51
|
Flynn H, Cenani A, Brosnan RJ, DiMaio Knych HK, de Araujo Aguiar AJ. Pharmacokinetics and pharmacodynamics of a high concentration of buprenorphine (Simbadol) in conscious horses after subcutaneous administration. Vet Anaesth Analg 2021; 48:585-595. [PMID: 33934992 DOI: 10.1016/j.vaa.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/27/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To determine the pharmacokinetics and pharmacodynamics of high-concentration formulation of buprenorphine (1.8 mg mL-1; Simbadol) following subcutaneous (SC) administration in horses. STUDY DESIGN Prospective, randomized, crossover trial. ANIMALS A group of six healthy adult horses weighing 521-602 kg. METHODS On three occasions, Simbadol (0.005 mg kg-1; treatment S5), (0.0025 mg kg-1; treatment S2.5) or saline (treatment SAL) were administered SC at least 7 days apart in random order. Electrical nociceptive threshold (ENT) measured on the neck region, physiologic variables, locomotor activity, degree of restlessness and presence of excitatory signs were measured at baseline and for up to 48 hours after injection. Blood was collected for pharmacokinetic analysis at the same time intervals and plasma buprenorphine concentration (Cp) measured using liquid chromatography-tandem mass spectrometry. RESULTS Buprenorphine was quantifiable in all horses from 15 minutes after administration up to 8-12 hours. ENT was significantly increased in treatment S2.5 compared with treatment SAL at 0.75-6 hours after treatment. Increase in locomotor activity and compulsive behavior were recorded in all horses after Simbadol, and degree of restlessness was significantly higher in treatment S5 than SAL for a sustained time. Gastrointestinal motility significantly decreased in all horses after Simbadol and returned to baseline by 16 hours after treatment. CONCLUSIONS AND CLINICAL RELEVANCE In horses, SC Simbadol was rapidly absorbed and Cp decreased rapidly. Side effects commonly seen in horses after opioids were observed in both Simbadol treatments, but degree of opioid-induced excitement lasted significantly longer in treatment S5. Simbadol (0.0025 mg kg-1) SC has the potential to be used clinically to treat pain in horses. However, at this dose, duration of antinociceptive effects was not longer than that reported for conventional buprenorphine, and side effects, including reduction in gastrointestinal motility and increased locomotor activity, were documented.
Collapse
Affiliation(s)
- Harriet Flynn
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Alessia Cenani
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Robert J Brosnan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Heather K DiMaio Knych
- KL Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Antonio J de Araujo Aguiar
- Department of Veterinary Surgery and Anesthesiology, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista - UNESP, Botucatu, SP, Brazil
| |
Collapse
|
52
|
Boccella S, Guida F, Iannotta M, Iannotti FA, Infantino R, Ricciardi F, Cristiano C, Vitale RM, Amodeo P, Marabese I, Belardo C, de Novellis V, Paino S, Palazzo E, Calignano A, Di Marzo V, Maione S, Luongo L. 2-Pentadecyl-2-oxazoline ameliorates memory impairment and depression-like behaviour in neuropathic mice: possible role of adrenergic alpha2- and H3 histamine autoreceptors. Mol Brain 2021; 14:28. [PMID: 33557888 PMCID: PMC7871413 DOI: 10.1186/s13041-020-00724-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain (NP) remains an untreatable disease due to the complex pathophysiology that involves the whole pain neuraxis including the forebrain. Sensory dysfunctions such as allodynia and hyperalgesia are only part of the symptoms associated with neuropathic pain that extend to memory and affectivity deficits. The development of multi-target molecules might be a promising therapeutic strategy against the symptoms associated with NP. 2-pentadecyl-2-oxazoline (PEA-OXA) is a plant-derived agent, which has shown effectiveness against chronic pain and associated neuropsychiatric disorders. The molecular mechanisms by which PEA-OXA exerts its effects are, however, only partially known. In the current study, we show that PEA-OXA, besides being an alpha2 adrenergic receptor antagonist, also acts as a modulator at histamine H3 receptors, and report data on its effects on sensory, affective and cognitive symptoms associated with the spared nerve injury (SNI) model of neuropathic pain in mice. Treatment for 14 days with PEA-OXA after the onset of the symptoms associated with neuropathic pain resulted in the following effects: (i) allodynia was decreased; (ii) affective/cognitive impairment associated with SNI (depression, spatial, and working memories) was counteracted; (iii) long-term potentiation in vivo in the lateral entorhinal cortex-dentate gyrus (perforant pathway, LPP) was ameliorated, (iv) hippocampal glutamate, GABA, histamine, norepinephrine and dopamine level alterations after peripheral nerve injury were reversed, (v) expression level of the TH positive neurons in the Locus Coeruleus were normalized. Thus, a 16-day treatment with PEA-OXA alleviates the sensory, emotional, cognitive, electrophysiological and neurochemical alterations associated with SNI-induced neuropathic pain.
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Rosmara Infantino
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Flavia Ricciardi
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | - Pietro Amodeo
- Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Vito de Novellis
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Salvatore Paino
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
- IRCSS, Neuromed, Pozzilli, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy.
- IRCSS, Neuromed, Pozzilli, Italy.
| |
Collapse
|
53
|
Cortical Modulation of Nociception. Neuroscience 2021; 458:256-270. [PMID: 33465410 DOI: 10.1016/j.neuroscience.2021.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/28/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Nociception is the neuronal process of encoding noxious stimuli and could be modulated at peripheral, spinal, brainstem, and cortical levels. At cortical levels, several areas including the anterior cingulate cortex (ACC), prefrontal cortex (PFC), ventrolateral orbital cortex (VLO), insular cortex (IC), motor cortex (MC), and somatosensory cortices are involved in nociception modulation through two main mechanisms: (i) a descending modulatory effect at spinal level by direct corticospinal projections or mostly by activation of brainstem structures (i.e. periaqueductal grey matter (PAG), locus coeruleus (LC), the nucleus of raphe (RM) and rostroventral medulla (RVM)); and by (ii) cortico-cortical or cortico-subcortical interactions. This review summarizes evidence related to the participation of the aforementioned cortical areas in nociception modulation and different neurotransmitters or neuromodulators that have been studied in each area. Besides, we point out the importance of considering intracortical neuronal populations and receptors expression, as well as, nociception-induced cortical changes, both functional and connectional, to better understand this modulatory effect. Finally, we discuss the possible mechanisms that could potentiate the use of cortical stimulation as a promising procedure in pain alleviation.
Collapse
|
54
|
Kit OI, Frantsiyants EM, Bandovkina VA, Kaplieva IV, Surikova EI, Trepitaki LK, Cheryarina ND, Kotieva IM. Does change in neurotransmitter brain status affect the growth of transplantable melanoma? BULLETIN OF SIBERIAN MEDICINE 2021. [DOI: 10.20538/1682-0363-2020-4-94-101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- O. I. Kit
- National Medical Research Centre for Oncology
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Cao S, Fisher DW, Rodriguez G, Yu T, Dong H. Comparisons of neuroinflammation, microglial activation, and degeneration of the locus coeruleus-norepinephrine system in APP/PS1 and aging mice. J Neuroinflammation 2021; 18:10. [PMID: 33407625 PMCID: PMC7789762 DOI: 10.1186/s12974-020-02054-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The role of microglia in Alzheimer's disease (AD) pathogenesis is becoming increasingly important, as activation of these cell types likely contributes to both pathological and protective processes associated with all phases of the disease. During early AD pathogenesis, one of the first areas of degeneration is the locus coeruleus (LC), which provides broad innervation of the central nervous system and facilitates norepinephrine (NE) transmission. Though the LC-NE is likely to influence microglial dynamics, it is unclear how these systems change with AD compared to otherwise healthy aging. METHODS In this study, we evaluated the dynamic changes of neuroinflammation and neurodegeneration in the LC-NE system in the brain and spinal cord of APP/PS1 mice and aged WT mice using immunofluorescence and ELISA. RESULTS Our results demonstrated increased expression of inflammatory cytokines and microglial activation observed in the cortex, hippocampus, and spinal cord of APP/PS1 compared to WT mice. LC-NE neuron and fiber loss as well as reduced norepinephrine transporter (NET) expression was more evident in APP/PS1 mice, although NE levels were similar between 12-month-old APP/PS1 and WT mice. Notably, the degree of microglial activation, LC-NE nerve fiber loss, and NET reduction in the brain and spinal cord were more severe in 12-month-old APP/PS1 compared to 12- and 24-month-old WT mice. CONCLUSION These results suggest that elevated neuroinflammation and microglial activation in the brain and spinal cord of APP/PS1 mice correlate with significant degeneration of the LC-NE system.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563002, Guizhou, China
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington Medical Center, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Tian Yu
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563002, Guizhou, China
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
56
|
Abstract
The glymphatic system is network of perivascular spaces through which cerebrospinal fluid and interstitial fluid can move through the brain, clearing metabolic waste, such as amyloid beta, lactate and more, from the parenchyma. This cleaning system is regulated by sleep and norepinephrine, with increased levels of norepinephrine during wakefulness inhibiting fluid movement. Norepinephrine is also essential for transition from acute to chronic pain, and sufferers of chronic neuropathic pain frequently present with sleep disruption. These connections among glymphatic clearance, sleep, and pain are very intriguing, and might lead to nonpharmaceutical interventions for pain treatment. This short perspective provides a rationale for the hypothesis that mind-body interventions-such as acupuncture-can reduce norepinephrine and increase glymphatic function, ultimately relieving chronic neuropathic pain.
Collapse
Affiliation(s)
- Nanna Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuki Mori
- Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
57
|
König N, Bimpisidis Z, Dumas S, Wallén-Mackenzie Å. Selective Knockout of the Vesicular Monoamine Transporter 2 ( Vmat2) Gene in Calbindin2/Calretinin-Positive Neurons Results in Profound Changes in Behavior and Response to Drugs of Abuse. Front Behav Neurosci 2020; 14:578443. [PMID: 33240055 PMCID: PMC7680758 DOI: 10.3389/fnbeh.2020.578443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022] Open
Abstract
The vesicular monoamine transporter 2 (VMAT2) has a range of functions in the central nervous system, from sequestering toxins to providing conditions for the quantal release of monoaminergic neurotransmitters. Monoamine signaling regulates diverse functions from arousal to mood, movement, and motivation, and dysregulation of VMAT2 function is implicated in various neuropsychiatric diseases. While all monoamine-releasing neurons express the Vmat2 gene, only a subset is positive for the calcium-binding protein Calbindin 2 (Calb2; aka Calretinin, 29 kDa Calbindin). We recently showed that about half of the dopamine neurons in the mouse midbrain are positive for Calb2 and that Calb2 is an early developmental marker of midbrain dopamine cells. Calb2-positive neurons have also been identified in other monoaminergic areas, yet the role of Calb2-positive monoaminergic neurons is poorly understood. To selectively address the impact of Calb2-positive monoaminergic neurons in behavioral regulation, we took advantage of the Cre-LoxP system to create a new conditional knockout (cKO) mouse line in which Vmat2 expression is deleted selectively in Calb2-Cre-positive neurons. In this Vmat2lox/lox;Calb2−Cre cKO mouse line, gene targeting of Vmat2 was observed in several distinct monoaminergic areas. By comparing control and cKO mice in a series of behavioral tests, specific dissimilarities were identified. In particular, cKO mice were smaller than control mice and showed heightened sensitivity to the stereotypy-inducing effects of amphetamine and slight reductions in preference toward sucrose and ethanol, as well as a blunted response in the elevated plus maze test. These data uncover new knowledge about the role of genetically defined subtypes of neurons in the brain’s monoaminergic systems.
Collapse
Affiliation(s)
- Niclas König
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Zisis Bimpisidis
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Åsa Wallén-Mackenzie
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
58
|
Kuner R, Kuner T. Cellular Circuits in the Brain and Their Modulation in Acute and Chronic Pain. Physiol Rev 2020; 101:213-258. [PMID: 32525759 DOI: 10.1152/physrev.00040.2019] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic, pathological pain remains a global health problem and a challenge to basic and clinical sciences. A major obstacle to preventing, treating, or reverting chronic pain has been that the nature of neural circuits underlying the diverse components of the complex, multidimensional experience of pain is not well understood. Moreover, chronic pain involves diverse maladaptive plasticity processes, which have not been decoded mechanistically in terms of involvement of specific circuits and cause-effect relationships. This review aims to discuss recent advances in our understanding of circuit connectivity in the mammalian brain at the level of regional contributions and specific cell types in acute and chronic pain. A major focus is placed on functional dissection of sub-neocortical brain circuits using optogenetics, chemogenetics, and imaging technological tools in rodent models with a view towards decoding sensory, affective, and motivational-cognitive dimensions of pain. The review summarizes recent breakthroughs and insights on structure-function properties in nociceptive circuits and higher order sub-neocortical modulatory circuits involved in aversion, learning, reward, and mood and their modulation by endogenous GABAergic inhibition, noradrenergic, cholinergic, dopaminergic, serotonergic, and peptidergic pathways. The knowledge of neural circuits and their dynamic regulation via functional and structural plasticity will be beneficial towards designing and improving targeted therapies.
Collapse
Affiliation(s)
- Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; and Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; and Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
59
|
Abstract
Introduction to Diabetic Neuropathy podcast recording (MP4 55526 kb).
Collapse
Affiliation(s)
- Uazman Alam
- Department of Diabetes and Endocrinology, Liverpool University Hospital NHS Foundation Trust, Liverpool, UK.
- Department of Eye and Vision Sciences, and the Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
- Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, UK.
| |
Collapse
|
60
|
Bán EG, Brassai A, Vizi ES. The role of the endogenous neurotransmitters associated with neuropathic pain and in the opioid crisis: The innate pain-relieving system. Brain Res Bull 2019; 155:129-136. [PMID: 31816407 DOI: 10.1016/j.brainresbull.2019.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
Abstract
Neuropathic pain is a chronic pain caused by central and peripheral nerve injury, long-term diabetes or treatment with chemotherapy drugs, and it is dissimilar to other chronic pain conditions. Chronic pain usually seriously affects the quality of life, and its drug treatment may result in increased costs of social and medical care. As in the USA and Canada, in Europe, the demand for pain-relieving medicines used in chronic pain has also significantly increased, but most European countries are not experiencing an opioid crisis. In this review, the role of various endogenous transmitters (noradrenaline, dopamine, serotonin, met- and leu-enkephalins, β-endorphin, dynorphins, cannabinoids, ATP) and various receptors (α2, μ, etc.) in the innate pain-relieving system will be discussed. Furthermore, the modulation of pain processing pathways by transmitters, focusing on neuropathic pain and the role of the sympathetic nervous system in the side effects of excessive opioid treatment, will be explained.
Collapse
Affiliation(s)
- E Gy Bán
- Dept. ME1, Faculty of Medicine in English, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Marosvásárhely, Romania
| | - A Brassai
- Dept. ME1, Faculty of Medicine in English, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Marosvásárhely, Romania
| | - E S Vizi
- Institute of Experimental Medicine, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
61
|
Cao S, Fisher DW, Yu T, Dong H. The link between chronic pain and Alzheimer's disease. J Neuroinflammation 2019; 16:204. [PMID: 31694670 PMCID: PMC6836339 DOI: 10.1186/s12974-019-1608-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic pain often occurs in the elderly, particularly in the patients with neurodegenerative disorders such as Alzheimer's disease (AD). Although studies indicate that chronic pain correlates with cognitive decline, it is unclear whether chronic pain accelerates AD pathogenesis. In this review, we provide evidence that supports a link between chronic pain and AD and discuss potential mechanisms underlying this connection based on currently available literature from human and animal studies. Specifically, we describe two intertwined processes, locus coeruleus noradrenergic system dysfunction and neuroinflammation resulting from microglial pro-inflammatory activation in brain areas mediating the affective component of pain and cognition that have been found to influence both chronic pain and AD. These represent a pathological overlap that likely leads chronic pain to accelerate AD pathogenesis. Further, we discuss potential therapeutic interventions targeting noradrenergic dysfunction and microglial activation that may improve patient outcomes for those with chronic pain and AD.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 56300, Guizhou, China
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 56300, Guizhou, China
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Tain Yu
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 56300, Guizhou, China
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
62
|
Boorman DC, Kang JWM, Keay KA. Peripheral nerve injury attenuates stress-induced Fos-family expression in the Locus Coeruleus of male Sprague-Dawley rats. Brain Res 2019; 1719:253-262. [PMID: 31194948 DOI: 10.1016/j.brainres.2019.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/26/2019] [Accepted: 06/09/2019] [Indexed: 11/26/2022]
Abstract
The ability to cope with acute stressors is impaired in people with chronic neuropathic injuries. The regulation of stress coping responses depends critically on several parallel interconnected neural circuits, one of which originates in the Locus Coeruleus. In rats, chronic constriction injury (CCI) and acute stress each modulate noradrenergic activity of the Locus Coeruleus (LC) although with different temporal patterns. This study investigated the effects of CCI on the neuronal activity of the LC to acute restraint stress using the immunohistochemical detection of Fos-family protein expression. Male Sprague-Dawley rats underwent CCI surgery and 11 days later were restrained for 15 min. The number and location of single-labelled neurons (c-Fos, FosB/ΔFosB and tyrosine hydroxylase (TH) immunoreactive) neurons and double labelled neurons (c-Fos, or FosB/ΔFosB with TH) were quantified for the LC and surrounding regions. Comparisons were made with rats that underwent sham surgery or anaesthesia (20 min). Restraint triggered a struggling response in all rats. CCI attenuated restraint-induced Fos expression in LC neurons. A significant proportion (30-50%) of these LC Fos positive neurons did not contain TH. These data suggest that nerve injury might impair the ordinary cellular response of the LC to an acute stress. The association of stress-related disorders in people with neuropathic injuries suggests that the observations made in this study may reflect a part of the mechanism underlying these clinical comorbidities.
Collapse
Affiliation(s)
- Damien C Boorman
- School of Medical Sciences, Discipline of Anatomy & Histology, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - James W M Kang
- School of Medical Sciences, Discipline of Anatomy & Histology, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Kevin A Keay
- School of Medical Sciences, Discipline of Anatomy & Histology, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
63
|
Bello NT, Yeh CY, James MH. Reduced Sensory-Evoked Locus Coeruleus-Norepinephrine Neural Activity in Female Rats With a History of Dietary-Induced Binge Eating. Front Psychol 2019; 10:1966. [PMID: 31551861 PMCID: PMC6737582 DOI: 10.3389/fpsyg.2019.01966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022] Open
Abstract
Noradrenergic pathways have been implicated in eating pathologies. These experiments sought to examine how dietary-induced binge eating influences the neuronal activity of the locus coeruleus (LC)-norepinephrine (NE) system. Young adult female Sprague Dawley rats (7-8 weeks old) were exposed to a repeated intermittent (twice weekly) cycle of 30-min access to a highly palatable sweetened fat (i.e., vegetable shortening with 10% sucrose) with or without intermittent (24 h) calorie restriction (Restrict Binge or Binge groups, respectively). Age- and weight-matched female control rats were exposed to standard chow feeding (Naive group) or intermittent chow feeding (Restrict group). The Binge and Restrict Binge groups demonstrated an escalation in sweet-fat food intake after 2.5 weeks. On week 3, in vivo single-unit LC electrophysiological activity was recorded under isoflurane anesthesia. Restrict Binge (20 cells from six rats) and Binge (27 cells from six rats) had significantly reduced (approximate 20% and 26%, respectively) evoked LC discharge rates compared with naive rats (22 cells, seven rats). Spontaneous and tonic discharge rates were not different among the groups. Signal-to-noise ratio was reduced in the groups with intermittent sweetened fat exposure. In order to investigate the neuropeptide alterations as a consequence of dietary binge eating, relative gene expression of neuropeptide Y (NPY), glucagon-like peptide 1 receptor (GLP-1r), prodynorphin, and related genes were measured in LC and hypothalamic arcuate (Arc) regions. Glp-1r, Npy2r, and Pdyn in LC region were reduced with repeated intermittent restriction. Npy1r was reduced by approximately 27% in ARC of Restrict compared with Naive group. Such data indicate that dietary-induced binge eating alters the neural response of LC neurons to sensory stimuli and dampens the neural stress response.
Collapse
Affiliation(s)
- Nicholas T. Bello
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Chung-Yang Yeh
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Morgan H. James
- Rutgers Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ, United States
- Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
64
|
Betts MJ, Kirilina E, Otaduy MCG, Ivanov D, Acosta-Cabronero J, Callaghan MF, Lambert C, Cardenas-Blanco A, Pine K, Passamonti L, Loane C, Keuken MC, Trujillo P, Lüsebrink F, Mattern H, Liu KY, Priovoulos N, Fliessbach K, Dahl MJ, Maaß A, Madelung CF, Meder D, Ehrenberg AJ, Speck O, Weiskopf N, Dolan R, Inglis B, Tosun D, Morawski M, Zucca FA, Siebner HR, Mather M, Uludag K, Heinsen H, Poser BA, Howard R, Zecca L, Rowe JB, Grinberg LT, Jacobs HIL, Düzel E, Hämmerer D. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 2019; 142:2558-2571. [PMID: 31327002 PMCID: PMC6736046 DOI: 10.1093/brain/awz193] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.
Collapse
Affiliation(s)
- Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Center for Cognitive Neuroscience, Free University Berlin, Berlin, Germany
| | - Maria C G Otaduy
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, Medical School of the University of São Paulo, Brazil
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
| | | | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Christian Lambert
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Arturo Cardenas-Blanco
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Kerrin Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, UK
- Consiglio Nazionale delle Ricerche, Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Milan, Italy
| | - Clare Loane
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Max C Keuken
- University of Amsterdam, Integrative Model-based Cognitive Neuroscience research unit, Amsterdam, The Netherlands
- University of Leiden, Cognitive Psychology, Leiden, The Netherlands
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Falk Lüsebrink
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hendrik Mattern
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Nikos Priovoulos
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Klaus Fliessbach
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Anne Maaß
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Christopher F Madelung
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Raymond Dolan
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
- Max Planck Centre for Computational Psychiatry and Ageing, University College London, UK
| | - Ben Inglis
- Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, CA, USA
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Mara Mather
- Leonard Davis School of Gerontology and Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Kamil Uludag
- Centre for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Techna Institute and Koerner Scientist in MR Imaging, University Health Network, Toronto, Canada
| | - Helmut Heinsen
- University of São Paulo Medical School, São Paulo, Brazil
- Clinic of Psychiatry, University of Würzburg, Wurzburg, Germany
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, USA
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- University of São Paulo Medical School, São Paulo, Brazil
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Heidi I L Jacobs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
65
|
Nijs J, Leysen L, Vanlauwe J, Logghe T, Ickmans K, Polli A, Malfliet A, Coppieters I, Huysmans E. Treatment of central sensitization in patients with chronic pain: time for change? Expert Opin Pharmacother 2019; 20:1961-1970. [DOI: 10.1080/14656566.2019.1647166] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jo Nijs
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Chronic pain rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Laurence Leysen
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Johan Vanlauwe
- Department of Public Health (GEWE), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tine Logghe
- Department of Orthopaedics, University Hospital Brussels, Brussels, Belgium
| | - Kelly Ickmans
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Chronic pain rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
- Department of Physical and Rehabilitation Medicine, AZ Sint Dimpna hospital, Geel, Belgium
| | - Andrea Polli
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physical and Rehabilitation Medicine, AZ Sint Dimpna hospital, Geel, Belgium
| | - Anneleen Malfliet
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Chronic pain rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
- Department of Physical and Rehabilitation Medicine, AZ Sint Dimpna hospital, Geel, Belgium
- Research Foundation – Flanders (FWO), Brussels, Belgium
| | - Iris Coppieters
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Chronic pain rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
- Research Foundation – Flanders (FWO), Brussels, Belgium
| | - Eva Huysmans
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Chronic pain rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
- Department of Physical and Rehabilitation Medicine, AZ Sint Dimpna hospital, Geel, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
66
|
Bahari Z, Meftahi GH. Spinal α 2 -adrenoceptors and neuropathic pain modulation; therapeutic target. Br J Pharmacol 2019; 176:2366-2381. [PMID: 30657594 DOI: 10.1111/bph.14580] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
Neuropathic pain can arise from disease or damage to the nervous system. The most common symptoms of neuropathic pain include spontaneous pain, allodynia, and hyperalgesia. There is still limited knowledge about the factors that initiate and maintain neuropathic pain. However, ample evidence has proved the antinociceptive role of spinal α-adrenoceptors following nerve injury. It is well-documented that noradrenergic descending pathways from supraspinal loci exert an inhibitory influence on the spinal cord nociceptive neurons, mostly through the activation of spinal α2 -adrenoceptors. This, in turn, suppresses transmission of pain input and the hyperexcitability of spinal dorsal horn neurons. There is considerable evidence demonstrating that spinal application of α2 -adrenoceptor agonists leads to analgesic effects in animal models of neuropathic pain. Today, despite the recent rapid development of neuroscience and drug discovery, effective drugs with clear basic mechanisms have remained a mystery. Here, we give an overview of the cellular mechanisms through which brainstem adrenergic descending inhibitory processing can alter spinal pain transmission to the higher centres, and how these pathways change in neuropathic pain conditions focusing on the role of spinal α2 -adrenoceptors in the spinal dorsal horn. We then suggest that α2 -adrenoceptor agonist may be useful to treat neuropathic pain. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Zahra Bahari
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
67
|
Azmi S, ElHadd KT, Nelson A, Chapman A, Bowling FL, Perumbalath A, Lim J, Marshall A, Malik RA, Alam U. Pregabalin in the Management of Painful Diabetic Neuropathy: A Narrative Review. Diabetes Ther 2019; 10:35-56. [PMID: 30565054 PMCID: PMC6349275 DOI: 10.1007/s13300-018-0550-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Indexed: 12/18/2022] Open
Abstract
Pregabalin is a first-line treatment in all major international guidelines on the management of painful diabetic neuropathy (pDPN). Treatment with pregabalin leads to a clinically meaningful improvement in pain scores, offers consistent relief of pain and has an acceptable tolerance level. Despite its efficacy in relieving neuropathic pain, more robust methods and comprehensive studies are required to evaluate its effects in relation to co-morbid anxiety and sleep interference in pDPN. The sustained benefits of modulating pain have prompted further exploration of other potential target sites and the development of alternative GABAergic agents such as mirogabalin. This review evaluates the role of pregabalin in the management of pDPN as well as its potential adverse effects, such as somnolence and dizziness, which can lead to withdrawal in ~ 30% of long-term use. Recent concern about misuse and an increase in deaths linked to its use has led to demands for reclassification of pregabalin as a class C controlled substance in the UK. We believe these demands need to be tempered in relation to the difficulties it would create for repeat prescriptions for the many millions of patients with pDPN for whom pregabalin provides benefit.Plain Language Summary: Plain language summary available for this article.
Collapse
Affiliation(s)
- Shazli Azmi
- Institute of Cardiovascular Science, University of Manchester and Manchester Diabetes Centre, Manchester Foundation Trust, Manchester, UK
| | | | - Andrew Nelson
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| | - Adam Chapman
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| | - Frank L Bowling
- Institute of Cardiovascular Science, University of Manchester and Manchester Diabetes Centre, Manchester Foundation Trust, Manchester, UK
| | - Anughara Perumbalath
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| | - Jonathan Lim
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| | - Andrew Marshall
- Institute of Cardiovascular Science, University of Manchester and Manchester Diabetes Centre, Manchester Foundation Trust, Manchester, UK
| | - Rayaz A Malik
- Institute of Cardiovascular Science, University of Manchester and Manchester Diabetes Centre, Manchester Foundation Trust, Manchester, UK
- Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Uazman Alam
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, UK.
- Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, UK.
- Department of Diabetes and Endocrinology, Royal Liverpool and Broadgreen University NHS Hospital Trust, Liverpool, UK.
| |
Collapse
|
68
|
Bhatt RR, Zeltzer LK, Coloigner J, Wood JC, Coates TD, Labus JS. Patients with sickle-cell disease exhibit greater functional connectivity and centrality in the locus coeruleus compared to anemic controls. NEUROIMAGE-CLINICAL 2019; 21:101686. [PMID: 30690419 PMCID: PMC6356008 DOI: 10.1016/j.nicl.2019.101686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 01/18/2023]
Abstract
Patients with sickle-cell disease (SCD) have greater resting-state functional connectivity between the locus coeruleus (LC) and dorsolateral prefrontal cortex (dlPFC). Patients with SCD have greater resting state centrality of the LC SCD patients with chronic pain exhibited even greater functional connectivity between the LC and dlPFC. This study supports hyper-connectivity between the LC and PFC is a potential chronic pain generator.
Collapse
Affiliation(s)
- Ravi R Bhatt
- UCLA Pediatric Pain and Palliative Care Program, Division of Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Lonnie K Zeltzer
- UCLA Pediatric Pain and Palliative Care Program, Division of Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Julie Coloigner
- Childrens Hospital Los Angeles, Department of Radiology, Los Angeles, CA, USA; Childrens Hospital Los Angeles, Department of Cardiology, Los Angeles, CA, USA
| | - John C Wood
- Childrens Hospital Los Angeles, Department of Radiology, Los Angeles, CA, USA; Childrens Hospital Los Angeles, Department of Cardiology, Los Angeles, CA, USA
| | - Tom D Coates
- Childrens Center for Cancer, Blood Disease and Bone Marrow Transplantation, Children's Hospital Los Angeles (CCCBD), Los Angeles, CA, USA
| | - Jennifer S Labus
- Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
69
|
Abstract
Whilst the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) has similar intracellular coupling mechanisms to opioid receptors, it has distinct modulatory effects on physiological functions such as pain. These actions range from agonistic to antagonistic interactions with classical opioids within the spinal cord and brain, respectively. Understanding the electrophysiological actions of N/OFQ has been crucial in ascertaining the mechanisms by which these agonistic and antagonistic interactions occur. These similarities and differences between N/OFQ and opioids are due to the relative location of NOP versus opioid receptors on specific neuronal elements within these CNS regions. These mechanisms result in varied cellular actions including postsynaptic modulation of ion channels and presynaptic regulation of neurotransmitter release.
Collapse
|
70
|
Mlost J, Wąsik A, Michaluk JT, Antkiewicz-Michaluk L, Starowicz K. Changes in Monoaminergic Neurotransmission in an Animal Model of Osteoarthritis: The Role of Endocannabinoid Signaling. Front Mol Neurosci 2018; 11:466. [PMID: 30618615 PMCID: PMC6306412 DOI: 10.3389/fnmol.2018.00466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is a main symptom of osteoarthritis (OA). Moreover, a high percentage of OA patients suffer from mental health problems. The endocannabinoid (EC) system has attracted attention as an emerging drug target for pain treatment together with its activity on the mesolimbic reward system. Understanding the circuits that govern the reward of pain relief is crucial for the search for effective analgesics. Therefore, we investigated the role of the EC system on dopamine (DA) and noradrenaline (NA) in an animal model of OA-related chronic pain. OA rats exhibited significant decreases in DA metabolism in the nucleus accumbens (NAc), striatum (STR) and hippocampus (HC). NA metabolism was also significantly decreased by chronic pain in OA rats; however, this disruption was limited to the frontal cortex (FCx) and HC. URB597 (an inhibitor of EC metabolism) treatment completely reversed the decreased DA metabolism, especially in the brain reward system and the HC. Furthermore, administration of URB597 normalized the impairment of NA activity in the HC but potentiated the decreased NA levels in the FCx. Our results demonstrated that chronic pain in OA rats was reflected by the inhibition of mesolimbic and mesocortical dopaminergic transmission, and may indicate the pro-pain role of NA in the FCx. The data provide understanding about changes in neurotransmission in chronic pain states and may explain the clinical improvement in perceived life quality following cannabinoid treatment. Additional mechanistic studies in preclinical models examining the intersection between chronic pain and reward circuits may offer new approaches for improving pain therapy.
Collapse
Affiliation(s)
- Jakub Mlost
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Wąsik
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Jerzy Tadeusz Michaluk
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | - Katarzyna Starowicz
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
71
|
Panteleev SS, Sivachenko IB, Lyubashina OA. The central effects of buspirone on abdominal pain in rats. Neurogastroenterol Motil 2018; 30:e13431. [PMID: 30101506 DOI: 10.1111/nmo.13431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/08/2018] [Accepted: 06/24/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Buspirone, a partial agonist of the 5-HT1a receptor (5-HT1a R), owing to potential antinociceptive properties may be useful in treatment of abdominal pain in IBS patients. The pain-related effects of buspirone are mediated via the 5-HT1a Rs, specifically located within the ventrolateral medulla (VLM). The most animal studies of the 5-HT1a R involvement in pain control have been carried out with somatic behavioral tests. The 5-HT1a R contribution in visceral pain transmission within the VLM is unclear. The objective of our study was to evaluate the 5-HT1a R contribution in abdominal pain transmission within the VLM. METHODS Using animal model of abdominal pain (urethane-anaesthetized rats), based on the noxious colorectal distension (CRD) as pain stimulus we studied effects of buspirone (1.0-4.0 mg kg-1 , iv) on the CRD-induced VLM neuron and blood pressure responses as markers of abdominal pain before and after the 5-HT1a R blockade by antagonist, WAY 100,635. RESULTS The CRD induced a significant increase in VLM neuron activity up to 201.5 ± 18.0% and depressor reactions up to 68 ± 1.8% of baseline. Buspirone (1.0-4.0 mg kg-1 , iv) resulted in an inhibition of the CRD-induced neuron responses which were changed inversely with dose increase and decreased depressor reactions directly with dose increase. These effects were antagonized by intracerebroventricular WAY 100,635. CONCLUSION Buspirone exerts complex biphasic action on the pain-related VLM neuron activity inversely depending on dose. The final effect of buspirone depends on the functional balance between of activation the pre- and postsynaptic 5-HT1a Rs in mediating pain control networks.
Collapse
Affiliation(s)
- S S Panteleev
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia.,Department of Neuropharmacology, Valdman Institute of Pharmacology, First Saint-Petersburg Pavlov State Medical University, Saint Petersburg, Russia
| | - I B Sivachenko
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - O A Lyubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia.,Department of Neuropharmacology, Valdman Institute of Pharmacology, First Saint-Petersburg Pavlov State Medical University, Saint Petersburg, Russia
| |
Collapse
|
72
|
Ferland CE, Teles AR, Ingelmo P, Saran N, Marchand S, Ouellet JA. Blood monoamines as potential biomarkers for conditioned pain modulation efficacy: An exploratory study in paediatrics. Eur J Pain 2018; 23:327-340. [DOI: 10.1002/ejp.1307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/04/2018] [Accepted: 08/12/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Catherine E. Ferland
- McGill Scoliosis and Spine Group; Montreal Québec Canada
- Shriners Hospitals for Children-Canada; Montreal Québec Canada
- McGill University Health Centre; Montreal Québec Canada
- Alan Edwards Centre for Research on Pain; Montreal Québec Canada
- Department of Anesthesia; McGill University; Montreal Québec Canada
| | - Alisson R. Teles
- McGill Scoliosis and Spine Group; Montreal Québec Canada
- Shriners Hospitals for Children-Canada; Montreal Québec Canada
- McGill University Health Centre; Montreal Québec Canada
- Alan Edwards Centre for Research on Pain; Montreal Québec Canada
- Division of Pediatric Orthopaedics; McGill University; Montreal Québec Canada
| | - Pablo Ingelmo
- McGill University Health Centre; Montreal Québec Canada
- Alan Edwards Centre for Research on Pain; Montreal Québec Canada
- Department of Anesthesia; McGill University; Montreal Québec Canada
| | - Neil Saran
- McGill Scoliosis and Spine Group; Montreal Québec Canada
- Shriners Hospitals for Children-Canada; Montreal Québec Canada
- McGill University Health Centre; Montreal Québec Canada
- Division of Pediatric Orthopaedics; McGill University; Montreal Québec Canada
| | - Serge Marchand
- Department of Surgery; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Jean A. Ouellet
- McGill Scoliosis and Spine Group; Montreal Québec Canada
- Shriners Hospitals for Children-Canada; Montreal Québec Canada
- McGill University Health Centre; Montreal Québec Canada
- Alan Edwards Centre for Research on Pain; Montreal Québec Canada
- Division of Pediatric Orthopaedics; McGill University; Montreal Québec Canada
| |
Collapse
|
73
|
Ong WY, Stohler CS, Herr DR. Role of the Prefrontal Cortex in Pain Processing. Mol Neurobiol 2018; 56:1137-1166. [PMID: 29876878 PMCID: PMC6400876 DOI: 10.1007/s12035-018-1130-9] [Citation(s) in RCA: 390] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
The prefrontal cortex (PFC) is not only important in executive functions, but also pain processing. The latter is dependent on its connections to other areas of the cerebral neocortex, hippocampus, periaqueductal gray (PAG), thalamus, amygdala, and basal nuclei. Changes in neurotransmitters, gene expression, glial cells, and neuroinflammation occur in the PFC during acute and chronic pain, that result in alterations to its structure, activity, and connectivity. The medial PFC (mPFC) could serve dual, opposing roles in pain: (1) it mediates antinociceptive effects, due to its connections with other cortical areas, and as the main source of cortical afferents to the PAG for modulation of pain. This is a ‘loop’ where, on one side, a sensory stimulus is transformed into a perceptual signal through high brain processing activity, and perceptual activity is then utilized to control the flow of afferent sensory stimuli at their entrance (dorsal horn) to the CNS. (2) It could induce pain chronification via its corticostriatal projection, possibly depending on the level of dopamine receptor activation (or lack of) in the ventral tegmental area-nucleus accumbens reward pathway. The PFC is involved in biopsychosocial pain management. This includes repetitive transcranial magnetic stimulation, transcranial direct current stimulation, antidepressants, acupuncture, cognitive behavioral therapy, mindfulness, music, exercise, partner support, empathy, meditation, and prayer. Studies demonstrate the role of the PFC during placebo analgesia, and in establishing links between pain and depression, anxiety, and loss of cognition. In particular, losses in PFC grey matter are often reversible after successful treatment of chronic pain.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore.
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| | | | - Deron R Herr
- Department of Pharmacology, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
74
|
Lambert GA, Zagami AS. Does somatostatin have a role to play in migraine headache? Neuropeptides 2018; 69:1-8. [PMID: 29751998 DOI: 10.1016/j.npep.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/05/2018] [Accepted: 04/15/2018] [Indexed: 11/24/2022]
Abstract
Migraine is a condition without apparent pathology. Its cardinal symptom is the prolonged excruciating headache. Theories about this pain have posited pathologies which run the gamut from neural to vascular to neurovascular, but no observations have detected a plausible pathology. We believe that no pathology can be found for migraine headache because none exists. Migraine is not driven by pathology - it is driven by neural events produced by triggers - or simply by neural noise- noise that has crossed a critical threshold. If these ideas are true, how does the pain arise? We hypothesise that migraine headache is a consequence of withdrawal of descending pain control, produced by "noise" in the cerebral cortex. Nevertheless, there has to be a neural circuit to transform cortical noise to withdrawal of pain control. In our hypothesis, this neural circuit extends from the cortex, synapses in two brainstem nuclei (the periaqueductal gray matter and the raphe magnus nucleus) and ultimately reaches the first synapse of the trigeminal sensory system. The second stage of this circuit uses serotonin (5HT) as a neurotransmitter, but the neuronal projection from the cortex to the brainstem seems to involve relatively uncommon neurotransmitters. We believe that one of these is somatostatin (SST). Temporal changes in levels of circulating SST mirror the temporal changes in the incidence of migraine, particularly in women. The SST2 receptor agonist octreotide has been used with some success in migraine and cluster headache. A cortical to PAG/NRM neural projection certainly exists and we briefly review the anatomical and neurophysiological evidence for it and provide preliminary evidence that SST may the critical neurotransmitter in this pathway. We therefore suggest that the withdrawal of descending tone in SST-containing neurons, might create a false pain signal and hence the headache of migraine.
Collapse
Affiliation(s)
- Geoffrey A Lambert
- Prince of Wales Clinical School, UNSW, Australia; School of Medicine, University of Western Sydney, Australia.
| | - Alessandro S Zagami
- Prince of Wales Clinical School, UNSW, Australia; Institute of Neurological Sciences, Prince of Wales Hospital, Australia
| |
Collapse
|
75
|
|
76
|
Muddana A, Asbill DT, Jerath MR, Stuebe AM. Quantitative Sensory Testing, Antihistamines, and Beta-Blockers for Management of Persistent Breast Pain: A Case Series. Breastfeed Med 2018; 13:275-280. [PMID: 29630399 DOI: 10.1089/bfm.2017.0158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND It is not uncommon for mothers to have persistent pain with breastfeeding beyond the first few weeks after birth. Persistent pain can be multifactorial, with neuropathic pain maintained by central sensitization being one dimension. Our knowledge in delineating categories of persistent pain is simple and not very sophisticated. METHODS We have developed and tested a Lactation Quantitative Sensory Test (L-QST) to quantify the neuropathic component of persistent breastfeeding pain. We present three case reports of neuropathic breastfeeding pain and treatment, and we discuss the potential role of histamine and catecholamines in persistent breastfeeding-associated pain. CONCLUSIONS The L-QST can be a useful tool to quantify neuropathic pain. Further studies are needed to test inter-observer reliability and reproducibility of this tool. Antihistamines can be considered for treating persistent pain in breastfeeding women with a history of allergy or atopy, and beta-blockers may be helpful in women with multiple pain disorders.
Collapse
Affiliation(s)
- Anitha Muddana
- 1 Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Diane T Asbill
- 2 Lactation Services Department, University of North Carolina Hospitals , Main Campus, North Carolina Women's Hospital, Chapel Hill, North Carolina
| | - Maya R Jerath
- 3 Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Alison M Stuebe
- 4 Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill School of Medicine , Chapel Hill, North Carolina
| |
Collapse
|
77
|
The Neurotoxin DSP-4 Induces Hyperalgesia in Rats that is Accompanied by Spinal Oxidative Stress and Cytokine Production. Neuroscience 2018; 376:13-23. [PMID: 29421433 DOI: 10.1016/j.neuroscience.2018.01.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/30/2022]
Abstract
Central neuropathic pain (CNP) a significant problem for many people, is not well-understood and difficult to manage. Dysfunction of the central noradrenergic system originating in the locus coeruleus (LC) may be a causative factor in the development of CNP. The LC is the major noradrenergic nucleus of the brain and plays a significant role in central modulation of nociceptive neurotransmission. Here, we examined CNS pathophysiological changes induced by intraperitoneal administration of the neurotoxin DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride). Administration of DSP-4 decreased levels of norepinephrine in spinal tissue and cerebrospinal fluid (CSF) and led to the development of thermal and mechanical hyperalgesia over 21 days, that was reversible with morphine. Hyperalgesia was accompanied by significant increases in noradrenochrome (oxidized norepinephrine) and expression of 4-hydroxynonenal in CSF and spinal cord tissue respectively at day 21, indicative of oxidative stress. In addition, spinal levels of pro-inflammatory cytokines (interleukins 6 and 17A, tumor necrosis factor-α), as well as the anti-inflammatory cytokine interleukin10 were also significantly elevated at day 21, indicating that an inflammatory response occurred. The inflammatory effect of DSP-4 presented in this study that includes oxidative stress may be particularly useful in elucidating mechanisms of CNP in inflammatory disease states.
Collapse
|
78
|
Herrick LM, Camilleri M, Schleck CD, Zinsmeister AR, Saito YA, Talley NJ. Effects of Amitriptyline and Escitalopram on Sleep and Mood in Patients With Functional Dyspepsia. Clin Gastroenterol Hepatol 2018; 16:401-406.e2. [PMID: 29199141 DOI: 10.1016/j.cgh.2017.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Tricyclic antidepressants are effective in reducing symptoms of functional dyspepsia (FD). We performed a post hoc analysis of data from a previous randomized clinical trial to determine whether the benefits of an antidepressant on gastrointestinal symptoms in patients with FD were mediated by improving sleep or reducing anxiety. We explored the relationships between psychological measures, quality of sleep, and relief of symptoms. METHODS We analyzed data from a multicenter, double-blind trial that evaluated the efficacy of antidepressants on symptoms of FD, from October 2006 through October 2012. Patients (n = 292) were randomly assigned to groups given 50 mg amitriptyline, 10 mg escitalopram, or placebo for 12 weeks. During the study, participants completed the following validated psychological questionnaires: Symptom Check List 90, Symptom Somatic Checklist, Hospital Anxiety Depression Scale, Profile of Mood States, State Trait Anxiety Inventory, and Pittsburgh Sleep Quality Index at baseline and 12 weeks following treatment. RESULTS Baseline scores for the psychological and sleep measures were similar among groups; after 12 weeks there were no significant differences in scores among groups. Baseline mean global Pittsburgh Sleep Quality Index scores indicated poor sleep quality in all groups at baseline and after 12 weeks. Overall, antidepressants affected sleep duration scores: patients given amitriptyline had lower (better) scores than patients given placebo or escitalopram (P = .019). In all groups, responders had decreased anxiety and improvements in some sleep components. CONCLUSIONS In a post hoc analysis of data from a clinical trial that evaluated the effects of antidepressants in patients with FD, amitriptyline was found to reduce symptoms of FD, but its mechanism is unlikely to involve reductions in psychological distress. The drug may modestly improve sleep. Clinicaltrials.gov no: NCT00248651.
Collapse
Affiliation(s)
- Linda M Herrick
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Cathy D Schleck
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Alan R Zinsmeister
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Yuri A Saito
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Nicholas J Talley
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
79
|
Harper DE, Ichesco E, Schrepf A, Hampson JP, Clauw DJ, Schmidt-Wilcke T, Harris RE, Harte SE. Resting Functional Connectivity of the Periaqueductal Gray Is Associated With Normal Inhibition and Pathological Facilitation in Conditioned Pain Modulation. THE JOURNAL OF PAIN 2018; 19:635.e1-635.e15. [PMID: 29360608 DOI: 10.1016/j.jpain.2018.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022]
Abstract
Conditioned pain modulation (CPM), a psychophysical paradigm that is commonly used to infer the integrity of endogenous pain-altering systems by observation of the effect of one noxious stimulus on another, has previously identified deficient endogenous analgesia in fibromyalgia (FM) and other chronic pain conditions. The mechanisms underlying this deficiency, be they insufficient inhibition and/or active facilitation, are largely unknown. The present cross-sectional study used a combination of behavioral CPM testing, voxel-based morphometry, and resting state functional connectivity to identify neural correlates of CPM in healthy controls (HC; n = 14) and FM patients (n = 15), and to probe for differences that could explain the pain-facilitative CPM that was observed in our patient sample. Voxel-based morphometry identified a cluster encompassing the periaqueductal gray (PAG) that contained significantly less gray matter volume in FM patients. Higher resting connectivity between this cluster and cortical pain processing regions was associated with more efficient inhibitory CPM in both groups, whereas PAG connectivity with the dorsal pons was associated with greater CPM inhibition only in HC. Greater PAG connectivity to the caudal pons/rostral medulla, which was pain-inhibitory in HC, was associated with pain facilitation in FM patients. PERSPECTIVE These findings indicate that variation in the strength of the PAG resting functional connectivity can explain some of the normal variability in CPM. In addition, pain-facilitative CPM observed in FM patients likely involves attenuation of pain inhibitory as well as amplification of pain facilitative processes in the central nervous system.
Collapse
Affiliation(s)
- Daniel E Harper
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan.
| | - Eric Ichesco
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Andrew Schrepf
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Johnson P Hampson
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Clauw
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Tobias Schmidt-Wilcke
- Department of Neurology, St. Mauritius Therapieklinik, Meerbusch, Germany; Department of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Richard E Harris
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven E Harte
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
80
|
Brainstem Pain-Control Circuitry Connectivity in Chronic Neuropathic Pain. J Neurosci 2017; 38:465-473. [PMID: 29175957 DOI: 10.1523/jneurosci.1647-17.2017] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/23/2017] [Accepted: 11/12/2017] [Indexed: 11/21/2022] Open
Abstract
Preclinical investigations have suggested that altered functioning of brainstem pain-modulation circuits may be crucial for the maintenance of some chronic pain conditions. While some human psychophysical studies show that patients with chronic pain display altered pain-modulation efficacy, it remains unknown whether brainstem pain-modulation circuits are altered in individuals with chronic pain. The aim of the present investigation was to determine whether, in humans, chronic pain following nerve injury is associated with altered ongoing functioning of the brainstem descending modulation systems. Using resting-state functional magnetic resonance imaging, we found that male and female patients with chronic neuropathic orofacial pain show increased functional connectivity between the rostral ventromedial medulla (RVM) and other brainstem pain-modulatory regions, including the ventrolateral periaqueductal gray (vlPAG) and locus ceruleus (LC). We also identified an increase in RVM functional connectivity with the region that receives orofacial nociceptor afferents, the spinal trigeminal nucleus. In addition, the vlPAG and LC displayed increased functional connectivity strengths with higher brain regions, including the hippocampus, nucleus accumbens, and anterior cingulate cortex, in individuals with chronic pain. These data reveal that chronic pain is associated with altered ongoing functioning within the endogenous pain-modulation network. These changes may underlie enhanced descending facilitation of processing at the primary synapse, resulting in increased nociceptive transmission to higher brain centers. Further, our findings show that higher brain regions interact with the brainstem modulation system differently in chronic pain, possibly reflecting top-down engagement of the circuitry alongside altered reward processing in pain conditions.SIGNIFICANCE STATEMENT Experimental animal models and human psychophysical studies suggest that altered functioning of brainstem pain-modulation systems contributes to the maintenance of chronic pain. However, the function of this circuitry has not yet been explored in humans with chronic pain. In this study, we report that individuals with orofacial neuropathic pain show altered functional connectivity between regions within the brainstem pain-modulation network. We suggest that these changes reflect largely central mechanisms that feed back onto the primary nociceptive synapse and enhance the transfer of noxious information to higher brain regions, thus contributing to the constant perception of pain. Identifying the mechanisms responsible for the maintenance of neuropathic pain is imperative for the development of more efficacious therapies.
Collapse
|
81
|
Hirschberg S, Li Y, Randall A, Kremer EJ, Pickering AE. Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. eLife 2017; 6:29808. [PMID: 29027903 PMCID: PMC5653237 DOI: 10.7554/elife.29808] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
The locus coeruleus (LC) projects throughout the brain and spinal cord and is the major source of central noradrenaline. It remains unclear whether the LC acts functionally as a single global effector or as discrete modules. Specifically, while spinal-projections from LC neurons can exert analgesic actions, it is not known whether they can act independently of ascending LC projections. Using viral vectors taken up at axon terminals, we expressed chemogenetic actuators selectively in LC neurons with spinal (LC:SC) or prefrontal cortex (LC:PFC) projections. Activation of the LC:SC module produced robust, lateralised anti-nociception while activation of LC:PFC produced aversion. In a neuropathic pain model, LC:SC activation reduced hind-limb sensitisation and induced conditioned place preference. By contrast, activation of LC:PFC exacerbated spontaneous pain, produced aversion and increased anxiety-like behaviour. This independent, contrasting modulation of pain-related behaviours mediated by distinct noradrenergic neuronal populations provides evidence for a modular functional organisation of the LC.
Collapse
Affiliation(s)
- Stefan Hirschberg
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Yong Li
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Andrew Randall
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Medical School, University of Exeter, Exeter, United Kingdom
| | - Eric J Kremer
- IGMM, CNRS, University of Montpellier, Montpellier, France
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
82
|
Minimally invasive probes for programmed microfluidic delivery of molecules in vivo. Curr Opin Pharmacol 2017; 36:78-85. [PMID: 28892801 DOI: 10.1016/j.coph.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 01/06/2023]
Abstract
Site-specific drug delivery carries many advantages of systemic administration, but is rarely used in the clinic. One limiting factor is the relative invasiveness of the technology to locally deliver compounds. Recent advances in materials science and electrical engineering allow for the development of ultraminiaturized microfluidic channels based on soft materials to create flexible probes capable of deep tissue targeting. A diverse set of mechanics, including micro-pumps and functional materials, used to deliver the drugs can be paired with wireless electronics for self-contained and programmable operation. These first iterations of minimally invasive fluid delivery devices foreshadow important advances needed for clinical translation.
Collapse
|
83
|
Kwok CH, Trang T. Pain: From genes and proteins to cells in the living organism. J Neurosci Res 2017; 95:1239-1241. [DOI: 10.1002/jnr.24046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Charlie H.T. Kwok
- Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| | - Tuan Trang
- Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| |
Collapse
|