lactate stimulates vasculogenic stem cells via the thioredoxin system and engages an autocrine activation loop involving hypoxia-inducible factor 1. Mol Cell Biol 2008; 28:6248-61. [PMID: 18710947 DOI: 10.1128/mcb.00795-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recruitment and differentiation of circulating stem/progenitor cells (SPCs) in subcutaneous Matrigel in mice was assessed. There were over one million CD34(+) SPCs per Matrigel plug 18 h after Matrigel implantation, and including a polymer to elevate the lactate concentration increased the number of SPCs by 3.6-fold. Intricate CD34(+) cell-lined channels were linked to the systemic circulation, and lactate accelerated cell differentiation as evaluated based on surface marker expression and cell cycle entry. CD34(+) SPCs from lactate-supplemented Matrigel exhibited significantly higher concentrations of thioredoxin 1 (Trx1) and hypoxia-inducible factor 1 (HIF-1) than cells from unsupplemented Matrigel, whereas Trx1 and HIF-1 in CD45(+) leukocytes were not elevated by lactate. Results obtained using small inhibitory RNA (siRNA) specific to HIF-1 and mice with conditionally HIF-1 null myeloid cells indicated that SPC recruitment and lactate-mediated effects were dependent on HIF-1. Cells from lactate-supplemented Matrigel had higher concentrations of phosphorylated extracellular signal-regulated kinases 1 and 2, Trx1, Trx reductase (TrxR), vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1 (SDF-1) than cells from unsupplemented Matrigel. SPC recruitment and protein changes were inhibited by siRNA specific to lactate dehydrogenase, TrxR, or HIF-1 and by oxamate, apocynin, U0126, N-acetylcysteine, dithioerythritol, and antibodies to VEGF or SDF-1. Oxidative stress from lactate metabolism by SPCs accelerated further SPC recruitment and differentiation through Trx1-mediated elevations in HIF-1 levels and the subsequent synthesis of HIF-1-dependent growth factors.
Collapse
|
95
|
Stable depletion of poly (ADP-ribose) polymerase-1 reduces in vivo melanoma growth and increases chemosensitivity. Eur J Cancer 2008; 44:1302-14. [PMID: 18440222 DOI: 10.1016/j.ejca.2008.03.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 11/22/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP)-1, which plays a key role in DNA repair, inflammation and transcription, has recently been shown to be involved in angiogenesis. The aim of this study was to investigate PARP-1 role in melanoma aggressiveness and chemoresistance in vivo using clones stably silenced for PARP-1 expression. Whilst the growth characteristics of PARP-1-deficient melanoma cells were comparable to those of PARP-1-proficient cells in vitro, their tumourigenic potential in vivo was significantly compromised. In fact, mice challenged intra-muscle with PARP-1-deficient cells showed a delayed development of measurable tumour nodules, which were also significantly reduced in size with respect to those of mice inoculated with PARP-1-proficient cells. Moreover, animals challenged intra-cranially with PARP-1-deficient cells, a model that mimics CNS localisation of melanoma, showed an increased survival. Immunohistochemical analyses of PARP-1-depleted melanoma grafts indicated a reduced expression of the angiogenesis marker PECAM-1/CD31 and of the pro-inflammatory mediators TNF-alpha and GITR. Notably, PARP-1-silenced melanoma was extremely sensitive to temozolomide, an anticancer agent used for the treatment of metastatic melanoma. These results provide novel evidence for a direct role of PARP-1 in tumour aggressiveness and chemoresistance.
Collapse
|
96
|
Abstract
Vascular endothelial growth factor A (VEGF-A) belongs to a family of heparin binding growth factors that include VEGF-B, VEGF-C, VEGF-D, and placental-like growth factor (PLGF). First discovered for its ability to regulate vascular endothelial cell permeability, VEGF is a well-known angiogenic factor that is important for vascular development and maintenance in all mammalian organs. The development of molecular tools and pharmacological agents to selectively inhibit VEGF function and block angiogenesis and/or vascular permeability has led to great promise in the treatment of various cancers, macular degeneration, and wound healing. However, VEGF is also important in animals for the regulation of angiogenesis, stem cell and monocyte/macrophage recruitment, maintenance of kidney and lung barrier functions and neuroprotection. In addition to its role in regulating endothelial cell proliferation, migration, and cell survival, VEGF receptors are also located on many non-endothelial cells and act through autrocrine pathways to regulate cell survival and function. The following review will discuss the role of VEGF in physiological angiogenesis as well as its role in non-angiogenic processes that take place in adult organs.
Collapse
Affiliation(s)
- Ellen C Breen
- Department of Medicine, University of California at San Diego, San Diego, La Jolla, California 92093-0623, USA.
| |
Collapse
|
97
|
Kiran MS, Kumar VBS, Viji RI, Sherin GT, Rajasekharan KN, Sudhakaran PR. Opposing effects of curcuminoids on serum stimulated and unstimulated angiogenic response. J Cell Physiol 2008; 215:251-64. [PMID: 17960570 DOI: 10.1002/jcp.21307] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Curcumin is known to be a potent wound healer. Despite this, studies on curcumin using certain model systems have shown it to be anti-angiogenic. Results of the present investigations suggest that curcumin causes opposing effects on angiogenesis in serum stimulated and unstimulated conditions. The evidence in support of this are: (a) in serum free conditions, curcumin promoted sprouting in rat aortic ring, increased vascular density in CAM and induced morphological changes indicative of angiogenic phenotype in HUVECs and rat aortic endothelial cells in culture, (b) increased the expression of biochemical markers of angiogenesis such as CD 31, E-selectin, VEGF and VEGFR-2 in HUVECs on treatment with curcumin, and (c) supplementation of curcumin along with serum caused decrease in CD 31 and E-selectin levels, downregulation of VEGF, angiopoietin-1 and VEGFR-2 and delayed formation of capillary network-like structure. Proangiogenic effect of the individual components of the natural curcumin differed and the presence of the three components in the natural mixture has a synergistic effect. Effect of curcuminoids in the absence of serum appears to depend on VEGF as (a) anti-VEGF antibody blocked the effect of curcuminoids (b) curcuminoids caused decrease in PAR modification of VEGF increasing its biological activity. Treatment with curcuminoids in serum-free conditions resulted in activation of PI3K-Akt pathway; but in serum-supplemented condition, curcuminoids caused inhibition of the MAPK pathways thereby inhibiting the expression of angiogenic phenotype. These results suggest that PI3K-Akt and MAPK pathways involved in the expression of angiogenic phenotype respond differently to the extracellular microenvironment.
Collapse
Affiliation(s)
- M S Kiran
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695 581, India
| | | | | | | | | | | |
Collapse
|
98
|
Mathews MT, Berk BC. PARP-1 inhibition prevents oxidative and nitrosative stress-induced endothelial cell death via transactivation of the VEGF receptor 2. Arterioscler Thromb Vasc Biol 2008; 28:711-7. [PMID: 18239155 DOI: 10.1161/atvbaha.107.156406] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE PARP-1, a DNA base repair enzyme, is activated by DNA breaks induced by oxidative (ROS) and nitrosative (RNS) stress. By consuming NAD(+), PARP-1 activation can lead to ATP depletion and cell death. Studies suggest that inhibiting PARP-1 activity can attenuate pathologies associated with vascular smooth muscle and endothelial dysfunction. PARP-1 inhibition can also activate the prosurvival serine/threonine kinase, Akt. Vascular endothelial growth factor (VEGF) regulates endothelial cell survival via Akt activation downstream of VEGF receptor 2 (VEGFR2) activation. Here we investigated the hypothesis that PARP-1 inhibition protects human umbilical vein endothelial cells (HUVECs) from ROS- and RNS-induced cell death by limiting NAD(+) depletion and by activating a prosurvival signaling pathway via VEGFR2 phosphorylation. METHODS AND RESULTS We activated PARP-1 in HUVECs by treatment with hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)). Both depleted HUVECs of NAD(+) and ATP, processes that were limited by the PARP-1 inhibitor, PJ34. ONOO(-) and H(2)O(2)-induced cell death and apoptosis were attenuated in cells treated with PJ34 or PARP-1 siRNA. PARP-1 inhibition increased Akt, BAD, and VEGFR2 phosphorylation in HUVECs and in PJ34-treated rabbit aortas. The VEGFR2-specific tyrosine kinase inhibitor SU1498 decreased PARP-1 inhibition-mediated phosphorylation of VEGFR2 and Akt, and also reversed survival effects of PJ34. Finally, PARP-1 inhibition protected cells from death induced by serum starvation, evidence for a role in cell survival independent of energy protection. CONCLUSIONS PARP-1 inhibition prevents ROS- and RNS-induced HUVEC death by maintaining cellular energy in the form of NAD(+) and ATP, and also by activating a survival pathway via VEGFR2, Akt, and BAD phosphorylation.
Collapse
Affiliation(s)
- Marlene T Mathews
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box 706, Rochester, New York 14642, USA
| | | |
Collapse
|
99
|
Revascularization of Wounds: The Oxygen-Hypoxia Paradox. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
100
|
Viji RI, Kumar VBS, Kiran MS, Sudhakaran PR. Angiogenic response of endothelial cells to heparin-binding domain of fibronectin. Int J Biochem Cell Biol 2007; 40:215-26. [PMID: 17766169 DOI: 10.1016/j.biocel.2007.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/29/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Interaction of endothelial cells with cell-binding domain of fibronectin through integrin receptors is important in the process of angiogenesis. The present study was designed to examine the role of heparin-binding domain of fibronectin in angiogenesis using human umbilical vein endothelial cells. Attachment of endothelial cells in vitro to heparin-binding domain of fibronectin was inhibited by heparin. Chick chorioallantoic membrane assay revealed the proangiogenic nature of heparin-binding domain. Analysis by reverse transcription-polymerase chain reaction showed an increase in the expression of vascular endothelial growth factor and its receptor mRNA. Enzyme-linked immunosorbent assay showed a significant increase in the level of vascular endothelial growth factor secreted by cells maintained on heparin-binding domain. Treatment with calphostin C, an inhibitor of protein kinase C, decreased the expression of vascular endothelial growth factor receptor 2. Chick chorioallantoic membrane assay showed that the vascular endothelial growth factor secreted by cells maintained on heparin-binding domain was biologically more active, which appeared to be due to a decrease in its poly-adenosine diphosphate ribosylation. Binding assays showed that heparin-binding domain preferably binds unmodified vascular endothelial growth factor as compared to intact fibronectin. It is concluded that the heparin-binding domain of fibronectin by itself can promote angiogenesis in endothelial cells possibly by interaction with cell surface heparan sulphate proteoglycans involving protein kinase C dependent signaling and making available more active form of vascular endothelial growth factor to the cells.
Collapse
Affiliation(s)
- R I Viji
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695 581, India.
| | | | | | | |
Collapse
|