51
|
Beaver LM, Hooven LA, Butcher SM, Krishnan N, Sherman KA, Chow ESY, Giebultowicz JM. Circadian clock regulates response to pesticides in Drosophila via conserved Pdp1 pathway. Toxicol Sci 2010; 115:513-20. [PMID: 20348229 DOI: 10.1093/toxsci/kfq083] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Daily rhythms generated by the circadian clock regulate many life functions, including responses to xenobiotic compounds. In Drosophila melanogaster, the circadian clock consists of positive elements encoded by cycle (cyc) and Clock (Clk) and negative elements encoded by period (per) and timeless (tim) genes. The epsilon-isoform of the PAR-domain protein 1 (Pdp1epsilon) transcription factor is controlled by positive clock elements and regulates daily locomotor activity rhythms. Pdp1 target genes have not been identified, and its involvement in other clock output pathways is not known. Mammalian orthologs of Pdp1 have been implicated in the regulation of xenobiotic metabolism; therefore, we asked whether Pdp1 has a similar role in the fly. Using pesticides as model toxicants, we determined that disruption of Pdp1epsilon increased pesticide-induced mortality in flies. Flies deficient for cyc also showed increased mortality, while disruption of per and tim had no effect. Day/night and Pdp1-dependent differences in the expression of xenobiotic-metabolizing enzymes Cyp6a2, Cyp6g1, and alpha-Esterase-7 were observed and likely contribute to impaired detoxification. DHR96, a homolog of constitutive androstane receptor and pregnane X receptor, is involved in pesticide response, and DHR96 expression decreased when Pdp1 was suppressed. Taken together, our data uncover a pathway from the positive arm of the circadian clock through Pdp1 to detoxification effector genes, demonstrating a conserved role of the circadian system in modulating xenobiotic toxicity.
Collapse
|
52
|
Cortés T, Ortiz-Rivas B, Martínez-Torres D. Identification and characterization of circadian clock genes in the pea aphid Acyrthosiphon pisum. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 2:123-39. [PMID: 20482645 DOI: 10.1111/j.1365-2583.2009.00931.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The molecular basis of circadian clocks is highly evolutionarily conserved and has been best characterized in Drosophila and mouse. Analysis of the Acyrthosiphon pisum genome revealed the presence of orthologs of the following genes constituting the core of the circadian clock in Drosophila: period (per), timeless (tim), Clock, cycle, vrille, and Pdp1. However, the presence in A. pisum of orthologs of a mammal-type in addition to a Drosophila-type cryptochrome places the putative aphid clockwork closer to the ancestral insect system than to the Drosophila one. Most notably, five of these putative aphid core clock genes are highly divergent and exhibit accelerated rates of change (especially per and tim orthologs) suggesting that the aphid circadian clock has evolved to adapt to (unknown) aphid-specific needs. Additionally, with the exception of jetlag (absent in the aphid) other genes included in the Drosophila circadian clock repertoire were found to be conserved in A. pisum. Expression analysis revealed circadian rhythmicity for some core genes as well as a significant effect of photoperiod in the amplitude of oscillations.
Collapse
Affiliation(s)
- T Cortés
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | | | | |
Collapse
|
53
|
Gegear RJ, Foley LE, Casselman A, Reppert SM. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 2010; 463:804-7. [PMID: 20098414 PMCID: PMC2820607 DOI: 10.1038/nature08719] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 12/01/2009] [Indexed: 01/26/2023]
Abstract
Understanding the biophysical basis of animal magnetoreception has been one of the greatest challenges in sensory biology. Recently it was discovered that the light-dependent magnetic sense of Drosophila melanogaster is mediated by the ultraviolet (UV)-A/blue light photoreceptor cryptochrome (Cry). Here we show, using a transgenic approach, that the photoreceptive, Drosophila-like type 1 Cry and the transcriptionally repressive, vertebrate-like type 2 Cry of the monarch butterfly (Danaus plexippus) can both function in the magnetoreception system of Drosophila and require UV-A/blue light (wavelength below 420 nm) to do so. The lack of magnetic responses for both Cry types at wavelengths above 420 nm does not fit the widely held view that tryptophan triad-generated radical pairs mediate the ability of Cry to sense a magnetic field. We bolster this assessment by using a mutant form of Drosophila and monarch type 1 Cry and confirm that the tryptophan triad pathway is not crucial in magnetic transduction. Together, these results suggest that animal Crys mediate light-dependent magnetoreception through an unconventional photochemical mechanism. This work emphasizes the utility of Drosophila transgenesis for elucidating the precise mechanisms of Cry-mediated magnetosensitivity in insects and also in vertebrates such as migrating birds.
Collapse
Affiliation(s)
- Robert J Gegear
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA.
| | | | | | | |
Collapse
|
54
|
Kim J, Kim YJ, Kim-Ha J. Blood-brain barrier defects associated with Rbp9 mutation. Mol Cells 2010; 29:93-8. [PMID: 20069381 DOI: 10.1007/s10059-010-0040-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 11/26/2022] Open
Abstract
Rbp9 is a Drosophila RNA-binding protein that shares a high level of sequence similarity with Drosophila elav and human Hu proteins. Loss of function alleles of elav are embryonic lethal causing abnormal central nervous system (CNS) development, and Hu is implicated in the development of paraneoplastic neurological syndrome associated with small cell lung cancer. To elucidate the role of Rbp9, we generated Rbp9 mutant flies and examined them for symptoms related to paraneoplastic encephalomyelitis. Although Rbp9 proteins begin to appear from the middle of the pupal period in the cortex of the CNS, the Rbp9 mutants showed no apparent defects in development. However, as the mutant adult flies grew older, they showed reduced locomotor activities and lived only one-half of the life expectancy of wild-type flies. To understand the molecular mechanism underlying this symptom, gene expression profiles in Rbp9 mutants were analyzed and potential target genes were further characterized. Reduced expression of cell adhesion molecules was detected, and defects in the blood-brain barrier (BBB) of Rbp9 mutant brains could be seen. Putative Rbp9-binding sites were found in introns of genes that function in cell adhesion. Therefore, Rbp9 may regulate the splicing of cell adhesion molecules, critical for the formation of the BBB.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Molecular Biology, College of Life Sciences, Sejong University, Seoul, 143-747, Korea
| | | | | |
Collapse
|
55
|
Choi C, Fortin JP, McCarthy EV, Oksman L, Kopin AS, Nitabach MN. Cellular dissection of circadian peptide signals with genetically encoded membrane-tethered ligands. Curr Biol 2009; 19:1167-75. [PMID: 19592252 PMCID: PMC2719018 DOI: 10.1016/j.cub.2009.06.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/01/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Neuropeptides regulate many biological processes. Elucidation of neuropeptide function requires identifying the cells that respond to neuropeptide signals and determining the molecular, cellular, physiological, and behavioral consequences of activation of their cognate G protein-coupled receptors (GPCRs) in those cells. As a novel tool for addressing such issues, we have developed genetically encoded neuropeptides covalently tethered to a glycosylphosphatidylinositol (GPI) glycolipid anchor on the plasma membrane ("t-peptides"). RESULTS t-peptides cell-autonomously induce activation of their cognate GPCRs in cells that express both the t-peptide and its receptor. In the neural circuit controlling circadian rest-activity rhythms in Drosophila melanogaster, rhythmic secretion of the neuropeptide pigment-dispersing factor (PDF) and activation of its GPCR (PDFR) are important for intercellular communication of phase information and coordination of clock neuron oscillation. Broad expression of t-PDF in the circadian control circuit overcomes arrhythmicity induced by pdf(01) null mutation, most likely as a result of activation of PDFR in PDFR-expressing clock neurons that do not themselves secrete PDF. More restricted expression of t-PDF suggests that activation of PDFR accelerates cellular timekeeping in some clock neurons while decelerating others. CONCLUSIONS The activation of PDFR in pdf(01) null mutant flies--which lack PDF-mediated intercellular transfer of phase information--induces strong rhythmicity in constant darkness, thus establishing a distinct role for PDF signaling in the circadian control circuit independent of the intercellular communication of temporal phase information. The t-peptide technology should provide a useful tool for cellular dissection of bioactive peptide signaling in a variety of organisms and physiological contexts.
Collapse
Affiliation(s)
- Charles Choi
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jean-Philippe Fortin
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Ellena v. McCarthy
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Lea Oksman
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Alan S. Kopin
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Michael N. Nitabach
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
56
|
Dubnau J. NEUROGENETIC DISSECTION OF CONDITIONED BEHAVIOR: EVOLUTION BY ANALOGY OR HOMOLOGY? J Neurogenet 2009; 17:295-326. [PMID: 15204081 DOI: 10.1080/01677060390441859] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Josh Dubnau
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
57
|
Abstract
Light and temperature are major environmental cues that influence circadian clocks. The molecular effects of these zeitgebers on the circadian clock of Neurospora crassa have been studied intensively during the last decade. While signal transduction of light into the circadian clock is quite well characterized, we have only recently begun to understand the molecular mechanisms that underlie temperature sensing. Here we summarize briefly the current knowledge about the effects of temperature on the circadian clock of Neurospora crassa.
Collapse
Affiliation(s)
- Michael Brunner
- University of Heidelberg (BZH), Biochemistry Center, Heidelberg, Germany
| | | |
Collapse
|
58
|
Veleri S, Wülbeck C. Unique Self-Sustaining Circadian Oscillators Within the Brain ofDrosophila melanogaster. Chronobiol Int 2009; 21:329-42. [PMID: 15332440 DOI: 10.1081/cbi-120038597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In Drosophila circadian rhythms persist in constant darkness (DD). The small ventral Lateral Neurons (s-LNv) mainly control the behavioral circadian rhythm in consortium with the large ventral Lateral Neurons (l-LNv) and dorsal Lateral Neurons (LNd). It is believed that the molecular oscillations of clock genes are the source of this persistent behavior. Indeed the s-LNv, LNd, Dorsal Neurons (DN)-DN2 and DN3 displayed self-sustained molecular oscillations in DD both at RNA and protein levels, except the DN2 oscillates in anti-phase. In contrast, the l-LNv and DN1 displayed self-sustained oscillations at the RNA level, but protein oscillations quickly dampened. Having self-sustained and dampened molecular oscillators together in the DN groups suggested that they play different roles. However, all DN groups seemed to contribute together to the light-dark (LD) behavioral rhythm. The LD entrainment of LN oscillators is achieved through Rhodopsin (RH) and Cryptochrome (CRY). CRY's expression in all DN groups implicates also its role in LD entrainment of DN, like in DN1. However, mutations in cry and glass that did not inflict LD synchronization of the DN2, DN3 oscillator implicate the existence of a novel photoreceptor at least in DN3.
Collapse
Affiliation(s)
- Shobi Veleri
- Institut für Zoologie, Universität Regensburg, Regensburg, Germany.
| | | |
Collapse
|
59
|
A role for the PERIOD:PERIOD homodimer in the Drosophila circadian clock. PLoS Biol 2009; 7:e3. [PMID: 19402744 PMCID: PMC2671555 DOI: 10.1371/journal.pbio.1000003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 11/12/2008] [Indexed: 01/13/2023] Open
Abstract
Circadian clocks in eukaryotes rely on transcriptional feedback loops, in which clock genes repress their own transcription resulting in molecular oscillations with a period of ∼24 h. In Drosophila, the clock proteins Period (PER) and Timeless (TIM) operate in such a feedback loop, whereby they first accumulate in the cytoplasm of clock cells as a heterodimer. Nuclear translocation of the complex or the individual PER and TIM proteins is followed by repression of per and tim transcription, whereby PER seems to act as the prime repressor. We found that in addition to PER:TIM complexes, functional PER:PER homodimers exist in flies. Specific disruption of PER homodimers results in drastically impaired behavioral and molecular rhythmicity, pointing the biological importance of this clock protein complex. Analysis of PER subcellular distribution and repressor competence in the PER dimer mutant revealed defects in PER nuclear translocation and a disruption of rhythmic period transcription. The striking similarity of these phenotypes with that of reduced CKII activity suggests that the formation or function of the PER dimer is closely linked to this kinase. Our results confirm a previous structural model for PER and provide strong evidence that PER homodimers are important for circadian clock function. The current models of circadian clocks in flies and mammals involve the formation of complexes between clock proteins in the cytoplasm. These complexes are usually heterodimers (that is, made up of two different clock proteins) and appear to enter the nucleus at certain times of the circadian day in order to shut down their own gene expression by deactivating specific transcription factors. After progressive phosphorylation the repressor proteins eventually are degraded so that a new cycle of transcription can begin. Here we present evidence that in addition to heterodimeric complexes, the clock protein PERIOD (PER) also forms homodimers (pairs of identical proteins). Based on a structural model a PER mutant was designed, which is not able to form homodimers but can still bind to its partner TIMELESS (TIM). Flies expressing this mutant PER protein show abnormal clock function in regard to PER nuclear translocation, repressor activity, and behavioral rhythms. The circadian clock model in flies therefore needs to be extended by adding the PER:PER homodimer as a functional unit. Recent structural studies with mammalian PER proteins suggest that homodimers between clock proteins are an important general feature of eukaryotic clocks. The circadian molecular clock model needs to be extended by adding the PERIOD:PERIOD homodimer as a functional unit in rhythm generation in Drosophila. Blocking this dimerization leads to faulty nuclear localization, reduced repressor activity, and impaired behavioral rhythms.
Collapse
|
60
|
Shiga S, Numata H. Roles of PER immunoreactive neurons in circadian rhythms and photoperiodism in the blow fly, Protophormia terraenovae. ACTA ACUST UNITED AC 2009; 212:867-77. [PMID: 19252004 DOI: 10.1242/jeb.027003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several hypothetical models suggest that the circadian clock system is involved in the photoperiodic clock mechanisms in insects. However, there is no evidence for this at a neuronal level. In the present study, whether circadian clock neurons were involved in photoperiodism was examined by surgical ablation of small area in the brain and by immunocytochemical analysis in the blow fly Protophormia terraenovae. Five types of PER-immunoreactive cells, dorsal lateral neurons (LN(d)), large ventral lateral neurons (l-LN(v)), small ventral lateral neurons (s-LN(v)), lateral dorsal neurons (DN(l)) and medial dorsal neurons (DN(m)) were found, corresponding to period-expressing neurons in Drosophila melanogaster. Four l-LN(v)s and four s-LN(v)s were bilaterally double-labelled with antisera against pigment-dispersing factor (PDF) and PER. When the anterior base of the medulla in the optic lobe, where PDF-immunoreactive somata (l-LN(v) and s-LN(v)) are located, was bilaterally ablated, 55% of flies showed arrhythmic or obscure activity patterns under constant darkness. Percentages of flies exhibiting a rhythmic activity pattern decreased along with the number of small PDF-immunoreactive somata (i.e. s-Ln(v)). When regions containing small PDF somata (s-LN(v)) were bilaterally ablated, flies did not discriminate photoperiod, and diapause incidences were 48% under long-day and 55% under short-day conditions. The results suggest that circadian clock neurons, s-LN(v)s, driving behavioural rhythms might also be involved in photoperiodism, and that circadian behavioural rhythms and photoperiodism share neural elements in their underlying mechanisms.
Collapse
Affiliation(s)
- Sakiko Shiga
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan.
| | | |
Collapse
|
61
|
Kotwica J, Larson MK, Bebas P, Giebultowicz JM. Developmental profiles of PERIOD and DOUBLETIME in Drosophila melanogaster ovary. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:419-425. [PMID: 19223210 DOI: 10.1016/j.jinsphys.2009.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/20/2009] [Accepted: 01/23/2009] [Indexed: 05/27/2023]
Abstract
The clock protein PERIOD (PER) displays circadian cycles of accumulation, phosphorylation, nuclear translocation and degradation in Drosophila melanogaster clock cells. One exception to this pattern is in follicular cells enclosing previtellogenic ovarian egg chambers. In these cells, PER remains high and cytoplasmic at all times of day. Genetic evidence suggest that PER and its clock partner TIMELESS (TIM) interact in these cells, yet, they do not translocate to the nucleus. Here, we investigated the levels and subcellular localization of PER in older vitellogenic follicles. Cytoplasmic PER levels decreased in the follicular cells at the onset of vitellogenesis (stage 9). Interestingly, PER was observed in the nuclei of some follicular cells at this stage. PER signal disappeared in more advanced (stage 10) vitellogenic follicles. Since the phosphorylation state of PER is critical for the progression of circadian cycle, we investigated the status of PER phosphorylation in the ovary and the expression patterns of DOUBLETIME (DBT), a kinase known to affect PER in the clock cells. DBT was absent in previtellogenic follicular cells, but present in the cytoplasm of some stage 9 follicular cells. DBT was not distributed uniformly but was present in patches of adjacent cells, in a pattern resembling PER distribution at the same stage. Our data suggest that the absence of dbt expression in the follicular cells of previtellogenic egg chambers may be related to stable and cytoplasmic expression of PER in these cells. Onset of dbt expression in vitellogenic follicles coincides with nuclear localization of PER protein.
Collapse
Affiliation(s)
- Joanna Kotwica
- Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
62
|
Zhu H, Gegear RJ, Casselman A, Kanginakudru S, Reppert SM. Defining behavioral and molecular differences between summer and migratory monarch butterflies. BMC Biol 2009; 7:14. [PMID: 19335876 PMCID: PMC2681450 DOI: 10.1186/1741-7007-7-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/31/2009] [Indexed: 11/17/2022] Open
Abstract
Background In the fall, Eastern North American monarch butterflies (Danaus plexippus) undergo a magnificent long-range migration. In contrast to spring and summer butterflies, fall migrants are juvenile hormone deficient, which leads to reproductive arrest and increased longevity. Migrants also use a time-compensated sun compass to help them navigate in the south/southwesterly direction en route for Mexico. Central issues in this area are defining the relationship between juvenile hormone status and oriented flight, critical features that differentiate summer monarchs from fall migrants, and identifying molecular correlates of behavioral state. Results Here we show that increasing juvenile hormone activity to induce summer-like reproductive development in fall migrants does not alter directional flight behavior or its time-compensated orientation, as monitored in a flight simulator. Reproductive summer butterflies, in contrast, uniformly fail to exhibit directional, oriented flight. To define molecular correlates of behavioral state, we used microarray analysis of 9417 unique cDNA sequences. Gene expression profiles reveal a suite of 40 genes whose differential expression in brain correlates with oriented flight behavior in individual migrants, independent of juvenile hormone activity, thereby molecularly separating fall migrants from summer butterflies. Intriguing genes that are differentially regulated include the clock gene vrille and the locomotion-relevant tyramine beta hydroxylase gene. In addition, several differentially regulated genes (37.5% of total) are not annotated. We also identified 23 juvenile hormone-dependent genes in brain, which separate reproductive from non-reproductive monarchs; genes involved in longevity, fatty acid metabolism, and innate immunity are upregulated in non-reproductive (juvenile-hormone deficient) migrants. Conclusion The results link key behavioral traits with gene expression profiles in brain that differentiate migratory from summer butterflies and thus show that seasonal changes in genomic function help define the migratory state.
Collapse
Affiliation(s)
- Haisun Zhu
- Department of Neurobiology, University of Massachusetts Medical School, Plantation Street, Worcester, MA 01605, USA.
| | | | | | | | | |
Collapse
|
63
|
Moriyama Y, Sakamoto T, Matsumoto A, Noji S, Tomioka K. Functional analysis of the circadian clock gene period by RNA interference in nymphal crickets Gryllus bimaculatus. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:183-187. [PMID: 19059262 DOI: 10.1016/j.jinsphys.2008.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 11/11/2008] [Accepted: 11/12/2008] [Indexed: 05/27/2023]
Abstract
The circadian clock gene period (Gryllus bimaculatus period, Gb'per) plays a core role in circadian rhythm generation in adults of the cricket Gryllus bimaculatus. We examined the role of Gb'per in nymphal crickets that show a diurnal rhythm rather than the nocturnal rhythm of the adults. As in the adult optic lobes, Gb'per mRNA levels in the head of the third instar nymphs showed daily cycling in light-dark cycles with a peak at mid night, and the rhythm persisted in constant darkness. Injection of Gb'per double-stranded RNA (dsRNA) into the abdomen of third instar nymphs knocked-down the mRNA levels to 25% of that in control animals. Most Gb'per dsRNA injected nymphs lost their circadian locomotor activity rhythm, while those injected with DsRed2 dsRNA as a negative control clearly maintained the rhythm. These results suggest that nymphs and adults share a common endogenous clock mechanism involving the clock gene Gb'per.
Collapse
Affiliation(s)
- Yoshiyuki Moriyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
64
|
Abstract
Drosophila melanogaster has a broad geographic range. Daily activity in this species exhibits seasonality such that midday rest expands on long warm days, possibly to avoid desiccation. Comparative analyses show that temperature-dependent control of this behavior is partly linked to patterns of per mRNA splicing that are absent in Drosophila yakuba, a related species native to warmer climates with little seasonal change.
Collapse
Affiliation(s)
- Herman Wijnen
- Department of Biology, University of Virginia, Charlottesville, VA 22904-4328, USA.
| | | |
Collapse
|
65
|
Iijima-Ando K, Yin JCP. Transgenic cAMP response element reporter flies for monitoring circadian rhythms. Methods Enzymol 2008; 393:302-15. [PMID: 15817296 DOI: 10.1016/s0076-6879(05)93013-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The cAMP response Element (CRE)-binding protein (CREB) is involved in many adaptive behaviors, including circadian rhythms. In order to assess CREB activity in vivo, we made transgenic flies carrying a CRE-luciferase reporter and showed that this reporter is CRE and dCREB2 responsive. dCREB2 is the Drosophila homolog of mammalian CREB?CREM. The transgenic luciferase activity cycles with a 24-h periodicity, suggesting that dCREB2 and period are somehow linked. The CRE-luciferase reporter is a useful monitor of circadian activity, and mutations can be found that affect its periodicity, baseline activity, or amplitude. Analysis of such mutations should reveal information about how particular genes affect the molecular machinery of circadian cycling and how different genes affect the activity of dCREB2.
Collapse
Affiliation(s)
- Kanae Iijima-Ando
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
66
|
Junwei Wang, Jiajun Zhang, Zhanjiang Yuan, Aimin Chen, Tianshou Zhou. Neurotransmitter-Mediated Collective Rhythms in Grouped Drosophila Circadian Clocks. J Biol Rhythms 2008; 23:472-82. [DOI: 10.1177/0748730408324849] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the past decades, fly Drosophila melanogaster has being used as a premier model organism to study molecular and genetic bases of circadian rhythms. Here the authors propose a multicellular heterogeneous model for which the network of Drosophila circadian oscillators consists of two groups, the self-sustained lateral neurons (LNs) communicating to each other and the damped dorsal neurons (DNs) receiving neurotransmitters only from the LNs without interaction within this group. By simulating different experimental conditions, the authors find that the proposed model, except for being capable of reproducing some known experimental results well, also can predict some interesting phenomena: 1) The DNs need neuronal projections from the LNs to be rhythmic and to synchronize; 2) the effect of communication on mean amplitude and mean period of two oscillatory groups is different; 3) communication delay can facilitate the network synchronization of the LNs; and 4) only the LNs lose rhythmicity under constant light conditions. These results reveal the mechanism of an integrated pacemaker that would govern behavioral and physiological rhythmicity of the model organism.
Collapse
Affiliation(s)
- Junwei Wang
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jiajun Zhang
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Zhanjiang Yuan
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Aimin Chen
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Tianshou Zhou
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, P.R. China, , State Key Laboratory of Biocontrol and Guangzhou Center for Bioinformatics, School of Life Science, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
67
|
Ho KS, Sehgal A. Drosophila melanogaster: an insect model for fundamental studies of sleep. Methods Enzymol 2008; 393:772-93. [PMID: 15817324 DOI: 10.1016/s0076-6879(05)93041-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In 2000, Drosophila melanogaster joined the ranks of vertebrates and invertebrates with a defined behavioral sleep state. The characterization of this sleep state revealed striking similarities to sleep in humans: sleep in flies has both circadian and homeostatic components, it is influenced by sex and age, and it is affected by pharmacological agents such as caffeine and antihistamines. As in mammals, arousal thresholds in flies increase with sleep deprivation. Furthermore, changes in brain electrical activity accompany the change from wake to sleep states. Not only do flies and vertebrates share these behavioral and physiological traits of sleep, but they are likely to share at least some genetic mechanisms underlying the regulation of sleep as well. This article reviews the methods currently used to identify and characterize the Drosophila sleep state. As these methods become more refined and our understanding of Drosophila sleep more detailed, the powerful techniques afforded by this organism are likely to unveil deep insights into the function(s) and regulatory mechanisms of sleep.
Collapse
Affiliation(s)
- Karen S Ho
- Department of Neuroscience, Howard Hughes Medical Institute, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
68
|
Escamilla-Chimal EG, Fanjul-Moles ML. Daily and circadian expression of cryptochrome during the ontogeny of crayfish. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:461-470. [PMID: 17363311 DOI: 10.1016/j.cbpa.2007.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/17/2007] [Accepted: 02/05/2007] [Indexed: 11/22/2022]
Abstract
Cryptochromes (CRY) are proteins with a dual role in the circadian function of different animals, participating in phototransduction and light signaling to the clock and as a transcriptional repressor that provides negative feedback in the clock feedback loop. Here we characterize functional expression of CRY as a marker of the functionality of the circadian pacemaker of crayfish (Procambarus clarkii) throughout post-embryonic development. Using different experimental light protocols and by means of immunofluorescence and biochemical methods, we report that, as in the adult, in young crayfish from the first embryonic stage CRY is present in cells adjacent to the eyestalk hemiellipsoidal body and the anterior margin of the brain protocerebrum. In the brain, CRY cycles after 72 h darkness, entraining to LD cycles. Meanwhile, as in the adult eye, in juveniles CRY is driven by light, showing an arrhythmic pattern in DD and cycling under LD. These results, as well as the completely different period length found in the brain circadian oscillations of 2nd post-embryonic stage and juvenile animals, suggest important changes in the properties of the crayfish pacemaker through the development. Therefore these data support a previous idea about the functionality of the circadian system from hatching.
Collapse
Affiliation(s)
- Elsa G Escamilla-Chimal
- Lab. Neurofisiología Comparada, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, México
| | - María Luisa Fanjul-Moles
- Lab. Neurofisiología Comparada, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
69
|
Ohsaki K, Oishi K, Kozono Y, Nakayama K, Nakayama KI, Ishida N. The Role of β-TrCP1 and β-TrCP2 in Circadian Rhythm Generation by Mediating Degradation of Clock Protein PER2. ACTA ACUST UNITED AC 2008; 144:609-18. [DOI: 10.1093/jb/mvn112] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
70
|
Gegear RJ, Casselman A, Waddell S, Reppert SM. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 2008; 454:1014-8. [PMID: 18641630 PMCID: PMC2559964 DOI: 10.1038/nature07183] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 06/19/2008] [Indexed: 11/08/2022]
Abstract
Although many animals use the Earth's magnetic field for orientation and navigation, the precise biophysical mechanisms underlying magnetic sensing have been elusive. One theoretical model proposes that geomagnetic fields are perceived by chemical reactions involving specialized photoreceptors. However, the specific photoreceptor involved in such magnetoreception has not been demonstrated conclusively in any animal. Here we show that the ultraviolet-A/blue-light photoreceptor cryptochrome (Cry) is necessary for light-dependent magnetosensitive responses in Drosophila melanogaster. In a binary-choice behavioural assay for magnetosensitivity, wild-type flies show significant naive and trained responses to a magnetic field under full-spectrum light ( approximately 300-700 nm) but do not respond to the field when wavelengths in the Cry-sensitive, ultraviolet-A/blue-light part of the spectrum (<420 nm) are blocked. Notably, Cry-deficient cry(0) and cry(b) flies do not show either naive or trained responses to a magnetic field under full-spectrum light. Moreover, Cry-dependent magnetosensitivity does not require a functioning circadian clock. Our work provides, to our knowledge, the first genetic evidence for a Cry-based magnetosensitive system in any animal.
Collapse
Affiliation(s)
- Robert J Gegear
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
71
|
Rouyer F. Mutant flies lack magnetic sense. Nature 2008; 454:949-51. [DOI: 10.1038/454949a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
72
|
Sathyanarayanan S, Zheng X, Kumar S, Chen CH, Chen D, Hay B, Sehgal A. Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen. Genes Dev 2008; 22:1522-33. [PMID: 18519643 PMCID: PMC2418588 DOI: 10.1101/gad.1652308] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 04/03/2008] [Indexed: 01/08/2023]
Abstract
Circadian clocks regulate many different physiological processes and synchronize these to environmental light:dark cycles. In Drosophila, light is transmitted to the clock by a circadian blue light photoreceptor CRYPTOCHROME (CRY). In response to light, CRY promotes the degradation of the circadian clock protein TIMELESS (TIM) and then is itself degraded. To identify novel genes involved in circadian entrainment, we performed an unbiased genome-wide screen in Drosophila cells using a sensitive and quantitative assay that measures light-induced degradation of CRY. We systematically knocked down the expression of approximately 21,000 genes and identified those that regulate CRY stability. These genes include ubiquitin ligases, signal transduction molecules, and redox molecules. Many of the genes identified in the screen are specific for CRY degradation and do not affect degradation of the TIM protein in response to light, suggesting that, for the most part, these two pathways are distinct. We further validated the effect of three candidate genes on CRY stability in vivo by assaying flies mutant for each of these genes. This work identifies a novel regulatory network involved in light-dependent CRY degradation and demonstrates the power of a genome-wide RNAi approach for understanding circadian biology.
Collapse
Affiliation(s)
- Sriram Sathyanarayanan
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Xiangzhong Zheng
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Shailesh Kumar
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Chun-Hong Chen
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Dechun Chen
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Bruce Hay
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
73
|
Hodge JJ, Stanewsky R. Function of the Shaw potassium channel within the Drosophila circadian clock. PLoS One 2008; 3:e2274. [PMID: 18509535 PMCID: PMC2386553 DOI: 10.1371/journal.pone.0002274] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 04/17/2008] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In addition to the molecular feedback loops, electrical activity has been shown to be important for the function of networks of clock neurons in generating rhythmic behavior. Most studies have used over-expression of foreign channels or pharmacological manipulations that alter membrane excitability. In order to determine the cellular mechanisms that regulate resting membrane potential (RMP) in the native clock of Drosophila we modulated the function of Shaw, a widely expressed neuronal potassium (K(+)) channel known to regulate RMP in Drosophila central neurons. METHODOLOGY/PRINCIPAL FINDINGS We show that Shaw is endogenously expressed in clock neurons. Differential use of clock gene promoters was employed to express a range of transgenes that either increase or decrease Shaw function in different clusters of clock neurons. Under LD conditions, increasing Shaw levels in all clock neurons (LNv, LNd, DN(1), DN(2) and DN(3)), or in subsets of clock neurons (LNd and DNs or DNs alone) increases locomotor activity at night. In free-running conditions these manipulations result in arrhythmic locomotor activity without disruption of the molecular clock. Reducing Shaw in the DN alone caused a dramatic lengthening of the behavioral period. Changing Shaw levels in all clock neurons also disrupts the rhythmic accumulation and levels of Pigment Dispersing Factor (PDF) in the dorsal projections of LNv neurons. However, changing Shaw levels solely in LNv neurons had little effect on locomotor activity or rhythmic accumulation of PDF. CONCLUSIONS/SIGNIFICANCE Based on our results it is likely that Shaw modulates pacemaker and output neuronal electrical activity that controls circadian locomotor behavior by affecting rhythmic release of PDF. The results support an important role of the DN clock neurons in Shaw-mediated control of circadian behavior. In conclusion, we have demonstrated a central role of Shaw for coordinated and rhythmic output from clock neurons.
Collapse
Affiliation(s)
- James J Hodge
- Department of Physiology and Pharmacology, School of Medical Sciences, Bristol University, Bristol, United Kingdom.
| | | |
Collapse
|
74
|
Richier B, Michard-Vanhée C, Lamouroux A, Papin C, Rouyer F. The clockwork orange Drosophila protein functions as both an activator and a repressor of clock gene expression. J Biol Rhythms 2008; 23:103-16. [PMID: 18375860 DOI: 10.1177/0748730407313817] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Drosophila clock relies on transcriptional feedback loops that generate daily oscillations of the clock gene expression at mRNA and protein levels. In the evening, the CLOCK (CLK) and CYCLE (CYC) basic helix-loop-helix (bHLH) PAS-domain transcription factors activate the expression of the period (per) and timeless (tim) genes. Posttranslational modifications delay the accumulation of PER and TIM, which inhibit CLK/CYC activity in the late night. We show here that a null mutant of the clockwork orange (cwo) gene encoding a bHLH orange-domain putative transcription factor displays long-period activity rhythms. cwo loss of function increases cwo mRNA levels but reduces mRNA peak levels of the 4 described CLK/CYC targets, inducing an almost complete loss of their cycling. In addition, the absence of CWO induces alterations of PER and CLK phosphorylation cycles. Our results indicate that, in vivo, CWO modulates clock gene expression through both repressor and activator transcriptional functions.
Collapse
Affiliation(s)
- Benjamin Richier
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
75
|
Fernández MP, Berni J, Ceriani MF. Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biol 2008; 6:e69. [PMID: 18366255 PMCID: PMC2270325 DOI: 10.1371/journal.pbio.0060069] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 02/04/2008] [Indexed: 11/18/2022] Open
Abstract
Clock output pathways are central to convey timing information from the circadian clock to a diversity of physiological systems, ranging from cell-autonomous processes to behavior. While the molecular mechanisms that generate and sustain rhythmicity at the cellular level are well understood, it is unclear how this information is further structured to control specific behavioral outputs. Rhythmic release of pigment dispersing factor (PDF) has been proposed to propagate the time of day information from core pacemaker cells to downstream targets underlying rhythmic locomotor activity. Indeed, such circadian changes in PDF intensity represent the only known mechanism through which the PDF circuit could communicate with its output. Here we describe a novel circadian phenomenon involving extensive remodeling in the axonal terminals of the PDF circuit, which display higher complexity during the day and significantly lower complexity at nighttime, both under daily cycles and constant conditions. In support to its circadian nature, cycling is lost in bona fide clockless mutants. We propose this clock-controlled structural plasticity as a candidate mechanism contributing to the transmission of the information downstream of pacemaker cells. Circadian systems evolved as a mechanism that allows organisms to adapt to the environmental changes in light and dark which occur as a consequence of the rotation of Earth. Because of its unique repertoire of genetic tools, Drosophila is a well established model for the study of the circadian clock. Although the biochemical components underlying the molecular oscillations have been characterized in detail, the mechanisms used by the clock neurons to convey information to the downstream pathways remain elusive. In the fruit fly, the small ventral lateral neurons (LNv) are capable of synchronizing other clock cells relying on a neuropeptide named pigment dispersing factor. In this work we introduce a novel mechanism as a possible candidate for contributing to the transmission of information downstream of the small LNvs, involving clock-controlled remodeling of their axonal morphology. By labeling the entire neuronal membrane and analyzing the complexity of the axonal arbor at different times we showed that there is a circadian variation in the complexity of the axonal arbor. This phenomenon was not observed in flies carrying null mutations in two canonical clock genes, underscoring the dependence of the circadian clock for the structural plasticity of its pacemaker neurons. The circadian clock controls a wide array of biological phenomena ranging from basal transcription to overt behavior. Now, new evidence shows that the clock affects a striking remodeling of the circuit controlling rest-activity cycles inDrosophila.
Collapse
Affiliation(s)
- María Paz Fernández
- Laboratorio de Genética del Comportamiento, Instituto Leloir, Instituto de Investigaciones Bioquímicas-Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Buenos Aires, Argentina
| | - Jimena Berni
- Laboratorio de Genética del Comportamiento, Instituto Leloir, Instituto de Investigaciones Bioquímicas-Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Buenos Aires, Argentina
| | - María Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Instituto Leloir, Instituto de Investigaciones Bioquímicas-Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Buenos Aires, Argentina
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
76
|
Zhu H, Sauman I, Yuan Q, Casselman A, Emery-Le M, Emery P, Reppert SM. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol 2008; 6:e4. [PMID: 18184036 PMCID: PMC2174970 DOI: 10.1371/journal.pbio.0060004] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 11/19/2007] [Indexed: 11/19/2022] Open
Abstract
The circadian clock plays a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, a process that is important for successful navigation. We therefore evaluated the monarch clockwork by focusing on the functions of a Drosophila-like cryptochrome (cry), designated cry1, and a vertebrate-like cry, designated cry2, that are both expressed in the butterfly and by placing these genes in the context of other relevant clock genes in vivo. We found that similar temporal patterns of clock gene expression and protein levels occur in the heads, as occur in DpN1 cells, of a monarch cell line that contains a light-driven clock. CRY1 mediates TIMELESS degradation by light in DpN1 cells, and a light-induced TIMELESS decrease occurs in putative clock cells in the pars lateralis (PL) in the brain. Moreover, monarch cry1 transgenes partially rescue both biochemical and behavioral light-input defects in cry(b) mutant Drosophila. CRY2 is the major transcriptional repressor of CLOCK:CYCLE-mediated transcription in DpN1 cells, and endogenous CRY2 potently inhibits transcription without involvement of PERIOD. CRY2 is co-localized with clock proteins in the PL, and there it translocates to the nucleus at the appropriate time for transcriptional repression. We also discovered CRY2-positive neural projections that oscillate in the central complex. The results define a novel, CRY-centric clock mechanism in the monarch in which CRY1 likely functions as a blue-light photoreceptor for entrainment, whereas CRY2 functions within the clockwork as the transcriptional repressor of a negative transcriptional feedback loop. Our data further suggest that CRY2 may have a dual role in the monarch butterfly's brain-as a core clock element and as an output that regulates circadian activity in the central complex, the likely site of the sun compass.
Collapse
Affiliation(s)
- Haisun Zhu
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ivo Sauman
- Biology Center, Institute of Entomology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Quan Yuan
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Amy Casselman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Myai Emery-Le
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
77
|
Lee JE, Edery I. Circadian regulation in the ability of Drosophila to combat pathogenic infections. Curr Biol 2008; 18:195-9. [PMID: 18261909 PMCID: PMC2279094 DOI: 10.1016/j.cub.2007.12.054] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 12/19/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
Abstract
We sought to determine if the innate immune response is under circadian regulation and whether this impacts overall health status. To this end, we used infection of Drosophila with the human opportunistic pathogenic bacteria Pseudomonas aeruginosa as our model system [1]. We show that the survival rates of wild-type flies vary as a function of when, during the day, they are infected, peaking in the middle of the night. Although this rhythm is abolished in clock mutant flies, those with an inactive period gene are highly susceptible to infection, whereas mutants with impairment in other core clock genes exhibit enhanced survival. After an initial phase of strong suppression, the kinetics of bacterial growth correlate highly with time of day and clock mutant effects on survival. Expression profiling revealed that nighttime infection leads to a clock-regulated transient burst in the expression of a limited number of innate immunity genes. Circadian modulation of survival also was observed with another pathogen, Staphylococcus aureus. Our findings suggest that medical intervention strategies incorporating chronobiological considerations could enhance the innate immune response, boosting the efficacy of combating pathogenic infections.
Collapse
Affiliation(s)
- Jung-Eun Lee
- Graduate Program in Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
78
|
Leloup JC, Goldbeter A. Modeling the circadian clock: From molecular mechanism to physiological disorders. Bioessays 2008; 30:590-600. [DOI: 10.1002/bies.20762] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
79
|
Yoshii T, Todo T, Wülbeck C, Stanewsky R, Helfrich-Förster C. Cryptochrome is present in the compound eyes and a subset ofDrosophila's clock neurons. J Comp Neurol 2008; 508:952-66. [DOI: 10.1002/cne.21702] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
80
|
Abstract
Although circadian oscillation in dynamics of intracellular Ca2+ signals has been observed in both plant and animal cells, it has remained unknown whether Ca2+ signals play an in vivo role in cellular oscillation itself. To address this question, we modified the dynamics of intracellular Ca2+ signals in circadian pacemaker neurons in vivo by targeted expression of varying doses of a Ca2+ buffer protein in transgenic Drosophila melanogaster. Intracellular Ca2+ buffering in pacemaker neurons results in dose-dependent slowing of free-running behavioral rhythms, with average period >3 h longer than control at the highest dose. The rhythmic nuclear accumulation of a transcription factor known to be essential for cellular circadian oscillation is also slowed. We also determined that Ca2+ buffering interacts synergistically with genetic manipulations that interfere with either calmodulin or calmodulin-dependent protein kinase II function. These results suggest a role for intracellular Ca2+ signaling in regulating intrinsic cellular oscillation in vivo.
Collapse
|
81
|
Kurata H, Tanaka T, Ohnishi F. Mathematical identification of critical reactions in the interlocked feedback model. PLoS One 2007; 2:e1103. [PMID: 17971866 PMCID: PMC2040204 DOI: 10.1371/journal.pone.0001103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 10/12/2007] [Indexed: 11/28/2022] Open
Abstract
Dynamic simulations are necessary for understanding the mechanism of how biochemical networks generate robust properties to environmental stresses or genetic changes. Sensitivity analysis allows the linking of robustness to network structure. However, it yields only local properties regarding a particular choice of plausible parameter values, because it is hard to know the exact parameter values in vivo. Global and firm results are needed that do not depend on particular parameter values. We propose mathematical analysis for robustness (MAR) that consists of the novel evolutionary search that explores all possible solution vectors of kinetic parameters satisfying the target dynamics and robustness analysis. New criteria, parameter spectrum width and the variability of solution vectors for parameters, are introduced to determine whether the search is exhaustive. In robustness analysis, in addition to single parameter sensitivity analysis, robustness to multiple parameter perturbation is defined. Combining the sensitivity analysis and the robustness analysis to multiple parameter perturbation enables identifying critical reactions. Use of MAR clearly identified the critical reactions responsible for determining the circadian cycle in the Drosophila interlocked circadian clock model. In highly robust models, while the parameter vectors are greatly varied, the critical reactions with a high sensitivity are uniquely determined. Interestingly, not only the per-tim loop but also the dclk-cyc loop strongly affect the period of PER, although the dclk-cyc loop hardly changes its amplitude and it is not potentially influential. In conclusion, MAR is a powerful method to explore wide parameter space without human-biases and to link a robust property to network architectures without knowing the exact parameter values. MAR identifies the reactions critically responsible for determining the period and amplitude in the interlocked feedback model and suggests that the circadian clock intensively evolves or designs the kinetic parameters so that it creates a highly robust cycle.
Collapse
Affiliation(s)
- Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan.
| | | | | |
Collapse
|
82
|
Abstract
Neurospora crassa has been a model organism for the study of circadian clocks for the past four decades. Among natural accessions of Neurospora crassa, there is significant variation in clock phenotypes. In an attempt to investigate natural allelic variants contributing to quantitative variation, we used a quantitative trait loci mapping approach to analyze three independent mapping populations whose progenitors were collected from geographically isolated locations. Two circadian clock phenotypes, free-running period and entrained phase, were evaluated in the 188 F(1) progeny of each mapping population. To identify the clock QTL, we applied two QTL mapping analyses: composite interval mapping (CIM) and Bayesian multiple QTL analysis (BMQ). When controlling false positive rates < or =0.05, BMQ appears to be the more sensitive of the two approaches. BMQ confirmed most of the QTL from CIM (18 QTL) and identified 23 additional QTL. While 13 QTL colocalize with previously identified clock genes, we identified 30 QTL that were not linked with any previously characterized clock genes. These are candidate regions where clock genes may be located and are expected to lead to new insights in clock regulation.
Collapse
|
83
|
Lamont EW, James FO, Boivin DB, Cermakian N. From circadian clock gene expression to pathologies. Sleep Med 2007; 8:547-56. [PMID: 17395534 DOI: 10.1016/j.sleep.2006.11.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 10/23/2006] [Accepted: 11/03/2006] [Indexed: 11/28/2022]
Abstract
In most organisms, circadian rhythms are generated by a molecular clockwork involving so-called clock genes. These circadian clock genes participate in regulatory feedback loops, in which proteins regulate their own expression. The outcome is that ribonucleic acids (RNAs) and proteins produced from many of these genes oscillate with a circadian rhythm. Here, we describe the regulation of clock genes and proteins, as deduced from work in rodents. Furthermore, we summarize the work done on human clock genes and their expression in peripheral tissues. Importantly, the research reviewed here points to an implication of clock gene defects in circadian rhythm disorders, including the advanced and delayed sleep phase disorders. Moreover, circadian clock gene dysfunction is likely to be of importance in the development of cancer as well as various other diseases.
Collapse
|
84
|
Kuczenski RS, Hong KC, García-Ojalvo J, Lee KH. PERIOD-TIMELESS interval timer may require an additional feedback loop. PLoS Comput Biol 2007; 3:e154. [PMID: 17676950 PMCID: PMC1937016 DOI: 10.1371/journal.pcbi.0030154] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 06/18/2007] [Indexed: 12/16/2022] Open
Abstract
In this study we present a detailed, mechanism-based mathematical framework of Drosophila circadian rhythms. This framework facilitates a more systematic approach to understanding circadian rhythms using a comprehensive representation of the network underlying this phenomenon. The possible mechanisms underlying the cytoplasmic “interval timer” created by PERIOD–TIMELESS association are investigated, suggesting a novel positive feedback regulatory structure. Incorporation of this additional feedback into a full circadian model produced results that are consistent with previous experimental observations of wild-type protein profiles and numerous mutant phenotypes. The ability of an organism to adapt to daily changes in the environment, via a circadian clock, is an inherently interesting phenomenon recently connected to several human health issues. Decades of experiments on one of the smallest model animals, the fruit fly Drosophila, has illustrated significant similarities with the mammal circadian system. Within Drosophila, the PERIOD and TIMELESS proteins are central to controlling this rhythmicity and were recently shown to have a rapid and stable association creating an “interval” timer in the cell's cytoplasm. This interval timer creates the necessary delay between the expression and activity of these genes, and is directly opposed to the previous hypothesis of a delay created by slow association. We use several mathematical models to investigate the unknown factors controlling this timer. Using a novel positive feedback loop, we construct a circadian model consistent with the interval timer and many wild-type and mutant experimental observations. Our results suggest several novel genes and interactions to be tested experimentally.
Collapse
Affiliation(s)
- Robert S Kuczenski
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Kevin C Hong
- Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Jordi García-Ojalvo
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Kelvin H Lee
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
85
|
Mehnert KI, Beramendi A, Elghazali F, Negro P, Kyriacou CP, Cantera R. Circadian changes in Drosophila motor terminals. Dev Neurobiol 2007; 67:415-21. [PMID: 17443798 DOI: 10.1002/dneu.20332] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In Drosophila melanogaster, as in most other higher organisms, a circadian clock controls the rhythmic distribution of rest/sleep and locomotor activity. Here we report that the morphology of Drosophila flight neuromuscular terminals changes between day and night, with a rhythm in synaptic bouton size that continues in constant darkness, but is abolished during aging. Furthermore, arrhythmic mutations in the clock genes timeless and period also disrupt this circadian rhythm. Finally, these clock mutants also have an opposing effect on the nonrhythmic phenotype of neuronal branching, with tim mutants showing a dramatic hyperbranching morphology and per mutants having fewer branches than wild-type flies. These unexpected results reveal further circadian as well as nonclock related pleiotropic effects for these classic behavioral mutants.
Collapse
|
86
|
Renier C, Faraco JH, Bourgin P, Motley T, Bonaventure P, Rosa F, Mignot E. Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenet Genomics 2007; 17:237-53. [PMID: 17496723 DOI: 10.1097/fpc.0b013e3280119d62] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The zebrafish is an ideally suited vertebrate animal model for large-scale genetic screens and is emerging as a model organism in pharmacological and behavioral research. We investigated the effects of sedative hypnotics commonly used in humans on zebrafish locomotor activity and identified the corresponding genomic and receptor binding targets. METHODS We studied radioreceptor binding and behavioral responses to compounds with known sedative hypnotic properties representing multiple pharmacological classes. These included GABAergic hypnotics such as benzodiazepines, barbiturates, and baclofen; alpha-2 adrenergic agonists; and histaminergic H1 antagonists. An automated system was used to quantify behavioral effects. Zebrafish homologs of histamine receptor H1, gamma-amino-n-butyric acid type A (alpha-subunit), and gamma-amino-n-butyric acid type B (1 and 2) receptor genes were identified through translating queries of the zebrafish Zv4 database with human receptor protein sequences. A pilot screen of 154 N-ethyl-N-nitroso-urea-mutagenized F2 families was conducted with pentobarbital, flurazepam and mepyramine. RESULTS Radioreceptor binding studies revealed high affinity binding sites for known gamma-amino-n-butyric acid type A, gamma-amino-n-butyric acid type B, and histaminergic ligands. Drug immersion of 5-7-day-old larvae reduced mobility and, in some cases, produced a complete state of unresponsive immobility similar to anesthesia. These effects were dose-dependent and rapidly reversible in water. As established in mammals, (R)-baclofen was more active behaviorally and had higher affinity in binding studies when compared with (S)-baclofen. In this model, (S)-baclofen only partially reduced activity at high dose and blocked (R)-baclofen behavioral hypnotic effects. Genomic sequences with high similarity to the corresponding pharmacological targets were identified, but no mutants were found in the pilot screen. CONCLUSIONS These results demonstrate conservation of gene, protein and function for many established sedative hypnotic pathways. The results indicate feasibility of conducting large-scale pharmacogenomic screens to isolate novel proteins modulating susceptibility to hypnotic compounds in a vertebrate system.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Baclofen/chemistry
- Baclofen/pharmacology
- Behavior, Animal/drug effects
- Binding Sites/genetics
- Conserved Sequence
- Humans
- Hypnotics and Sedatives/chemistry
- Hypnotics and Sedatives/pharmacology
- Larva/drug effects
- Larva/metabolism
- Larva/physiology
- Molecular Sequence Data
- Motor Activity/drug effects
- Motor Activity/genetics
- Pharmacogenetics
- Phylogeny
- Radioligand Assay
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, GABA-B/drug effects
- Receptors, GABA-B/genetics
- Receptors, GABA-B/metabolism
- Receptors, Histamine H1/drug effects
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Sequence Homology, Amino Acid
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish/physiology
Collapse
Affiliation(s)
- Corinne Renier
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
The GAL4/UAS system has been extensively employed in Drosophila to control gene expression in defined spatial patterns. More recently this system has been successfully applied to express genes involved in neurodegeneration to model various diseases in the fruit fly. We used transgenic lines expressing different levels of GAL4 in a particular subset of neurons involved in the control of rhythmic behaviour, so that its impact on neuronal physiology would result in altered locomotor activity, which could be readily assessed. We observed a striking correlation between gal4 dosage and behavioural defects associated with apoptotic neuronal loss in the specific GAL4-expressing neurons. Increased gal4 dosage correlated with accumulation of insoluble GAL4, suggesting that the cascade of events leading to apoptosis might be triggered by protein deposits of either GAL4 or protein intermediates. Behavioural defects were rescued by expression of hsp70, a classic chaperone that also interferes with cell death pathways. In agreement with the latter, the viral caspase inhibitor p35 also rescued GAL4-induced behavioural defects. Our observations demonstrate the intrinsic effects of GAL4 deregulation on neuronal viability and suggest that an excess of GAL4 might enhance neuronal deficits observed in models of neurodegeneration.
Collapse
Affiliation(s)
- Carolina Rezával
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | | | | |
Collapse
|
88
|
Ding Z, Millar AJ, Davis AM, Davis SJ. TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock. THE PLANT CELL 2007; 19:1522-36. [PMID: 17496120 PMCID: PMC1913727 DOI: 10.1105/tpc.106.047241] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The plant circadian clock is required for daily anticipation of the diurnal environment. Mutation in Arabidopsis thaliana TIME FOR COFFEE (TIC) affects free-running circadian rhythms. To investigate how TIC functions within the circadian system, we introduced markers for the evening and morning phases of the clock into tic and measured evident rhythms. The phases of evening clock genes in tic were all advanced under light/dark cycles without major expression level defects. With regard to morning-acting genes, we unexpectedly found that TIC has a closer relationship with LATE ELONGATED HYPOCOTYL (LHY) than with CIRCADIAN CLOCK ASSOCIATED1, as tic has a specific LHY expression level defect. Epistasis analysis demonstrated that there were no clear rhythms in double mutants of tic and evening-acting clock genes, although double mutants of tic and morning-acting genes exhibited a similar free-running period as tic. We isolated TIC and found that its mRNA expression is continuously present over the diurnal cycle, and the encoded protein appears to be strictly localized to the nucleus. Neither its abundance nor its cellular distribution was found to be clock regulated. We suggest that TIC encodes a nucleus-acting clock regulator working close to the central oscillator.
Collapse
Affiliation(s)
- Zhaojun Ding
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne D-50829, Germany
| | | | | | | |
Collapse
|
89
|
Lim C, Lee J, Choi C, Kim J, Doh E, Choe J. Functional role of CREB-binding protein in the circadian clock system of Drosophila melanogaster. Mol Cell Biol 2007; 27:4876-90. [PMID: 17452464 PMCID: PMC1951493 DOI: 10.1128/mcb.02155-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhythmic histone acetylation underlies the oscillating expression of clock genes in the mammalian circadian clock system. Cellular factors that contain histone acetyltransferase and histone deacetylase activity have been implicated in these processes by direct interactions with clock genes, but their functional relevance remains to be assessed by use of appropriate animal models. Here, using transgenic fly models, we show that CREB-binding protein (CBP) participates in the transcriptional regulation of the Drosophila CLOCK/CYCLE (dCLK/CYC) heterodimer. CBP knockdown in pigment dispersing factor-expressing cells lengthens the period of adult locomotor rhythm with the prolonged expression of period and timeless genes, while CBP overexpression in timeless-expressing cells causes arrhythmic circadian behaviors with the impaired expression of these dCLK/CYC-induced clock genes. In contrast to the mammalian circadian clock system, CBP overexpression attenuates the transcriptional activity of the dCLK/CYC heterodimer in cultured cells, possibly by targeting the PER-ARNT-SIM domain of dCLK. Our data suggest that the Drosophila circadian clock system has evolved a distinct mechanism to tightly regulate the robust transcriptional potency of the dCLK/CYC heterodimer.
Collapse
Affiliation(s)
- Chunghun Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | | | | | | | | | | |
Collapse
|
90
|
Affiliation(s)
- Wangjie Yu
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, College Station, TX 77843-3258, USA
| | | |
Collapse
|
91
|
Veleri S, Rieger D, Helfrich-Förster C, Stanewsky R. Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. J Biol Rhythms 2007; 22:29-42. [PMID: 17229923 DOI: 10.1177/0748730406295754] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extraretinal photoreception is a common input route for light resetting signals into the circadian clock of animals. In Drosophila melanogaster, substantial circadian light inputs are mediated via the blue light photoreceptor CRYPTOCHROME (CRY) expressed in clock neurons within the brain. The current model predicts that, upon light activation, CRY interacts with the clock proteins TIMELESS (TIM) and PERIOD (PER), thereby inducing their degradation, which in turn leads to a resetting of the molecular oscillations within the circadian clock. Here the authors investigate the function of another putative extraretinal circadian photoreceptor, the Hofbauer-Buchner eyelet (H-B eyelet), located between the retina and the medulla in the fly optic lobes. Blocking synaptic transmission between the H-B eyelet and its potential target cells, the ventral circadian pacemaker neurons, impaired the flies' ability to resynchronize their behavior under jet-lag conditions in the context of nonfunctional retinal photoreception and a mutation in the CRY-encoding gene. The same manipulation also affected synchronized expression of the clock proteins TIM and PER in different subsets of the clock neurons. This shows that synaptic communication between the H-B eyelet and clock neurons contributes to synchronization of molecular and behavioral rhythms and confirms that the H-B eyelet functions as a circadian photoreceptor. Blockage of synaptic transmission from the H-B eyelet in the presence of functional compound eyes and the absence of CRY also results in increased numbers of flies that are unable to synchronize to extreme photoperiods, supplying independent proof for the role of the H-B eyelet as a circadian photoreceptor.
Collapse
|
92
|
Rush BL, Murad A, Emery P, Giebultowicz JM. Ectopic CRYPTOCHROME renders TIM light sensitive in the Drosophila ovary. J Biol Rhythms 2007; 21:272-8. [PMID: 16864647 DOI: 10.1177/0748730406290416] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The period (per) and timeless (tim) genes play a central role in the Drosophila circadian clock mechanism. PERIOD (PER) and TIMELESS (TIM) proteins periodically accumulate in the nuclei of pace-making cells in the fly brain and many cells in peripheral organs. In contrast, TIM and PER in the ovarian follicle cells remain cytoplasmic and do not show daily oscillations in their levels. Moreover, TIM is not light sensitive in the ovary, while it is highly sensitive to this input in circadian tissues. The mechanism underlying this intriguing difference is addressed here. It is demonstrated that the circadian photoreceptor CRYPTOCHROME (CRY) is not expressed in ovarian tissues. Remarkably, ectopic cry expression in the ovary is sufficient to cause degradation of TIM after exposure to light. In addition, PER levels are reduced in response to light when CRY is present, as observed in circadian cells. Hence, CRY is the key component of the light input pathway missing in the ovary. However, the factors regulating PER and TIM levels downstream of light/cry action appear to be present in this non-circadian organ.
Collapse
Affiliation(s)
- Brandy L Rush
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
93
|
Reppert SM. The ancestral circadian clock of monarch butterflies: role in time-compensated sun compass orientation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:113-118. [PMID: 18419268 DOI: 10.1101/sqb.2007.72.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The circadian clock has a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, which contributes to navigation to the overwintering grounds. The location of circadian clock cells in monarch brain has been identified in the dorsolateral protocerebrum (pars lateralis); these cells express PERIOD, TIMELESS, and a Drosophila-like cryptochrome designated CRY1. Monarch butterflies, like all other nondrosophilid insects examined so far, express a second cry gene (designated insect CRY2) that encodes a vertebrate-like CRY that is also expressed in pars lateralis. An ancestral circadian clock mechanism has been defined in monarchs, in which CRY1 functions as a blue light photoreceptor for photic entrainment, whereas CRY2 functionswithin the clockwork as themajor transcriptional repressor of an intracellular negative transcriptional feedback loop. A CRY1-staining neural pathway has been identified that may connect the circadian (navigational) clock to polarized light input important for sun compass navigation, and a CRY2-positive neural pathway has been discovered that may communicate circadian information directly from the circadian clock to the central complex, the likely site of the sun compass. The monarch butterfly may thus use the CRY proteins as components of the circadian mechanism and also as output molecules that connect the clock to various aspects of the sun compass apparatus.
Collapse
Affiliation(s)
- S M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
94
|
Hall JC, Chang DC, Dolezelova E. Principles and problems revolving around rhythm-related genetic variants. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:215-232. [PMID: 18419279 DOI: 10.1101/sqb.2007.72.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Much of what is known about the regulation of circadian rhythms has stemmed from the induction, recognition, or manufacture of genetic variants. Such investigations have been especially salient in chronobiological analyses of Drosophila. Many starting points for elucidation of rhythmic processes operating in this insect entailed the isolation of mutants or the design of engineered gene modifications. Various features of the principles and practices associated with the genetic approach toward understanding clock functions, and chronobiologically related ones, are discussed from perspectives that are largely genetic as such, although intertwined with certain neurogenetic and molecular-genetic concerns when appropriate. Key themes in this treatment connect with the power and problems associated with multiply mutant forms of rhythm-related genes, with the opportunistic or problematical aspects of multigenic variants that are in play (sometimes surprisingly), and with a question as to how forceful chronogenetic inferences have been in terms of elucidating the mechanisms of circadian pacemaking.
Collapse
Affiliation(s)
- J C Hall
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
95
|
Blau J, Blanchard F, Collins B, Dahdal D, Knowles A, Mizrak D, Ruben M. What is there left to learn about the Drosophila clock? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:243-50. [PMID: 18419281 PMCID: PMC2637790 DOI: 10.1101/sqb.2007.72.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Circadian rhythms offer probably the best understanding of how genes control behavior, and much of this understanding has come from studies in Drosophila. More recently, genetic manipulation of clock neurons in Drosophila has helped identify how daily patterns of activity are programmed by different clock neuron groups. Here, we review some of the more recent findings on the fly molecular clock and ask what more the fly model can offer to circadian biologists.
Collapse
Affiliation(s)
- J Blau
- Department of Biology, New York University, New York, New York 10003, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Period2 (Per2) is an essential component of the mammalian clock mechanism and robust circadian expression of Per2 is essential for the maintenance of circadian rhythms. Although recent studies have shown that the circadian E2 enhancer (a non-canonical E-box) accounts for most of the circadian transcriptional drive of mPer2, little is known about the other cis-elements of mPer2 oscillatory transcription. Here, we examined the contribution of E4BP4 to Per2 mRNA oscillation in the cell-autonomous clock. Knockdown experiments of E4BP4 in both Northern blots and real-time luciferase assays suggested that endogenous E4BP4 negatively regulates Per2 mRNA oscillation. Sequence analysis revealed two putative E4BP4-binding sites (termed A-site and B-site) on mammalian Per2 promoter regions. Luciferase assays with mutant constructs showed that a novel E4BP4-binding site (B-site) is responsible for E4BP4-mediated transcriptional repression of Per2. Furthermore, chromatin immunoprecipitation assays in vivo showed that the peak of E4BP4 binding to the B-site on the Per2 promoter almost matched the trough of Per2 mRNA expression. Importantly, real-time luciferase assays showed that the B-site in addition to the E2 enhancer is required for robust circadian expression of Per2 in the cell-autonomous clock. These findings indicated that E4BP4 is required for the negative regulation of mammalian circadian clocks.
Collapse
Affiliation(s)
- Tomoya Ohno
- Clock Cell Biology, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba 305-8566, Japan
- Graduate School of Life and Environmental Sciences, University of TsukubaTsukuba 305-8576, Japan
| | - Yoshiaki Onishi
- Clock Cell Biology, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba 305-8566, Japan
| | - Norio Ishida
- Clock Cell Biology, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba 305-8566, Japan
- Graduate School of Life and Environmental Sciences, University of TsukubaTsukuba 305-8576, Japan
- To whom correspondence should be addressed at Clock Cell Biology, National Institute of Advanced Industrial Science and Technology, Central 6-5, 1-1-1 Higashi, Tsukuba 305-8566, Japan. Tel: +81 298 61 6053; Fax: +81 298 61 9499;
| |
Collapse
|
97
|
Nässel DR, Homberg U. Neuropeptides in interneurons of the insect brain. Cell Tissue Res 2006; 326:1-24. [PMID: 16761145 DOI: 10.1007/s00441-006-0210-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 03/28/2006] [Indexed: 10/24/2022]
Abstract
A large number of neuropeptides has been identified in the brain of insects. At least 35 neuropeptide precursor genes have been characterized in Drosophila melanogaster, some of which encode multiple peptides. Additional neuropeptides have been found in other insect species. With a few notable exceptions, most of the neuropeptides have been demonstrated in brain interneurons of various types. The products of each neuropeptide precursor seem to be co-expressed, and each precursor displays a unique neuronal distribution pattern. Commonly, each type of neuropeptide is localized to a relatively small number of neurons. We describe the distribution of neuropeptides in brain interneurons of a few well-studied insect species. Emphasis has been placed upon interneurons innervating specific brain areas, such as the optic lobes, accessory medulla, antennal lobes, central body, and mushroom bodies. The functional roles of some neuropeptides and their receptors have been investigated in D. melanogaster by molecular genetics techniques. In addition, behavioral and electrophysiological assays have addressed neuropeptide functions in the cockroach Leucophaea maderae. Thus, the involvement of brain neuropeptides in circadian clock function, olfactory processing, various aspects of feeding behavior, and learning and memory are highlighted in this review. Studies so far indicate that neuropeptides can play a multitude of functional roles in the brain and that even single neuropeptides are likely to be multifunctional.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Sweden.
| | | |
Collapse
|
98
|
Zeilinger MN, Farré EM, Taylor SR, Kay SA, Doyle FJ. A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9. Mol Syst Biol 2006; 2:58. [PMID: 17102803 PMCID: PMC1682023 DOI: 10.1038/msb4100101] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 08/17/2006] [Indexed: 02/05/2023] Open
Abstract
We developed a mathematical model of the Arabidopsis circadian clock, including PRR7 and PRR9, which is able to predict several single, double and triple mutant phenotypes. Sensitivity Analysis was used to identify the properties and time sensing mechanisms of model structures. PRR7 and CCA1/LHY were identified as weak points of the mathematical model indicating where more experimental data is needed for further model development. Detailed dynamical studies showed that the timing of an evening light sensing element is essential for day length responsiveness
In recent years, molecular genetic techniques have revealed a complex network of components in the Arabidopsis circadian clock. Mathematical models allow for a detailed study of the dynamics and architecture of such complex gene networks leading to a better understanding of the genetic interactions. It is important to maintain a constant iteration with experimentation, to include novel components as they are discovered and use the updated model to design new experiments. This study develops a framework to introduce new components into the mathematical model of the Arabidopsis circadian clock accelerating the iterative model development process and gaining insight into the system's properties. We used the interlocked feedback loop model published in Locke et al (2005) as the base model. In Arabidopsis, the first suggested regulatory loop involves the morning expressed transcription factors CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), and the evening expressed pseudo-response regulator TIMING OF CAB EXPRESSION (TOC1). The hypothetical component X had been introduced to realize a longer delay between gene expression of CCA1/LHY and TOC1. The introduction of Y was motivated by the need for a mechanism to reproduce the dampening short period rhythms of the cca1/lhy double mutant and to include an additional light input at the end of the day. In this study, the new components pseudo-response regulators PRR7 and PRR9 were added in negative feedback loops based on the biological hypothesis that they are activated by LHY and in turn repress LHY transcription (Farré et al, 2005; Figure 1). We present three iterations steps of model development (Figure 1A–C). A wide range of tools was used to establish and analyze new model structures. One of the challenges facing mathematical modeling of biological processes is parameter identification; they are notoriously difficult to determine experimentally. We established an optimization procedure based on an evolutionary strategy with a cost function mainly derived from wild-type characteristics. This ensured that the model was not restricted by a specific set of parameters and enabled us to use a large set of biological mutant information to assess the predictive capability of the model structure. Models were evaluated by means of an extended phenotype catalogue, allowing for an easy and fair comparison of the structures. We also carried out detailed simulation analysis of component interactions to identify weak points in the structure and suggest further modifications. Finally, we applied sensitivity analysis in a novel manner, using it to direct the model development. Sensitivity analysis provides quantitative measures of robustness; the two measures in this study were the traces of component concentrations over time (classical state sensitivities) and phase behavior (measured by the phase response curve). Three major results emerged from the model development process. First, the iteration process helped us to learn about general characteristics of the system. We observed that the timing of Y expression is critical for evening light entrainment, which enables the system to respond to changes in day length. This is important for our understanding of the mechanism of light input to the clock and will add in the identification of biological candidates for this function. In addition, our results suggest that a detailed description of the mechanisms of genetic interactions is important for the systems behavior. We observed that the introduction of an experimentally based precise light regulation mechanism on PRR9 expression had a significant effect on the systems behavior. Second, the final model structure (Figure 1C) was capable of predicting a wide range of mutant phenotypes, such as a reduction of TOC1 expression by RNAi (toc1RNAi), mutations in PRR7 and PRR9 and the novel mutant combinations prr9toc1RNAi and prr7prr9toc1RNAi. However, it was unable to predict the mutations in CCA1 and LHY. Finally, sensitivity analysis identified the weak points of the system. The developed model structure was heavily based on the TOC1/Y feedback loop. This could explain the model's failure to predict the cca1lhy double mutant phenotype. More detailed information on the regulation of CCA1 and LHY expression will be important to achieve the right balance between the different regulatory loops in the mathematical model. This is in accordance with genetic studies that have identified several genes involved in the regulation of LHY and CCA1 expression. The identification of their mechanism of action will be necessary for the next model development. In plants, as in animals, the core mechanism to retain rhythmic gene expression relies on the interaction of multiple feedback loops. In recent years, molecular genetic techniques have revealed a complex network of clock components in Arabidopsis. To gain insight into the dynamics of these interactions, new components need to be integrated into the mathematical model of the plant clock. Our approach accelerates the iterative process of model identification, to incorporate new components, and to systematically test different proposed structural hypotheses. Recent studies indicate that the pseudo-response regulators PRR7 and PRR9 play a key role in the core clock of Arabidopsis. We incorporate PRR7 and PRR9 into an existing model involving the transcription factors TIMING OF CAB (TOC1), LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED (CCA1). We propose candidate models based on experimental hypotheses and identify the computational models with the application of an optimization routine. Validation is accomplished through systematic analysis of various mutant phenotypes. We introduce and apply sensitivity analysis as a novel tool for analyzing and distinguishing the characteristics of proposed architectures, which also allows for further validation of the hypothesized structures.
Collapse
Affiliation(s)
- Melanie N Zeilinger
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
| | - Eva M Farré
- Department of Biochemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Stephanie R Taylor
- Department of Computer Science, University of California, Santa Barbara, CA, USA
| | - Steve A Kay
- Department of Biochemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Francis J Doyle
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
- Department of Chemical Engineering, Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, CA 93106-5080, USA. Tel.: +1 805 893 8133; Fax: +1 805 893 4731;
| |
Collapse
|
99
|
Rubin EB, Shemesh Y, Cohen M, Elgavish S, Robertson HM, Bloch G. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genes Dev 2006; 16:1352-65. [PMID: 17065608 PMCID: PMC1626637 DOI: 10.1101/gr.5094806] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 05/18/2006] [Indexed: 12/30/2022]
Abstract
The circadian clock of the honey bee is implicated in ecologically relevant complex behaviors. These include time sensing, time-compensated sun-compass navigation, and social behaviors such as coordination of activity, dance language communication, and division of labor. The molecular underpinnings of the bee circadian clock are largely unknown. We show that clock gene structure and expression pattern in the honey bee are more similar to the mouse than to Drosophila. The honey bee genome does not encode an ortholog of Drosophila Timeless (Tim1), has only the mammalian type Cryptochrome (Cry-m), and has a single ortholog for each of the other canonical "clock genes." In foragers that typically have strong circadian rhythms, brain mRNA levels of amCry, but not amTim as in Drosophila, consistently oscillate with strong amplitude and a phase similar to amPeriod (amPer) under both light-dark and constant darkness illumination regimes. In contrast to Drosophila, the honey bee amCYC protein contains a transactivation domain and its brain transcript levels oscillate at virtually an anti-phase to amPer, as it does in the mouse. Phylogenetic analyses indicate that the basal insect lineage had both the mammalian and Drosophila types of Cry and Tim. Our results suggest that during evolution, Drosophila diverged from the ancestral insect clock and specialized in using a set of clock gene orthologs that was lost by both mammals and bees, which in turn converged and specialized in the other set. These findings illustrate a previously unappreciated diversity of insect clockwork and raise critical questions concerning the evolution and functional significance of species-specific variation in molecular clockwork.
Collapse
Affiliation(s)
- Elad B. Rubin
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yair Shemesh
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mira Cohen
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sharona Elgavish
- The Bioinformatics Unit, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Guy Bloch
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
100
|
Rhythmic expression of the cycle gene in a hematophagous insect vector. BMC Mol Biol 2006; 7:38. [PMID: 17069657 PMCID: PMC1636064 DOI: 10.1186/1471-2199-7-38] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 10/27/2006] [Indexed: 11/18/2022] Open
Abstract
Background A large number of organisms have internal circadian clocks that enable them to adapt to the cyclic changes of the external environment. In the model organism Drosophila melanogaster, feedback loops of transcription and translation are believed to be crucial for the maintenance of the central pacemaker. In this mechanism the cycle (or bmal1) gene, which is constitutively expressed, plays a critical role activating the expression of genes that will later inhibit their own activity, thereby closing the loop. Unlike Drosophila, the molecular clock of insect vectors is poorly understood, despite the importance of circadian behavior in the dynamic of disease transmission. Results Here we describe the sequence, genomic organization and circadian expression of cycle in the crepuscular/nocturnal hematophagous sandfly Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas. Deduced amino acid sequence revealed that sandfly cycle has a C-terminal transactivation domain highly conserved among eukaryotes but absent in D. melanogaster. Moreover, an alternative form of the transcript was also identified. Interestingly, while cycle expression in Drosophila and other Diptera is constitutive, in sandflies it is rhythmic in males and female heads but constitutive in the female body. Blood-feeding, which causes down-regulation of period and timeless in this species, does not affect cycle expression. Conclusion Sequence and expression analysis of cycle in L. longipalpis show interesting differences compared to Drosophila suggesting that hematophagous vector species might present interesting new models to study the molecular control of insect circadian clocks.
Collapse
|