51
|
Biswas NN, Iskander GM, Mielczarek M, Yu TT, Black DS, Kumar N. Alkyne-Substituted Fimbrolide Analogues as Novel Bacterial Quorum-Sensing Inhibitors. Aust J Chem 2018. [DOI: 10.1071/ch18194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gram-negative bacteria such as Pseudomonas aeruginosa use furanosyl diesters as autoinducers for quorum sensing (QS), a major regulatory and cell-to-cell communication system for social adaptation, virulence factor production, biofilm formation, and antibiotic resistance. A range of natural and synthetic brominated furanones, i.e. fimbrolide derivatives, have been found to act as inhibitors of QS-dependent bacterial phenotypes, complementing the bactericidal ability of traditional antibiotics. In this work, several novel acetylene analogues of fimbrolides were synthesised in moderate to high yields via Sonogashira coupling reactions of brominated furanones 4-bromo-5-(bromomethylene)furan-2(5H)-one 4 and 5-(dibromomethylene)-3-ethylfuran-2(5H)-one 5. The Sonogashira reaction of acetylenes on 4-bromo-5-(bromomethylene)furan-2(5H)-one 4 was favoured at the C5 methylene bromide over the C4 bromide substituent. On biological testing, the most potent compounds 13 and 14 showed 82 and 98 % bacterial quorum-sensing inhibitory (QSI) activity against Pseudomonas aeruginosa reporter strain respectively.
Collapse
|
52
|
Cheng F, Ma A, Zhuang G, Fray RG. Exogenous N-acyl-homoserine lactones enhance the expression of flagella of Pseudomonas syringae and activate defence responses in plants. MOLECULAR PLANT PATHOLOGY 2018; 19:104-115. [PMID: 27756102 PMCID: PMC6637982 DOI: 10.1111/mpp.12502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 05/05/2023]
Abstract
In order to cope with pathogens, plants have evolved sophisticated mechanisms to sense pathogenic attacks and to induce defence responses. The N-acyl-homoserine lactone (AHL)-mediated quorum sensing in bacteria regulates diverse physiological processes, including those involved in pathogenicity. In this work, we study the interactions between AHL-producing transgenic tobacco plants and Pseudomonas syringae pv. tabaci 11528 (P. syringae 11528). Both a reduced incidence of disease and decrease in the growth of P. syringae 11528 were observed in AHL-producing plants compared with wild-type plants. The present data indicate that plant-produced AHLs enhance disease resistance against this pathogen. Subsequent RNA-sequencing analysis showed that the exogenous addition of AHLs up-regulated the expression of P. syringae 11528 genes for flagella production. Expression levels of plant defence genes in AHL-producing and wild-type plants were determined by quantitative real-time polymerase chain reaction. These data showed that plant-produced AHLs activated a wide spectrum of defence responses in plants following inoculation, including the oxidative burst, hypersensitive response, cell wall strengthening, and the production of certain metabolites. These results demonstrate that exogenous AHLs alter the gene expression patterns of pathogens, and plant-produced AHLs either directly or indirectly enhance plant local immunity during the early stage of plant infection.
Collapse
Affiliation(s)
- Feifei Cheng
- Research Center for Eco‐Environment SciencesChinese Academy of SciencesBeijing100085China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Anzhou Ma
- Research Center for Eco‐Environment SciencesChinese Academy of SciencesBeijing100085China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Guoqiang Zhuang
- Research Center for Eco‐Environment SciencesChinese Academy of SciencesBeijing100085China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Rupert G. Fray
- School of Biological SciencesNottingham UniversityLoughboroughLE12 5RDUK
| |
Collapse
|
53
|
Scoffone VC, Chiarelli LR, Trespidi G, Mentasti M, Riccardi G, Buroni S. Burkholderia cenocepacia Infections in Cystic Fibrosis Patients: Drug Resistance and Therapeutic Approaches. Front Microbiol 2017; 8:1592. [PMID: 28878751 PMCID: PMC5572248 DOI: 10.3389/fmicb.2017.01592] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen particularly dangerous for cystic fibrosis (CF) patients. It can cause a severe decline in CF lung function possibly developing into a life-threatening systemic infection known as cepacia syndrome. Antibiotic resistance and presence of numerous virulence determinants in the genome make B. cenocepacia extremely difficult to treat. Better understanding of its resistance profiles and mechanisms is crucial to improve management of these infections. Here, we present the clinical distribution of B. cenocepacia described in the last 6 years and methods for identification and classification of epidemic strains. We also detail new antibiotics, clinical trials, and alternative approaches reported in the literature in the last 5 years to tackle B. cenocepacia resistance issue. All together these findings point out the urgent need of new and alternative therapies to improve CF patients’ life expectancy.
Collapse
Affiliation(s)
- Viola C Scoffone
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | | | - Gabriele Trespidi
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | - Massimo Mentasti
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health EnglandLondon, United Kingdom.,Department of Microbiology, Royal Cornwall HospitalTruro, United Kingdom
| | - Giovanna Riccardi
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| |
Collapse
|
54
|
Phytochemical composition, anti-biofilm and anti-quorum sensing potential of fruit, stem and leaves of Salvadora persica L. methanolic extracts. Microb Pathog 2017; 109:169-176. [DOI: 10.1016/j.micpath.2017.05.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 11/22/2022]
|
55
|
Singh VK, Mishra A, Jha B. Anti-quorum Sensing and Anti-biofilm Activity of Delftia tsuruhatensis Extract by Attenuating the Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2017; 7:337. [PMID: 28798903 PMCID: PMC5526841 DOI: 10.3389/fcimb.2017.00337] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
Multidrug-resistance bacteria commonly use cell-to-cell communication that leads to biofilm formation as one of the mechanisms for developing resistance. Quorum sensing inhibition (QSI) is an effective approach for the prevention of biofilm formation. A Gram-negative bacterium, Delftia tsuruhatensis SJ01, was isolated from the rhizosphere of a species of sedge (Cyperus laevigatus) grown along the coastal-saline area. The isolate SJ01 culture and bacterial crude extract showed QSI activity in the biosensor plate containing the reference strain Chromobacterium violaceum CV026. A decrease in the violacein production of approximately 98% was detected with the reference strain C. violaceum CV026. The bacterial extract (strain SJ01) exhibited anti-quorum sensing activity and inhibited the biofilm formation of clinical isolates wild-type Pseudomonas aeruginosa PAO1 and P. aeruginosa PAH. A non-toxic effect of the bacterial extract (SJ01) was detected on the cell growth of the reference strains as P. aeruginosa viable cells were present within the biofilm. It is hypothesized that the extract (SJ01) may change the topography of the biofilm and thus prevent bacterial adherence on the biofilm surface. The extract also inhibits the motility, virulence factors (pyocyanin and rhamnolipid) and activity (elastase and protease) in P. aeruginosa treated with SJ01 extract. The potential active compound present was identified as 1,2-benzenedicarboxylic acid, diisooctyl ester. Microarray and transcript expression analysis unveiled differential expression of quorum sensing regulatory genes. The key regulatory genes, LasI, LasR, RhlI, and RhlR were down-regulated in the P. aeruginosa analyzed by quantitative RT-PCR. A hypothetical model was generated of the transcriptional regulatory mechanism inferred in P. aeruginosa for quorum sensing, which will provide useful insight to develop preventive strategies against the biofilm formation. The potential active compound identified, 1,2-benzenedicarboxylic acid, diisooctyl ester, has the potential to be used as an anti-pathogenic drug for the treatment of biofilm-forming pathogenic bacteria. For that, a detailed study is needed to investigate the possible applications.
Collapse
Affiliation(s)
- Vijay K Singh
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - Avinash Mishra
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| |
Collapse
|
56
|
Miao L, Xu J, Yao Z, Jiang Y, Zhou H, Jiang W, Dong K. The anti-quorum sensing activity and bioactive substance of a marine derived Streptomyces. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1348253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Li Miao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Xu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ziwei Yao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yun Jiang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huiru Zhou
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Jiang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kunming Dong
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
57
|
Miguel MG, Antunes MD, Faleiro ML. Honey as a Complementary Medicine. INTEGRATIVE MEDICINE INSIGHTS 2017; 12:1178633717702869. [PMID: 28469409 PMCID: PMC5406168 DOI: 10.1177/1178633717702869] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/19/2017] [Indexed: 12/13/2022]
Abstract
The beneficial effects of honey on human health have long been recognized. Today, many of those positive effects have been studied to elucidate its mode of action. This review briefly summarizes the best studied features of honey, highlighting it as an appealing alternative medicine. In these reports, the health benefits of honey range from antioxidant, immunomodulatory, and anti-inflammatory activity to anticancer action, metabolic and cardiovascular benefits, prebiotic properties, human pathogen control, and antiviral activity. These studies also support that the honey's biological activity is mainly dependent on its floral or geographic origin. In addition, some promising synergies between honey and antibiotics have been found, as well as some antiviral properties that require further investigation. Altogether, these studies show that honey is effectively a nutraceutical foodstuff.
Collapse
Affiliation(s)
- MG Miguel
- MeditBio, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - MD Antunes
- MeditBio, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
- CEOT, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - ML Faleiro
- CBMR, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
58
|
Alagarasan G, Aswathy KS, Madhaiyan M. Shoot the Message, Not the Messenger-Combating Pathogenic Virulence in Plants by Inhibiting Quorum Sensing Mediated Signaling Molecules. FRONTIERS IN PLANT SCIENCE 2017; 8:556. [PMID: 28446917 PMCID: PMC5388769 DOI: 10.3389/fpls.2017.00556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Immunity, virulence, biofilm formation, and survival in the host environment are regulated by the versatile nature of density dependent microbial cell signaling, also called quorum sensing (QS). The QS molecules can associate with host plant tissues and, at times, cause a change in its gene expression at the downstream level through inter-kingdom cross talking. Progress in controlling QS through fungicide/bactericide in pathogenic microscopic organisms has lead to a rise of antibiotic resistance pathogens. Here, we review the application of selective quorum quenching (QQ) endophytes to control phytopathogens that are shared by most, if not all, terrestrial plant species as well as aquatic plants. Allowing the plants to posses endophytic colonies through biotization will be an additional and a sustainable encompassing methodology resulting in attenuated virulence rather than killing the pathogens. Furthermore, the introduced endophytes could serve as a potential biofertilizer and bioprotection agent, which in turn increases the PAMP- triggered immunity and hormonal systemic acquired resistance (SAR) in plants through SA-JA-ET signaling systems. This paper discusses major challenges imposed by QS and QQ application in biotechnology.
Collapse
Affiliation(s)
- Ganesh Alagarasan
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi VishwavidyalayaRaipur, India
| | - Kumar S. Aswathy
- Department of Agricultural Microbiology, Tamilnadu Agricultural UniversityCoimbatore, India
| | - Munusamy Madhaiyan
- Biomaterials and Biocatalyst, Temasek Lifesciences Laboratory, National University of SingaporeSingapore, Singapore
| |
Collapse
|
59
|
Parrilli E, Papa R, Carillo S, Tilotta M, Casillo A, Sannino F, Cellini A, Artini M, Selan L, Corsaro MM, Tutino ML. Anti-biofilm activity of pseudoalteromonas haloplanktis tac125 against staphylococcus epidermidis biofilm: Evidence of a signal molecule involvement? Int J Immunopathol Pharmacol 2017; 28:104-13. [PMID: 25816412 DOI: 10.1177/0394632015572751] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus epidermidis is recognized as cause of biofilm-associated infections and interest in the development of new approaches for S. epidermidis biofilm treatment has increased. In a previous paper we reported that the supernatant of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 presents an anti-biofilm activity against S. epidermidis and preliminary physico-chemical characterization of the supernatant suggested that this activity is due to a polysaccharide. In this work we further investigated the chemical nature of the anti-biofilm P. haloplanktis TAC125 molecule. The production of the molecule was evaluated in different conditions, and reported data demonstrated that it is produced in all P. haloplanktis TAC125 biofilm growth stages, also in minimal medium and at different temperatures. By using a surface coating assay, the surfactant nature of the anti-biofilm compound was excluded. Moreover, a purification procedure was set up and the analysis of an enriched fraction demonstrated that the anti-biofilm activity is not due to a polysaccharide molecule but that it is due to small hydrophobic molecules that likely work as signal. The enriched fraction was also used to evaluate the effect on S. epidermidis biofilm formation in dynamic condition by BioFlux system.
Collapse
Affiliation(s)
- E Parrilli
- Department of Chemical Sciences, Federico II University, Naples, Italy
| | - R Papa
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - S Carillo
- Department of Chemical Sciences, Federico II University, Naples, Italy
| | - M Tilotta
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - A Casillo
- Department of Chemical Sciences, Federico II University, Naples, Italy
| | - F Sannino
- Department of Chemical Sciences, Federico II University, Naples, Italy Institute of Protein Biochemistry, CNR, Naples, Italy
| | - A Cellini
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - M Artini
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - L Selan
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - M M Corsaro
- Department of Chemical Sciences, Federico II University, Naples, Italy
| | - M L Tutino
- Department of Chemical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
60
|
Casillo A, Papa R, Ricciardelli A, Sannino F, Ziaco M, Tilotta M, Selan L, Marino G, Corsaro MM, Tutino ML, Artini M, Parrilli E. Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm. Front Cell Infect Microbiol 2017; 7:46. [PMID: 28280714 PMCID: PMC5322152 DOI: 10.3389/fcimb.2017.00046] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/07/2017] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus epidermidis is a harmless human skin colonizer responsible for ~20% of orthopedic device-related infections due to its capability to form biofilm. Nowadays there is an interest in the development of anti-biofilm molecules. Marine bacteria represent a still underexploited source of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. Previous results have demonstrated that the culture supernatant of Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 impairs the formation of S. epidermidis biofilm. Further, evidence supports the hydrophobic nature of the active molecule, which has been suggested to act as a signal molecule. In this paper we describe an efficient activity-guided purification protocol which allowed us to purify this anti-biofilm molecule and structurally characterize it by NMR and mass spectrometry analyses. Our results demonstrate that the anti-biofilm molecule is pentadecanal, a long-chain fatty aldehyde, whose anti-S. epidermidis biofilm activity has been assessed using both static and dynamic biofilm assays. The specificity of its action on S. epidermidis biofilm has been demonstrated by testing chemical analogs of pentadecanal differing either in the length of the aliphatic chain or in their functional group properties. Further, indications of the mode of action of pentadecanal have been collected by studying the bioluminescence of a Vibrio harveyi reporter strain for the detection of autoinducer AI-2 like activities. The data collected suggest that pentadecanal acts as an AI-2 signal. Moreover, the aldehyde metabolic role and synthesis in the Antarctic source strain has been investigated. To the best of our knowledge, this is the first report on the identification of an anti-biofilm molecule form from cold-adapted bacteria and on the action of a long-chain fatty aldehyde acting as an anti-biofilm molecule against S. epidermidis.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University Rome, Italy
| | - Annarita Ricciardelli
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| | - Filomena Sannino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| | - Marcello Ziaco
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| | - Marco Tilotta
- Department of Public Health and Infectious Diseases, Sapienza University Rome, Italy
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University Rome, Italy
| | - Gennaro Marino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| | - Maria M Corsaro
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| | - Maria L Tutino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University Rome, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| |
Collapse
|
61
|
Cui P, Li X, Zhu M, Wang B, Liu J, Chen H. Design, synthesis and antimicrobial activities of thiouracil derivatives containing triazolo-thiadiazole as SecA inhibitors. Eur J Med Chem 2016; 127:159-165. [PMID: 28039774 DOI: 10.1016/j.ejmech.2016.12.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 11/28/2022]
Abstract
A series of novel thiouracil derivatives containing a triazolo-thiadiazole moiety (7a-7l) have been synthesized by structural modifications on a lead SecA inhibitor, 2. All the compounds have been evaluated for their antibacterial activities against Bacillus amyloliquefaciens, Staphylococcus aureus, and Bacillus subtilis. Compounds 7d and 7g were also tested for their inhibitory activities against SecA ATPase due to their promising antimicrobial activities. The inhibitory activity of compound 7d was found to be higher than that of 2. Molecular docking work suggests that compound 7d might bind at a pocket close to the ATPase ATP-binding domain.
Collapse
Affiliation(s)
- Penglei Cui
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; College of Science, Agricultural University of Hebei, Baoding 071001, China
| | - Xiaoliu Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Jing Liu
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
62
|
Shin S, Ahmed I, Hwang J, Seo Y, Lee E, Choi J, Moon S, Hong JW. A Microfluidic Approach to Investigating a Synergistic Effect of Tobramycin and Sodium Dodecyl Sulfate on Pseudomonas aeruginosa Biofilms. ANAL SCI 2016; 32:67-73. [PMID: 26753708 DOI: 10.2116/analsci.32.67] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, a microfluidic technology has contributed a significant role in biological research, specifically for the study of biofilms. Bacterial biofilms are a source of infections and contamination in the environment due to an extra polymeric matrix. Inadequate uses of antibiotics make the bacterial biofilms antibiotic resistant. Therefore, it is important to determine the effective concentration of antibiotics in order to eliminate bacterial biofilms. The present microfluidic study was carried out to analyze the activities of tobramycin and sodium dodecyl sulfate (SDS) against Pseudomonas aeruginosa biofilms with a continuous flow in order to achieve a greater delivery of the agents. The results show that a co-treatment of tobramycin and SDS significantly reduced the biomass of biofilms (by more than 99%) after 24 h. Tobramycin and SDS killed and detached bacteria in the cores of biofilms. Evidently, our data suggest that a microchannel would be effective for both quantitative and qualitative evaluations in order to test combinatorial effect of drugs and chemicals on a complexed biological system including biofilm.
Collapse
Affiliation(s)
- Soojeong Shin
- Department of Bionano Engineering, Hanyang University
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Singh BN, Prateeksha, Upreti DK, Singh BR, Defoirdt T, Gupta VK, De Souza AO, Singh HB, Barreira JCM, Ferreira ICFR, Vahabi K. Bactericidal, quorum quenching and anti-biofilm nanofactories: a new niche for nanotechnologists. Crit Rev Biotechnol 2016; 37:525-540. [PMID: 27684212 DOI: 10.1080/07388551.2016.1199010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite several conventional potent antibacterial therapies, bacterial infections pose a significant threat to human health because they are emerging as the leading cause of death worldwide. Due to the development of antibiotic resistance in bacteria, there is a pressing demand to discover novel approaches for developing more effective therapies to treat multidrug-resistant bacterial strains and biofilm-associated infections. Therefore, attention has been especially devoted to a new and emerging branch of science "nanotechnology" to design non-conventional antimicrobial chemotherapies. A range of nanomaterials and nano-sized carriers for conventional antimicrobial agents have fully justified their potential to combat bacterial diseases by reducing cell viability, by attenuating quorum sensing, and by inhibiting/or eradicating biofilms. This communication summarizes emerging nano-antimicrobial therapies in treating bacterial infections, particularly using antibacterial, quorum quenching, and anti-biofilm nanomaterials as new approaches to tackle the current challenges in combating infectious diseases.
Collapse
Affiliation(s)
- Brahma N Singh
- a Pharmacognosy & Ethnopharmacology Division , CSIR-National Botanical Research Institute , Lucknow , India
| | - Prateeksha
- a Pharmacognosy & Ethnopharmacology Division , CSIR-National Botanical Research Institute , Lucknow , India
| | - Dalip K Upreti
- b Lichenology laboratory , Plant Biodiversity and Conservation Biology Division, CSIR-National Botanical Research Institute , Lucknow , Uttar Pradesh , India
| | - Braj Raj Singh
- c TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gurgaon , Haryana , India.,d Centre of Excellence in Materials Science (Nanomaterials), Z. H. College of Engineering and Technology , Aligarh Muslim University, Aligarh , Uttar Pradesh , India
| | - Tom Defoirdt
- d Centre of Excellence in Materials Science (Nanomaterials), Z. H. College of Engineering and Technology , Aligarh Muslim University, Aligarh , Uttar Pradesh , India.,e Laboratory of Aquaculture & Artemia Reference Center , Ghent University , Gent , Belgium
| | - Vijai K Gupta
- f Molecular Glyco-biotechnology Group, Discipline of Biochemistry , School of Natural Sciences, National University of Ireland Galway , Galway , Ireland
| | | | - Harikesh Bahadur Singh
- h Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University , Varanasi , Uttar Pardesh , India
| | - João C M Barreira
- i Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança , Campus de Santa Apolónia , Bragança , Portugal
| | - Isabel C F R Ferreira
- i Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança , Campus de Santa Apolónia , Bragança , Portugal
| | - Khabat Vahabi
- j Biologisch-Pharmazeutische Fakultät , Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller Universität Jena , Jena , Germany
| |
Collapse
|
64
|
Sharma A, Gupta P, Kumar R, Bhardwaj A. dPABBs: A Novel in silico Approach for Predicting and Designing Anti-biofilm Peptides. Sci Rep 2016; 6:21839. [PMID: 26912180 PMCID: PMC4766436 DOI: 10.1038/srep21839] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/27/2016] [Indexed: 12/22/2022] Open
Abstract
Increasingly, biofilms are being recognised for their causative role in persistent infections (like cystic fibrosis, otitis media, diabetic foot ulcers) and nosocomial diseases (biofilm-infected vascular catheters, implants and prosthetics). Given the clinical relevance of biofilms and their recalcitrance to conventional antibiotics, it is imperative that alternative therapeutics are proactively sought. We have developed dPABBs, a web server that facilitates the prediction and design of anti-biofilm peptides. The six SVM and Weka models implemented on dPABBs were observed to identify anti-biofilm peptides on the basis of their whole amino acid composition, selected residue features and the positional preference of the residues (maximum accuracy, sensitivity, specificity and MCC of 95.24%, 92.50%, 97.73% and 0.91, respectively, on the training datasets). On the N-terminus, it was seen that either of the cationic polar residues, R and K, is present at all five positions in case of the anti-biofilm peptides, whereas in the QS peptides, the uncharged polar residue S is preponderant at the first (also anionic polar residues D, E), third and fifth positions. Positive predictions were also obtained for 29 FDA-approved peptide drugs and ten antimicrobial peptides in clinical development, indicating at their possible repurposing for anti-biofilm therapy. dPABBs is freely accessible on: http://ab-openlab.csir.res.in/abp/antibiofilm/.
Collapse
Affiliation(s)
- Arun Sharma
- Open Source Drug Discovery (OSDD) Unit, Council of Scientific and Industrial Research (CSIR), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-OSDD Unit, CSIR-HQ, New Delhi, India
| | - Pooja Gupta
- Open Source Drug Discovery (OSDD) Unit, Council of Scientific and Industrial Research (CSIR), New Delhi, India.,Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Rakesh Kumar
- Open Source Drug Discovery (OSDD) Unit, Council of Scientific and Industrial Research (CSIR), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-OSDD Unit, CSIR-HQ, New Delhi, India
| | - Anshu Bhardwaj
- Open Source Drug Discovery (OSDD) Unit, Council of Scientific and Industrial Research (CSIR), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-OSDD Unit, CSIR-HQ, New Delhi, India
| |
Collapse
|
65
|
Chbib C, Sobczak AJ, Mudgal M, Gonzalez C, Lumpuy D, Nagaj J, Stokowa-Soltys K, Wnuk SF. S-Ribosylhomocysteine Analogues Modified at the Ribosyl C-4 Position. J Sulphur Chem 2016; 37:307-327. [PMID: 27516805 DOI: 10.1080/17415993.2015.1137921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
4-C-Alkyl/aryl-S-ribosylhomocysteine (SRH) analogues were prepared by coupling of homocysteine with 4-substituted ribofuranose derivatives. The diastereoselective incorporation of the methyl substituent into the 4 position of the ribose ring was accomplished by addition of methylmagnesium bromide to the protected ribitol-4-ulose yielding the 4-C-methylribitol in 85% yield as single 4R diastereomer. The 4-C hexyl, octyl, vinyl, and aryl ribitols were prepared analogously. Chelation controlled addition of a carbanion to ketones from the (Si-face) was responsible for the observed stereochemical outcome. Oxidation of the primary alcohol of the 4-C ribitols with the catalytic amount of tetrapropylammonium perruthenate in the presence of N-methylmorpholine N-oxide produced 4-C-alkylribono-1,4-lactones in high yields. Mesylation of the latter compounds at the 5-hydroxyl position and treatment with a protected homocysteine thiolate afforded protected 4-C-alkyl/aryl-SRH analogues as the lactones. Reduction with lithium triethylborohydride and successive global deprotections with TFA afforded 4-C-alkyl/aryl SRH analogues. These analogues might impede the S-ribosylhomocysteinase(LuxS)-catalyzed reaction by preventing β-elimination of a homocysteine molecule, and thus depleting the production of quorum sensing signaling molecule AI-2.
Collapse
Affiliation(s)
- Christiane Chbib
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Adam J Sobczak
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Mukesh Mudgal
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Cesar Gonzalez
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Daniel Lumpuy
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Justyna Nagaj
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Kamila Stokowa-Soltys
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Stanislaw F Wnuk
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
66
|
Parrilli E, Ricciardelli A, Casillo A, Sannino F, Papa R, Tilotta M, Artini M, Selan L, Corsaro MM, Tutino ML. Large-scale biofilm cultivation of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 for physiologic studies and drug discovery. Extremophiles 2016; 20:227-34. [PMID: 26847199 DOI: 10.1007/s00792-016-0813-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Microbial biofilms are mainly studied due to detrimental effects on human health but they are also well established in industrial biotechnology for the production of chemicals. Moreover, biofilm can be considered as a source of novel drugs since the conditions prevailing within biofilm can allow the production of specific metabolites. Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 when grown in biofilm condition produces an anti-biofilm molecule able to inhibit the biofilm of the opportunistic pathogen Staphylococcus epidermidis. In this paper we set up a P. haloplanktis TAC125 biofilm cultivation methodology in automatic bioreactor. The biofilm cultivation was designated to obtain two goals: (1) the scale up of cell-free supernatant production in an amount necessary for the anti-biofilm molecule/s purification; (2) the recovery of P. haloplanktis TAC125 cells grown in biofilm for physiological studies. We set up a fluidized-bed reactor fermentation in which floating polystyrene supports were homogeneously mixed, exposing an optimal air-liquid interface to let bacterium biofilm formation. The proposed methodology allowed a large-scale production of anti-biofilm molecule and paved the way to study differences between P. haloplanktis TAC125 cells grown in biofilm and in planktonic conditions. In particular, the modifications occurring in the lipopolysaccharide of cells grown in biofilm were investigated.
Collapse
Affiliation(s)
- Ermenegilda Parrilli
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Annarita Ricciardelli
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Angela Casillo
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Filomena Sannino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marco Tilotta
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| |
Collapse
|
67
|
Nizalapur S, Kimyon Ö, Biswas NN, Gardner CR, Griffith R, Rice SA, Manefield M, Willcox M, Black DS, Kumar N. Design, synthesis and evaluation of N-aryl-glyoxamide derivatives as structurally novel bacterial quorum sensing inhibitors. Org Biomol Chem 2016; 14:680-693. [DOI: 10.1039/c5ob01973g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacteria cooperatively regulate the expression of many phenotypes through a mechanism called quorum sensing (QS).
Collapse
Affiliation(s)
| | - Önder Kimyon
- School of Biotechnology and Biomolecular Sciences (BABS)
- UNSW Australia
- Sydney
- Australia
| | | | | | | | - Scott A. Rice
- Centre for Marine Biology
- School of Biological
- Earth and Environmental Sciences
- UNSW Australia
- Sydney
| | - Mike Manefield
- School of Biotechnology and Biomolecular Sciences (BABS)
- UNSW Australia
- Sydney
- Australia
| | - Mark Willcox
- School of Optometry and Vision Science
- UNSW Australia
- Sydney
- Australia
| | | | - Naresh Kumar
- School of Chemistry
- UNSW Australia
- Sydney
- Australia
| |
Collapse
|
68
|
Kang JE, Han JW, Jeon BJ, Kim BS. Efficacies of quorum sensing inhibitors, piericidin A and glucopiericidin A, produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atroseptica. Microbiol Res 2015; 184:32-41. [PMID: 26856451 DOI: 10.1016/j.micres.2015.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/04/2015] [Accepted: 12/16/2015] [Indexed: 11/28/2022]
Abstract
To discover potential inhibitors of the quorum sensing (QS) system, a library of microbial culture extracts was screened with Chromobacterium violaceumCV026 strain. The culture extract of Streptomyces xanthocidicus KPP01532 contained quorum-sensing inhibitors (QSIs) of the CV026 strain. The active constituents of the culture extract of strain KPP01532 were purified using a series of chromatographic procedures, and based on data from NMR and mass spectroscopy, piericidin A and glucopiericidin A were identified. Erwinia carotovora subsp. atroseptica (Eca) is a plant pathogen that causes blackleg and soft rot diseases on potato stems and tubers. The virulence factors of Eca are regulated by QS. The expression of virulence genes (pelC, pehA, celV and nip) under the control of QS was monitored using quantitative real-time PCR (qRT-PCR). The transcription levels of the four genes were significantly lower when Eca was exposed to piericidin A or glucopiericidin A. These two compounds displayed similar control efficacies against soft rot caused by Eca in potato slices as furanone C-30. Therefore, piericidin A and glucopiericidin A are potential QSIs that suppress the expression of the virulence genes of Eca, suggesting that they could have potential use as control agents of soft rot disease on potato tubers.
Collapse
Affiliation(s)
- Ji Eun Kang
- Laboratory of Plant Pharmacology, Department of Biosystems and Biotechnology, Korea University Graduate School, Seoul 136-713, Republic of Korea
| | - Jae Woo Han
- Laboratory of Plant Pharmacology, Department of Biosystems and Biotechnology, Korea University Graduate School, Seoul 136-713, Republic of Korea
| | - Byeong Jun Jeon
- Laboratory of Plant Pharmacology, Department of Biosystems and Biotechnology, Korea University Graduate School, Seoul 136-713, Republic of Korea
| | - Beom Seok Kim
- Laboratory of Plant Pharmacology, Department of Biosystems and Biotechnology, Korea University Graduate School, Seoul 136-713, Republic of Korea; Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
69
|
Sobczak AJ, Chbib C, Wnuk SF. S-Ribosylhomocysteine analogs containing a [4-thio]ribose ring. Carbohydr Res 2015; 415:39-47. [PMID: 26279525 DOI: 10.1016/j.carres.2015.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/04/2015] [Accepted: 07/07/2015] [Indexed: 01/16/2023]
Abstract
The [4-thio]-S-ribosylhomocysteine (SRH) analogs containing substitution of a sulfur atom for the endocyclic oxygen were synthesized by coupling of the 4-thioribose substrates with a thiolate generated from the protected homocysteine. Coupling of the protected 1-deoxy-5-O-mesyl-S-oxo-4-thio-D-ribofuranose with homocysteinate salt gave the C4 epimers of [4-thio]-SRH at the sulfoxide oxidation level lacking a hydroxyl group at anomeric carbon. Treatment of these sulfoxides with BF3⋅Et2O/NaI affected simultaneous reduction to sulfide and global deprotection affording 1-deoxy-4-thio-SRH analog. Treatment of the protected 1-deoxy-S-oxo-4-thio-D-ribofuranose sulfoxide with DAST/SbCl3 resulted in the fluoro-Pummerer rearrangement to give 4-thio-β-D-ribofuranosyl fluoride. Mesylation of the latter at 5-hydroxyl position followed by coupling with homocysteinate salt and subsequent global deprotection with trifluoroacetic acid afforded [4-thio]-SRH thiohemiacetal.
Collapse
Affiliation(s)
- Adam J Sobczak
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Christiane Chbib
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Stanislaw F Wnuk
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
70
|
Rajput A, Gupta AK, Kumar M. Prediction and analysis of quorum sensing peptides based on sequence features. PLoS One 2015; 10:e0120066. [PMID: 25781990 PMCID: PMC4363368 DOI: 10.1371/journal.pone.0120066] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/02/2015] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing peptides (QSPs) are the signaling molecules used by the Gram-positive bacteria in orchestrating cell-to-cell communication. In spite of their enormous importance in signaling process, their detailed bioinformatics analysis is lacking. In this study, QSPs and non-QSPs were examined according to their amino acid composition, residues position, motifs and physicochemical properties. Compositional analysis concludes that QSPs are enriched with aromatic residues like Trp, Tyr and Phe. At the N-terminal, Ser was a dominant residue at maximum positions, namely, first, second, third and fifth while Phe was a preferred residue at first, third and fifth positions from the C-terminal. A few motifs from QSPs were also extracted. Physicochemical properties like aromaticity, molecular weight and secondary structure were found to be distinguishing features of QSPs. Exploiting above properties, we have developed a Support Vector Machine (SVM) based predictive model. During 10-fold cross-validation, SVM achieves maximum accuracy of 93.00%, Mathew’s correlation coefficient (MCC) of 0.86 and Receiver operating characteristic (ROC) of 0.98 on the training/testing dataset (T200p+200n). Developed models performed equally well on the validation dataset (V20p+20n). The server also integrates several useful analysis tools like “QSMotifScan”, “ProtFrag”, “MutGen” and “PhysicoProp”. Our analysis reveals important characteristics of QSPs and on the basis of these unique features, we have developed a prediction algorithm “QSPpred” (freely available at: http://crdd.osdd.net/servers/qsppred).
Collapse
Affiliation(s)
- Akanksha Rajput
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh-160036, India
| | - Amit Kumar Gupta
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh-160036, India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh-160036, India
- * E-mail:
| |
Collapse
|
71
|
O’Brien K, Noto JG, Nichols-O’Neill L, Perez LJ. Potent Irreversible Inhibitors of LasR Quorum Sensing in Pseudomonas aeruginosa. ACS Med Chem Lett 2015; 6:162-7. [PMID: 25699144 PMCID: PMC4329587 DOI: 10.1021/ml500459f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/27/2014] [Indexed: 01/21/2023] Open
Abstract
Antagonism of quorum sensing represents a promising new antivirulence approach for the treatment of bacterial infection. The development of a novel series of non-natural irreversible antagonists of P. aeruginosa LasR is described. The lead compounds identified (25 and 28) display potent LasR antagonist activity and inhibit expression of the P. aeruginosa virulence factors pyocyanin and biofilm formation in PAO1 and PA14.
Collapse
Affiliation(s)
| | | | - Luke Nichols-O’Neill
- Department of Chemistry and
Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Lark J. Perez
- Department of Chemistry and
Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| |
Collapse
|
72
|
Biswas NN, Kutty SK, Barraud N, Iskander GM, Griffith R, Rice SA, Willcox M, Black DS, Kumar N. Indole-based novel small molecules for the modulation of bacterial signalling pathways. Org Biomol Chem 2015; 13:925-37. [DOI: 10.1039/c4ob02096k] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indole basedN-acylatedl-homoserine lactone (AHL) mimics were developed as quorum sensing (QS) inhibitors for Gram-negative bacteriaPseudomonas aeruginosaand can be used as novel antimicrobial agents.
Collapse
Affiliation(s)
| | | | - Nicolas Barraud
- Centre for Marine Bio-Innovation
- School of Biotechnology and Biomolecular Sciences
- UNSW Australia
- Sydney
- Australia
| | | | | | - Scott A. Rice
- Centre for Marine Bio-Innovation
- School of Biotechnology and Biomolecular Sciences
- UNSW Australia
- Sydney
- Australia
| | - Mark Willcox
- School of Optometry and Vision Science
- UNSW Australia
- Sydney
- Australia
| | | | - Naresh Kumar
- School of Chemistry
- UNSW Australia
- Sydney
- Australia
| |
Collapse
|
73
|
Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa. Microb Pathog 2014; 74:25-32. [PMID: 25088031 DOI: 10.1016/j.micpath.2014.07.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/30/2014] [Accepted: 07/22/2014] [Indexed: 11/20/2022]
Abstract
Quorum sensing (QS) plays a vital role in regulation of virulence factors and toxins in Pseudomonas aeruginosa, which can cause serious human infections. Therefore, the QS system in P. aeruginosa may be an important target for pharmacological intervention. Activity of aspirin on the QS system was assessed using a reporter strain assay and confirmed using RT-PCR to test expression of virulence factors and toxins. In addition, molecular modeling techniques including docking, flexible alignment and surface mapping were also applied to further understand aspirin's potential QS inhibition activity. Aspirin (6 mg/ml) showed significant reduction (p < 0.01) of quorum sensing signals in P. aeruginosa, including expression of elastase, total proteases, and pyocyanin (p < 0.01) without affecting bacterial viability. Aspirin also significantly reduced organism motility and biofilm production (p < 0.01) and decreased expression of lasI, lasR, rhlI, rhlR, pqsA and pqsR genes by 38, 72, 69, 72, 74 and 43% respectively. Moreover, the expression of Pseudomonas toxins exoS and exoY was reduced by 47 and 55% respectively. The molecular modeling analysis suggests the QS inhibitory action of aspirin occurs through interaction of aspirin's aryl group and Tyr-88 of the LasR receptor, by strong π-π stacking interactions, which associated with a conformational change of the receptor-aspirin complex. The inhibitory effect of aspirin on virulence factors was specific to P. aeruginosa as aspirin at sub-MIC did not affect the biofilm or motility of Escherichia coli. To summarize, the collective data demonstrate that low concentrations of aspirin inhibit quorum sensing of P. aeruginosa.
Collapse
|
74
|
Bridier A, Sanchez-Vizuete P, Guilbaud M, Piard JC, Naïtali M, Briandet R. Biofilm-associated persistence of food-borne pathogens. Food Microbiol 2014; 45:167-78. [PMID: 25500382 DOI: 10.1016/j.fm.2014.04.015] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/15/2014] [Accepted: 04/27/2014] [Indexed: 12/19/2022]
Abstract
Microbial life abounds on surfaces in both natural and industrial environments, one of which is the food industry. A solid substrate, water and some nutrients are sufficient to allow the construction of a microbial fortress, a so-called biofilm. Survival strategies developed by these surface-associated ecosystems are beginning to be deciphered in the context of rudimentary laboratory biofilms. Gelatinous organic matrices consisting of complex mixtures of self-produced biopolymers ensure the cohesion of these biological structures and contribute to their resistance and persistence. Moreover, far from being just simple three-dimensional assemblies of identical cells, biofilms are composed of heterogeneous sub-populations with distinctive behaviours that contribute to their global ecological success. In the clinical field, biofilm-associated infections (BAI) are known to trigger chronic infections that require dedicated therapies. A similar belief emerging in the food industry, where biofilm tolerance to environmental stresses, including cleaning and disinfection/sanitation, can result in the persistence of bacterial pathogens and the recurrent cross-contamination of food products. The present review focuses on the principal mechanisms involved in the formation of biofilms of food-borne pathogens, where biofilm behaviour is driven by its three-dimensional heterogeneity and by species interactions within these biostructures, and we look at some emergent control strategies.
Collapse
Affiliation(s)
| | - P Sanchez-Vizuete
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - M Guilbaud
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - J-C Piard
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - M Naïtali
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - R Briandet
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France.
| |
Collapse
|
75
|
Abstract
Antivirulence drugs are a new type of therapeutic drug that target virulence factors, potentially revitalising the drug-development pipeline with new targets. As antivirulence drugs disarm the pathogen, rather than kill or halt pathogen growth, it has been hypothesized that they will generate much weaker selection for resistance than traditional antibiotics. However, recent studies have shown that mechanisms of resistance to antivirulence drugs exist, seemingly damaging the 'evolution-proof' claim. In this Opinion article, we highlight a crucial distinction between whether resistance can emerge and whether it will spread to a high frequency under drug selection. We argue that selection for resistance can be reduced, or even reversed, using appropriate combinations of target and treatment environment, opening a path towards the development of evolutionarily robust novel therapeutics.
Collapse
|
76
|
Grosso-Becerra MV, Santos-Medellín C, González-Valdez A, Méndez JL, Delgado G, Morales-Espinosa R, Servín-González L, Alcaraz LD, Soberón-Chávez G. Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics 2014; 15:318. [PMID: 24773920 PMCID: PMC4234422 DOI: 10.1186/1471-2164-15-318] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/24/2014] [Indexed: 12/28/2022] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen with a high incidence of hospital infections that represents a threat to immune compromised patients. Genomic studies have shown that, in contrast to other pathogenic bacteria, clinical and environmental isolates do not show particular genomic differences. In addition, genetic variability of all the P. aeruginosa strains whose genomes have been sequenced is extremely low. This low genomic variability might be explained if clinical strains constitute a subpopulation of this bacterial species present in environments that are close to human populations, which preferentially produce virulence associated traits. Results In this work, we sequenced the genomes and performed phenotypic descriptions for four non-human P. aeruginosa isolates collected from a plant, the ocean, a water-spring, and from dolphin stomach. We show that the four strains are phenotypically diverse and that this is not reflected in genomic variability, since their genomes are almost identical. Furthermore, we performed a detailed comparative genomic analysis of the four strains studied in this work with the thirteen previously reported P. aeruginosa genomes by means of describing their core and pan-genomes. Conclusions Contrary to what has been described for other bacteria we have found that the P. aeruginosa core genome is constituted by a high proportion of genes and that its pan-genome is thus relatively small. Considering the high degree of genomic conservation between isolates of P. aeruginosa from diverse environments, including human tissues, some implications for the treatment of infections are discussed. This work also represents a methodological contribution for the genomic study of P. aeruginosa, since we provide a database of the comparison of all the proteins encoded by the seventeen strains analyzed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, México.
| |
Collapse
|
77
|
Kimura N. Metagenomic approaches to understanding phylogenetic diversity in quorum sensing. Virulence 2014; 5:433-42. [PMID: 24429899 DOI: 10.4161/viru.27850] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Quorum sensing, a form of cell-cell communication among bacteria, allows bacteria to synchronize their behaviors at the population level in order to control behaviors such as luminescence, biofilm formation, signal turnover, pigment production, antibiotics production, swarming, and virulence. A better understanding of quorum-sensing systems will provide us with greater insight into the complex interaction mechanisms used widely in the Bacteria and even the Archaea domain in the environment. Metagenomics, the use of culture-independent sequencing to study the genomic material of microorganisms, has the potential to provide direct information about the quorum-sensing systems in uncultured bacteria. This article provides an overview of the current knowledge of quorum sensing focused on phylogenetic diversity, and presents examples of studies that have used metagenomic techniques. Future technologies potentially related to quorum-sensing systems are also discussed.
Collapse
Affiliation(s)
- Nobutada Kimura
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba, Ibaraki Japan
| |
Collapse
|
78
|
Amir Alireza RG, Afsaneh R, Seied Hosein MS, Siamak Y, Afshin K, Zeinab K, Mahvash MJ, Amir Reza R. Inhibitory activity of Salvadora persica extracts against oral bacterial strains associated with periodontitis: An in-vitro study. J Oral Biol Craniofac Res 2014; 4:19-23. [PMID: 25737914 DOI: 10.1016/j.jobcr.2014.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 01/03/2014] [Indexed: 11/16/2022] Open
Abstract
AIMS The use of natural plant extracts in pharmacology, medicine and dental hygiene has found a growing interest in modern scientific research. Salvadora persica is a natural tree whose fibrous branches have been approved by the World Health Organization for oral hygiene. Periodontitis is a highly prevalent adult gingival disease that leads to bone destruction and connective tissue attachment loss. The aim of this research was assessment the antimicrobial activities of methanolic extract of Salvadora persica (miswak) on isolated strains from the oral fluid. METHODS In practical section, 50 female university students (21.4 ± 1 year) participated in the study. Based on examination by a periodontist, they were grouped into (Group I, n = 21) and (Group II, n = 29) i.e. with and without periodontitis respectively. Their un-stimulated saliva samples were obtained in sterile tubes. While three bacterial genera, Staphylococcus, Streptococcus and Lactobacillus were identified in all subjects, Enterococcus and Escherichia were only detected in Group I. RESULTS A statistically significant difference in colonization levels between the two groups was observed. The effect of methanolic extract of S. persica against oral bacterial strains isolated from saliva was investigated using agar disc diffusion and microdilution methods. Although methanolic extract of S. persica was effective on growth inhibition of all strains, it was significantly more effective on Gram positive bacteria than Gram negative ones. CONCLUSIONS Effective substances present in S. persica extracts, exhibit a broad range of antibacterial activity and affect almost all bacterial species regardless of the Gram-staining nature.
Collapse
Affiliation(s)
| | - Rezaei Afsaneh
- Department of Periodontology, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Yaghoobee Siamak
- Department of Periodontology, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | - Khorsand Afshin
- Department of Periodontology, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | - Kadkhoda Zeinab
- Department of Periodontology, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | - Moosavi Jazi Mahvash
- Department of Periodontology, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | - Rokn Amir Reza
- Department of Periodontology, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
79
|
Draganov A, Wang D, Wang B. The Future of Boron in Medicinal Chemistry: Therapeutic and Diagnostic Applications. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
80
|
Garg N, Manchanda G, Kumar A. Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek 2013; 105:289-305. [DOI: 10.1007/s10482-013-0082-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/16/2013] [Indexed: 11/28/2022]
|
81
|
Brackman G, Forier K, Al Quntar AAA, De Canck E, Enk CD, Srebnik M, Braeckmans K, Coenye T. Thiazolidinedione derivatives as novel agents against Propionibacterium acnes biofilms. J Appl Microbiol 2013; 116:492-501. [PMID: 24251377 DOI: 10.1111/jam.12378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 12/22/2022]
Abstract
AIMS The aim of the present study was to determine the effect of two thiazolidinedione derivatives on Propionibacterium acnes biofilm formation in vitro and to assess their effect on the susceptibility of P. acnes biofilms towards antimicrobials. METHODS AND RESULTS The compounds were shown to have a moderate to strong antibiofilm activity when used in subinhibitory concentrations. These compounds do not affect P. acnes attachment but lead to increased dispersal of biofilm cells. This dispersal results in an increased killing of the P. acnes biofilm cells by conventional antimicrobials. CONCLUSION The antibiofilm effect and the effect on biofilm susceptibility of the thiazolidinedione-derived quorum sensing inhibitors were clearly demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY Propionibacterium acnes infections are difficult to treat due to the presence of biofilms at the infection site and the associated resistance towards conventional antimicrobials. Our results indicate that these thiazolidinedione derivatives can be promising leads used for the treatment of P. acnes infections and as anti-acne drugs.
Collapse
Affiliation(s)
- G Brackman
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Effect of Traditional Chinese Herbal Medicine with Antiquorum Sensing Activity on Pseudomonas aeruginosa. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:648257. [PMID: 24319480 PMCID: PMC3844266 DOI: 10.1155/2013/648257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/07/2013] [Indexed: 11/20/2022]
Abstract
Traditional Chinese herbal medicines (TCHMs) were tested for their ability of antiquorum sensing. Water extracts of Rhubarb, Fructus gardeniae, and Andrographis paniculata show antiquorumsensing activity when using Chromobacterium violaceum CV12472 as reporter; the sub-MIC concentrations of these TCHMs were tested against AHL-dependent phenotypic expressions of PAO1. Results showed significant reduction in pyocyanin pigment, protease, elastase production, and biofilm formation in PAO1 without inhibiting the bacterial growth, revealing that the QSI by the extracts is not related to static or killing effects on the bacteria. The results indicate a potential modulation of bacterial cell-cell communication, P. aeruginosa biofilm, and virulence factors by traditional Chinese herbal medicine. This study introduces not only a new mode of action for traditional Chinese herbal medicines, but also a potential new therapeutic direction for the treatment of bacterial infections, which have QSI activity and might be important in reducing virulence and pathogenicity of pathogenic bacteria.
Collapse
|
83
|
Mieszkin S, Callow ME, Callow JA. Interactions between microbial biofilms and marine fouling algae: a mini review. BIOFOULING 2013; 29:1097-1113. [PMID: 24047430 DOI: 10.1080/08927014.2013.828712] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Natural and artificial substrata immersed in the marine environment are typically colonized by microorganisms, which may moderate the settlement/recruitment of algal spores and invertebrate larvae of macrofouling organisms. This mini-review summarizes the major interactions occurring between microbial biofilms and marine fouling algae, including their effects on the settlement, growth and morphology of the adult plants. The roles of chemical compounds that are produced by both bacteria and algae and which drive the interactions are reviewed. The possibility of using such bioactive compounds to control macrofouling will be discussed.
Collapse
Affiliation(s)
- Sophie Mieszkin
- a School of Biosciences, University of Birmingham , Birmingham , UK
| | | | | |
Collapse
|
84
|
Tay SB, Yew WS. Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens. Int J Mol Sci 2013; 14:16570-99. [PMID: 23939429 PMCID: PMC3759926 DOI: 10.3390/ijms140816570] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 02/02/2023] Open
Abstract
Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria.
Collapse
Affiliation(s)
- Song Buck Tay
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | | |
Collapse
|
85
|
Jakubczyk D, Merle C, Brenner-Weiss G, Luy B, Bräse S. Deuterium and Tritium Labelling ofN-Acyl-L-homoserine Lactones (AHLs) by Catalytic Reduction of a Double Bond in the Layer-by-Layer Method. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
86
|
Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. Res Microbiol 2013; 164:450-6. [DOI: 10.1016/j.resmic.2013.01.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/24/2013] [Indexed: 01/05/2023]
|
87
|
|
88
|
Chu W, Liu Y, Jiang Y, Zhu W, Zhuang X. Production of N-acyl Homoserine Lactones and Virulence Factors of Waterborne Aeromonas hydrophila. Indian J Microbiol 2013; 53:264-8. [PMID: 24426120 DOI: 10.1007/s12088-013-0381-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 12/01/2022] Open
Abstract
Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. The purpose of this study was to investigate the production of N-acyl-homoserine lactone (AHL) signal molecules and some virulence factors, including hemolysins, proteases, extracellular nucleases production and cytotoxicity by waterborne Aeromonas hydrophila. A total of 24 strains isolated from fresh-water or diseased fish were used in the study. The majority A.hydrophila strains produce two AHL molecules (21/24), one is N-butanoyl homoserine lactone (BHL), and the other is N-hexanoyl homoserine lactone (HHL) according to thin-layer chromatography analysis. Among the virulence factors tested, more than 83 % of the isolates produced β haemolysin when inoculated on sheep blood agar, only 50 % of the isolates displayed DNase activity, 75 % of the isolates shown proteolytic activity on skimmed milk plate, and cytotoxic activity was detected in 20 of 24 of the isolates. The strains producing AHLs possessed one or more virulence factors. In conclusion, the production of quorum sensing signal molecules is common among the strains that we examined, and there seems to some relationships between quorum sensing signal production and virulence factors in A. hydrophila.
Collapse
Affiliation(s)
- Weihua Chu
- Department of Microbiology, School of Life Science & Technology, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, People's Republic of China
| | - Yongwang Liu
- College of Veterinary Medicine, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Yan Jiang
- Jiangsu Entry-Exit Inspection and Quarantine Buearu, 210001 Nanjing, People's Republic of China
| | - Wei Zhu
- Department of Microbiology, School of Life Science & Technology, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, People's Republic of China
| | - Xiyi Zhuang
- Department of Microbiology, School of Life Science & Technology, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, People's Republic of China
| |
Collapse
|
89
|
Cirioni O, Mocchegiani F, Cacciatore I, Vecchiet J, Silvestri C, Baldassarre L, Ucciferri C, Orsetti E, Castelli P, Provinciali M, Vivarelli M, Fornasari E, Giacometti A. Quorum sensing inhibitor FS3-coated vascular graft enhances daptomycin efficacy in a rat model of staphylococcal infection. Peptides 2013; 40:77-81. [PMID: 23262356 DOI: 10.1016/j.peptides.2012.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 01/01/2023]
Abstract
The aim of the study was to investigate the efficacy of the quorum sensing inhibitor FS3 and daptomycin in preventing prosthesis biofilm in a rat model of staphylococcal vascular graft infection. Graft infections were established in the back subcutaneous tissue of adult male Wistar rats by implantation of Dacron prostheses followed by topical inoculation with 2×10(7) colony-forming units of Staphylococcus aureus, strain Smith diffuse. The study included a control group, a contaminated group that did not receive any antibiotic prophylaxis and three contaminated groups that received: (i) intraperitoneal daptomycin, (ii) FS3-soacked graft, and (iii) daptomycin plus FS3-soaked graft, respectively. Each group included 15 animals. The infection burden was evaluated by using sonication and quantitative agar culture. Moreover, an in vitro binding-study was performed to quantify the how much FS3 was coated to the surface of the prosthesis. The in vitro studies showed, that minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for daptomycin were lower in presence of FS3. In in vivo studies, when tested alone, daptomycin and FS3 showed good efficacies. Their combination showed efficacies significantly higher than that of each single compound. Daptomycin is an important candidate for prevention of staphylococcal biofilm related infection and FS3 could serve as an interesting anti-staphylococcal antibiotic enhancer.
Collapse
Affiliation(s)
- Oscar Cirioni
- Clinic of Infectious Diseases, Università Politecnica delle Marche - Ospedali Riuniti, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Sarabhai S, Sharma P, Capalash N. Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 2013; 8:e53441. [PMID: 23320085 PMCID: PMC3539995 DOI: 10.1371/journal.pone.0053441] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/28/2012] [Indexed: 11/25/2022] Open
Abstract
Background Burgeoning antibiotic resistance in Pseudomonas aeruginosa has necessitated the development of anti pathogenic agents that can quench acylhomoserine lactone (AHL) mediated QS with least risk of resistance. This study explores the anti quorum sensing potential of T. chebula Retz. and identification of probable compounds(s) showing anti QS activity and the mechanism of attenuation of P. aeruginosa PAO1 virulence factors. Methods and Results Methanol extract of T. chebula Retz. fruit showed anti QS activity using Agrobacterium tumefaciens A136. Bioactive fraction (F7), obtained by fractionation of methanol extract using Sephadex LH20, showed significant reduction (p<0.001) in QS regulated production of extracellular virulence factors in P. aeruginosa PAO1. Biofilm formation and alginate were significantly (p<0.05) reduced with enhanced (20%) susceptibility to tobramycin. Real Time PCR of F7 treated P. aeruginosa showed down regulation of autoinducer synthase (lasI and rhlI) and their cognate receptor (lasR and rhlR) genes by 89, 90, 90 and 93%, respectively. Electrospray Ionization Mass Spectrometry also showed 90 and 64% reduction in the production of 3-oxo-C12HSL and C4HSL after treatment. Decrease in AHLs as one of the mechanisms of quorum quenching by F7 was supported by the reversal of inhibited swarming motility in F7-treated P. aeruginosa PAO1 on addition of C4HSL. F7 also showed antagonistic activity against 3-oxo-C12HSL-dependent QS in E. coli bioreporter. C. elegans fed on F7-treated P. aeruginosa showed enhanced survival with LT50 increasing from 24 to 72 h. LC-ESI-MS of F7 revealed the presence of ellagic acid derivatives responsible for anti QS activity in T. chebula extract. Conclusions This is the first report on anti QS activity of T. chebula fruit linked to EADs which down regulate the expression of lasIR and rhlIR genes with concomitant decrease in AHLs in P. aeruginosa PAO1 causing attenuation of its virulence factors and enhanced sensitivity of its biofilm towards tobramycin.
Collapse
Affiliation(s)
- Sajal Sarabhai
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
91
|
Sabbah M, Bernollin M, Doutheau A, Soulère L, Queneau Y. A new route towards fimbrolide analogues: importance of the exomethylene motif in LuxR dependent quorum sensing inhibition. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20298k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
92
|
Synthesis of cembranoid analogues and evaluation of their potential as quorum sensing inhibitors. Bioorg Med Chem 2013. [DOI: 10.1016/j.bmc.2012.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
93
|
Rabin N, Delago A, Inbal B, Krief P, Meijler MM. Tailor-made LasR agonists modulate quorum sensing in Pseudomonas aeruginosa. Org Biomol Chem 2013; 11:7155-63. [DOI: 10.1039/c3ob41377b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
94
|
Anti-pathogenic Potential of Coral Associated Bacteria Isolated from Gulf of Mannar Against Pseudomonas aeruginosa. Indian J Microbiol 2012; 53:111-3. [PMID: 24426087 DOI: 10.1007/s12088-012-0342-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/06/2012] [Indexed: 11/26/2022] Open
Abstract
Infections of Pseudomonas aeruginosa are of great concern because of its increasing resistance towards conventional antibiotics. Quorum sensing system of P. aeruginosa acts as a global regulator of almost all the virulence factors and majorly its biofilm formation. In the present study, quenching of QS system of P. aeruginosa has been explained with bioactives from bacteria associated with the coral Acropora digitifera. Isolated bioactives inhibited the expression of various virulence traits of P. aeruginosa like biofilm formation, and the production of extracellular enzymes like protease and elastase. This study also emphasises the potential of coral associated bacteria in producing bioactive agents with anti-pathogenic properties.
Collapse
|
95
|
Brackman G, Al Quntar AAA, Enk CD, Karalic I, Nelis HJ, Van Calenbergh S, Srebnik M, Coenye T. Synthesis and evaluation of thiazolidinedione and dioxazaborocane analogues as inhibitors of AI-2 quorum sensing in Vibrio harveyi. Bioorg Med Chem 2012; 21:660-7. [PMID: 23286963 DOI: 10.1016/j.bmc.2012.11.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
Two focused libraries based on two types of compounds, that is, thiazolidinediones and dioxazaborocanes were designed. Structural resemblances can be found between thiazolidinediones and well-known furanone type quorum sensing (QS) inhibitors such as N-acylaminofuranones, and/or acyl-homoserine lactone signaling molecules, while dioxazaborocanes structurally resemble previously reported oxazaborolidine derivatives which antagonized autoinducer 2 (AI-2) binding to its receptor. Because of this, we hypothesized that these compounds could affect AI-2 QS in Vibrio harveyi. Although all compounds blocked QS, the thiazolidinediones were the most active AI-2 QS inhibitors, with EC(50) values in the low micromolar range. Their mechanism of inhibition was elucidated by measuring the effect on bioluminescence in a series of V. harveyi QS mutants and by DNA-binding assays with purified LuxR protein. The active compounds neither affected bioluminescence as such nor the production of AI-2. Instead, our results indicate that the thiazolidinediones blocked AI-2 QS in V. harveyi by decreasing the DNA-binding ability of LuxR. In addition, several dioxazaborocanes were found to block AI-2 QS by targeting LuxPQ.
Collapse
Affiliation(s)
- Gilles Brackman
- Laboratory of Pharmaceutical Microbiology, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Wynendaele E, Bronselaer A, Nielandt J, D'Hondt M, Stalmans S, Bracke N, Verbeke F, Van De Wiele C, De Tré G, De Spiegeleer B. Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res 2012. [PMID: 23180797 DOI: 10.1093/nar/gks1137+[doi+link]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quorum-sensing (QS) peptides are biologically attractive molecules, with a wide diversity of structures and prone to modifications altering or presenting new functionalities. Therefore, the Quorumpeps database (http://quorumpeps.ugent.be) is developed to give a structured overview of the QS oligopeptides, describing their microbial origin (species), functionality (method, result and receptor), peptide links and chemical characteristics (3D-structure-derived physicochemical properties). The chemical diversity observed within this group of QS signalling molecules can be used to develop new synthetic bio-active compounds.
Collapse
Affiliation(s)
- Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent Hospital University, Ghent B-9000, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Wynendaele E, Bronselaer A, Nielandt J, D'Hondt M, Stalmans S, Bracke N, Verbeke F, Van De Wiele C, De Tré G, De Spiegeleer B. Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res 2012. [PMID: 23180797 PMCID: PMC3531179 DOI: 10.1093/nar/gks1137] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Quorum-sensing (QS) peptides are biologically attractive molecules, with a wide diversity of structures and prone to modifications altering or presenting new functionalities. Therefore, the Quorumpeps database (http://quorumpeps.ugent.be) is developed to give a structured overview of the QS oligopeptides, describing their microbial origin (species), functionality (method, result and receptor), peptide links and chemical characteristics (3D-structure-derived physicochemical properties). The chemical diversity observed within this group of QS signalling molecules can be used to develop new synthetic bio-active compounds.
Collapse
Affiliation(s)
- Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent Hospital University, Ghent B-9000, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Wynendaele E, Bronselaer A, Nielandt J, D’Hondt M, Stalmans S, Bracke N, Verbeke F, Van De Wiele C, De Tré G, De Spiegeleer B. Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res 2012. [DOI: 10.1093/nar/gks1137 [doi link]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
99
|
Gomes J, Grunau A, Lawrence AK, Eberl L, Gademann K. Bioinspired, releasable quorum sensing modulators. Chem Commun (Camb) 2012; 49:155-7. [PMID: 23169441 DOI: 10.1039/c2cc37287h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate the synthesis and immobilization of natural product hybrids featuring an acyl-homoserine lactone and a nitrodopamine onto biocompatible TiO(2) surfaces through an operationally simple dip-and-rinse procedure. The resulting immobilized hybrids were shown to be powerful quorum sensing (QS) activators in Pseudomonas strains acting by slow release from the surface.
Collapse
Affiliation(s)
- José Gomes
- Department of Chemistry, NCCR Chemical Biology, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
100
|
Brown S, Neale JD, Nava-Tirado M, Simpson HV, Pedley KC, Simcock DC. Imidazole initiates exsheathing of L3 Teladorsagia circumcincta. J Parasitol 2012; 99:332-6. [PMID: 23043312 DOI: 10.1645/ge-3051.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The infective larvae of Teladorsagia circumcincta have a protective sheath that is lost soon after they reach the rumen of the sheep (the definitive host). Incubation in vitro with 50 mM imidazole caused more than 75% of L3 T. circumcincta to begin exsheathing within 2 hr. The initiation of exsheathing was less likely at pH 6.2 than at pH 7.8. The apparent pKa of this process was 7.08, similar to that for the conversion of imidazolium(+) to imidazole. Both the extent and the initial rate of exsheathing initiation increased with imidazole concentration (the apparent K(1/2) was about 50 mM). The initial rate of exsheathing initiation was stimulated by lactose and maltose, but not by some other carbohydrates, and by propylamine and imidazole acetic acid, but not by histidine.
Collapse
Affiliation(s)
- Simon Brown
- School of Human Life Sciences, University of Tasmania, Locked Bag 1320, Launceston, Tasmania 7250, Australia.
| | | | | | | | | | | |
Collapse
|