51
|
Chung AM. Calcitonin gene-related peptide (CGRP): role in peripheral nerve regeneration. Rev Neurosci 2018; 29:369-376. [PMID: 29216010 DOI: 10.1515/revneuro-2017-0060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide that has an important anti-inflammatory role in the immune system. Research has shown that CGRP is an integral part in peripheral nerve regeneration by (1) suppressing tumor necrosis factor-α, (2) forming an initial nerve bridge by increasing fibroblast motility and extracellular matrix synthesis, (3) vascularizing the spinal cord injury site, and (4) inducing Schwann cell (SC) proliferation. In this treatise, the following hypotheses will be explored: (1) CGRP is induced by c-Jun to regulate SC dedifferentiation, (2) CGRP promotes the chemotaxic migration of SCs along the nerve bridge, and (3) CGRP induces myelinophagy by activating various signaling pathways, such as p38 mitogen-activated protein kinase and Raf/extracellular signal-regulated kinase. These processes provide a framework for understanding the role of CGRP in peripheral nerve regeneration, which may be important in developing better strategies for nerve repair and gaining further insight into demyelinating diseases.
Collapse
Affiliation(s)
- Albert M Chung
- University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267-0552, USA
| |
Collapse
|
52
|
Park HT, Kim JK, Tricaud N. The conceptual introduction of the “demyelinating Schwann cell” in peripheral demyelinating neuropathies. Glia 2018; 67:571-581. [DOI: 10.1002/glia.23509] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Hwan Tae Park
- Department of Molecular Neuroscience; Peripheral Neuropathy Research Center, College of Medicine, Dong-A University; Busan South Korea
| | - Jong Kuk Kim
- Department of Neurology; Peripheral Neuropathy Research Center, College of Medicine, Dong-A University; Busan South Korea
| | - Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier (INM); Université de Montpellier; Montpellier France
| |
Collapse
|
53
|
Cusack LM, Mayer J, Cutler DC, Rissi DR, Divers SJ. Gross and histologic evaluation of effects of photobiomodulation, silver sulfadiazine, and a topical antimicrobial product on experimentally induced full-thickness skin wounds in green iguanas (Iguana iguana). Am J Vet Res 2018; 79:465-473. [PMID: 29583044 DOI: 10.2460/ajvr.79.4.465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess effects of photobiomodulation, silver sulfadiazine, and a topical antimicrobial product for the treatment of experimentally induced full-thickness skin wounds in green iguanas (Iguana iguana). ANIMALS 16 healthy subadult green iguanas. PROCEDURES Iguanas were anesthetized, and three 5-mm cutaneous biopsy specimens were obtained from each iguana (day 0). Iguanas were randomly assigned to 2 treatment groups, each of which had a control treatment. Wounds in the topical treatment group received silver sulfadiazine, a topical antimicrobial product, or no treatment. Wounds in the laser treatment group received treatment with a class 4 laser at 5 or 10 J/cm2 or no treatment. Wound measurements were obtained daily for 14 days. Iguanas were euthanized, and treatment sites were evaluated microscopically to detect ulceration, bacterial contamination, reepithelialization, necrosis, inflammation, fibrosis, and collagen maturity. RESULTS On day 14, wounds treated with a laser at 10 J/cm2 were significantly smaller than those treated with silver sulfadiazine, but there were no other significant differences among treatments. Histologically, there were no significant differences in ulceration, bacterial infection, reepithelialization, necrosis, inflammation, fibrosis, and collagen maturity among treatments. CONCLUSIONS AND CLINICAL RELEVANCE Photobiomodulation at 10 J/cm2 appeared to be a safe treatment that was tolerated well by green iguanas, but it did not result in substantial improvement in histologic evidence of wound healing, compared with results for other treatments or no treatment.
Collapse
|
54
|
Ren C, Chen X, Du N, Geng S, Hu Y, Liu X, Wu X, Lin Y, Bai X, Yin W, Cheng S, Yang L, Zhang Y. Low-intensity pulsed ultrasound promotes Schwann cell viability and proliferation via the GSK-3β/β-catenin signaling pathway. Int J Biol Sci 2018; 14:497-507. [PMID: 29805301 PMCID: PMC5968842 DOI: 10.7150/ijbs.22409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022] Open
Abstract
Background: It has been reported that ultrasound enhances peripheral nerve regeneration, but the mechanism remains elusive. Low-intensity pulsed ultrasound (LIPUS) has been reported to enhance proliferation and alter protein production in various types of cells. In this study, we detected the effects of LIPUS on Schwann cells. Material and methods: Schwann cells were separated from new natal Sprague-Dawley rat sciatic nerves and were cultured and purified. The Schwann cells were treated by LIPUS for 10 minutes every day, with an intensity of 27.37 mW/cm2. After treatment for 5 days, MTT, EdU staining, and flow cytometry were performed to examine cell viability and proliferation. Neurotrophic factors, including FGF, NGF, BDNF, and GDNF, were measured by western blot and real-time PCR. GSK-3β, p-GSK-3β, β-catenin and Cyclin D1 protein levels were detected using a western blot analysis. The expression of Cyclin D1 was also detected by immunofluorescence. Results: MTT and EdU staining showed that LIPUS increased the Schwann cells viability and proliferation. Compared to the control group, LIPUS increased the expression of growth factors and neurotrophic factors, including FGF, NGF, BDNF, GDNF, and Cyclin D1. Meanwhile, GSK-3β activity was inhibited in the LIPUS group as demonstrated by the increased level of p-GSK-3β and the ratio of the p-GSK-3β/GSK-3β level. The mRNA and protein expressions of β-catenin were increased in the LIPUS group. However, SB216763, a GSK-3β inhibitor, reversed the effects of LIPUS on Schwann cells. Conclusion: LIPUS promotes Schwann cell viability and proliferation by increasing Cyclin D1 expression via enhancing the GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Cong Ren
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Xiaohui Chen
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Ning Du
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Shuo Geng
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Yingying Hu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin Liu
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Xianxian Wu
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Yuan Lin
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Xue Bai
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Wenzhe Yin
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Shi Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Yong Zhang
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, Heilongjiang Province 150086, China
| |
Collapse
|
55
|
Lee S, Esworthy T, Stake S, Miao S, Zuo YY, Harris BT, Zhang LG. Advances in 3D Bioprinting for Neural Tissue Engineering. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700213] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Se‐Jun Lee
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Seth Stake
- Department of Medicine George Washington University Washington DC 20052 USA
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Yi Y. Zuo
- Department of Mechanical Engineering University of Hawaii at Manoa Honolulu HI 96822 USA
| | - Brent T. Harris
- Department of Neurology and Pathology Georgetown University Washington DC 20007 USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
- Department of Medicine George Washington University Washington DC 20052 USA
- Department of Biomedical Engineering George Washington University Washington DC 20052 USA
| |
Collapse
|
56
|
Türedi S, Yuluğ E, Alver A, Bodur A, İnce İ. A morphological and biochemical evaluation of the effects of quercetin on experimental sciatic nerve damage in rats. Exp Ther Med 2018; 15:3215-3224. [PMID: 29545838 PMCID: PMC5841083 DOI: 10.3892/etm.2018.5824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022] Open
Abstract
The present study evaluated the neuroprotective and antioxidant effects of quercetin in a rat model of sciatic nerve crush injury using histopathological, morphometric and biochemical methods. A total of 48 male Sprague Dawley rats, aged 10-12 weeks old were randomly divided into eight groups, consisting of two sham groups (S-7, S-28), three quercetin-treated groups (Q-7, Q-28; 200 mg/kg/7 days), trauma (T-7, T-28; 1 min sciatic nerve crush injury) and three trauma+quercetin groups (T+Q-7, T+Q-28; trauma+quercetin 200 mg/kg/7 days). Rats were sacrificed on day 7 or 28. Oxidant-antioxidant biochemical parameters in nerve tissues from all groups were analyzed using histopathological staining with toluidine blue and Masson's trichrome. DNA fragmentations were identified using terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling in cells from each tissue sample. Degeneration of the axons and myelin sheath, the breakdown of the concentric lamellar structure of the myelin sheath and axonal swelling were observed in groups T-7 and T-28. Myelin sheath thicknesses, nerve fiber diameters and the number of myelinated nerve fibers decreased, while the apoptotic index (AI) increased in the T-7 and T-28 groups. However, it was observed that nerve regeneration began in the T+Q-7 and T+Q-28 groups compared with the sham groups, together with the healing of cellular damage and axonal structure and a decrease in the AI. Malondialdehyde and superoxide dismutase activity did not differ significantly between the T-7 and S-7 groups. However, catalase activity significantly decreased in the T-28 group when compared with the sham 7 day group. Tissue malondialdehyde levels significantly increased, while serum catalase activity increased in the T+Q-7 group compared with the T-7 group. These results suggest that quercetin has beneficial effects on nerve regeneration and may shorten the healing period in crush-type sciatic nerve injuries.
Collapse
Affiliation(s)
- Sibel Türedi
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Esin Yuluğ
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Akin Bodur
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - İmran İnce
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| |
Collapse
|
57
|
Bendella H, Rink S, Grosheva M, Sarikcioglu L, Gordon T, Angelov DN. Putative roles of soluble trophic factors in facial nerve regeneration, target reinnervation, and recovery of vibrissal whisking. Exp Neurol 2017; 300:100-110. [PMID: 29104116 DOI: 10.1016/j.expneurol.2017.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022]
Abstract
It is well-known that, after nerve transection and surgical repair, misdirected regrowth of regenerating motor axons may occur in three ways. The first way is that the axons enter into endoneurial tubes that they did not previously occupy, regenerate through incorrect fascicles and reinnervate muscles that they did not formerly supply. Consequently the activation of these muscles results in inappropriate movements. The second way is that, in contrast with the precise target-directed pathfinding by elongating motor nerves during embryonic development, several axons rather than a single axon grow out from each transected nerve fiber. The third way of misdirection occurs by the intramuscular terminal branching (sprouting) of each regenerating axon to culminate in some polyinnervation of neuromuscular junctions, i.e. reinnervation of junctions by more than a single axon. Presently, "fascicular" or "topographic specificity" cannot be achieved and hence target-directed nerve regeneration is, as yet, unattainable. Nonetheless, motor and sensory reinnervation of appropriate endoneurial tubes does occur and can be promoted by brief nerve electrical stimulation. This review considers the expression of neurotrophic factors in the neuromuscular system and how this expression can promote functional recovery, with emphasis on the whisking of vibrissae on the rat face in relationship to the expression of the factors. Evidence is reviewed for a role of neurotrophic factors as short-range diffusible sprouting stimuli in promoting complete functional recovery of vibrissal whisking in blind Sprague Dawley (SD)/RCS rats but not in SD rats with normal vision, after facial nerve transection and surgical repair. Briefly, a complicated time course of growth factor expression in the nerves and denervated muscles include (1) an early increase in FGF2 and IGF2, (2) reduced NGF between 2 and 14days after nerve transection and surgical repair, (3) a late rise in BDNF and (4) reduced IGF1 protein in the denervated muscles at 28days. These findings suggest that recovery of motor function after peripheral nerve injury is due, at least in part, to a complex regulation of nerve injury-associated neurotrophic factors and cytokines at the neuromuscular junctions of denervated muscles. In particular, the increase of FGF2 and concomittant decrease of NGF during the first week after facial nerve-nerve anastomosis in SD/RCS blind rats may prevent intramuscular axon sprouting and, in turn, reduce poly-innervation of the neuromuscular junction.
Collapse
Affiliation(s)
- Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | - Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Germany
| | - Maria Grosheva
- Department of Oto-Rhino-Laryngology, University of Cologne, Germany
| | | | - Tessa Gordon
- Department of Surgery, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
58
|
Neutrophils Are Critical for Myelin Removal in a Peripheral Nerve Injury Model of Wallerian Degeneration. J Neurosci 2017; 37:10258-10277. [PMID: 28912156 DOI: 10.1523/jneurosci.2085-17.2017] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/06/2017] [Accepted: 09/09/2017] [Indexed: 12/31/2022] Open
Abstract
Wallerian degeneration (WD) is considered an essential preparatory stage to the process of axonal regeneration. In the peripheral nervous system, infiltrating monocyte-derived macrophages, which use the chemokine receptor CCR2 to gain entry to injured tissues from the bloodstream, are purportedly necessary for efficient WD. However, our laboratory has previously reported that myelin clearance in the injured sciatic nerve proceeds unhindered in the Ccr2-/- mouse model. Here, we extensively characterize WD in male Ccr2-/- mice and identify a compensatory mechanism of WD that is facilitated primarily by neutrophils. In response to the loss of CCR2, injured Ccr2-/- sciatic nerves demonstrate prolonged expression of neutrophil chemokines, a concomitant extended increase in the accumulation of neutrophils in the nerve, and elevated phagocytosis by neutrophils. Neutrophil depletion substantially inhibits myelin clearance after nerve injury in both male WT and Ccr2-/- mice, highlighting a novel role for these cells in peripheral nerve degeneration that spans genotypes.SIGNIFICANCE STATEMENT The accepted view in the basic and clinical neurosciences is that the clearance of axonal and myelin debris after a nerve injury is directed primarily by inflammatory CCR2+ macrophages. However, we demonstrate that this clearance is nearly identical in WT and Ccr2-/- mice, and that neutrophils replace CCR2+ macrophages as the primary phagocytic cell. We find that neutrophils play a major role in myelin clearance not only in Ccr2-/- mice but also in WT mice, highlighting their necessity during nerve degeneration in the peripheral nervous system. These degeneration studies may propel improvements in nerve regeneration and draw critical parallels to mechanisms of nerve degeneration and regeneration in the CNS and in the context of peripheral neuropathies.
Collapse
|
59
|
Effects of Angelica Extract on Schwann Cell Proliferation and Expressions of Related Proteins. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6358392. [PMID: 28804503 PMCID: PMC5540469 DOI: 10.1155/2017/6358392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/25/2017] [Indexed: 12/23/2022]
Abstract
The present study investigated the effects of Angelica extract (AE) on Schwann cell proliferation and expressions of related proteins, including brain derived neurotrophic factor (BDNF), neural cell adhesion molecule (NCAM), and proliferating cell nuclear antigen (PCNA). Proliferation activity and cell cycles of SCs were evaluated by MTT assay and flow cytometry methods, respectively, after 12 h treatment of AE at different concentrations (62.5, 125, 250, 1000, 2000, 4000, and 8000 mg/L). SCs were treated by 500, 1000, and 2000 mg/L AE for 24 h or 48 h; the related genes mRNA and proteins expressions in SCs were detected by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) kit. At the concentration range of 125–2000 mg/L, the SC proliferation was induced by AE in a dose-dependent manner, especially 1000 and 2000 mg/L; cells in drug-treated groups showed the most increase. Cells counts were ascended significantly in (G2/M + S) phase compared to control group. BDNF, NCAM, and PCNA protein expressions significantly increased at drug-treated groups. Relative genes mRNA expressions levels were also significantly higher compared to control group. The results indicated that AE facilitated SC proliferation and related genes and proteins expressions, which provided a basic guideline for nerve injury repair in clinic.
Collapse
|
60
|
Jang SY, Yoon BA, Shin YK, Yun SH, Jo YR, Choi YY, Ahn M, Shin T, Park JI, Kim JK, Park HT. Schwann cell dedifferentiation-associated demyelination leads to exocytotic myelin clearance in inflammatory segmental demyelination. Glia 2017; 65:1848-1862. [DOI: 10.1002/glia.23200] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/01/2017] [Accepted: 07/23/2017] [Indexed: 02/03/2023]
Affiliation(s)
- So Young Jang
- Department of Physiology, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Byeol-A Yoon
- Department of Neurology, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Yoon Kyung Shin
- Department of Physiology, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Seoug Hoon Yun
- Department of Biochemistry, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Young Rae Jo
- Department of Neurology, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Yun Young Choi
- Department of Biochemistry, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Meejung Ahn
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute; JeJu National University; Jeju 63243 Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute; JeJu National University; Jeju 63243 Republic of Korea
| | - Joo In Park
- Department of Biochemistry, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Jong Kuk Kim
- Department of Neurology, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| | - Hwan Tae Park
- Department of Physiology, Peripheral Neuropathy Research Center, College of Medicine; Dong-A University; Busan 49201 Republic of Korea
| |
Collapse
|
61
|
After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination. J Neurosci 2017; 37:9086-9099. [PMID: 28904214 PMCID: PMC5597985 DOI: 10.1523/jneurosci.1453-17.2017] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 01/23/2023] Open
Abstract
There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∼7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration. SIGNIFICANCE STATEMENT After injury to peripheral nerves, the myelin and Remak Schwann cells distal to the injury site reorganize and modify their properties to form cells that support the survival of injured neurons, promote axon growth, remove myelin-associated growth inhibitors, and guide regenerating axons to their targets. We show that the generation of these repair-supportive Schwann cells involves an extensive cellular elongation and branching, often to form long, parallel processes. This generates a distinctive repair cell morphology that is favorable for the formation of the regeneration tracks that are essential for nerve repair. Remyelination, conversely, involves a striking cell shortening to form the typical short myelin cells of regenerated nerves. We also provide evidence for direct lineage relationships between: (1) repair cells and myelin and Remak cells of uninjured nerves and (2) remyelinating cells in regenerated nerves.
Collapse
|
62
|
Kopper TJ, Gensel JC. Myelin as an inflammatory mediator: Myelin interactions with complement, macrophages, and microglia in spinal cord injury. J Neurosci Res 2017; 96:969-977. [PMID: 28696010 DOI: 10.1002/jnr.24114] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 12/24/2022]
Abstract
Spinal cord injury (SCI) triggers chronic intraspinal inflammation consisting of activated resident and infiltrating immune cells (especially microglia/macrophages). The environmental factors contributing to this protracted inflammation are not well understood; however, myelin lipid debris is a hallmark of SCI. Myelin is also a potent macrophage stimulus and target of complement-mediated clearance and inflammation. The downstream effects of these neuroimmune interactions have the potential to contribute to ongoing pathology or facilitate repair. This depends in large part on whether myelin drives pathological or reparative macrophage activation states, commonly referred to as M1 (proinflammatory) or M2 (alternatively) macrophages, respectively. Here we review the processes by which myelin debris may be cleared through macrophage surface receptors and the complement system, how this differentially influences macrophage and microglial activation states, and how the cellular functions of these myelin macrophages and complement proteins contribute to chronic inflammation and secondary injury after SCI.
Collapse
Affiliation(s)
- Timothy J Kopper
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
63
|
Tricaud N, Park HT. Wallerian demyelination: chronicle of a cellular cataclysm. Cell Mol Life Sci 2017; 74:4049-4057. [PMID: 28600652 PMCID: PMC5641270 DOI: 10.1007/s00018-017-2565-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
Abstract
Wallerian demyelination is characteristic of peripheral nerve degeneration after traumatic injury. After axonal degeneration, the myelinated Schwann cell undergoes a stereotypical cellular program that results in the disintegration of the myelin sheath, a process termed demyelination. In this review, we chronologically describe this program starting from the late and visible features of myelin destruction and going backward to the initial molecular steps that trigger the nuclear reprogramming few hours after injury. Wallerian demyelination is a wonderful model for myelin degeneration occurring in the diverse forms of demyelinating peripheral neuropathies that plague human beings.
Collapse
Affiliation(s)
- Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, Montpellier, France.
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Department of Physiology, College of Medicine, Dong-A University, Busan, South Korea
| |
Collapse
|
64
|
Kohn-Polster C, Bhatnagar D, Woloszyn DJ, Richtmyer M, Starke A, Springwald AH, Franz S, Schulz-Siegmund M, Kaplan HM, Kohn J, Hacker MC. Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration. Int J Mol Sci 2017; 18:E1104. [PMID: 28531139 PMCID: PMC5455012 DOI: 10.3390/ijms18051104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 02/01/2023] Open
Abstract
Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR.
Collapse
Affiliation(s)
- Caroline Kohn-Polster
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany.
- Collaborative Research Center (SFB-TR67), Matrixengineering Leipzig and Dresden, Germany.
| | - Divya Bhatnagar
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8066, USA.
| | - Derek J Woloszyn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8066, USA.
- Boston University School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Matthew Richtmyer
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8066, USA.
| | - Annett Starke
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany.
| | - Alexandra H Springwald
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany.
| | - Sandra Franz
- Collaborative Research Center (SFB-TR67), Matrixengineering Leipzig and Dresden, Germany.
- Department of Dermatology, Venereology and Allergology of Medical Faculty of Leipzig University, 04317 Leipzig, Germany.
| | - Michaela Schulz-Siegmund
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany.
- Collaborative Research Center (SFB-TR67), Matrixengineering Leipzig and Dresden, Germany.
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8066, USA.
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8066, USA.
| | - Michael C Hacker
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany.
- Collaborative Research Center (SFB-TR67), Matrixengineering Leipzig and Dresden, Germany.
| |
Collapse
|
65
|
Cashman CR, Hoke A. Deficiency of adaptive immunity does not interfere with Wallerian degeneration. PLoS One 2017; 12:e0177070. [PMID: 28475650 PMCID: PMC5419593 DOI: 10.1371/journal.pone.0177070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/22/2017] [Indexed: 11/19/2022] Open
Abstract
Following injury, distal axons undergo the process of Wallerian degeneration, and then cell debris is cleared to create a permissive environment for axon regeneration. The innate and adaptive immune systems are believed to be critical for facilitating the clearance of myelin and axonal debris during this process. However, immunodeficient animal models are regularly used in transplantation studies investigating cell therapies to modulate the degenerative/regenerative response. Given the importance of the immune system in preparing a permissive environment for regeneration by clearing debris, animals lacking, in part or in full, a functional immune system may have an impaired ability to regenerate due to poor myelin clearance, and may, thus, be poor hosts to study modulators of regeneration and degeneration. To study this hypothesis, three different mouse models with impaired adaptive immunity were compared to wild type animals in their ability to degenerate axons and clear myelin debris one week following sciatic nerve transection. Immunofluorescent staining for axons and quantitation of axon density with nerve histomorphometry of the distal stump showed no consistent discrepancy between immunodeficient and wild type animals, suggesting axons tended to degenerate equally between the two groups. Debris clearance was assessed by macrophage density and relative myelin basic protein expression within the denervated nerve stump, and no consistent impairment of debris clearance was found. These data suggested deficiency of the adaptive immune system does not have a substantial effect on axon degeneration one week following axonal injury.
Collapse
Affiliation(s)
- Christopher R. Cashman
- MSTP/MD-PhD Program, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ahmet Hoke
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
66
|
Abstract
Abstract
Axonal loss is an important process both during development and diseases of the nervous system. While the molecular mechanisms that mediate axonal loss are largely elusive, modern imaging technology affords an increasingly clear view of the cellular processes that allow nerve cells to shed individiual axon branches or even dismantle entire parts of their axonal projections. The present review discusses the characteristics of post-traumatic Wallerian degeneration, the process of axonal loss currently best understood. Subsequently, the properties of a number of recently discovered axonal loss phenomena are described. These phenomena explain some of the axonal loss that occurs locally after axon transection, during neuro-inflammatory insults, and as part of normal neurodevelopment.
Collapse
|
67
|
Boerboom A, Dion V, Chariot A, Franzen R. Molecular Mechanisms Involved in Schwann Cell Plasticity. Front Mol Neurosci 2017; 10:38. [PMID: 28261057 PMCID: PMC5314106 DOI: 10.3389/fnmol.2017.00038] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
Schwann cell incredible plasticity is a hallmark of the utmost importance following nerve damage or in demyelinating neuropathies. After injury, Schwann cells undergo dedifferentiation before redifferentiating to promote nerve regeneration and complete functional recovery. This review updates and discusses the molecular mechanisms involved in the negative regulation of myelination as well as in the reprogramming of Schwann cells taking place early following nerve lesion to support repair. Significant advance has been made on signaling pathways and molecular components that regulate SC regenerative properties. These include for instance transcriptional regulators such as c-Jun or Notch, the MAPK and the Nrg1/ErbB2/3 pathways. This comprehensive overview ends with some therapeutical applications targeting factors that control Schwann cell plasticity and highlights the need to carefully modulate and balance this capacity to drive nerve repair.
Collapse
Affiliation(s)
| | - Valérie Dion
- GIGA-Neurosciences, University of Liège Liège, Belgium
| | - Alain Chariot
- GIGA-Molecular Biology of Diseases, University of LiègeLiège, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO)Wavre, Belgium
| | | |
Collapse
|
68
|
Effects of agmatine sulphate on facial nerve injuries. The Journal of Laryngology & Otology 2017; 131:221-226. [DOI: 10.1017/s0022215117000147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractObjective:To evaluate the effect of agmatine sulphate on facial nerve regeneration after facial nerve injury using electron and light microscopy.Methods:The study was performed on 30 male Wistar albino rats split into: a control group, a sham-treated group, a study control group, an anastomosis group, and an anastomosis plus agmatine sulphate treatment group. The mandibular branch of the facial nerve was dissected, and a piece was removed for histological and electron microscopic examination.Results:Regeneration was better in the anastomosis group than in the study control group. However, the best regeneration findings were seen in the agmatine sulphate treatment group. There was a significant difference between the agmatine group and the others in terms of median axon numbers (p < 0.004) and diameters (p < 0.004).Conclusion:Agmatine sulphate treatment with anastomosis in traumatic facial paralysis may enhance nerve regeneration.
Collapse
|
69
|
Abstract
Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD), which occurs after acute axonal injury. In the peripheral nervous system (PNS), WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS), WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs) have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs ‘sense’ axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.
Collapse
Affiliation(s)
- Keit Men Wong
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Elisabetta Babetto
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Bogdan Beirowski
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
70
|
Gordon T, Borschel GH. The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries. Exp Neurol 2017; 287:331-347. [DOI: 10.1016/j.expneurol.2016.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 02/06/2023]
|
71
|
Weiss T, Taschner-Mandl S, Bileck A, Slany A, Kromp F, Rifatbegovic F, Frech C, Windhager R, Kitzinger H, Tzou CH, Ambros PF, Gerner C, Ambros IM. Proteomics and transcriptomics of peripheral nerve tissue and cells unravel new aspects of the human Schwann cell repair phenotype. Glia 2016; 64:2133-2153. [DOI: 10.1002/glia.23045] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Tamara Weiss
- Children's Cancer Research Institute; Vienna Austria
| | | | - Andrea Bileck
- Department of Analytical Chemistry; University of Vienna; Vienna Austria
| | - Astrid Slany
- Department of Analytical Chemistry; University of Vienna; Vienna Austria
| | - Florian Kromp
- Children's Cancer Research Institute; Vienna Austria
| | | | | | - Reinhard Windhager
- Department of Orthopedic Surgery; Medical University of Vienna; Vienna Austria
| | - Hugo Kitzinger
- Department of Plastic and Reconstructive Surgery; Medical University of Vienna; Vienna Austria
| | - Chieh-Han Tzou
- Department of Plastic and Reconstructive Surgery; Medical University of Vienna; Vienna Austria
| | - Peter F. Ambros
- Children's Cancer Research Institute; Vienna Austria
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| | - Christopher Gerner
- Department of Analytical Chemistry; University of Vienna; Vienna Austria
| | | |
Collapse
|
72
|
Carrasco DI, Bahr BA, Seburn KL, Pinter MJ. Abnormal response of distal Schwann cells to denervation in a mouse model of motor neuron disease. Exp Neurol 2016; 278:116-26. [PMID: 26853136 PMCID: PMC4788963 DOI: 10.1016/j.expneurol.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/22/2023]
Abstract
In several animal models of motor neuron disease, degeneration begins in the periphery. Clarifying the possible role of Schwann cells remains a priority. We recently showed that terminal Schwann cells (TSCs) exhibit abnormalities in postnatal mice that express mutations of the SOD1 enzyme found in inherited human motor neuron disease. TSC abnormalities appeared before disease-related denervation commenced and the extent of TSC abnormality at P30 correlated with the extent of subsequent denervation. Denervated neuromuscular junctions (NMJs) were also observed that lacked any labeling for TSCs. This suggested that SOD1 TSCs may respond differently than wildtype TSCs to denervation which remain at denervated NMJs for several months. In the present study, the response of SOD1 TSCs to experimental denervation was examined. At P30 and P60, SC-specific S100 labeling was quickly lost from SOD1 NMJs and from preterminal regions. Evidence indicates that this loss eventually becomes complete at most SOD1 NMJs before reinnervation occurs. The loss of labeling was not specific for S100 and did not depend on loss of activity. Although some post-denervation labeling loss occurred at wildtype NMJs, this loss was never complete. Soon after denervation, large cells appeared near SOD1 NMJ bands which colabeled for SC markers as well as for activated caspase-3 suggesting that distal SOD1 SCs may experience cell death following denervation. Denervated SOD1 NMJs viewed 7 days after denervation with the electron microscope confirmed the absence of TSCs overlying endplates. These observations demonstrate that SOD1 TSCs and distal SCs respond abnormally to denervation. This behavior can be expected to hinder reinnervation and raises further questions concerning the ability of SOD1 TSCs to support normal functioning of motor terminals.
Collapse
Affiliation(s)
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina at Pembroke, Pembroke, NC, USA
| | | | - Martin J Pinter
- Department of Physiology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
73
|
Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol 2016; 594:3521-31. [PMID: 26864683 PMCID: PMC4929314 DOI: 10.1113/jp270874] [Citation(s) in RCA: 735] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/28/2015] [Indexed: 01/05/2023] Open
Abstract
Nerve injury triggers the conversion of myelin and non‐myelin (Remak) Schwann cells to a cell phenotype specialized to promote repair. Distal to damage, these repair Schwann cells provide the necessary signals and spatial cues for the survival of injured neurons, axonal regeneration and target reinnervation. The conversion to repair Schwann cells involves de‐differentiation together with alternative differentiation, or activation, a combination that is typical of cell type conversions often referred to as (direct or lineage) reprogramming. Thus, injury‐induced Schwann cell reprogramming involves down‐regulation of myelin genes combined with activation of a set of repair‐supportive features, including up‐regulation of trophic factors, elevation of cytokines as part of the innate immune response, myelin clearance by activation of myelin autophagy in Schwann cells and macrophage recruitment, and the formation of regeneration tracks, Bungner's bands, for directing axons to their targets. This repair programme is controlled transcriptionally by mechanisms involving the transcription factor c‐Jun, which is rapidly up‐regulated in Schwann cells after injury. In the absence of c‐Jun, damage results in the formation of a dysfunctional repair cell, neuronal death and failure of functional recovery. c‐Jun, although not required for Schwann cell development, is therefore central to the reprogramming of myelin and non‐myelin (Remak) Schwann cells to repair cells after injury. In future, the signalling that specifies this cell requires further analysis so that pharmacological tools that boost and maintain the repair Schwann cell phenotype can be developed.
![]()
Collapse
Affiliation(s)
- K R Jessen
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - R Mirsky
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
74
|
Fenrich K, Gordon T. Canadian Association of Neuroscience Review: Axonal Regeneration in the Peripheral and Central Nervous Systems – Current Issues and Advances. Can J Neurol Sci 2016; 31:142-56. [PMID: 15198438 DOI: 10.1017/s0317167100053798] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractInjured nerves regenerate their axons in the peripheral (PNS) but not the central nervous system (CNS). The contrasting capacities have been attributed to the growth permissive Schwann cells in the PNS and the growth inhibitory environment of the oligodendrocytes in the CNS. In the current review, we first contrast the robust regenerative response of injured PNS neurons with the weak response of the CNS neurons, and the capacity of Schwann cells and not the oligodendrocytes to support axonal regeneration. We then consider the factors that limit axonal regeneration in both the PNS and CNS. Limiting factors in the PNS include slow regeneration of axons across the injury site, progressive decline in the regenerative capacity of axotomized neurons (chronic axotomy) and progressive failure of denervated Schwann cells to support axonal regeneration (chronic denervation). In the CNS on the other hand, it is the poor regenerative response of neurons, the inhibitory proteins that are expressed by oligodendrocytes and act via a common receptor on CNS neurons, and the formation of the glial scar that prevent axonal regeneration in the CNS. Strategies to overcome these limitations in the PNS are considered in detail and contrasted with strategies in the CNS.
Collapse
Affiliation(s)
- Keith Fenrich
- Centre for Neuroscience, Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
75
|
Takhtfooladi MA, Sharifi D. A comparative study of red and blue light-emitting diodes and low-level laser in regeneration of the transected sciatic nerve after an end to end neurorrhaphy in rabbits. Lasers Med Sci 2015; 30:2319-24. [PMID: 26415928 DOI: 10.1007/s10103-015-1813-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 09/21/2015] [Indexed: 01/22/2023]
Abstract
This study aimed at evaluating the effects of red and blue light-emitting diodes (LED) and low-level laser (LLL) on the regeneration of the transected sciatic nerve after an end-to-end neurorrhaphy in rabbits. Forty healthy mature male New Zealand rabbits were randomly assigned into four experimental groups: control, LLL (680 nm), red LED (650 nm), and blue LED (450 nm). All animals underwent the right sciatic nerve neurotmesis injury under general anesthesia and end-to-end anastomosis. The phototherapy was initiated on the first postoperative day and lasted for 14 consecutive days at the same time of the day. On the 30th day post-surgery, the animals whose sciatic nerves were harvested for histopathological analysis were euthanized. The nerves were analyzed and quantified the following findings: Schwann cells, large myelinic axons, and neurons. In the LLL group, as compared to other groups, an increase in the number of all analyzed aspects was observed with significance level (P < 0.05). This finding suggests that postoperative LLL irradiation was able to accelerate and potentialize the peripheral nerve regeneration process in rabbits within 14 days of irradiation.
Collapse
Affiliation(s)
| | - Davood Sharifi
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
76
|
Tanyeri G, Celik O, Erbas O, Oltulu F, Yilmaz Dilsiz O. The effectiveness of different neuroprotective agents in facial nerve injury: An experimental study. Laryngoscope 2015; 125:E356-64. [DOI: 10.1002/lary.25554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Gokce Tanyeri
- Department of Otolaryngology-Head & Neck Surgery; Celal Bayar University Faculty of Medicine; Manisa Turkey
| | - Onur Celik
- Department of Otolaryngology-Head & Neck Surgery; Celal Bayar University Faculty of Medicine; Manisa Turkey
| | - Oytun Erbas
- Department of Physiology; Ege University Faculty of Medicine
| | - Fatih Oltulu
- Department of Histology & Embryology; Ege University Faculty of Medicine; Izmir Turkey
| | - Ozlem Yilmaz Dilsiz
- Department of Histology & Embryology; Ege University Faculty of Medicine; Izmir Turkey
| |
Collapse
|
77
|
Stratton JA, Shah PT, Kumar R, Stykel MG, Shapira Y, Grochmal J, Guo GF, Biernaskie J, Midha R. The immunomodulatory properties of adult skin-derived precursor Schwann cells: implications for peripheral nerve injury therapy. Eur J Neurosci 2015; 43:365-75. [DOI: 10.1111/ejn.13006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/11/2015] [Accepted: 06/23/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Jo Anne Stratton
- Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
- Comparative Biology and Experimental Medicine; University of Calgary; 3330 Hospital Drive NW Calgary AB T2N 4N1 Canada
- Hotchkiss Brain Institute; Calgary AB Canada
| | - Prajay T. Shah
- Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
- Comparative Biology and Experimental Medicine; University of Calgary; 3330 Hospital Drive NW Calgary AB T2N 4N1 Canada
- Hotchkiss Brain Institute; Calgary AB Canada
| | - Ranjan Kumar
- Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
- Comparative Biology and Experimental Medicine; University of Calgary; 3330 Hospital Drive NW Calgary AB T2N 4N1 Canada
- Hotchkiss Brain Institute; Calgary AB Canada
| | - Morgan G. Stykel
- Comparative Biology and Experimental Medicine; University of Calgary; 3330 Hospital Drive NW Calgary AB T2N 4N1 Canada
- Hotchkiss Brain Institute; Calgary AB Canada
| | - Yuval Shapira
- Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
| | - Joey Grochmal
- Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
- Hotchkiss Brain Institute; Calgary AB Canada
| | - Gui Fang Guo
- Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
- Hotchkiss Brain Institute; Calgary AB Canada
| | - Jeff Biernaskie
- Comparative Biology and Experimental Medicine; University of Calgary; 3330 Hospital Drive NW Calgary AB T2N 4N1 Canada
- Hotchkiss Brain Institute; Calgary AB Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
- Hotchkiss Brain Institute; Calgary AB Canada
- Cumming School of Medicine; University of Calgary; Calgary AB Canada
| |
Collapse
|
78
|
Gomez-Sanchez JA, Carty L, Iruarrizaga-Lejarreta M, Palomo-Irigoyen M, Varela-Rey M, Griffith M, Hantke J, Macias-Camara N, Azkargorta M, Aurrekoetxea I, De Juan VG, Jefferies HBJ, Aspichueta P, Elortza F, Aransay AM, Martínez-Chantar ML, Baas F, Mato JM, Mirsky R, Woodhoo A, Jessen KR. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J Cell Biol 2015; 210:153-68. [PMID: 26150392 PMCID: PMC4494002 DOI: 10.1083/jcb.201503019] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/03/2015] [Indexed: 02/07/2023] Open
Abstract
Although Schwann cell myelin breakdown is the universal outcome of a remarkably wide range of conditions that cause disease or injury to peripheral nerves, the cellular and molecular mechanisms that make Schwann cell-mediated myelin digestion possible have not been established. We report that Schwann cells degrade myelin after injury by a novel form of selective autophagy, myelinophagy. Autophagy was up-regulated by myelinating Schwann cells after nerve injury, myelin debris was present in autophagosomes, and pharmacological and genetic inhibition of autophagy impaired myelin clearance. Myelinophagy was positively regulated by the Schwann cell JNK/c-Jun pathway, a central regulator of the Schwann cell reprogramming induced by nerve injury. We also present evidence that myelinophagy is defective in the injured central nervous system. These results reveal an important role for inductive autophagy during Wallerian degeneration, and point to potential mechanistic targets for accelerating myelin clearance and improving demyelinating disease.
Collapse
Affiliation(s)
- Jose A Gomez-Sanchez
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Lucy Carty
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Marta Iruarrizaga-Lejarreta
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Marta Palomo-Irigoyen
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Marta Varela-Rey
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Megan Griffith
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Janina Hantke
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Nuria Macias-Camara
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain ProteoRed-ISCIII
| | - Igor Aurrekoetxea
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain Biocruces Health Research Institute, 48903 Barakaldo, Spain
| | - Virginia Gutiérrez De Juan
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Harold B J Jefferies
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain Biocruces Health Research Institute, 48903 Barakaldo, Spain
| | - Félix Elortza
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain ProteoRed-ISCIII
| | - Ana M Aransay
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - María L Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), E-48080 Bilbao, Spain
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Centre, 1105 AZ Amsterdam, Netherlands
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Ashwin Woodhoo
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Kristján R Jessen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| |
Collapse
|
79
|
Demyelinating CMT–what’s known, what’s new and what’s in store? Neurosci Lett 2015; 596:14-26. [DOI: 10.1016/j.neulet.2015.01.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/23/2015] [Indexed: 02/06/2023]
|
80
|
Nerve cross-bridging to enhance nerve regeneration in a rat model of delayed nerve repair. PLoS One 2015; 10:e0127397. [PMID: 26016986 PMCID: PMC4446033 DOI: 10.1371/journal.pone.0127397] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/14/2015] [Indexed: 01/21/2023] Open
Abstract
There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays.
Collapse
|
81
|
Abstract
Schwann cells develop from the neural crest in a well-defined sequence of events. This involves the formation of the Schwann cell precursor and immature Schwann cells, followed by the generation of the myelin and nonmyelin (Remak) cells of mature nerves. This review describes the signals that control the embryonic phase of this process and the organogenesis of peripheral nerves. We also discuss the phenotypic plasticity retained by mature Schwann cells, and explain why this unusual feature is central to the striking regenerative potential of the peripheral nervous system (PNS).
Collapse
Affiliation(s)
- Kristján R Jessen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Alison C Lloyd
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
82
|
Abstract
Development and maintenance of the peripheral nervous system (PNS) are essential for an organism to survive and reproduce, and damage to the PNS by disease or injury is often debilitating. Remarkably, the nerves of the PNS are capable of regenerating after trauma. However, full functional recovery after nerve injuries remains poor. Peripheral nerve regeneration has been studied extensively, with particular emphasis on elucidating the roles of Schwann cells and macrophages during degeneration and subsequent regeneration. In contrast, the roles of other essential nerve components, including perineurial glia, are poorly understood. Here, we use laser nerve transection and in vivo, time-lapse imaging in zebrafish to investigate the role and requirement of perineurial glia after nerve injury. We show that perineurial glia respond rapidly and dynamically to nerve transections by extending processes into injury sites and phagocytizing debris. Perineurial glia also bridge injury gaps before Schwann cells and axons, and we demonstrate that these bridges are essential for axon regrowth. Additionally, we show that perineurial glia and macrophages spatially coordinate early debris clearance and that perineurial glia require Schwann cells for their attraction to injury sites. This work highlights the complex nature of cell-cell interactions after injury and introduces perineurial glia as integral players in the regenerative process.
Collapse
|
83
|
Morrison BM, Tsingalia A, Vidensky S, Lee Y, Jin L, Farah MH, Lengacher S, Magistretti PJ, Pellerin L, Rothstein JD. Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush. Exp Neurol 2014; 263:325-38. [PMID: 25447940 DOI: 10.1016/j.expneurol.2014.10.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 12/20/2022]
Abstract
Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous null mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush.
Collapse
Affiliation(s)
- Brett M Morrison
- Department of Neurology, School of Medicine, The Johns Hopkins University, 855 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Akivaga Tsingalia
- Department of Neurology, School of Medicine, The Johns Hopkins University, 855 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Svetlana Vidensky
- Department of Neurology, School of Medicine, The Johns Hopkins University, 855 North Wolfe Street, Baltimore, MD 21205, USA; Brain Science Institute, School of Medicine, The Johns Hopkins University, 855 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Youngjin Lee
- Department of Neurology, School of Medicine, The Johns Hopkins University, 855 North Wolfe Street, Baltimore, MD 21205, USA; Brain Science Institute, School of Medicine, The Johns Hopkins University, 855 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Lin Jin
- Department of Neurology, School of Medicine, The Johns Hopkins University, 855 North Wolfe Street, Baltimore, MD 21205, USA; Brain Science Institute, School of Medicine, The Johns Hopkins University, 855 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Mohamed H Farah
- Department of Neurology, School of Medicine, The Johns Hopkins University, 855 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Sylvain Lengacher
- Laboratory of Neuroenergetics and Cellular Dynamics, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Pierre J Magistretti
- Division of Biological and Environmental Sciences and Engineering, KAUST, Thuwal, Saudi Arabia; Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, SV2511, Station 19, CH-1015 Lausanne, Switzerland.
| | - Luc Pellerin
- Department of Fundamental Neurosciences, University of Lausanne, 7 Rue du Bugnon, 1005 Lausanne, Switzerland.
| | - Jeffrey D Rothstein
- Department of Neurology, School of Medicine, The Johns Hopkins University, 855 North Wolfe Street, Baltimore, MD 21205, USA; Brain Science Institute, School of Medicine, The Johns Hopkins University, 855 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
84
|
Ceci ML, Mardones-Krsulovic C, Sánchez M, Valdivia LE, Allende ML. Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae. Neural Dev 2014; 9:22. [PMID: 25326036 PMCID: PMC4214607 DOI: 10.1186/1749-8104-9-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/29/2014] [Indexed: 01/13/2023] Open
Abstract
Background Peripheral nerve injuries can severely affect the way that animals perceive signals from the surrounding environment. While damage to peripheral axons generally has a better outcome than injuries to central nervous system axons, it is currently unknown how neurons re-establish their target innervations to recover function after injury, and how accessory cells contribute to this task. Here we use a simple technique to create reproducible and localized injury in the posterior lateral line (pLL) nerve of zebrafish and follow the fate of both neurons and Schwann cells. Results Using pLL single axon labeling by transient transgene expression, as well as transplantation of glial precursor cells in zebrafish larvae, we individualize different components in this system and characterize their cellular behaviors during the regenerative process. Neurectomy is followed by loss of Schwann cell differentiation markers that is reverted after nerve regrowth. We show that reinnervation of lateral line hair cells in neuromasts during pLL nerve regeneration is a highly dynamic process with promiscuous yet non-random target recognition. Furthermore, Schwann cells are required for directional extension and fasciculation of the regenerating nerve. We provide evidence that these cells and regrowing axons are mutually dependant during early stages of nerve regeneration in the pLL. The role of ErbB signaling in this context is also explored. Conclusion The accessibility of the pLL nerve and the availability of transgenic lines that label this structure and their synaptic targets provides an outstanding in vivo model to study the different events associated with axonal extension, target reinnervation, and the complex cellular interactions between glial cells and injured axons during nerve regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| |
Collapse
|
85
|
Kavlak E, Belge F, Unsal C, Uner AG, Cavlak U, Cömlekçi S. Effects of pulsed electromagnetic field and swimming exercise on rats with experimental sciatic nerve injury. J Phys Ther Sci 2014; 26:1355-61. [PMID: 25276015 PMCID: PMC4175236 DOI: 10.1589/jpts.26.1355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/27/2014] [Indexed: 12/11/2022] Open
Abstract
[Purpose] The current study aimed to reveal the therapeutic effects of a pulsed electromagnetic field and swimming exercises on rats with experimental sciatic nerve injury, which was induced with crush-type neuropathy model damage, using electrophysiological methods. [Subjects] In the current study, the sample consisted of 28 adult male Wistar albino rats. [Methods] The rats were randomized into four groups (n=7). Swimming exercise and PEMF (2 Hz and 0.3 MT) were applied one hour a day, five days a week, for four weeks. Electroneuromyographic (ENMG) measurements were taken on day 7. [Results] When the data were evaluated, it was found that the 4 weeks of PEMF and swimming exercises led to an increase in motor conduction rates and a decrease in latency values, but the changes were not significant in comparison with the control and injury groups. The compound muscle action potential (CMAP) values of the left leg were lower in weeks 2, 3, and 4 in the swimming exercise group in comparison with the control group, although for the PEMF group, the CMAP values of the left leg reached the level observed in the control group beginning in week 3. [Conclusion] PEMF and swimming exercise made positive contributions to nerve regeneration after week 1, and regeneration was enhanced.
Collapse
Affiliation(s)
- Erdoğan Kavlak
- School of Physical Therapy and Rehabilitation, Pamukkale University, Turkey
| | - Ferda Belge
- Department of Physiology, Faculty of Veterinary Medicine, Adnan Menderes University, Turkey
| | - Cengiz Unsal
- Department of Physiology, Faculty of Veterinary Medicine, Adnan Menderes University, Turkey
| | - Aykut Göktürk Uner
- Department of Physiology, Faculty of Veterinary Medicine, Adnan Menderes University, Turkey
| | - Uğur Cavlak
- School of Physical Therapy and Rehabilitation, Pamukkale University, Turkey
| | - Selçuk Cömlekçi
- Department of Electronics and Communication, Faculty of Engineering, Süleyman Demirel University, Turkey
| |
Collapse
|
86
|
Bastien D, Lacroix S. Cytokine pathways regulating glial and leukocyte function after spinal cord and peripheral nerve injury. Exp Neurol 2014; 258:62-77. [PMID: 25017888 DOI: 10.1016/j.expneurol.2014.04.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 02/20/2014] [Accepted: 04/08/2014] [Indexed: 01/13/2023]
Abstract
Injury to the nervous system causes the almost immediate release of cytokines by glial cells and neurons. These cytokines orchestrate a complex array of responses leading to microgliosis, immune cell recruitment, astrogliosis, scarring, and the clearance of cellular debris, all steps that affect neuronal survival and repair. This review will focus on cytokines released after spinal cord and peripheral nerve injury and the primary signalling pathways triggered by these inflammatory mediators. Notably, the following cytokine families will be covered: IL-1, TNF, IL-6-like, TGF-β, and IL-10. Whether interfering with cytokine signalling could lead to novel therapies will also be discussed. Finally, the review will address whether manipulating the above-mentioned cytokine families and signalling pathways could exert distinct effects in the injured spinal cord versus peripheral nerve.
Collapse
Affiliation(s)
- Dominic Bastien
- Centre de recherche du Centre hospitalier universitaire de Québec-CHUL, Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| | - Steve Lacroix
- Centre de recherche du Centre hospitalier universitaire de Québec-CHUL, Département de médecine moléculaire, Université Laval, Québec, QC, Canada..
| |
Collapse
|
87
|
Lang BT, Wang J, Filous AR, Au NPB, Ma CHE, Shen Y. Pleiotropic molecules in axon regeneration and neuroinflammation. Exp Neurol 2014; 258:17-23. [DOI: 10.1016/j.expneurol.2014.04.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 04/21/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022]
|
88
|
C6 deficiency does not alter intrinsic regeneration speed after peripheral nerve crush injury. Neurosci Res 2014; 87:26-32. [PMID: 25011063 DOI: 10.1016/j.neures.2014.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/03/2014] [Accepted: 06/17/2014] [Indexed: 11/20/2022]
Abstract
Peripheral nerve injury leads to Wallerian degeneration, followed by regeneration, in which functionality and morphology of the nerve are restored. We previously described that deficiency for complement component C6, which prevents formation of the membrane attack complex, slows down degeneration and results in an earlier recovery of sensory function after sciatic nerve injury compared to WT animals. In this study, we determine whether C6(-/-) rats have an intrinsic trait that affects sciatic nerve regeneration after injury. To study the contribution of complement activation on degeneration and regeneration with only minimal effect of complement activation, a crush injury model with only modest complement deposition was used. We compared the morphological and functional aspects of crushed nerves during degeneration and regeneration in C6(-/-) and WT animals. Morphological changes of myelin and axons showed similar degeneration and regeneration patterns in WT and C6(-/-) injured nerves. Functional degeneration and regeneration, recorded by ex vivo electrophysiology and in vivo foot flick test, showed that the timeline of the restoration of nerve conduction and sensory recovery also followed similar patterns in WT and C6(-/-) animals. Our findings suggest that C6 deficiency by itself does not alter the regrowth capacity of the peripheral nerve after crush injury.
Collapse
|
89
|
Jung Y, Ng JH, Keating CP, Senthil-Kumar P, Zhao J, Randolph MA, Winograd JM, Evans CL. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model. PLoS One 2014; 9:e94054. [PMID: 24714405 PMCID: PMC3979924 DOI: 10.1371/journal.pone.0094054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/10/2014] [Indexed: 01/01/2023] Open
Abstract
Peripheral nerve injury (PNI), a common injury in both the civilian and military arenas, is usually associated with high healthcare costs and with patients enduring slow recovery times, diminished quality of life, and potential long-term disability. Patients with PNI typically undergo complex interventions but the factors that govern optimal response are not fully characterized. A fundamental understanding of the cellular and tissue-level events in the immediate postoperative period is essential for improving treatment and optimizing repair. Here, we demonstrate a comprehensive imaging approach to evaluate peripheral nerve axonal regeneration in a rodent PNI model using a tissue clearing method to improve depth penetration while preserving neural architecture. Sciatic nerve transaction and end-to-end repair were performed in both wild type and thy-1 GFP rats. The nerves were harvested at time points after repair before undergoing whole mount immunofluorescence staining and tissue clearing. By increasing the optic depth penetration, tissue clearing allowed the visualization and evaluation of Wallerian degeneration and nerve regrowth throughout entire sciatic nerves with subcellular resolution. The tissue clearing protocol did not affect immunofluorescence labeling and no observable decrease in the fluorescence signal was observed. Large-area, high-resolution tissue volumes could be quantified to provide structural and connectivity information not available from current gold-standard approaches for evaluating axonal regeneration following PNI. The results are suggestive of observed behavioral recovery in vivo after neurorrhaphy, providing a method of evaluating axonal regeneration following repair that can serve as an adjunct to current standard outcomes measurements. This study demonstrates that tissue clearing following whole mount immunofluorescence staining enables the complete visualization and quantitative evaluation of axons throughout nerves in a PNI model. The methods developed in this study could advance PNI research allowing both researchers and clinicians to further understand the individual events of axonal degeneration and regeneration on a multifaceted level.
Collapse
Affiliation(s)
- Yookyung Jung
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Joanna H. Ng
- Plastic Surgery Research Laboratory, Harvard Medical School, Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Cameron P. Keating
- Plastic Surgery Research Laboratory, Harvard Medical School, Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Prabhu Senthil-Kumar
- Plastic Surgery Research Laboratory, Harvard Medical School, Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jie Zhao
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Mark A. Randolph
- Plastic Surgery Research Laboratory, Harvard Medical School, Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jonathan M. Winograd
- Plastic Surgery Research Laboratory, Harvard Medical School, Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Conor L. Evans
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
90
|
Benefits of laser phototherapy on nerve repair. Lasers Med Sci 2014; 30:1395-406. [DOI: 10.1007/s10103-014-1531-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
|
91
|
McLachlan EM, Hu P. Inflammation in dorsal root ganglia after peripheral nerve injury: effects of the sympathetic innervation. Auton Neurosci 2013; 182:108-17. [PMID: 24418114 DOI: 10.1016/j.autneu.2013.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/11/2013] [Indexed: 12/26/2022]
Abstract
Following a peripheral nerve injury, a sterile inflammation develops in sympathetic and dorsal root ganglia (DRGs) with axons that project in the damaged nerve trunk. Macrophages and T-lymphocytes invade these ganglia where they are believed to release cytokines that lead to hyperexcitability and ectopic discharge, possibly contributing to neuropathic pain. Here, we examined the role of the sympathetic innervation in the inflammation of L5 DRGs of Wistar rats following transection of the sciatic nerve, comparing the effects of specific surgical interventions 10-14 days prior to the nerve lesion with those of chronic administration of adrenoceptor antagonists. Immunohistochemistry was used to define the invading immune cell populations 7 days after sciatic transection. Removal of sympathetic activity in the hind limb by transecting the preganglionic input to the relevant lumbar sympathetic ganglia (ipsi- or bilateral decentralization) or by ipsilateral removal of these ganglia with degeneration of postganglionic axons (denervation), caused less DRG inflammation than occurred after a sham sympathectomy. By contrast, denervation of the lymph node draining the lesion site potentiated T-cell influx. Systemic treatment with antagonists of α1-adrenoceptors (prazosin) or β-adrenoceptors (propranolol) led to opposite but unexpected effects on infiltration of DRGs after sciatic transection. Prazosin potentiated the influx of macrophages and CD4(+) T-lymphocytes whereas propranolol tended to reduce immune cell invasion. These data are hard to reconcile with many in vitro studies in which catecholamines acting mainly via β2-adrenoceptors have inhibited the activation and proliferation of immune cells following an inflammatory challenge.
Collapse
Affiliation(s)
- Elspeth M McLachlan
- Neuroscience Research Australia, Randwick, NSW 2031, and the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ping Hu
- Neuroscience Research Australia, Randwick, NSW 2031, and the University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
92
|
Beirowski B. Concepts for regulation of axon integrity by enwrapping glia. Front Cell Neurosci 2013; 7:256. [PMID: 24391540 PMCID: PMC3867696 DOI: 10.3389/fncel.2013.00256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
Long axons and their enwrapping glia (EG; Schwann cells (SCs) and oligodendrocytes (OLGs)) form a unique compound structure that serves as conduit for transport of electric and chemical information in the nervous system. The peculiar cytoarchitecture over an enormous length as well as its substantial energetic requirements make this conduit particularly susceptible to detrimental alterations. Degeneration of long axons independent of neuronal cell bodies is observed comparatively early in a range of neurodegenerative conditions as a consequence of abnormalities in SCs and OLGs . This leads to the most relevant disease symptoms and highlights the critical role that these glia have for axon integrity, but the underlying mechanisms remain elusive. The quest to understand why and how axons degenerate is now a crucial frontier in disease-oriented research. This challenge is most likely to lead to significant progress if the inextricable link between axons and their flanking glia in pathological situations is recognized. In this review I compile recent advances in our understanding of the molecular programs governing axon degeneration, and mechanisms of EG’s non-cell autonomous impact on axon-integrity. A particular focus is placed on emerging evidence suggesting that EG nurture long axons by virtue of their intimate association, release of trophic substances, and neurometabolic coupling. The correction of defects in these functions has the potential to stabilize axons in a variety of neuronal diseases in the peripheral nervous system and central nervous system (PNS and CNS).
Collapse
Affiliation(s)
- Bogdan Beirowski
- Department of Genetics, Washington University School of Medicine Saint Louis, MO, USA
| |
Collapse
|
93
|
Local and remote immune-mediated inflammation after mild peripheral nerve compression in rats. J Neuropathol Exp Neurol 2013; 72:662-80. [PMID: 23771220 DOI: 10.1097/nen.0b013e318298de5b] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
After experimental nerve injuries that extensively disrupt axons, such as chronic constriction injury, immune cells invade the nerve, related dorsal root ganglia (DRGs), and spinal cord, leading to hyperexcitability, raised sensitivity, and pain. Entrapment neuropathies, such as carpal tunnel syndrome, involve minimal axon damage, but patients often report widespread symptoms. To understand the underlying pathology, a tube was placed around the sciatic nerve in 8-week-old rats, leading to progressive mild compression as the animals grew. Immunofluorescence was used to examine myelin and axonal integrity, glia, macrophages, and T lymphocytes in the nerve, L5 DRGs, and spinal cord after 12 weeks. Tubes that did not constrict the nerve when applied caused extensive and ongoing loss of myelin, together with compromise of small-, but not large-, diameter axons. Macrophages and T lymphocytes infiltrated the nerve and DRGs. Activated glia proliferated in DRGs but not in spinal cord. Histologic findings were supported by clinical hyperalgesia to blunt pressure and cold allodynia. Tubes that did not compress the nerve induced only minor local inflammation. Thus, progressive mild nerve compression resulted in chronic local and remote immune-mediated inflammation depending on the degree of compression. Such neuroinflammation may explain the widespread symptoms in patients with entrapment neuropathies.
Collapse
|
94
|
Repair of the Peripheral Nerve-Remyelination that Works. Brain Sci 2013; 3:1182-97. [PMID: 24961524 PMCID: PMC4061866 DOI: 10.3390/brainsci3031182] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/07/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022] Open
Abstract
In this review we summarize the events known to occur after an injury in the peripheral nervous system. We have focused on the Schwann cells, as they are the most important cells for the repair process and facilitate axonal outgrowth. The environment created by this cell type is essential for the outcome of the repair process. The review starts with a description of the current state of knowledge about the initial events after injury, followed by Wallerian degeneration, and subsequent regeneration. The importance of surgical repair, carried out as soon as possible to increase the chances of a good outcome, is emphasized throughout the review. The review concludes by describing the target re-innervation, which today is one of the most serious problems for nerve regeneration. It is clear, compiling this data, that even though regeneration of the peripheral nervous system is possible, more research in this area is needed in order to perfect the outcome.
Collapse
|
95
|
Lewis GM, Kucenas S. Motor nerve transection and time-lapse imaging of glial cell behaviors in live zebrafish. J Vis Exp 2013:50621. [PMID: 23852039 PMCID: PMC3727920 DOI: 10.3791/50621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The nervous system is often described as a hard-wired component of the body even though it is a considerably fluid organ system that reacts to external stimuli in a consistent, stereotyped manner, while maintaining incredible flexibility and plasticity. Unlike the central nervous system (CNS), the peripheral nervous system (PNS) is capable of significant repair, but we have only just begun to understand the cellular and molecular mechanisms that govern this phenomenon. Using zebrafish as a model system, we have the unprecedented opportunity to couple regenerative studies with in vivo imaging and genetic manipulation. Peripheral nerves are composed of axons surrounded by layers of glia and connective tissue. Axons are ensheathed by myelinating or non-myelinating Schwann cells, which are in turn wrapped into a fascicle by a cellular sheath called the perineurium. Following an injury, adult peripheral nerves have the remarkable capacity to remove damaged axonal debris and re-innervate targets. To investigate the roles of all peripheral glia in PNS regeneration, we describe here an axon transection assay that uses a commercially available nitrogen-pumped dye laser to axotomize motor nerves in live transgenic zebrafish. We further describe the methods to couple these experiments to time-lapse imaging of injured and control nerves. This experimental paradigm can be used to not only assess the role that glia play in nerve regeneration, but can also be the platform for elucidating the molecular mechanisms that govern nervous system repair.
Collapse
Affiliation(s)
| | - Sarah Kucenas
- Department of Biology, University of Virginia, VA, USA.;
| |
Collapse
|
96
|
Gamma knife irradiation of injured sciatic nerve induces histological and behavioral improvement in the rat neuropathic pain model. PLoS One 2013; 8:e61010. [PMID: 23593377 PMCID: PMC3625209 DOI: 10.1371/journal.pone.0061010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/05/2013] [Indexed: 11/21/2022] Open
Abstract
We examined the effects of gamma knife (GK) irradiation on injured nerves using a rat partial sciatic nerve ligation (PSL) model. GK irradiation was performed at one week after ligation and nerve preparations were made three weeks after ligation. GK irradiation is known to induce immune responses such as glial cell activation in the central nervous system. Thus, we determined the effects of GK irradiation on macrophages using immunoblot and histochemical analyses. Expression of Iba-1 protein, a macrophage marker, was further increased in GK-treated injured nerves as compared with non-irradiated injured nerves. Immunohistochemical study of Iba-1 in GK-irradiated injured sciatic nerves demonstrated Iba-1 positive macrophage accumulation to be enhanced in areas distal to the ligation point. In the same area, myelin debris was also more efficiently removed by GK-irradiation. Myelin debris clearance by macrophages is thought to contribute to a permissive environment for axon growth. In the immunoblot study, GK irradiation significantly increased expressions of βIII-tubulin protein and myelin protein zero, which are markers of axon regeneration and re-myelination, respectively. Toluidine blue staining revealed the re-myelinated fiber diameter to be larger at proximal sites and that the re-myelinated fiber number was increased at distal sites in GK-irradiated injured nerves as compared with non-irradiated injured nerves. These results suggest that GK irradiation of injured nerves facilitates regeneration and re-myelination. In a behavior study, early alleviation of allodynia was observed with GK irradiation in PSL rats. When GK-induced alleviation of allodynia was initially detected, the expression of glial cell line-derived neurotrophic factor (GDNF), a potent analgesic factor, was significantly increased by GK irradiation. These results suggested that GK irradiation alleviates allodynia via increased GDNF. This study provides novel evidence that GK irradiation of injured peripheral nerves may have beneficial effects.
Collapse
|
97
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013. [PMID: 23386811 DOI: 10.3389/fncel.2013.00006/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
98
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013; 7:6. [PMID: 23386811 PMCID: PMC3558702 DOI: 10.3389/fncel.2013.00006] [Citation(s) in RCA: 394] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/09/2013] [Indexed: 02/04/2023] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
99
|
Zhang L, Johnson D, Johnson JA. Deletion of Nrf2 impairs functional recovery, reduces clearance of myelin debris and decreases axonal remyelination after peripheral nerve injury. Neurobiol Dis 2013; 54:329-38. [PMID: 23328769 DOI: 10.1016/j.nbd.2013.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/24/2012] [Accepted: 01/04/2013] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress is generated in several peripheral nerve injury models. In response to oxidative stress, the transcription factor Nrf2 is activated to induce expression of antioxidant responsive element (ARE) genes. The role of Nrf2 in peripheral nerve injury has not been studied to date. In this study, we used a sciatic nerve crush model to examine how deletion of Nrf2 affects peripheral nerve degeneration and regeneration. Our study demonstrated that functional recovery in the Nrf2(-/-) mice were impaired compared to the wild type mice after sciatic nerve crush. Larger myelin debris were present in the distal nerve stump of the Nrf2(-/-) mice than in the wild type mice. The presence of larger myelin debris in the Nrf2(-/-) mice coincides with less macrophages accumulation in the distal nerve stump. Less accumulation of macrophages may have contributed to slower clearance of myelin and thus resulted in the presence of larger myelin debris. Meanwhile, axonal regeneration is comparatively lower in the Nrf2(-/-) mice than in the wild type mice. Even after 3months post the injury, more thinly myelinated axon fibers were present in the Nrf2(-/-) mice than in the wild type mice. Taken collectively, these data support the concept of therapeutic intervention with Nrf2 activators following nerve injury.
Collapse
Affiliation(s)
- Linxia Zhang
- School of Pharmacy, University of Wisconsin-Madison, WI 53705, USA
| | | | | |
Collapse
|
100
|
Role of inflammation and cytokines in peripheral nerve regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:173-206. [PMID: 24083435 DOI: 10.1016/b978-0-12-410499-0.00007-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter provides a review of immune reactions involved in classic as well as alternative methods of peripheral nerve regeneration, and mainly with a view to understanding their beneficial effects. Axonal degeneration distal to nerve damage triggers a cascade of inflammatory events alongside injured nerve fibers known as Wallerian degeneration (WD). The early inflammatory reactions of WD comprise the complement system, arachidonic acid metabolites, and inflammatory mediators that are related to myelin fragmentation and activation of Schwann cells. Fine-tuned upregulation of the cytokine/chemokine network by Schwann cells activates resident and hematogenous macrophages to complete the clearance of axonal and myelin debris and stimulate regrowth of axonal sprouts. In addition to local effects, immune reactions of neuronal bodies and glial cells are also implicated in the survival and conditioning of neurons to regenerate severed nerves. Understanding of the cellular and molecular interactions between the immune system and peripheral nerve injury opens new possibilities for targeting inflammatory mediators to improve functional reinnervation.
Collapse
|