51
|
Phytochemical Screening, Antioxidant and Antibacterial Properties of Extracts of Viscum continuum E. Mey. Ex Sprague, a South African Mistletoe. PLANTS 2022; 11:plants11162094. [PMID: 36015398 PMCID: PMC9412615 DOI: 10.3390/plants11162094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022]
Abstract
Viscum continuum E. Mey. Ex Sprague is a woody evergreen semi-parasitic shrub that grows on the branches of other trees. It is used by African traditional healers for post-stroke management. This study reports on the qualitative phytochemical screening and the antioxidant and antimicrobial activities of Viscum continuum’s acetone, methanol, hexane and dichloromethane extracts. Standard protocols for the phytochemical screening of extracts were employed. TLC bio-autography was used for qualitative antioxidants analysis. Assays: 2,2-diphenyl-1-picrylhydrazyl, H2O2 free-radical scavenging and ferric chloride reducing power were carried out for quantitative antioxidant analysis. The antimicrobial potential of extracts was screened using disc diffusion, bio-autography and broth micro-dilution. The results indicate the presence of alkaloids, phenolics and tannins in all extracts. Acetone and methanol revealed significant amount of saponins, phenolics, tannins and terpenoids. The extracts exhibited significant antioxidant potential on TLC with positive compound bands at an Rf range of 0.05–0.89. DPPH, H2O2 and the reduction of Fe3+ to Fe2+ assays indicated that methanol extract has a strong antioxidant potential, followed by acetone, DCM and lastly hexane. The extracts of Viscum continuum show the potential to be antibacterial agents. It can be concluded that Viscum continuum extracts contain phytochemicals which are capable of mitigating against chronic health conditions such as cancer, stroke and stress-related and infectious diseases.
Collapse
|
52
|
Mehrabi M, Karami F, Siah M, Esmaeili S, Khodarahmi R. Is curcumin an active suicidal antioxidant only in the aqueous environments? JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
53
|
Pei X, Yin F, Zhong X, Liu H, Song L, Zhao G, Wang Y, Zhou D. Effects of different antioxidants and their combinations on the oxidative stability of DHA algae oil and walnut oil. Food Sci Nutr 2022; 10:2804-2812. [PMID: 35959263 PMCID: PMC9361454 DOI: 10.1002/fsn3.2883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 01/01/2023] Open
Abstract
Through monitoring Rancimat induction time (RIT), peroxide value (POV), and thiobarbituric acid-reactive substances (TBARS) of docosahexaenoic acid (DHA) algae oil and walnut oil during accelerated storage, the effects of the single and the combinations of seven kinds of antioxidants involving ascorbyl palmitate (AP), phytic acid (PA), vitamin E (VE), antioxidant of bamboo leaves (AOB), rosemary extract, tea polyphenols (TP), and tea polyphenol palmitate (TPP) against lipid oxidation were evaluated. RIT, POV, and TBARS results showed that the DHA algae oil sample containing 600 mg/kg TPP revealed the strongest stability and the walnut oil sample containing 450 mg/kg TPP and 100 mg/kg TP revealed the strongest stability. Then, the shelf lives of two oils were predicted from the extrapolation of the linear regression model between Log RIT and temperature. Our results indicated that the optimal antioxidant could prolong the shelf lives of DHA algae oil and walnut oil by 2.31- and 7.74-fold, respectively.
Collapse
Affiliation(s)
- Xue‐Chen Pei
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Fa‐Wen Yin
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- National Engineering Research Center of SeafoodDalianChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalianChina
| | - Xu Zhong
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Hui‐Lin Liu
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- National Engineering Research Center of SeafoodDalianChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalianChina
| | - Liang Song
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- National Engineering Research Center of SeafoodDalianChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalianChina
| | - Guan‐Hua Zhao
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | | | - Da‐Yong Zhou
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- National Engineering Research Center of SeafoodDalianChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalianChina
| |
Collapse
|
54
|
Suzuki S, Sakiragaoglu O, Chirila TV. Study of the Antioxidative Effects of Bombyx mori Silk Sericin in Cultures of Murine Retinal Photoreceptor Cells. Molecules 2022; 27:4635. [PMID: 35889503 PMCID: PMC9315601 DOI: 10.3390/molecules27144635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
The availability of natural substances able to fulfill the role of antioxidants in a physiologic environment is important for the development of therapies against diseases associated with excessive production of reactive oxygen species and ensuing oxidative stress. Antioxidant properties have been reported episodically for sericin, a proteinaceous constituent of the silk thread in the cocoons generated by the larvae of the Lepidoptera order. We investigated the sericin fractions isolated from the cocoons spun by the domesticated (Bombyx mori) silkworm. Three fractions were isolated and evaluated, including two peptidoid fractions, the crude sericin and the purified (dialyzed) sericin, and the non-peptidoid methanolic extract of the crude fraction. When subjected to Trolox equivalent antioxidant capacity (TEAC) assay, the extract showed much higher antioxidant capacity as compared to the crude or purified sericin fractions. The three fractions were also evaluated in cultures of murine retinal photoreceptor cells (661 W), a cell line that is highly susceptible to oxidants and is crucially involved in the retinopathies primarily caused by oxidative stress. The extract displayed a significant dose-dependent protective effect on the cultured cells exposed to hydrogen peroxide. In identical conditions, the crude sericin showed a certain level of antioxidative activity at a higher concentration, while the purified sericin did not show any activity. We concluded that the non-peptidoid components accompanying sericin were chiefly responsible for the previously reported antioxidant capacity associated with sericin fractions, a conclusion supported by the qualitative detection of flavonoids in the extract but not in the purified sericin fraction.
Collapse
Affiliation(s)
- Shuko Suzuki
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
| | - Onur Sakiragaoglu
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
| | - Traian V. Chirila
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
- School of Chemistry & Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Australian Institute of Bioengineering & Nanotechnology (AIBN), University of Queensland, St Lucia, QLD 4072, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Faculty of Medicine, George E. Palade University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mures, Romania
| |
Collapse
|
55
|
Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F. The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors 2022; 48:611-633. [PMID: 35229925 DOI: 10.1002/biof.1831] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
Abstract
Free radicals are a group of damaging molecules produced during the normal metabolism of cells in the human body. Exposure to ultraviolet radiation, cigarette smoking, and other environmental pollutants enhances free radicals in the human body. The destructive effects of free radicals may also cause harm to membranes, enzymes, and DNA, leading to several human diseases such as cancer, atherosclerosis, malaria, coronavirus disease (COVID-19), rheumatoid arthritis, and neurodegenerative illnesses. This process occurs when there is an imbalance between free radicals and antioxidant defenses. Since antioxidants scavenge free radicals and repair damaged cells, increasing the consumption of fruits and vegetables containing high antioxidant values is recommended to slow down oxidative stress in the body. Additionally, natural products demonstrated a wide range of biological impacts such as anti-inflammatory, anti-aging, anti-atherosclerosis, and anti-cancer properties. Hence, in this review article, our goal is to explore the role of natural therapeutic antioxidant effects to reduce oxidative stress in the diseases.
Collapse
Affiliation(s)
- Behnaz Akbari
- School of Medicine, Department of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Namdar Baghaei-Yazdi
- College of Liberal Arts & Sciences, School of Life Sciences, University of Westminster, London, UK
| | - Manochehr Bahmaie
- Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | | |
Collapse
|
56
|
Liu R, Peng L, Zhou L, Huang Z, Zhou C, Huang C. Oxidative Stress in Cancer Immunotherapy: Molecular Mechanisms and Potential Applications. Antioxidants (Basel) 2022; 11:antiox11050853. [PMID: 35624717 PMCID: PMC9137834 DOI: 10.3390/antiox11050853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is an effective treatment option that revolutionizes the management of various cancers. Nevertheless, only a subset of patients receiving immunotherapy exhibit durable responses. Recently, numerous studies have shown that oxidative stress induced by reactive oxygen species (ROS) plays essential regulatory roles in the tumor immune response, thus regulating immunotherapeutic effects. Specifically, studies have revealed key roles of ROS in promoting the release of tumor-associated antigens, manipulating antigen presentation and recognition, regulating immune cell phenotypic differentiation, increasing immune cell tumor infiltration, preventing immune escape and diminishing immune suppression. In the present study, we briefly summarize the main classes of cancer immunotherapeutic strategies and discuss the interplay between oxidative stress and anticancer immunity, with an emphasis on the molecular mechanisms underlying the oxidative stress-regulated treatment response to cancer immunotherapy. Moreover, we highlight the therapeutic opportunities of manipulating oxidative stress to improve the antitumor immune response, which may improve the clinical outcome.
Collapse
Affiliation(s)
- Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Chengwei Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
- Correspondence: (C.Z.); (C.H.)
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
- Correspondence: (C.Z.); (C.H.)
| |
Collapse
|
57
|
Zheng Y, Karimi-Maleh H, Fu L. Evaluation of Antioxidants Using Electrochemical Sensors: A Bibliometric Analysis. SENSORS 2022; 22:s22093238. [PMID: 35590927 PMCID: PMC9103690 DOI: 10.3390/s22093238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
The imbalance of oxidation and antioxidant systems in the biological system can lead to oxidative stress, which is closely related to the pathogenesis of many diseases. Substances with antioxidant capacity can effectively resist the harmful damage of oxidative stress. How to measure the antioxidant capacity of antioxidants has essential application value in medicine and food. Techniques such as DPPH radical scavenging have been developed to measure antioxidant capacity. However, these traditional analytical techniques take time and require large instruments. It is a more convenient method to evaluate the antioxidant capacity of antioxidants based on their electrochemical oxidation and reduction behaviors. This review summarizes the evaluation of antioxidants using electrochemical sensors by bibliometrics. The development of this topic was described, and the research priorities at different stages were discussed. The topic was investigated in 1999 and became popular after 2010 and has remained popular ever since. A total of 758 papers were published during this period. In the early stages, electrochemical techniques were used only as quantitative techniques and other analytical techniques. Subsequently, cyclic voltammetry was used to directly study the electrochemical behavior of different antioxidants and evaluate antioxidant capacity. With methodological innovations and assistance from materials science, advanced electrochemical sensors have been fabricated to serve this purpose. In this review, we also cluster the keywords to analyze different investigation directions under the topic. Through co-citation of papers, important papers were analyzed as were how they have influenced the topic. In addition, the author’s country distribution and category distribution were also interpreted in detail. In the end, we also proposed perspectives for the future development of this topic.
Collapse
Affiliation(s)
- Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China;
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu 610056, China;
- Laboratory of Nanotechnology, Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 9477177870, Iran
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 17011, South Africa
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Correspondence:
| |
Collapse
|
58
|
Tonolo F, Folda A, Scalcon V, Marin O, Bindoli A, Rigobello MP. Nrf2-Activating Bioactive Peptides Exert Anti-Inflammatory Activity through Inhibition of the NF-κB Pathway. Int J Mol Sci 2022; 23:ijms23084382. [PMID: 35457199 PMCID: PMC9032749 DOI: 10.3390/ijms23084382] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/05/2023] Open
Abstract
Redox status and inflammation are related to the pathogenesis of the majority of diseases. Therefore, understanding the role of specific food-derived molecules in the regulation of their specific pathways is a relevant issue. Our previous studies indicated that K-8-K and S-10-S, milk and soy-derived bioactive peptides, respectively, exert antioxidant effects through activation of the Keap1/Nrf2 pathway. A crosstalk between Nrf2 and NF-κB, mediated by the action of heme oxygenase (HO-1), is well known. On this basis, we studied if these peptides, in addition to their antioxidant activity, could exert anti-inflammatory effects in human cells. First, we observed an increase of HO-1 expression in Caco-2 cells treated with K-8-K and S-10-S, following the activation of the Keap1/Nrf2 pathway. Moreover, when cells are treated with the two peptides and stimulated by TNF-α, the levels of NF-κB in the nucleus decreased in comparison with TNF-α alone. In the same conditions, we observed the downregulation of the gene expression of proinflammatory cytokines (IL1B, IL6, and TNF), while the anti-inflammatory cytokine gene, IL1RN, was upregulated in Caco-2 cells processed as reported above. Then, when the cells were pretreated with the two peptides and stimulated with LPS, a different proinflammatory factor, (TNF-α) was estimated to have a lower secretion in the supernatant of cells. In conclusion, these observations confirmed that Nrf2-activating bioactive peptides, K-8-K and S-10-S, exerted anti-inflammatory effects by inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Federica Tonolo
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
| | - Alessandra Folda
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
| | - Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
| | - Alberto Bindoli
- Institute of Neuroscience, CNR, Via G Colombo 3, 35131 Padova, Italy;
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
- Correspondence:
| |
Collapse
|
59
|
Batista D, Romáryo Duarte da Luz J, Evellyn Silva Do Nascimento T, Felipe de Senes-Lopes T, Araújo Galdino O, Victor E Silva S, Pinheiro Ferreira M, Arrison Dos Santos Azevedo M, Brandão-Neto J, Araujo-Silva G, López JA, das Graças Almeida M. Licania rigida leaf extract: Protective effect on oxidative stress, associated with cytotoxic, mutagenic and preclinical aspects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:276-290. [PMID: 34789080 DOI: 10.1080/15287394.2021.2002744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brazilian plant biodiversity is a rich alternative source of bioactive compounds since plant-derived extracts and/or their secondary metabolites exhibit potential properties to treat several diseases. In this context, Licania rigida Benth (Chrysobalanaceae Family), a large evergreen tree distributed in Brazilian semi-arid regions, deserves attention for its widespread use in popular medicine, although its biological properties are still poorly studied. The aim of this study was to examine (1) acute and sub-chronic oral toxicity at 2000 mg/kg dose; (2) in vitro cytotoxicity at 0.1; 1; 10; 100 or 1000 µg/ml; (3) in vivo mutagenicity at 5, 10 or 20 mg/ml, and (4) potential antioxidant protective effect of L. rigida aqueous leaf extract of (AELr). No marked apparent toxic and genotoxic effects were observed using in vitro and in vivo assays after in vitro treatment of Chinese hamster ovary cell line (CHO-K1) with AELr or in vivo exposure of Wistar rats and Drosophila melanogaster to different extract concentrations. Concerning the antioxidant effect, the extract exhibited a protective effect by decreasing lipid peroxidation as determined by malondialdehyde levels. No significant changes were observed for glutathione (GSH) levels and activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Data demonstrate the beneficial potential of AELr to be employed for therapeutic purposes. However, further studies are required to validate the pharmacological application of this plant extract to develop as a phytotherapeutic formulation.
Collapse
Affiliation(s)
- Débora Batista
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Jefferson Romáryo Duarte da Luz
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Thayse Evellyn Silva Do Nascimento
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Tiago Felipe de Senes-Lopes
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Ony Araújo Galdino
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Saulo Victor E Silva
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Macelia Pinheiro Ferreira
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Marcelo Arrison Dos Santos Azevedo
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - José Brandão-Neto
- Department of Clinical Medicine, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, Faculty of Degree in Chemistry, Amapá State University (Ueap), Macapá/AP, Brazil
| | - Jorge A López
- Graduate Program in Industrial Biotechnology, Tiradentes University/Research and Technology Institute, Aracaj u/SE, Brazil
| | - Maria das Graças Almeida
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| |
Collapse
|
60
|
The Role of Bioactive Compounds in Natural Products Extracted from Plants in Cancer Treatment and Their Mechanisms Related to Anticancer Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1429869. [PMID: 35211240 PMCID: PMC8863487 DOI: 10.1155/2022/1429869] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
Cancer is one of the greatest causes of death worldwide. With the development of surgery, radiotherapy, and medical agents, the outcomes of cancer patients have greatly improved. However, the underlying mechanisms of cancer are not yet fully understood. Recently, natural products have been proven to be beneficial for various conditions and have played important roles in the development of novel therapies. A substantial amount of evidence indicates that bioactive compounds could improve the outcomes of cancer patients via various pathways, such as endoplasmic reticulum stress, epigenetic modification, and modulation of oxidative stress. Here, we review the current evidence of bioactive compounds in natural products for the treatment of cancer and summarize the underlying mechanisms in this pathological process.
Collapse
|
61
|
Mukhia S, Kumar A, Kumari P, Kumar R, Kumar S. Multilocus sequence based identification and adaptational strategies of Pseudomonas sp. from the supraglacial site of Sikkim Himalaya. PLoS One 2022; 17:e0261178. [PMID: 35073328 PMCID: PMC8786180 DOI: 10.1371/journal.pone.0261178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
Microorganisms inhabiting the supraglacial ice are biotechnologically significant as they are equipped with unique adaptive features in response to extreme environmental conditions of high ultraviolet radiations and frequent freeze-thaw. In the current study, we obtained eleven strains of Pseudomonas from the East Rathong supraglacial site in Sikkim Himalaya that showed taxonomic ambiguity in terms of species affiliation. Being one of the most complex and diverse genera, deciphering the correct taxonomy of Pseudomonas species has always been challenging. So, we conducted multilocus sequence analysis (MLSA) using five housekeeping genes, which concluded the taxonomic assignment of these strains to Pseudomonas antarctica. This was further supported by the lesser mean genetic distances with P. antarctica (0.73%) compared to P. fluorescens (3.65%), and highest ANI value of ~99 and dDDH value of 91.2 of the representative strains with P. antarctica PAMC 27494. We examined the multi-tolerance abilities of these eleven Pseudomonas strains. Indeed the studied strains displayed significant tolerance to freezing for 96 hours compared to the mesophilic control strain, while except for four strains, seven strains exhibited noteworthy tolerance to UV-C radiations. The genome-based findings revealed many cold and radiation resistance-associated genes that supported the physiological findings. Further, the bacterial strains produced two or more cold-active enzymes in plate-based assays. Owing to the polyadaptational attributes, the strains ERGC3:01 and ERGC3:05 could be most promising for bioprospection.
Collapse
Affiliation(s)
- Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Poonam Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
62
|
Li Z, Zhang M, Haenen GRMM, Vervoort L, Moalin M. Flavonoids Seen through the Energy Perspective. Int J Mol Sci 2021; 23:187. [PMID: 35008613 PMCID: PMC8745170 DOI: 10.3390/ijms23010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
In all life forms, opposing forces provide the energy that flows through networks in an organism, which fuels life. In this concept, health is the ability of an organism to maintain the balance between these opposing forces, which creates resilience, and a deranged flow of energy is the basis for diseases. Treatment should focus on adjusting the deranged flow of energy, e.g., by the redox modulating activity of antioxidants. A major group of antioxidants is formed by flavonoids, a group of polyphenolic compounds abundantly present in our diet. The objective here is to review how the redox modulation by flavonoids fits in the various concepts on the mode of action of bioactive compounds, so we can 'see' where there is overlap and where the missing links are. Based on this fundament, we should choose our research path aiming to 'understand' the redox modulating profile of specific flavonoids, so we can ultimately rationally apply the redox modulating power of flavonoids to improve our health.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
| | - Ming Zhang
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China
| | - Guido R. M. M. Haenen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Lily Vervoort
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
| | - Mohamed Moalin
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands
| |
Collapse
|
63
|
Kurnia D, Ajiati D, Heliawati L, Sumiarsa D. Antioxidant Properties and Structure-Antioxidant Activity Relationship of Allium Species Leaves. Molecules 2021; 26:7175. [PMID: 34885755 PMCID: PMC8659087 DOI: 10.3390/molecules26237175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
Allium is a genus that is widely consumed and used as traditional medicine in several countries. This genus has two major species, namely cultivated species and wild species. Cultivated species consist of A. cepa L., A. sativum L., A. fistulosum L. and A. schoenoprasum L. and wild species consist of A. ursinum L., A. flavum L., A. scorodoprasum L., A. vineale L. and A. atroviolaceum Boiss. Several studies report that the Allium species contain secondary metabolites such as polyphenols, flavonoids and tannins and have bioactivity such as antioxidants, antibacterial, antifungal, anti-inflammatory, pancreatic α-amylase, glucoamylase enzyme inhibitors and antiplatelets. This review summarizes some information regarding the types of Allium species (ethnobotany and ethnopharmacology), the content of compounds of Allium species leaves with various isolation methods, bioactivities, antioxidant properties and the structure-antioxidant activity relationship (SAR) of Allium compounds.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.S.)
| | - Dwipa Ajiati
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.S.)
| | - Leny Heliawati
- Study Program of Chemistry, Faculty of Mathematics and Natural Science, Universitas Pakuan, Bogor 16143, Indonesia;
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.S.)
| |
Collapse
|
64
|
Omran B, Baek KH. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules 2021; 26:7031. [PMID: 34834124 PMCID: PMC8624789 DOI: 10.3390/molecules26227031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Free radicals are generated as byproducts of normal metabolic processes as well as due to exposure to several environmental pollutants. They are highly reactive species, causing cellular damage and are associated with a plethora of oxidative stress-related diseases and disorders. Antioxidants can control autoxidation by interfering with free radical propagation or inhibiting free radical formation, reducing oxidative stress, improving immune function, and increasing health longevity. Antioxidant functionalized metal nanoparticles, transition metal oxides, and nanocomposites have been identified as potent nanoantioxidants. They can be formulated in monometallic, bimetallic, and multi-metallic combinations via chemical and green synthesis techniques. The intrinsic antioxidant properties of nanomaterials are dependent on their tunable configuration, physico-chemical properties, crystallinity, surface charge, particle size, surface-to-volume ratio, and surface coating. Nanoantioxidants have several advantages over conventional antioxidants, involving increased bioavailability, controlled release, and targeted delivery to the site of action. This review emphasizes the most pioneering types of nanoantioxidants such as nanoceria, silica nanoparticles, polydopamine nanoparticles, and nanocomposite-, polysaccharide-, and protein-based nanoantioxidants. This review overviews the antioxidant potential of biologically synthesized nanomaterials, which have emerged as significant alternatives due to their biocompatibility and high stability. The promising nanoencapsulation nanosystems such as solid lipid nanoparticles, nanostructured lipid carriers, and liposome nanoparticles are highlighted. The advantages, limitations, and future insights of nanoantioxidant applications are discussed.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
- Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Cairo 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
65
|
Enciso-Roca EC, Aguilar-Felices EJ, Tinco-Jayo JA, Arroyo-Acevedo JL, Herrera-Calderon O. Biomolecules with Antioxidant Capacity from the Seeds and Sprouts of 20 Varieties of Chenopodium quinoa Willd. (Quinoa). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112417. [PMID: 34834779 PMCID: PMC8618655 DOI: 10.3390/plants10112417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 05/03/2023]
Abstract
Quinoa has acquired a great interest due to its high content of nutrients and biomolecules that have nutritional and medicinal properties. The aim of this study was to compare the total phenolic content (TPC), total flavonoids (TF), and the antioxidant capacity of 20 varieties of seeds and sprouts of quinoa extract. Quinoa seeds were germinated for 72 h and dried in an oven at 45 °C. The extracts were obtained by dynamic extraction using methanol. Phytochemical analysis with liquid chromatography coupled with mass spectrometry (LC-ESI-MS/MS), TPC, TF, and the antioxidant capacity was carried out and compared between both extracts. The TPC was determined with Folin-Ciocalteu reagent, TF with AlCl3, and the antioxidant capacity was determined according to the DPPH and ABTS assays. Sprout extracts showed high values of TPC (31.28 ± 0.42 mg GAE/g; Pasankalla variety), TF (14.31 ± 0.50 mg EQ/g; black Coito variety), and antioxidant capacity (IC50 (DPPH): 12.69 ± 0.29 µg/mL and IC50 (ABTS): 3.51 ± 0.04 µg/mL; Pasankalla). The extracts of the Pasankalla variety revealed 93 and 90 phytochemical constituents in the seeds and sprouts, respectively, such as amino acids, phenolic acids, flavonoids, fatty acids, and triterpene saponins, among others. Quinoa sprouts showed a high content of TPC and TF, and high antioxidant capacity compared with seed extracts, especially the Pasankalla variety.
Collapse
Affiliation(s)
- Edwin Carlos Enciso-Roca
- Department of Human Medicine, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (E.C.E.-R.); (E.J.A.-F.); (J.A.T.-J.)
| | - Enrique Javier Aguilar-Felices
- Department of Human Medicine, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (E.C.E.-R.); (E.J.A.-F.); (J.A.T.-J.)
| | - Johnny Aldo Tinco-Jayo
- Department of Human Medicine, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (E.C.E.-R.); (E.J.A.-F.); (J.A.T.-J.)
| | - Jorge Luis Arroyo-Acevedo
- Department of Dynamic Sciences, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru;
| | - Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 15001, Peru
- Correspondence: ; Tel.: +51-956-550-510
| |
Collapse
|
66
|
Rathod NB, Kulawik P, Ozogul F, Regenstein JM, Ozogul Y. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
67
|
Cannabidiol modulation of oxidative stress and signalling. Neuronal Signal 2021; 5:NS20200080. [PMID: 34497718 PMCID: PMC8385185 DOI: 10.1042/ns20200080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Cannabidiol (CBD), one of the primary non-euphoric components in the Cannabis sativa L. plant, has undergone clinical development over the last number of years as a therapeutic for patients with Lennox-Gastaut syndrome and Dravet syndromes. This phytocannabinoid demonstrates functional and pharmacological diversity, and research data indicate that CBD is a comparable antioxidant to common antioxidants. This review gathers the latest knowledge regarding the impact of CBD on oxidative signalling, with focus on the proclivity of CBD to regulate antioxidants and control the production of reactive oxygen species. CBD is considered an attractive therapeutic agent for neuroimmune disorders, and a body of literature indicates that CBD can regulate redox function at multiple levels, with a range of downstream effects on cells and tissues. However, pro-oxidant capacity of CBD has also been reported, and hence caution must be applied when considering CBD from a therapeutic standpoint. Such pro- and antioxidant functions of CBD may be cell- and model-dependent and may also be influenced by CBD dose, the duration of CBD treatment and the underlying pathology.
Collapse
|
68
|
Iwan P, Stepniak J, Karbownik-Lewinska M. Pro-Oxidative Effect of KIO 3 and Protective Effect of Melatonin in the Thyroid-Comparison to Other Tissues. Life (Basel) 2021; 11:life11060592. [PMID: 34205777 PMCID: PMC8234753 DOI: 10.3390/life11060592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022] Open
Abstract
Not only iodine deficiency, but also its excess may contribute to thyroid cancer. Potassium iodate (KIO3), which is broadly used in the salt iodization program, can increase oxidative damage to membrane lipids (lipid peroxidation, LPO) under experimental conditions, with the strongest damaging effect at KIO3 concentration of ~10 mM (corresponding to physiological iodine concentration in the thyroid). Melatonin is an effective antioxidant, which protects against KIO3-induced LPO in the thyroid. This study aimed to compare the protective effects of melatonin, used in the highest achievable in vitro concentration, against KIO3-induced oxidative damage to membrane lipids in various porcine tissues (thyroid, ovary, liver, kidney, brain, spleen, and small intestine). Homogenates were incubated in the presence of KIO3 (20; 15; 10; 7.5; 5.0; 0.0 mM) without/with melatonin (5 mM). The malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. KIO3 increased the LPO in all examined tissues; in the thyroid, the damaging effect of KIO3 (10; and 7.5 mM) was lower than in other tissues and was not observed for the lowest concentration of 5 mM. Melatonin reduced LPO induced by KIO3 (10, 7.5, and 5 mM) in all tissues, and in the thyroid it was also protective against as high a concentration of KIO3 as 15 mM; the LPO level resulting from KIO3 + melatonin treatment was lower in the thyroid than in other tissues. In conclusion, the thyroid is less sensitive tothe pro-oxidative effects of KIO3 compared to other tissues. The strongest protective effect of melatonin was observed in the thyroid, but beneficial effects were significant also in other tissues. Melatonin should be considered to avoid the potential damaging effects of iodine compounds applied in iodine prophylaxis.
Collapse
Affiliation(s)
- Paulina Iwan
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (P.I.); (J.S.)
| | - Jan Stepniak
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (P.I.); (J.S.)
| | - Malgorzata Karbownik-Lewinska
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (P.I.); (J.S.)
- Polish Mother’s Memorial Hospital—Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
- Correspondence:
| |
Collapse
|
69
|
Girst G, Ötvös SB, Fülöp F, Balogh GT, Hunyadi A. Pharmacokinetics-Driven Evaluation of the Antioxidant Activity of Curcuminoids and Their Major Reduced Metabolites-A Medicinal Chemistry Approach. Molecules 2021; 26:molecules26123542. [PMID: 34200647 PMCID: PMC8229286 DOI: 10.3390/molecules26123542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/18/2022] Open
Abstract
Curcuminoids are the main bioactive components of the well-known Asian spice and traditional medicine turmeric. Curcuminoids have poor chemical stability and bioavailability; in vivo they are rapidly metabolized to a set of bioreduced derivatives and/or glucuronide and sulfate conjugates. The reduced curcuminoid metabolites were also reported to exert various bioactivities in vitro and in vivo. In this work, we aimed to perform a comparative evaluation of curcuminoids and their hydrogenated metabolites from a medicinal chemistry point of view, by determining a set of key pharmacokinetic parameters and evaluating antioxidant potential in relation to such properties.Reduced metabolites were prepared from curcumin and demethoxycurcumin through continuous-flow hydrogenation. As selected pharmacokinetic parameters, kinetic solubility, chemical stability, metabolic stability in human liver microsomes, and parallel artificial membrane permeability assay (PAMPA)-based gastrointestinal and blood-brain barrier permeability were determined. Experimentally determined logP for hydrocurcumins in octanol-water and toluene-water systems provided valuable data on the tendency for intramolecular hydrogen bonding by these compounds. Drug likeness of the compounds were further evaluated by a in silico calculations. Antioxidant properties in diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and oxygen radical absorbance capacity (ORAC) assays were comparatively evaluated through the determination of ligand lipophilic efficiency (LLE). Our results showed dramatically increased water solubility and chemical stability for the reduced metabolites as compared to their corresponding parent compound. Hexahydrocurcumin was found the best candidate for drug development based on a complex pharmacokinetical comparison and high LLE values for its antioxidant properties. Development of tetrahydrocurcumin and tetrahydro-demethoxycurcumin would be limited by their very poor metabolic stability, therefore such an effort would rely on formulations bypassing first-pass metabolism.
Collapse
Affiliation(s)
- Gábor Girst
- Institute of Pharmacognosy, Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary;
| | - Sándor B. Ötvös
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (S.B.Ö.); (F.F.)
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (S.B.Ö.); (F.F.)
| | - György T. Balogh
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: (G.T.B.); (A.H.); Tel.: +36-1463-2174 (G.T.B.); +36-6254-6456 (A.H.)
| | - Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary;
- Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: (G.T.B.); (A.H.); Tel.: +36-1463-2174 (G.T.B.); +36-6254-6456 (A.H.)
| |
Collapse
|
70
|
Xu P, Xiao J, Chi S. Piperlongumine attenuates oxidative stress, inflammatory, and apoptosis through modulating the GLUT-2/4 and AKT signaling pathway in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 2021; 35:1-12. [PMID: 33724628 DOI: 10.1002/jbt.22763] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/14/2020] [Accepted: 03/02/2021] [Indexed: 01/14/2023]
Abstract
The current study was done to measure the role of piperlongumine (PL) on hyperglycemia interrelated oxidative stress-mediated inflammation and apoptosis, inflammatory stress, and the diabetic insulin receptor substrate 2 (IRS2), protein kinase B (AKT), and glucose transporter 2 (GLUT-2)/4 signaling pathway in streptozotocin (STZ)-persuaded diabetic animals. Diabetes was initiated in experimental animals via a single dose intraperitoneal inoculation of STZ. Diabetic rats revealed an augmented blood-glucose level with drastically diminished plasma-insulin status. The functions of antioxidants were diminished with enhanced lipid peroxidation, conjugated dienes, and protein carbonyls noticed in diabetic rats' plasma and pancreatic tissues. An elevation of nuclear factor-κB (NF-κB), tumor necrosis factor-α, and interleukin-6 proteins was noticed in pancreatic tissues as well as IRS2, AKT, GLUT-2, and GLUT-4 marker expressions were quantified in the hepatic tissue of control and diabetic rats. Oral administration of PL for 30 days drastically lowered glucose and higher insulin status in STZ-induced diabetic rats. Impressively, PL oral supplementation considerably restored the antioxidant levels and reduced inflammation and diabetic marker expressions in STZ-diabetic rats. These results were supported through a histological study. Moreover, PL also augmented the level of B-cell lymphoma 2 and diminished the level of Bcl-2-associated X protein in STZ-treated rat's hepatic tissues. Thus, we concluded that PL excellently rescued pancreatic β cells through mitigating hyperglycemia via dynamic insulin secretion, activating antioxidants, and inhibiting inflammation and apoptosis in the pancreatic and hepatic tissue of diabetic rats.
Collapse
Affiliation(s)
- Ping Xu
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital (Second Clinical Medical Collage of Jinan University), Shenzhen, Guangdong, China
| | - Juan Xiao
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Shuixia Chi
- Department of Traditional Chinese Medicine, Xianyang Central Hospital, Xianyang, China
| |
Collapse
|
71
|
Preliminary Phytochemical Analysis and Evaluation of the Biological Activity of Leonotis nepetifolia (L.) R. Br Transformed Roots Extracts Obtained through Rhizobium rhizogenes-Mediated Transformation. Cells 2021; 10:cells10051242. [PMID: 34070057 PMCID: PMC8158125 DOI: 10.3390/cells10051242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
According to the present knowledge, this is the first report on establishing transformed root cultures of Leonotis nepetifolia after Rhizobium rhizogenes-mediated transformation. The preliminary phytochemical analysis showed differences in the content of phenols and flavonoids in transformed and nontransformed roots. The dominant compounds in the analyzed extracts were (+)-catechin (5464 and 6808 µg/g DW), p-coumaric acid (2549 and 4907 µg/g DW), m-coumaric acid (1508 and 2048 µg/g DW) and rosmarinic acid (1844 and 2643 µg/g DW) for nontransformed (LNNR) and transformed (LNTR4) roots, respectively. Initial biological studies carried out on LNNR, and LNTR4 extracts showed a cytotoxic effect on the A549 lung, HCC1937 breast and leukemia NALM-6 cell lines, antioxidants, as well as repair and protection against DNA damage induced by H2O2 in HUVEC cells. Due to the stronger effect of the LNTR4 root extract, which can be a relatively efficient and cheap source of bioactive secondary metabolites, further biological analyses are needed to discover in detail their potentially valuable biological properties.
Collapse
|
72
|
Gerardi G, Cavia-Saiz M, Muñiz P. From winery by-product to healthy product: bioavailability, redox signaling and oxidative stress modulation by wine pomace product. Crit Rev Food Sci Nutr 2021; 62:7427-7448. [PMID: 33951976 DOI: 10.1080/10408398.2021.1914542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The wine pomace is the main winery by-products that suppose an economic and environmental problem and their use as a functional ingredient are being increasingly recognized as a good and inexpensive source of bioactive compounds. In this sense, it is known the potential health properties of wine pomace products in the prevention of disorders associated with oxidative stress and inflammation such as endothelial dysfunction, hypertension, hyperglycemia, diabetes, obesity. Those effects are due to the bioactive compounds of wine pomace and the mechanisms concern especially modulation of antioxidant/prooxidant activity, improvement of nitric oxide bioavailability, reduction of pro-inflammatory cytokines and modulation of antioxidant/inflammatory signal pathways. This review mainly summarizes the mechanisms of wine pomace products as modulators of oxidative status involved in cell pathologies as well as their potential therapeutic use for cardiovascular diseases. For this purpose, the review provides an overview of the findings related to the wine pomace bioactive compounds profile, their bioavailability and the action mechanisms for maintaining the redox cell balance involved in health benefits. The review suggests an important role for wine pomace product in cardiovascular diseases prevention and their regular food intake may attenuate the development and progression of comorbidities associated with cardiovascular diseases.
Collapse
Affiliation(s)
- Gisela Gerardi
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Mónica Cavia-Saiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Pilar Muñiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| |
Collapse
|
73
|
Iuchi K, Takai T, Hisatomi H. Cell Death via Lipid Peroxidation and Protein Aggregation Diseases. BIOLOGY 2021; 10:399. [PMID: 34064409 PMCID: PMC8147787 DOI: 10.3390/biology10050399] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Lipid peroxidation of cellular membranes is a complicated cellular event, and it is both the cause and result of various diseases, such as ischemia-reperfusion injury, neurodegenerative diseases, and atherosclerosis. Lipid peroxidation causes non-apoptotic cell death, which is associated with cell fate determination: survival or cell death. During the radical chain reaction of lipid peroxidation, various oxidized lipid products accumulate in cells, followed by organelle dysfunction and the induction of non-apoptotic cell death. Highly reactive oxidized products from unsaturated fatty acids are detected under pathological conditions. Pathological protein aggregation is the general cause of these diseases. The cellular response to misfolded proteins is well-known as the unfolded protein response (UPR) and it is partially concomitant with the response to lipid peroxidation. Moreover, the association between protein aggregation and non-apoptotic cell death by lipid peroxidation is attracting attention. The link between lipid peroxidation and protein aggregation is a matter of concern in biomedical fields. Here, we focus on lethal protein aggregation in non-apoptotic cell death via lipid peroxidation. We reviewed the roles of protein aggregation in the initiation and execution of non-apoptotic cell death. We also considered the relationship between protein aggregation and oxidized lipid production. We provide an overview of non-apoptotic cell death with a focus on lipid peroxidation for therapeutic targeting during protein aggregation diseases.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo 180-8633, Japan; (T.T.); (H.H.)
| | | | | |
Collapse
|
74
|
Jiang J, Peng L, Wang K, Huang C. Moonlighting Metabolic Enzymes in Cancer: New Perspectives on the Redox Code. Antioxid Redox Signal 2021; 34:979-1003. [PMID: 32631077 DOI: 10.1089/ars.2020.8123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significance: Metabolic reprogramming is considered to be a critical adaptive biological event that fulfills the energy and biomass demands for cancer cells. One hallmark of metabolic reprogramming is reduced oxidative phosphorylation and enhanced aerobic glycolysis. Such metabolic abnormalities contribute to the accumulation of reactive oxygen species (ROS), the by-products of metabolic pathways. Emerging evidence suggests that ROS can in turn directly or indirectly affect the expression, activity, or subcellular localization of metabolic enzymes, contributing to the moonlighting functions outside of their primary roles. This review summarizes the multifunctions of metabolic enzymes and the involved redox modification patterns, which further reveal the inherent connection between metabolism and cellular redox state. Recent Advances: These noncanonical functions of metabolic enzymes involve the regulation of epigenetic modifications, gene transcription, post-translational modification, cellular antioxidant capacity, and many other fundamental cellular events. The multifunctional properties of metabolic enzymes further expand the metabolic dependencies of cancer cells, and confer cancer cells with a means of adapting to diverse environmental stimuli. Critical Issues: Deciphering the redox-manipulated mechanisms with specific emphasis on the moonlighting function of metabolic enzymes is important for clarifying the pertinence between metabolism and redox processes. Future Directions: Investigation of the redox-regulated moonlighting functions of metabolic enzymes will shed new lights into the mechanism by which metabolic enzymes gain noncanonical functions, and yield new insights into the development of novel therapeutic strategies for cancer treatment by targeting metabolic-redox abnormalities. Antioxid. Redox Signal. 34, 979-1003.
Collapse
Affiliation(s)
- Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Kui Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| |
Collapse
|
75
|
Issaadi HM, Béni Z, Tóth T, Dékány M, Hsieh TJ, Balogh GT, Hunyadi A. Diversity-oriented synthesis through gamma radiolysis: Preparation of unusual ecdysteroid derivatives activating Akt and AMPK in skeletal muscle cells. Bioorg Chem 2021; 112:104951. [PMID: 34000705 DOI: 10.1016/j.bioorg.2021.104951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
Gamma-ray radiation is a unique way to induce chemical transformations of bioactive compounds. In the present study, we pursued this approach to the diversity-oriented synthesis of analogs of 20-hydroxyecdysone (20E), an abundant ecdysteroid with a range of beneficial, non-hormonal bioactivities in mammals including humans. Gamma irradiations of aqueous solutions of 20E were conducted either in N2- or N2O-saturated solutions. Centrifugal partition chromatography was used to fractionate crude resulting irradiated materials using a biphasic solvent system composed of tert-butyl alcohol - ethyl acetate - water (0.45:0.9:1, v/v/v) in ascending mode. Subsequently, the products were purified by RP-HPLC. Fourteen ecdysteroids, including five new compounds, were isolated, and their structure were elucidated by 1D and 2D NMR and HRMS. Compounds 2-4, 7, 9, 12 and 15 were tested for their capacity to increase the Akt- and AMPK-phosphorylation of C2C12 murine skeletal myotubes in vitro. The compounds were similarly active on Akt as their parent compound. Stachysterone B (7) and a new ring-rearranged compound (12) were more potent than 20E in activating AMPK, indicating a stronger cytoprotective effect. Our results demonstrate the use of gamma irradiation in expanding the chemical diversity of ecdysteroids to obtain new, unusual bioactive metabolites.
Collapse
Affiliation(s)
- Halima Meriem Issaadi
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, 6726 Szeged, Hungary
| | - Zoltán Béni
- Spectroscopic Research, Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary
| | - Tünde Tóth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, PO Box 91, H-1521 Budapest, Hungary; Institute for Energy Security and Environmental Safety, Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary
| | - Miklós Dékány
- Spectroscopic Research, Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary
| | - Tusty-Jiuan Hsieh
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | - György Tibor Balogh
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary; Faculty of Pharmacy, Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös utca 6., H-6720 Szeged, Hungary.
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, 6726 Szeged, Hungary; Interdisciplinary Centre for Natural Products, University of Szeged, Eötvös str. 6, 6720 Szeged, Hungary.
| |
Collapse
|
76
|
Antioxidant, Anti-Inflammatory, and Inhibition of Acetylcholinesterase Potentials of Cassia timoriensis DC. Flowers. Molecules 2021; 26:molecules26092594. [PMID: 33946788 PMCID: PMC8125573 DOI: 10.3390/molecules26092594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Despite being widely used traditionally as a general tonic, especially in South East Asia, scientific research on Cassia timoriensis, remains scarce. In this study, the aim was to evaluate the in vitro activities for acetylcholinesterase (AChE) inhibitory potential, radical scavenging ability, and the anti-inflammatory properties of different extracts of C. timoriensis flowers using Ellman’s assay, a DPPH assay, and an albumin denaturation assay, respectively. With the exception of the acetylcholinesterase activity, to the best of our knowledge, these activities were reported for the first time for C. timoriensis flowers. The phytochemical analysis confirmed the existence of tannins, flavonoids, saponins, terpenoids, and steroids in the C. timoriensis flower extracts. The ethyl acetate extract possessed the highest phenolic and flavonoid contents (527.43 ± 5.83 mg GAE/g DW and 851.83 ± 10.08 mg QE/g DW, respectively) as compared to the other extracts. In addition, the ethyl acetate and methanol extracts exhibited the highest antioxidant (IC50 20.12 ± 0.12 and 34.48 ± 0.07 µg/mL, respectively), anti-inflammatory (92.50 ± 1.38 and 92.22 ± 1.09, respectively), and anti-AChE (IC50 6.91 ± 0.38 and 6.40 ± 0.27 µg/mL, respectively) activities. These results suggest that ethyl acetate and methanol extracts may contain bioactive compounds that can control neurodegenerative disorders, including Alzheimer’s disease, through high antioxidant, anti-inflammatory, and anti-AChE activities.
Collapse
|
77
|
Jing Y, Deng Z, Yang X, Li L, Gao Y, Li W. Ultrathin two-dimensional polydopamine nanosheets for multiple free radical scavenging and wound healing. Chem Commun (Camb) 2021; 56:10875-10878. [PMID: 32940278 DOI: 10.1039/d0cc02888f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Novel 2D polydopamine nanosheets were successfully prepared by using a simple but effective "bottom-up" synthesis method. The ultrathin polydopamine nanosheets exhibit excellent multiple free radical scavenging activities including DPPH˙ and ABTS˙+ free radicals, especially O2˙-. Full-thickness skin defect regeneration was accelerated by treatment with the nanosheets.
Collapse
Affiliation(s)
- Yasun Jing
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Zhenru Deng
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Xiuyun Yang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China. and Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| | - Ying Gao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, 132013, China.
| |
Collapse
|
78
|
Iwan P, Stepniak J, Karbownik-Lewinska M. Cumulative Protective Effect of Melatonin and Indole-3-Propionic Acid against KIO 3-Induced Lipid Peroxidation in Porcine Thyroid. TOXICS 2021; 9:toxics9050089. [PMID: 33919052 PMCID: PMC8143077 DOI: 10.3390/toxics9050089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Iodine deficiency is the main environmental factor leading to thyroid cancer. At the same time iodine excess may also contribute to thyroid cancer. Potassium iodate (KIO3), which is broadly used in salt iodization program, may increase oxidative damage to membrane lipids (lipid peroxidation, LPO) under experimental conditions, with the strongest damaging effect at KIO3 concentration of ~10 mM (corresponding to physiological iodine concentration in the thyroid). Melatonin and indole-3-propionic acid (IPA) are effective antioxidative indoles, each of which protects against KIO3-induced LPO in the thyroid. The study aims to check if melatonin used together with IPA (in their highest achievable in vitro concentrations) reveals stronger protective effects against KIO3-induced LPO in porcine thyroid homogenates than each of these antioxidants used separately. Homogenates were incubated in the presence of KIO3 (200; 100; 50; 25; 20; 15; 10; 7.5; 5.0; 2.5; 1.25; 0.0 mM) without/with melatonin (5 mM) or without/with IPA (10 mM) or without/with melatonin + IPA, and then, to further clarify the narrow range of KIO3 concentrations, against which melatonin + IPA reveal cumulative protective effects, the following KIO3 concentrations were used: 20; 18.75; 17.5; 16.25; 15; 13.75; 12.5; 11.25; 10; 8.75; 7.5; 0.0 mM. Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. Protective effects of melatonin + IPA were stronger than those revealed by each antioxidant used separately, but only when LPO was induced by KIO3 in concentrations from 18.75 mM to 8.75 mM, corresponding to physiological iodine concentration in the thyroid. In conclusion, melatonin and indole-3-propionic acid exert cumulative protective effects against oxidative damage caused by KIO3, when this prooxidant is used in concentrations close to physiological iodine concentrations in the thyroid. Therefore, the simultaneous administration of these two indoles should be considered to prevent more effectively oxidative damage (and thereby thyroid cancer formation) caused by iodine compounds applied in iodine prophylaxis.
Collapse
Affiliation(s)
- Paulina Iwan
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (P.I.); (J.S.)
| | - Jan Stepniak
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (P.I.); (J.S.)
| | - Malgorzata Karbownik-Lewinska
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (P.I.); (J.S.)
- Polish Mother’s Memorial Hospital—Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
- Correspondence:
| |
Collapse
|
79
|
Lorenzetti S, Plösch T, Teller IC. Antioxidative Molecules in Human Milk and Environmental Contaminants. Antioxidants (Basel) 2021; 10:550. [PMID: 33916168 PMCID: PMC8065843 DOI: 10.3390/antiox10040550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Breastfeeding provides overall beneficial health to the mother-child dyad and is universally recognized as the preferred feeding mode for infants up to 6-months and beyond. Human milk provides immuno-protection and supplies nutrients and bioactive compounds whose concentrations vary with lactation stage. Environmental and dietary factors potentially lead to excessive chemical exposure in critical windows of development such as neonatal life, including lactation. This review discusses current knowledge on these environmental and dietary contaminants and summarizes the known effects of these chemicals in human milk, taking into account the protective presence of antioxidative molecules. Particular attention is given to short- and long-term effects of these contaminants, considering their role as endocrine disruptors and potential epigenetic modulators. Finally, we identify knowledge gaps and indicate potential future research directions.
Collapse
Affiliation(s)
- Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Torsten Plösch
- Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
80
|
Zhou DY, Wu ZX, Yin FW, Song S, Li A, Zhu BW, Yu LL(L. Chitosan and Derivatives: Bioactivities and Application in Foods. Annu Rev Food Sci Technol 2021; 12:407-432. [DOI: 10.1146/annurev-food-070720-112725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chitosan is a biodegradable, biocompatible, and nontoxic aminopolysaccharide. This review summarizes and discusses the structural modifications, including substitution, grafting copolymerization, cross-linking, and hydrolysis, utilized to improve the physicochemical properties and enhance the bioactivity and functionality of chitosan and related materials. This manuscript also reviews the current progress and potential of chitosan and its derivatives in body-weight management and antihyperlipidemic, antihyperglycemic, antihypertensive, antimicrobial antioxidant, anti-inflammatory, and immunostimulatory activities as well as their ability to interact with gut microbiota. In addition, the potential of chitosan and its derivatives as functional ingredients in food systems, such as film and coating materials, and delivery systems is discussed. This manuscript aims to provide up-to-date information to stimulate future discussion and research to promote the value-added utilization of chitosan in improving the safety, quality, nutritional value and health benefits, and sustainability of our food system while reducing the environmental hazards.
Collapse
Affiliation(s)
- Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Zi-Xuan Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Fa-Wen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Shuang Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Ao Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Liang-Li (Lucy) Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
81
|
Siddeeg A, AlKehayez NM, Abu-Hiamed HA, Al-Sanea EA, AL-Farga AM. Mode of action and determination of antioxidant activity in the dietary sources: An overview. Saudi J Biol Sci 2021; 28:1633-1644. [PMID: 33732049 PMCID: PMC7938136 DOI: 10.1016/j.sjbs.2020.11.064] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Determination of antioxidant/capacity in the dietary, food, drugs, and biological samples is an interesting approach for testing the safety of these compounds and for drug development. Investigating the google searching engines for the words (measurement + antioxidant + capacity) yielded more than 20 million results, which makes it very difficult to follow. Therefore, collecting the common methods to measure the antioxidant activity/capacity in the food products and biological samples will reduce the burden for both the students and researchers. Nowadays, it is widely accepted that a plant-based diet with a high intake of dietary sources such as vegetables, fruits, and other nutrient-rich plant foods may decrease the effect of oxidative stress-related diseases. In this review article, we have provided the most recent advances in the most common in vitro methods used for evaluating the antioxidant potential of numerous food products, plant extracts, and biological fluids. We have also provided detailed procedures on how to perform them and analyze the results. This review article shall be a comprehensive reference for all techniques used in this area.
Collapse
Affiliation(s)
- Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Nora M. AlKehayez
- Nutrition and Food Science (PHD), Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hind A. Abu-Hiamed
- Nutrition and Food Science (PHD), Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Ammar M. AL-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
82
|
Antileishmanial Activity of Lignans, Neolignans, and Other Plant Phenols. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 115:115-176. [PMID: 33797642 DOI: 10.1007/978-3-030-64853-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secondary metabolites (SM) from organisms have served medicinal chemists over the past two centuries as an almost inexhaustible pool of new drugs, drug-like skeletons, and chemical probes that have been used in the "hunt" for new biologically active molecules with a "beneficial effect on human mind and body." Several secondary metabolites, or their derivatives, have been found to be the answer in the quest to search for new approaches to treat or even eradicate many types of diseases that oppress humanity. A special place among SM is occupied by lignans and neolignans. These phenolic compounds are generated biosynthetically via radical coupling of two phenylpropanoid monomers, and are known for their multitarget activity and low toxicity. The disadvantage of the relatively low specificity of phenylpropanoid-based SM turns into an advantage when structural modifications of these skeletons are made. Indeed, phenylpropanoid-based SM previously have proven to offer great potential as a starting point in drug development. Compounds such as Warfarin® (a coumarin-based anticoagulant) as well as etoposide and teniposide (podophyllotoxin-based anticancer drugs) are just a few examples. At the beginning of the third decade of the twenty-first century, the call for the treatment of more than a dozen rare or previously "neglected" diseases remains for various reasons unanswered. Leishmaniasis, a neglected disease that desperately needs new ways of treatment, is just one of these. This disease is caused by more than 20 leishmanial parasites that are pathogenic to humans and are spread by as many as 800 sandfly species across subtropical areas of the world. With continuing climate changes, the presence of Leishmania parasites and therefore leishmaniasis, the disease caused by these parasites, is spreading from previous locations to new areas. Thus, leishmaniasis is affecting each year a larger proportion of the world's population. The choice of appropriate leishmaniasis treatment depends on the severity of the disease and its form of manifestation. The success of current drug therapy is often limited, due in most cases to requiring long hospitalization periods (weeks to months) and the toxicity (side effects) of administered drugs, in addition to the increasing resistance of the parasites to treatment. It is thus important to develop new drugs and treatments that are less toxic, can overcome drug resistance, and require shorter periods of treatment. These aspects are especially important for the populations of developing countries. It was reported that several phenylpropanoid-based secondary metabolites manifest interesting antileishmanial activities and are used by various indigenous people to treat leishmaniasis. In this chapter, the authors shed some light on the various biological activities of phenylpropanoid natural products, with the main focus being on their possible applications in the context of antileishmanial treatment.
Collapse
|
83
|
Takayanagi Y, Takai Y, Kaidzu S, Tanito M. Evaluation of Redox Profiles of the Serum and Aqueous Humor in Patients with Primary Open-Angle Glaucoma and Exfoliation Glaucoma. Antioxidants (Basel) 2020; 9:E1305. [PMID: 33352680 PMCID: PMC7765903 DOI: 10.3390/antiox9121305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress is thought to play a significant role in the development of glaucoma. However, the association between systemic and local oxidative stresses in different types of glaucoma has not been assessed fully. The current study compared the redox status in the aqueous humor (AH) and blood samples among eyes with primary open-angle glaucoma (POAG), exfoliation glaucoma (EXG), and non-glaucomatous controls to evaluate the relationship among systemic redox status, intraocular oxidative stress, and clinical backgrounds. AH and blood samples were obtained from 45 eyes of 45 Japanese subjects (15 POAG, 15 EXG, and 15 control eyes). The serum levels of lipid peroxides, ferric-reducing activity, and thiol antioxidant activity were measured by diacron reactive oxygen metabolites (dROM), biologic antioxidant potential (BAP), and sulfhydryl (SH) tests, respectively, using a free radical analyzer. The activities of cytosolic and mitochondrial forms of the superoxide dismutase (SOD) isoforms, i.e., SOD1 and SOD2, respectively, in AH and serum were measured using a multiplex bead immunoassay. In AH, SOD1 in subjects with EXG and SOD2 in those with POAG and EXG were significantly higher than in control eyes. In serum, compared to control subjects, BAP in subjects with POAG and EXG was significantly lower; SOD1 in those with EXG and SOD2 in those with POAG and EXG were significantly higher. dROM and SH did not differ significantly among the groups. The BAP values were correlated negatively with the SOD1 concentrations in AH and serum, SOD2 in the AH, intraocular pressure, and number of antiglaucoma medications. In conclusion, lower systemic antioxidant capacity accompanies up-regulation of higher local antioxidant enzymes, suggesting increased oxidative stress in eyes with OAG, especially in EXG. Determination of the systemic BAP values may help predict the redox status in AH.
Collapse
Affiliation(s)
| | | | | | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (Y.T.); (Y.T.); (S.K.)
| |
Collapse
|
84
|
Kumar A, Kumarchandra R, Rai R, Kumblekar V. Radiation mitigating activities of Psidium guajava L. against whole-body X-ray-induced damages in albino Wistar rat model. 3 Biotech 2020; 10:507. [PMID: 33178550 PMCID: PMC7642191 DOI: 10.1007/s13205-020-02484-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022] Open
Abstract
In the present study, we investigated radiation mitigating activities of Psidium guajava L. (P. guajava) against whole-body X- ray induced damages in albino Wistar rat model. The animals were orally administered with 200 mg/kg bodyweight of hydroalcoholic leaf extract of P. guajava for five consecutive days and on the fifth day, after the last dose of extract administration, animals were exposed to 4 Gy of X-rays. Rats were sacrificed 24 h post X-ray irradiation. The radiomitigating activity of the herb extract was assessed by micronucleus assay, histopathology of the small intestine and hematological parameters. Hepatic cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and interleukin -10 (IL-10) levels were assayed to validate the anti-inflammatory property. Biochemical estimations were also performed in RBC lysates to corroborate antioxidant properties in the leaf extract. HPLC analysis of crude extract confirmed the presence of standard flavonoid quercetin. Our results indicated that radiation elevated COX-2, IL-6 and decreased IL-10 levels and also induced micronucleus formation in polychromatic erythrocytes, simultaneously impairing hematological parameters along with erythrocyte antioxidants. The animals pre-treated with P. guajava exhibited a significant decrease in the COX-2 (P ≤ 0.01), IL-6 levels (P ≤ 0.05) and also displayed significant increase in the hepatic IL-10 levels (P ≤ 0.01). Pre-treatment with plant extract improved antioxidant enzyme activities, hematological parameters and reduced the intestinal damage by recovering the architecture of the small intestine. Moreover, extract also rendered protection against radiation induced DNA damage, as evidenced by the significant (P ≤ 0.01) decrease in the percentage of radiation-induced micronucleus in polychromatic erythrocytes. Furthermore, the herb extract treatment increased radiation LD50/30 from 6.6 Gy to 9.0 Gy, offering a dose reduction factor (DRF) of 1.36. Our findings for the first time propose the beneficial use of P. guajava as a radioprotector against X-ray induced damage.
Collapse
Affiliation(s)
- Amith Kumar
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Reshma Kumarchandra
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Rajalakshmi Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Vasavi Kumblekar
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| |
Collapse
|
85
|
Enzymatic preparation and antioxidative activity of hydrolysate from Rice bran protein. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00563-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
86
|
Bús C, Kulmány Á, Kúsz N, Gonda T, Zupkó I, Mándi A, Kurtán T, Tóth B, Hohmann J, Hunyadi A, Vasas A. Oxidized Juncuenin B Analogues with Increased Antiproliferative Activity on Human Adherent Cell Lines: Semisynthesis and Biological Evaluation. JOURNAL OF NATURAL PRODUCTS 2020; 83:3250-3261. [PMID: 33064469 PMCID: PMC7707621 DOI: 10.1021/acs.jnatprod.0c00499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phenanthrenes have become the subject of intensive research during the past decades because of their structural diversity and wide range of pharmacological activities. Earlier studies demonstrated that semisynthetic derivatization of these natural compounds could result in more active agents, and oxidative transformations are particularly promising in this regard. In our work, a natural phenanthrene, juncuenin B, was transformed by hypervalent iodine(III) reagents using a diversity-oriented approach. Eleven racemic semisynthetic compounds were produced, the majority containing an alkyl substituted p-quinol ring. Purification of the compounds was carried out by chromatographic techniques, and their structures were elucidated by 1D and 2D NMR spectroscopic methods. Stereoisomers of the bioactive derivatives were separated by chiral-phase HPLC and the absolute configurations of the active compounds, 2,6-dioxo-1,8a-dimethoxy-1,7-dimethyl-8-vinyl-9,10-dihydrophenanthrenes (1a-d), and 8a-ethoxy-1,7-dimethyl-6-oxo-8-vinyl-9,10-dihydrophenanthrene-2-ols (7a,b) were determined by ECD measurements and TDDFT-ECD calculations. The antiproliferative activities of the compounds were tested on different (MCF-7, T47D, HeLa, SiHa, C33A, A2780) human gynecological cancer cell lines. Compounds 1a-d, 4a, 6a, and 7a possessed higher activity than juncuenin B on several tumor cell lines. The structure-activity relationship studies suggested that the p-quinol (2,5-cyclohexadien-4-hydroxy-1-one) moiety has a considerable effect on the antiproliferative properties, and substantial differences could be identified in the activities of the stereoisomers.
Collapse
Affiliation(s)
- Csaba Bús
- Department
of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - Ágnes Kulmány
- Department
of Pharmacodynamics and Biopharmacy, University
of Szeged, 6720 Szeged, Hungary
| | - Norbert Kúsz
- Department
of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - Tímea Gonda
- Department
of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - István Zupkó
- Department
of Pharmacodynamics and Biopharmacy, University
of Szeged, 6720 Szeged, Hungary
| | - Attila Mándi
- Department
of Organic Chemistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Tibor Kurtán
- Department
of Organic Chemistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Barbara Tóth
- Department
of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - Judit Hohmann
- Department
of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - Attila Hunyadi
- Department
of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- Phone: +36-62-546456.
| | - Andrea Vasas
- Department
of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- Phone: +36-62-546451.
| |
Collapse
|
87
|
Fási L, Latif AD, Zupkó I, Lévai S, Dékány M, Béni Z, Könczöl Á, Balogh GT, Hunyadi A. AAPH or Peroxynitrite-Induced Biorelevant Oxidation of Methyl Caffeate Yields a Potent Antitumor Metabolite. Biomolecules 2020; 10:biom10111537. [PMID: 33187226 PMCID: PMC7697082 DOI: 10.3390/biom10111537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022] Open
Abstract
Hydroxycinnamic acids represent a versatile group of dietary plant antioxidants. Oxidation of methyl-p-coumarate (pcm) and methyl caffeate (cm) was previously found to yield potent antitumor metabolites. Here, we report the formation of potentially bioactive products of pcm and cm oxidized with peroxynitrite (ONOO¯), a biologically relevant reactive nitrogen species (RNS), or with α,α'-azodiisobutyramidine dihydrochloride (AAPH) as a chemical model for reactive oxygen species (ROS). A continuous flow system was developed to achieve reproducible in situ ONOO¯ formation. Reaction mixtures were tested for their cytotoxic effect on HeLa, SiHa, MCF-7 and MDA-MB-231 cells. The reaction of pcm with ONOO¯ produced two fragments, an o-nitrophenol derivative, and a new chlorinated compound. Bioactivity-guided isolation from the reaction mixture of cm with AAPH produced two dimerization products, including a dihydrobenzofuran lignan that exerted strong antitumor activity in vitro, and has potent in vivo antimetastatic activity which was previously reported. This compound was also detected from the reaction between cm and ONOO¯. Our results demonstrate the ROS/RNS dependent formation of chemically stable metabolites, including a potent antitumor agent (5), from hydroxycinnamic acids. This suggests that diversity-oriented synthesis using ROS/RNS to obtain oxidized antioxidant metabolite mixtures may serve as a valid natural product-based drug discovery strategy.
Collapse
Affiliation(s)
- Laura Fási
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary; (L.F.); (A.D.L.)
| | - Ahmed Dhahir Latif
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary; (L.F.); (A.D.L.)
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary;
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary;
| | - Sándor Lévai
- Department of Chemistry, Gedeon Richter Plc., Gyömrői u. 19-21, H-1103 Budapest, Hungary; (S.L.); (M.D.); (Z.B.); (A.K.)
| | - Miklós Dékány
- Department of Chemistry, Gedeon Richter Plc., Gyömrői u. 19-21, H-1103 Budapest, Hungary; (S.L.); (M.D.); (Z.B.); (A.K.)
| | - Zoltán Béni
- Department of Chemistry, Gedeon Richter Plc., Gyömrői u. 19-21, H-1103 Budapest, Hungary; (S.L.); (M.D.); (Z.B.); (A.K.)
| | - Árpád Könczöl
- Department of Chemistry, Gedeon Richter Plc., Gyömrői u. 19-21, H-1103 Budapest, Hungary; (S.L.); (M.D.); (Z.B.); (A.K.)
| | - György Tibor Balogh
- Department of Chemistry, Gedeon Richter Plc., Gyömrői u. 19-21, H-1103 Budapest, Hungary; (S.L.); (M.D.); (Z.B.); (A.K.)
- Correspondence: (G.T.B.); (A.H.); Tel.: +36-1-4632174 (G.T.B.); +36-62-546-456 (A.H.)
| | - Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary; (L.F.); (A.D.L.)
- Interdisciplinary Centre for Natural Products, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
- Correspondence: (G.T.B.); (A.H.); Tel.: +36-1-4632174 (G.T.B.); +36-62-546-456 (A.H.)
| |
Collapse
|
88
|
Orabi SH, Allam TS, Shawky SM, Tahoun EAEA, Khalifa HK, Almeer R, Abdel-Daim MM, El-Borai NB, Mousa AA. The Antioxidant, Anti-Apoptotic, and Proliferative Potency of Argan Oil against Betamethasone-Induced Oxidative Renal Damage in Rats. BIOLOGY 2020; 9:E352. [PMID: 33114212 PMCID: PMC7690873 DOI: 10.3390/biology9110352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022]
Abstract
The present study aimed to investigate the protective effect of argan oil (AO) against nephrotoxic effects following overdose and long-term administration of betamethasone (BM). The phytochemical compositions of AO were assessed using GC/MS. Forty eight male Wister albino rats were divided into six groups and treated for 3 successive weeks. The control group was orally administrated distilled water daily, the BM group received BM (1 mg/kg, IM, day after day), AO/0.5 and AO/1 groups received AO (0.5 mL/kg, 1 mL/kg, orally, daily, respectively), BM + AO/0.5 group and BM + AO/1 group. The results revealed that BM induced hematological changes, including reduction of red blood cells with leukocytosis, neutrophilia, monocytosis, lymphocytopenia, and thrombocytopenia. Moreover, BM caused a significant increase of serum urea and creatinine levels, and renal malondialdehyde and nitric oxide contents with significant decrease of reduced glutathione content. BM also caused vascular, degenerative, and inflammatory histopathological alterations in kidney, along with an increase in the Bax/Bcl-2 ratio, activation of caspase-3, and decrease of proliferating cell nuclear antigen expression. Conversely, the concomitant administration of AO (0.5, 1 mL/kg) with BM ameliorated the aforementioned hematological, biochemical, pathological, and histochemical BM adverse effects. In conclusion, AO has protective effects against BM-induced renal damage, possibly via its antioxidant, anti-apoptotic, and proliferative properties.
Collapse
Affiliation(s)
- Sahar Hassan Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt; (H.K.K.); (A.A.M.)
| | - Tamer S. Allam
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt; or
| | - Sherif Mohamed Shawky
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt;
| | - Enas Abd El-aziz Tahoun
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt;
| | - Hanem K. Khalifa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt; (H.K.K.); (A.A.M.)
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Nermeen Borai El-Borai
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt
| | - Ahmed Abdelmoniem Mousa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt; (H.K.K.); (A.A.M.)
| |
Collapse
|
89
|
Zhang J, Duan D, Song ZL, Liu T, Hou Y, Fang J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med Res Rev 2020; 41:342-394. [PMID: 32981100 DOI: 10.1002/med.21734] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Elevated intracellular reactive oxygen species (ROS) and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. Compared with normal cells, cancer cells exhibit increased ROS to maintain their malignant phenotypes and are more dependent on the "redox adaptation" mechanism. Thus, there are two apparently contradictory but virtually complementary therapeutic strategies for the regulation of ROS to prevent or treat cancer. The first strategy, that is, chemoprevention, is to prevent or reduce intracellular ROS either by suppressing ROS production pathways or by employing antioxidants to enhance ROS clearance, which protects normal cells from malignant transformation and inhibits the early stage of tumorigenesis. The second strategy is the ROS-mediated anticancer therapy, which stimulates intracellular ROS to a toxicity threshold to activate ROS-induced cell death pathways. Therefore, targeting the regulation of intracellular ROS-related pathways by small-molecule candidates is considered to be a promising treatment for tumors. We herein first briefly introduce the source and regulation of ROS, and then focus on small molecules that regulate ROS-related pathways and show efficacy in cancer therapy from the perspective of pharmacophores. Finally, we discuss several challenges in developing cancer therapeutic agents based on ROS regulation and propose the direction of future development.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China.,Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tianyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
90
|
Rivero Pino F, Pérez Gálvez R, Espejo Carpio FJ, Guadix EM. Evaluation of Tenebrio molitor protein as a source of peptides for modulating physiological processes. Food Funct 2020; 11:4376-4386. [PMID: 32373903 DOI: 10.1039/d0fo00734j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The increasing world population has led to the need to search for new protein sources, such as insects, the harvesting of which can be economical and environmentally sustainable. This study explores the biological activities (angiotensin-converting enzyme (ACE) inhibition, antioxidant capacity, and dipeptidyl peptidase IV (DPP-IV) inhibition) of Tenebrio molitor hydrolysates produced by a set of food-grade proteases, namely subtilisin, trypsin, ficin and flavourzyme, and the degree of hydrolysis (DH), ranging from 5% to 20%. Trypsin hydrolysates exhibited the highest ACE inhibitory activity at a DH of 10% (IC50 0.27 mg mL-1) in the experimental series, which was attributed to the release of short peptides containing Arg or Lys residues in the C terminus, and described as the ACE-inhibition feature. The levels of in vitro antioxidant activities were comparable to those reported for insect species. Subtilisin and trypsin hydrolysates at a DH of 10% displayed optimal DPPH scavenging and ferric reducing activities, which was attributed to the presence of 5-10-residue active peptides, as reported in the literature. Iron chelating activity was significantly favoured by increasing the DH, attaining a minimal IC50 of 0.8 mg mL-1 at a DH of 20% regardless of the enzymatic treatment. Similarly, in vitro antidiabetic activity was significantly improved by extensive hydrolysis, and, more specifically, the presence of di- and tripeptides. In this regard, the combined treatment of subtilisin-flavourzyme at a DH of 20% showed maximal DPP-IV inhibition (IC50 2.62 mg mL-1). To our knowledge, this is the first study evaluating the DPP-IV activity of Tenebrio molitor hydrolysates obtained from these commercial proteases. We conclude that Tenebrio molitor hydrolysates produced with food-grade proteases are a valuable source of active peptides that can be used as functional ingredients in food and nutraceutical preparations.
Collapse
|
91
|
Evaluation of functional properties of potential probiotic isolates from fermented brine pickle. Food Chem 2019; 311:126057. [PMID: 31869636 DOI: 10.1016/j.foodchem.2019.126057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
Abstract
Fermented foods have been consumed for centuries in various parts of the world and are known to be rich resources of functionally important microorganisms. This study documents the antioxidative, anticancer and enzyme-inhibiting properties of potential probiotic Bacillus strains isolated from fermented brine mango pickle. Antioxidant activity was determined through in-vitro assays namely, DPPH•, ABTS•+, hydroxyl radical scavenging ability, reducing activity, superoxide anion scavenging ability, linoleic acid and plasma lipid peroxidation ability. Both intact cells (IC) and intracellular cell-free extracts (CFE) from most of the strains exhibited prominent antioxidant activity. Likewise, CFE and intracellular cell-free supernatants (CFS) exhibited potential inhibitory activities towards α-amylase, α-glucosidase and tyrosinase. Interestingly, CFS and crude ethyl acetate extracts of PUFSTP35 (Bacillus licheniformis KT921419) displayed strong anticancer activity against HT-29 colon cancer cell line. Hence, these probiotic strains have been showed to exhibit unique functional properties and could be further commercially exploited.
Collapse
|
92
|
Lambert de Malezieu M, Ferron S, Sauvager A, Courtel P, Ramassamy C, Tomasi S, Abasq ML. UV-Vis Spectroelectrochemistry of Oleuropein, Tyrosol, and p-Coumaric Acid Individually and in an Equimolar Combination. Differences in LC-ESI-MS 2 Profiles of Oxidation Products and their Neuroprotective Properties. Biomolecules 2019; 9:E802. [PMID: 31795228 PMCID: PMC6995624 DOI: 10.3390/biom9120802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 01/01/2023] Open
Abstract
Major phenolic compounds from olive oil (ArOH-EVOO), oleuropein (Ole), tyrosol (Tyr), and p-coumaric acid (p-Cou), are known for their antioxidant and neuroprotective properties. We previously demonstrated that their combination could potentiate their antioxidant activity in vitro and in cellulo. To further our knowledge of their electron-transfer properties, Ole, Tyr, and p-Cou underwent a spectroelectrochemical study, performed either individually or in equimolar mixtures. Two mixtures (Mix and Mix-seq) were prepared in order to determine whether distinct molecules could arise from their simultaneous or sequential oxidation. The comparison of Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (LC-ESI-MS2) profiles highlighted the presence of specific oxidized products found in the mixes. We hypothesized that they derived from the dimerization between Tyr and Ole or p-Cou, which have reacted either in their native or oxidized forms. Moreover, Ole regenerates when the Mix undergoes oxidation. Our study also showed significant neuroprotection by oxidized Ole and oxidized Mix against H2O2 toxicity on SK-N-SH cells, after 24 h of treatment with very low concentrations (1 and 5 nM). This suggests the putative relevant role of oxidized Ole products to protect or delay neuronal death.
Collapse
Affiliation(s)
- Morgane Lambert de Malezieu
- Univ. Rennes, CNRS, ISCR–UMR 6226, 35043 Rennes, France; (M.L.d.M.); (S.F.); (A.S.)
- INRS-Centre Armand Frappier, Laval, QC H7V 1B7, Canada; (P.C.); (C.R.)
- INAF, Québec, QC G1V 0A6, Canada
| | - Solenn Ferron
- Univ. Rennes, CNRS, ISCR–UMR 6226, 35043 Rennes, France; (M.L.d.M.); (S.F.); (A.S.)
| | - Aurélie Sauvager
- Univ. Rennes, CNRS, ISCR–UMR 6226, 35043 Rennes, France; (M.L.d.M.); (S.F.); (A.S.)
| | - Patricia Courtel
- INRS-Centre Armand Frappier, Laval, QC H7V 1B7, Canada; (P.C.); (C.R.)
| | - Charles Ramassamy
- INRS-Centre Armand Frappier, Laval, QC H7V 1B7, Canada; (P.C.); (C.R.)
- INAF, Québec, QC G1V 0A6, Canada
| | - Sophie Tomasi
- Univ. Rennes, CNRS, ISCR–UMR 6226, 35043 Rennes, France; (M.L.d.M.); (S.F.); (A.S.)
| | - Marie-Laurence Abasq
- Univ. Rennes, CNRS, ISCR–UMR 6226, 35043 Rennes, France; (M.L.d.M.); (S.F.); (A.S.)
| |
Collapse
|
93
|
A Novel Prodrug Approach for Central Nervous System-Selective Estrogen Therapy. Molecules 2019; 24:molecules24224197. [PMID: 31752337 PMCID: PMC6891678 DOI: 10.3390/molecules24224197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022] Open
Abstract
Beneficial effects of estrogens in the central nervous system (CNS) results from the synergistic combination of their well-orchestrated genomic and non-genomic actions, making them potential broad-spectrum neurotherapeutic agents. However, owing to unwanted peripheral hormonal burdens by any currently known non-invasive drug administrations, the development of estrogens as safe pharmacotherapeutic modalities cannot be realized until they are confined specifically and selectively to the site of action. We have developed small-molecule bioprecursor prodrugs carrying the para-quinol scaffold on the steroidal A-ring that are preferentially metabolized in the CNS to the corresponding estrogens. Here, we give an overview of our discovery of these prodrugs. Selected examples are shown to illustrate that, independently of the route of administrations and duration of treatments, these agents produce high concentration of estrogens only in the CNS without peripheral hormonal liability. 10β,17β-Dihydroxyestra-1,4-dien-3-one (DHED) has been the best-studied representative of this novel type of prodrugs for brain and retina health. Specific applications in preclinical animal models of centrally-regulated and estrogen-responsive human diseases, including neurodegeneration, menopausal symptoms, cognitive decline and depression, are discussed to demonstrate the translational potential of our prodrug approach for CNS-selective and gender-independent estrogen therapy with inherent therapeutic safety.
Collapse
|
94
|
Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants (Basel) 2019; 8:antiox8070235. [PMID: 31336672 PMCID: PMC6680731 DOI: 10.3390/antiox8070235] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Poultry in commercial settings are exposed to a range of stressors. A growing body of information clearly indicates that excess ROS/RNS production and oxidative stress are major detrimental consequences of the most common commercial stressors in poultry production. During evolution, antioxidant defence systems were developed in poultry to survive in an oxygenated atmosphere. They include a complex network of internally synthesised (e.g., antioxidant enzymes, (glutathione) GSH, (coenzyme Q) CoQ) and externally supplied (vitamin E, carotenoids, etc.) antioxidants. In fact, all antioxidants in the body work cooperatively as a team to maintain optimal redox balance in the cell/body. This balance is a key element in providing the necessary conditions for cell signalling, a vital process for regulation of the expression of various genes, stress adaptation and homeostasis maintenance in the body. Since ROS/RNS are considered to be important signalling molecules, their concentration is strictly regulated by the antioxidant defence network in conjunction with various transcription factors and vitagenes. In fact, activation of vitagenes via such transcription factors as Nrf2 leads to an additional synthesis of an array of protective molecules which can deal with increased ROS/RNS production. Therefore, it is a challenging task to develop a system of optimal antioxidant supplementation to help growing/productive birds maintain effective antioxidant defences and redox balance in the body. On the one hand, antioxidants, such as vitamin E, or minerals (e.g., Se, Mn, Cu and Zn) are a compulsory part of the commercial pre-mixes for poultry, and, in most cases, are adequate to meet the physiological requirements in these elements. On the other hand, due to the aforementioned commercially relevant stressors, there is a need for additional support for the antioxidant system in poultry. This new direction in improving antioxidant defences for poultry in stress conditions is related to an opportunity to activate a range of vitagenes (via Nrf2-related mechanisms: superoxide dismutase, SOD; heme oxygenase-1, HO-1; GSH and thioredoxin, or other mechanisms: Heat shock protein (HSP)/heat shock factor (HSP), sirtuins, etc.) to maximise internal AO protection and redox balance maintenance. Therefore, the development of vitagene-regulating nutritional supplements is on the agenda of many commercial companies worldwide.
Collapse
|