51
|
S AH, Pujar GV, Sethu AK, Bhagyalalitha M, Singh M. Dengue structural proteins as antiviral drug targets: Current status in the drug discovery & development. Eur J Med Chem 2021; 221:113527. [PMID: 34020338 DOI: 10.1016/j.ejmech.2021.113527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023]
Abstract
Dengue virus belongs to the class of RNA viruses and subclass of enveloped single-stranded positive-sense RNA virus. It causes dengue fever (DF), dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS), where DHF and DSS are life-threatening. Even though dengue is an age-old disease, it is still a mystery and continues to be a global threat. Numerous attempts have been carried out in the past few decades to eradicate the virus through vaccine and antiviral drugs, but still battle continues. In this review, the possible drug targets for discovery and development of potential antiviral drugs against structural proteins of dengue virus, the current development status of the antiviral drugs against dengue around the world, and challenges that need to be addressed to overcome the shortcomings in the process of drug discovery have been discussed.
Collapse
Affiliation(s)
- Akshatha H S
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Gurubasavaraj V Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India.
| | - Arun Kumar Sethu
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Meduri Bhagyalalitha
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Manisha Singh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| |
Collapse
|
52
|
Musarra-Pizzo M, Pennisi R, Ben-Amor I, Mandalari G, Sciortino MT. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 2021; 13:v13050828. [PMID: 34064347 PMCID: PMC8147851 DOI: 10.3390/v13050828] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections are responsible for several chronic and acute diseases in both humans and animals. Despite the incredible progress in human medicine, several viral diseases, such as acquired immunodeficiency syndrome, respiratory syndromes, and hepatitis, are still associated with high morbidity and mortality rates in humans. Natural products from plants or other organisms are a rich source of structurally novel chemical compounds including antivirals. Indeed, in traditional medicine, many pathological conditions have been treated using plant-derived medicines. Thus, the identification of novel alternative antiviral agents is of critical importance. In this review, we summarize novel phytochemicals with antiviral activity against human viruses and their potential application in treating or preventing viral disease.
Collapse
Affiliation(s)
- Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Shenzhen International Institute for Biomedical Research, 1301 Guanguang Rd. 3F Building 1-B, Silver Star Hi-Tech Park Longhua District, Shenzhen 518116, China
| | - Ichrak Ben-Amor
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Unit of Biotechnology and Pathologies, Higher Institute of Biotechnology of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| |
Collapse
|
53
|
Geraghty RJ, Aliota MT, Bonnac LF. Broad-Spectrum Antiviral Strategies and Nucleoside Analogues. Viruses 2021; 13:667. [PMID: 33924302 PMCID: PMC8069527 DOI: 10.3390/v13040667] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023] Open
Abstract
The emergence or re-emergence of viruses with epidemic and/or pandemic potential, such as Ebola, Zika, Middle East Respiratory Syndrome (MERS-CoV), Severe Acute Respiratory Syndrome Coronavirus 1 and 2 (SARS and SARS-CoV-2) viruses, or new strains of influenza represents significant human health threats due to the absence of available treatments. Vaccines represent a key answer to control these viruses. However, in the case of a public health emergency, vaccine development, safety, and partial efficacy concerns may hinder their prompt deployment. Thus, developing broad-spectrum antiviral molecules for a fast response is essential to face an outbreak crisis as well as for bioweapon countermeasures. So far, broad-spectrum antivirals include two main categories: the family of drugs targeting the host-cell machinery essential for virus infection and replication, and the family of drugs directly targeting viruses. Among the molecules directly targeting viruses, nucleoside analogues form an essential class of broad-spectrum antiviral drugs. In this review, we will discuss the interest for broad-spectrum antiviral strategies and their limitations, with an emphasis on virus-targeted, broad-spectrum, antiviral nucleoside analogues and their mechanisms of action.
Collapse
Affiliation(s)
- Robert J. Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA;
| | - Laurent F. Bonnac
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
54
|
Yang KC, Lin JC, Tsai HH, Hsu CY, Shih V, Hu CMJ. Nanotechnology advances in pathogen- and host-targeted antiviral delivery: multipronged therapeutic intervention for pandemic control. Drug Deliv Transl Res 2021; 11:1420-1437. [PMID: 33748879 PMCID: PMC7982277 DOI: 10.1007/s13346-021-00965-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic's high mortality rate and severe socioeconomic impact serve as a reminder of the urgent need for effective countermeasures against viral pandemic threats. In particular, effective antiviral therapeutics capable of stopping infections in its tracks is critical to reducing infection fatality rate and healthcare burden. With the field of drug delivery witnessing tremendous advancement in the last two decades owing to a panoply of nanotechnology advances, the present review summarizes and expounds on the research and development of therapeutic nanoformulations against various infectious viral pathogens, including HIV, influenza, and coronaviruses. Specifically, nanotechnology advances towards improving pathogen- and host-targeted antiviral drug delivery are reviewed, and the prospect of achieving effective viral eradication, broad-spectrum antiviral effect, and resisting viral mutations are discussed. As several COVID-19 antiviral clinical trials are met with lackluster treatment efficacy, nanocarrier strategies aimed at improving drug pharmacokinetics, biodistributions, and synergism are expected to not only contribute to the current disease treatment efforts but also expand the antiviral arsenal against other emerging viral diseases.
Collapse
Affiliation(s)
- Kai-Chieh Yang
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112304, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Hsiao-Han Tsai
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112304, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Chung-Yao Hsu
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112304, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Vicky Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Che-Ming Jack Hu
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112304, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan. .,Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 704017, Taiwan.
| |
Collapse
|
55
|
Abstract
A newly emerged coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), belongs to the β-coronavirus family and shows high similarities with SARS-CoV. On March 11, 2020, the World Health Organization (WHO) declared SARS-CoV-2 a global pandemic, and the disease was named the coronavirus disease 2019 (COVID-19). The ongoing COVID-19 pandemic has caused over 46 million infections and over one million deaths worldwide, and the numbers are still increasing. Efficacious antiviral agents are urgently needed to combat this virus. The life cycle of SARS-CoV-2 mainly includes the viral attachment, membrane fusion, genomic replication, assembly and budding of virions. Accordingly, drug development against SARS-CoV-2 currently focuses on blocking spike protein binding to ACE2, inhibiting viral membrane fusion with host cells, and preventing the viral replication by targeting 3C-like protease, papain-like protease, RNA-dependent RNA polymerase as well as some host-cell proteins. In this review, the advances of drug development in these three major areas are elaborated.
Collapse
|
56
|
Adamson CS, Chibale K, Goss RJM, Jaspars M, Newman DJ, Dorrington RA. Antiviral drug discovery: preparing for the next pandemic. Chem Soc Rev 2021; 50:3647-3655. [PMID: 33524090 DOI: 10.1039/d0cs01118e] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Clinically approved antiviral drugs are currently available for only 10 of the more than 220 viruses known to infect humans. The SARS-CoV-2 outbreak has exposed the critical need for compounds that can be rapidly mobilised for the treatment of re-emerging or emerging viral diseases, while vaccine development is underway. We review the current status of antiviral therapies focusing on RNA viruses, highlighting strategies for antiviral drug discovery and discuss the challenges, solutions and options to accelerate drug discovery efforts.
Collapse
Affiliation(s)
- Catherine S Adamson
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland, UK
| | | | | | | | | | | |
Collapse
|
57
|
Anasir MI, Zarif F, Poh CL. Antivirals blocking entry of enteroviruses and therapeutic potential. J Biomed Sci 2021; 28:10. [PMID: 33451326 PMCID: PMC7811253 DOI: 10.1186/s12929-021-00708-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/08/2021] [Indexed: 01/26/2023] Open
Abstract
Viruses from the genus Enterovirus (EV) of the Picornaviridae family are known to cause diseases such as hand foot and mouth disease (HFMD), respiratory diseases, encephalitis and myocarditis. The capsid of EV is an attractive target for the development of direct-acting small molecules that can interfere with viral entry. Some of the capsid binders have been evaluated in clinical trials but the majority have failed due to insufficient efficacy or unacceptable off-target effects. Furthermore, most of the capsid binders exhibited a low barrier to resistance. Alternatively, host-targeting inhibitors such as peptides derived from the capsid of EV that can recognize cellular receptors have been identified. However, the majority of these peptides displayed low anti-EV potency (µM range) as compared to the potency of small molecule compounds (nM range). Nonetheless, the development of anti-EV peptides is warranted as they may complement the small-molecules in a drug combination strategy to treat EVs. Lastly, structure-based approach to design antiviral peptides should be utilized to unearth potent anti-EV peptides.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Faisal Zarif
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
58
|
Identification of an Antiretroviral Small Molecule That Appears To Be a Host-Targeting Inhibitor of HIV-1 Assembly. J Virol 2021; 95:JVI.00883-20. [PMID: 33148797 PMCID: PMC7925099 DOI: 10.1128/jvi.00883-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022] Open
Abstract
Given the projected increase in multidrug-resistant HIV-1, there is an urgent need for development of antiretrovirals that act on virus life cycle stages not targeted by drugs currently in use. Host-targeting compounds are of particular interest because they can offer a high barrier to resistance. Here, we report identification of two related small molecules that inhibit HIV-1 late events, a part of the HIV-1 life cycle for which potent and specific inhibitors are lacking. This chemotype was discovered using cell-free protein synthesis and assembly systems that recapitulate intracellular host-catalyzed viral capsid assembly pathways. These compounds inhibit replication of HIV-1 in human T cell lines and peripheral blood mononuclear cells, and are effective against a primary isolate. They reduce virus production, likely by inhibiting a posttranslational step in HIV-1 Gag assembly. Notably, the compound colocalizes with HIV-1 Gag in situ; however, unexpectedly, selection experiments failed to identify compound-specific resistance mutations in gag or pol, even though known resistance mutations developed upon parallel nelfinavir selection. Thus, we hypothesized that instead of binding to Gag directly, these compounds localize to assembly intermediates, the intracellular multiprotein complexes containing Gag and host factors that form during immature HIV-1 capsid assembly. Indeed, imaging of infected cells shows compound colocalized with two host enzymes found in assembly intermediates, ABCE1 and DDX6, but not two host proteins found in other complexes. While the exact target and mechanism of action of this chemotype remain to be determined, our findings suggest that these compounds represent first-in-class, host-targeting inhibitors of intracellular events in HIV-1 assembly.IMPORTANCE The success of antiretroviral treatment for HIV-1 is at risk of being undermined by the growing problem of drug resistance. Thus, there is a need to identify antiretrovirals that act on viral life cycle stages not targeted by drugs in use, such as the events of HIV-1 Gag assembly. To address this gap, we developed a compound screen that recapitulates the intracellular events of HIV-1 assembly, including virus-host interactions that promote assembly. This effort led to the identification of a new chemotype that inhibits HIV-1 replication at nanomolar concentrations, likely by acting on assembly. This compound colocalized with Gag and two host enzymes that facilitate capsid assembly. However, resistance selection did not result in compound-specific mutations in gag, suggesting that the chemotype does not directly target Gag. We hypothesize that this chemotype represents a first-in-class inhibitor of virus production that acts by targeting a virus-host complex important for HIV-1 Gag assembly.
Collapse
|
59
|
Huchting J. Targeting viral genome synthesis as broad-spectrum approach against RNA virus infections. Antivir Chem Chemother 2020; 28:2040206620976786. [PMID: 33297724 PMCID: PMC7734526 DOI: 10.1177/2040206620976786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zoonotic spillover, i.e. pathogen transmission from animal to human, has repeatedly introduced RNA viruses into the human population. In some cases, where these viruses were then efficiently transmitted between humans, they caused large disease outbreaks such as the 1918 flu pandemic or, more recently, outbreaks of Ebola and Coronavirus disease. These examples demonstrate that RNA viruses pose an immense burden on individual and public health with outbreaks threatening the economy and social cohesion within and across borders. And while emerging RNA viruses are introduced more frequently as human activities increasingly disrupt wild-life eco-systems, therapeutic or preventative medicines satisfying the “one drug-multiple bugs”-aim are unavailable. As one central aspect of preparedness efforts, this review digs into the development of broadly acting antivirals via targeting viral genome synthesis with host- or virus-directed drugs centering around nucleotides, the genomes’ universal building blocks. Following the first strategy, selected examples of host de novo nucleotide synthesis inhibitors are presented that ultimately interfere with viral nucleic acid synthesis, with ribavirin being the most prominent and widely used example. For directly targeting the viral polymerase, nucleoside and nucleotide analogues (NNAs) have long been at the core of antiviral drug development and this review illustrates different molecular strategies by which NNAs inhibit viral infection. Highlighting well-known as well as recent, clinically promising compounds, structural features and mechanistic details that may confer broad-spectrum activity are discussed. The final part addresses limitations of NNAs for clinical development such as low efficacy or mitochondrial toxicity and illustrates strategies to overcome these.
Collapse
Affiliation(s)
- Johanna Huchting
- Chemistry Department, Institute for Organic Chemistry, Faculty of Mathematics, Computer Science and Natural Sciences, University of Hamburg, Hamburg, Germany
| |
Collapse
|
60
|
Winnard PT, Vesuna F, Raman V. Targeting host DEAD-box RNA helicase DDX3X for treating viral infections. Antiviral Res 2020; 185:104994. [PMID: 33301755 DOI: 10.1016/j.antiviral.2020.104994] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
DDX3X or DDX3, a member of the DEAD (asp, glu, ala, asp) box RNA helicase family of proteins, is a multifunctional protein, which is usurped by several viruses and is vital to their production. To date, 18 species of virus from 12 genera have been demonstrated to be dependent on DDX3 for virulence. In addition, DDX3 has been shown to function within 7 of 10 subcellular regions that are involved in the metabolism of viruses. As such, due to its direct interaction with viral components across most or all stages of viral life cycles, DDX3 can be considered an excellent host target for pan-antiviral drug therapy and has been reported to be a possible broad-spectrum antiviral target. Along these lines, it has been demonstrated that treatment of virally infected cells with small molecule inhibitors of DDX3 blunts virion productions. On the other hand, DDX3 bolsters an innate immune response and viruses have evolved capacities to sequester or block DDX3, which dampens an innate immune response. Thus, enhancing DDX3 production or co-targeting direct viral products that interfere with DDX3's modulation of innate immunity would also diminish virion production. Here we review the evidence that supports the hypothesis that modulating DDX3's agonistic and antagonistic functions during viral infections could have an important impact on safely and efficiently subduing a broad-spectrum of viral infections.
Collapse
Affiliation(s)
- Paul T Winnard
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Sciences, USA
| | - Farhad Vesuna
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Sciences, USA
| | - Venu Raman
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Sciences, USA; Department of Oncology, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
61
|
Feuillet V, Canard B, Trautmann A. Combining Antivirals and Immunomodulators to Fight COVID-19. Trends Immunol 2020; 42:31-44. [PMID: 33281063 PMCID: PMC7664349 DOI: 10.1016/j.it.2020.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
The majority of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals remain paucisymptomatic, contrasting with a minority of infected individuals in danger of death. Here, we speculate that the robust disease resistance of most individuals is due to a swift production of type I interferon (IFNα/β), presumably sufficient to lower the viremia. A minority of infected individuals with a preexisting chronic inflammatory state fail to mount this early efficient response, leading to a delayed harmful inflammatory response. To improve the epidemiological scenario, we propose combining: (i) the development of efficient antivirals administered early enough to assist in the production of endogenous IFNα/β; (ii) potentiating early IFN responses; (iii) administering anti-inflammatory treatments when needed, but not too early to interfere with endogenous antiviral responses. Although the coronavirus disease 2019 (COVID-19) pandemic is exceptional, lessons may be learned from previous outbreaks (coronavirus, dengue, influenza viruses), especially when considering drug design and cytokine storms. We propose that efficient treatments for COVID-19 patients should combine antivirals and immunomodulators. This combination and, especially the use of immunomodulators, might be adapted according to the disease stage. Among the repurposed antiviral drugs currently being tested against COVID-19, none shows high potency. We posit that the innate type 1 interferon (IFNα/β)-dependent antiviral immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection should be amplified. To this end, we propose two putative approaches: the inhibition of transforming growth factor (TGFβ) signaling, and perhaps, the administration of 1,8-cineole. We suggest that an early diagnosis during COVID-19 is essential when aiming to purposely combine antivirals with the use of an immunomodulator (e.g., a drug to potentiate IFNα/β), ideally early in the disease course to lower the risk of cytokine storm manifestation. When the disease becomes severe, the new combination should prioritize targeting of the cytokine storm.
Collapse
Affiliation(s)
- Vincent Feuillet
- Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Bruno Canard
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
| | - Alain Trautmann
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| |
Collapse
|
62
|
Felicetti T, Manfroni G, Cecchetti V, Cannalire R. Broad-Spectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View. ChemMedChem 2020; 15:2391-2419. [PMID: 32961008 DOI: 10.1002/cmdc.202000464] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Infections by flaviviruses, such as Dengue, West Nile, Yellow Fever and Zika viruses, represent a growing risk for global health. There are vaccines only for few flaviviruses while no effective treatments are available. Flaviviruses share epidemiological, structural, and ecologic features and often different viruses can co-infect the same host. Therefore, the identification of broad-spectrum inhibitors is highly desirable either for known flaviviruses or for viruses that likely will emerge in the future. Strategies targeting both virus and host factors have been pursued to identify broad-spectrum antiflaviviral agents. In this review, we describe the most promising and best characterized targets and their relative broad-spectrum inhibitors, identified by drug repurposing/libraries screenings and by focused medicinal chemistry campaigns. Finally, we discuss about future strategies to identify new broad-spectrum antiflavivirus agents.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
63
|
Xu Y, Jiang H. Potential treatment of COVID-19 by inhibitors of human dihydroorotate dehydrogenase. Protein Cell 2020; 11:699-702. [PMID: 32761523 PMCID: PMC7406694 DOI: 10.1007/s13238-020-00769-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yechun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualiang Jiang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
64
|
Otręba M, Kośmider L, Rzepecka-Stojko A. Antiviral activity of chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine towards RNA-viruses. A review. Eur J Pharmacol 2020; 887:173553. [PMID: 32949606 PMCID: PMC7493736 DOI: 10.1016/j.ejphar.2020.173553] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 01/11/2023]
Abstract
In 2020 the whole world focused on antivirus drugs towards SARS-CoV-2. Most of the researchers focused on drugs used in other viral infections or malaria. We have not seen such mobilization towards one topic in this century. The whole situation makes clear that progress needs to be made in antiviral drug development. The first step to do it is to characterize the potential antiviral activity of new or already existed drugs on the market. Phenothiazines are antipsychotic agents used previously as antiseptics, anthelminthics, and antimalarials. Up to date, they are tested for a number of other disorders including the broad spectrum of viruses. The goal of this paper was to summarize the current literature on activity toward RNA-viruses of such drugs like chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine. We identified 49 papers, where the use of the phenothiazines for 23 viruses from different families were tested. Chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine possess anti-viral activity towards different types of viruses. These drugs inhibit clathrin-dependent endocytosis, cell-cell fusion, infection, replication of the virus, decrease viral invasion as well as suppress entry into the host cells. Additionally, since the drugs display activity at nontoxic concentrations they have therapeutic potential for some viruses, still, further research on animal and human subjects are needed in this field to verify cell base research. Phenothiazines possess antiviral activity towards RNA viruses. An antiviral activity can be achieved below toxic serum concentration. Phenothiazines are characterized by multidirectional points of action.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Medical University of Silesia, Katowice Faculty of Pharmaceutical Sciences in Sosnowiec, Jednosci 8, 41-200, Sosnowiec, Poland.
| | - Leon Kośmider
- Department of General and Inorganic Chemistry, Medical University of Silesia, Katowice Faculty of Pharmaceutical Sciences in Sosnowiec, Jagiellonska 4, 41-200, Sosnowiec, Poland
| | - Anna Rzepecka-Stojko
- Department of Drug Technology, Medical University of Silesia, Katowice Faculty of Pharmaceutical Sciences in Sosnowiec, Jednosci 8, 41-200, Sosnowiec, Poland
| |
Collapse
|
65
|
Ligat G, Goto K, Verrier E, Baumert TF. Targeting Viral cccDNA for Cure of Chronic Hepatitis B. CURRENT HEPATOLOGY REPORTS 2020; 19:235-244. [PMID: 36034467 PMCID: PMC7613435 DOI: 10.1007/s11901-020-00534-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose of Review Chronic hepatitis B (CHB), caused by hepatitis B virus (HBV), is a major cause of advanced liver disease and hepatocellular carcinoma (HCC) worldwide. HBV replication is characterized by the synthesis of covalently closed circular (ccc) DNA which is not targeted by antiviral nucleos(t)ide analogues (NUCs) the key modality of standard of care. While HBV replication is successfully suppressed in treated patients, they remain at risk for developing HCC. While functional cure, characterized by loss of HBsAg, is the first goal of novel antiviral therapies, curative treatments eliminating cccDNA remain the ultimate goal. This review summarizes recent advances in the discovery and development of novel therapeutic strategies and their impact on cccDNA biology. Recent Findings Within the last decade, substantial progress has been made in the understanding of cccDNA biology including the discovery of host dependency factors, epigenetic regulation of cccDNA transcription and immune-mediated degradation. Several approaches targeting cccDNA either in a direct or indirect manner are currently at the stage of discovery, preclinical or early clinical development. Examples include genome-editing approaches, strategies targeting host dependency factors or epigenetic gene regulation, nucleocapsid modulators and immune-mediated degradation. Summary While direct-targeting cccDNA strategies are still largely at the preclinical stage of development, capsid assembly modulators and immune-based approaches have reached the clinical phase. Clinical trials are ongoing to assess their efficacy and safety in patients including their impact on viral cccDNA. Combination therapies provide additional opportunities to overcome current limitations of individual approaches.
Collapse
Affiliation(s)
- Gaëtan Ligat
- Université de Strasbourg, 67000 Strasbourg, France
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm U1110, 3 Rue Koeberlé, 67000 Strasbourg, France
| | - Kaku Goto
- Université de Strasbourg, 67000 Strasbourg, France
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm U1110, 3 Rue Koeberlé, 67000 Strasbourg, France
| | - Eloi Verrier
- Université de Strasbourg, 67000 Strasbourg, France
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm U1110, 3 Rue Koeberlé, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, 67000 Strasbourg, France
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm U1110, 3 Rue Koeberlé, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France
| |
Collapse
|
66
|
Ji X, Li Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med Res Rev 2020; 40:1519-1557. [PMID: 32060956 PMCID: PMC7228277 DOI: 10.1002/med.21664] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Direct‐acting antiviral agents (DAAs) represent a class of drugs targeting viral proteins and have been demonstrated to be very successful in combating viral infections in clinic. However, DAAs suffer from several inherent limitations, including narrow‐spectrum antiviral profiles and liability to drug resistance, and hence there are still unmet needs in the treatment of viral infections. In comparison, host targeting antivirals (HTAs) target host factors for antiviral treatment. Since host proteins are probably broadly required for various viral infections, HTAs are not only perceived, but also demonstrated to exhibit broad‐spectrum antiviral activities. In addition, host proteins are not under the genetic control of viral genome, and hence HTAs possess much higher genetic barrier to drug resistance as compared with DAAs. In recent years, much progress has been made to the development of HTAs with the approval of chemokine receptor type 5 antagonist maraviroc for human immunodeficiency virus treatment and more in the pipeline for other viral infections. In this review, we summarize various host proteins as antiviral targets from a medicinal chemistry prospective. Challenges and issues associated with HTAs are also discussed.
Collapse
Affiliation(s)
- Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|