51
|
Monteiro F, Nishimura MT. Structural, Functional, and Genomic Diversity of Plant NLR Proteins: An Evolved Resource for Rational Engineering of Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:243-267. [PMID: 29949721 DOI: 10.1146/annurev-phyto-080417-045817] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants employ a diverse intracellular system of NLR (nucleotide binding-leucine-rich repeat) innate immune receptors to detect pathogens of all types. These receptors represent valuable agronomic traits that plant breeders rely on to maximize yield in the face of devastating pathogens. Despite their importance, the mechanistic underpinnings of NLR-based disease resistance remain obscure. The rapidly increasing numbers of plant genomes are revealing a diverse array of NLR-type immune receptors. In parallel, mechanistic studies are describing diverse functions for NLR immune receptors. In this review, we intend to broadly describe how the structural, functional, and genomic diversity of plant immune receptors can provide a valuable resource for rational engineering of plant immunity.
Collapse
Affiliation(s)
- Freddy Monteiro
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Marc T Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870;
| |
Collapse
|
52
|
Sousa SF, Peres J, Coelho M, Vieira TF. Analyzing PEGylation through Molecular Dynamics Simulations. ChemistrySelect 2018. [DOI: 10.1002/slct.201800855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sérgio F. Sousa
- UCIBIO@REQUIMTE; BioSIM; Departamento de Biomedicina; Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro; 4200-319, Porto Portugal
| | - Joana Peres
- LEPABE; Faculdade de Engenharia; Universidade do Porto, Porto; Portugal
| | - Manuel Coelho
- LEPABE; Faculdade de Engenharia; Universidade do Porto, Porto; Portugal
| | - Tatiana F. Vieira
- LEPABE; Faculdade de Engenharia; Universidade do Porto, Porto; Portugal
| |
Collapse
|
53
|
Graf A, Lewis RJ, Fuchs S, Pagels M, Engelmann S, Riedel K, Pané-Farré J. The hidden lipoproteome of Staphylococcus aureus. Int J Med Microbiol 2018; 308:569-581. [PMID: 29454809 DOI: 10.1016/j.ijmm.2018.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/28/2017] [Accepted: 01/27/2018] [Indexed: 01/11/2023] Open
Abstract
Lipoproteins are attached to the outer leaflet of the membrane by a di- or tri-acylglyceryl moiety and are thus positioned in the membrane-cell wall interface. Consequently, lipoproteins are involved in many surface associated functions, including cell wall synthesis, electron transport, uptake of nutrients, surface stress response, signal transduction, and they represent a reservoir of bacterial virulence factors. Inspection of 123 annotated Staphylococcus aureus genome sequences in the public domain revealed that this organism devotes about 2-3% of its coding capacity to lipoproteins, corresponding to about 70 lipoproteins per genome. 60 of these lipoproteins were identified in 95% of the genomes analyzed, which thus constitute the core lipoproteome of S. aureus. 30% of the conserved staphylococcal lipoproteins are substrate-binding proteins of ABC transporters with roles in nutrient transport. With a few exceptions, much less is known about the function of the remaining lipoproteins, representing a large gap in our knowledge of this functionally important group of proteins. Here, we summarize current knowledge, and integrate information from genetic context analysis, expression and regulatory data, domain architecture, sequence and structural information, and phylogenetic distribution to provide potential starting points for experimental evaluation of the biological function of the poorly or uncharacterized lipoproteome of S. aureus.
Collapse
Affiliation(s)
- Anica Graf
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Stephan Fuchs
- FG13 Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institut (RKI), Burgstr. 37, 38855 Wernigerode, Germany
| | - Martin Pagels
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Susanne Engelmann
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Inhoffenstraße 7, 38124 Braunschweig, Germany; Institute for Microbiology, Department of Microbial Proteomics, Technical University Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Katharina Riedel
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Jan Pané-Farré
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany.
| |
Collapse
|
54
|
Woodhead AL, Church AT, Rapson TD, Trueman HE, Church JS, Sutherland TD. Confirmation of Bioinformatics Predictions of the Structural Domains in Honeybee Silk. Polymers (Basel) 2018; 10:E776. [PMID: 30960701 PMCID: PMC6403662 DOI: 10.3390/polym10070776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022] Open
Abstract
Honeybee larvae produce a silk made up of proteins in predominantly a coiled coil molecular structure. These proteins can be produced in recombinant systems, making them desirable templates for the design of advanced materials. However, the atomic level structure of these proteins is proving difficult to determine: firstly, because coiled coils are difficult to crystalize; and secondly, fibrous proteins crystalize as fibres rather than as discrete protein units. In this study, we synthesised peptides from the central structural domain, as well as the N- and C-terminal domains, of the honeybee silk. We used circular dichroism spectroscopy, infrared spectroscopy, and molecular dynamics to investigate the folding behaviour of the central domain peptides. We found that they folded as predicted by bioinformatics analysis, giving the protein engineer confidence in bioinformatics predictions to guide the design of new functionality into these protein templates. These results, along with the infrared structural analysis of the N- and C-terminal domain peptides and the comparison of peptide film properties with those of the full-length AmelF3 protein, provided significant insight into the structural elements required for honeybee silk protein to form into stable materials.
Collapse
Affiliation(s)
| | | | - Trevor D Rapson
- CSIRO Health and Biosecurity, Clunies Ross St, Black Mountain, ACT 2601, Australia.
| | - Holly E Trueman
- CSIRO Health and Biosecurity, Clunies Ross St, Black Mountain, ACT 2601, Australia.
| | - Jeffrey S Church
- CSIRO Manufacturing, Pigdons Rd, Waurn Ponds, VIC 3216, Australia.
- JPA Scientific, P.O. Box 2573, Chino Hills, CA 91709, USA.
| | - Tara D Sutherland
- CSIRO Health and Biosecurity, Clunies Ross St, Black Mountain, ACT 2601, Australia.
| |
Collapse
|
55
|
Ren C, Zeng F, Shen J, Chen F, Roy A, Zhou S, Ren H, Zeng H. Pore-Forming Monopeptides as Exceptionally Active Anion Channels. J Am Chem Soc 2018; 140:8817-8826. [DOI: 10.1021/jacs.8b04657] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Changliang Ren
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos 138669, Singapore
| | - Fei Zeng
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos 138669, Singapore
| | - Jie Shen
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos 138669, Singapore
| | - Feng Chen
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos 138669, Singapore
| | - Arundhati Roy
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos 138669, Singapore
| | - Shaoyuan Zhou
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Haisheng Ren
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huaqiang Zeng
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos 138669, Singapore
| |
Collapse
|
56
|
Preisner H, Habicht J, Garg SG, Gould SB. Intermediate filament protein evolution and protists. Cytoskeleton (Hoboken) 2018; 75:231-243. [PMID: 29573204 DOI: 10.1002/cm.21443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Abstract
Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörn Habicht
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
57
|
Shimizu T. Self-Assembly of Discrete Organic Nanotubes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170424] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshimi Shimizu
- AIST Fellow, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
58
|
PClass: Protein Quaternary Structure Classification by Using Bootstrapping Strategy as Model Selection. Genes (Basel) 2018; 9:genes9020091. [PMID: 29443925 PMCID: PMC5852587 DOI: 10.3390/genes9020091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023] Open
Abstract
Protein quaternary structure complex is also known as a multimer, which plays an important role in a cell. The dimer structure of transcription factors is involved in gene regulation, but the trimer structure of virus-infection-associated glycoproteins is related to the human immunodeficiency virus. The classification of the protein quaternary structure complex for the post-genome era of proteomics research will be of great help. Classification systems among protein quaternary structures have not been widely developed. Therefore, we designed the architecture of a two-layer machine learning technique in this study, and developed the classification system PClass. The protein quaternary structure of the complex is divided into five categories, namely, monomer, dimer, trimer, tetramer, and other subunit classes. In the framework of the bootstrap method with a support vector machine, we propose a new model selection method. Each type of complex is classified based on sequences, entropy, and accessible surface area, thereby generating a plurality of feature modules. Subsequently, the optimal model of effectiveness is selected as each kind of complex feature module. In this stage, the optimal performance can reach as high as 70% of Matthews correlation coefficient (MCC). The second layer of construction combines the first-layer module to integrate mechanisms and the use of six machine learning methods to improve the prediction performance. This system can be improved over 10% in MCC. Finally, we analyzed the performance of our classification system using transcription factors in dimer structure and virus-infection-associated glycoprotein in trimer structure. PClass is available via a web interface at http://predictor.nchu.edu.tw/PClass/.
Collapse
|
59
|
Condon SGF, Mahbuba DA, Armstrong CR, Diaz-Vazquez G, Craven SJ, LaPointe LM, Khadria AS, Chadda R, Crooks JA, Rangarajan N, Weibel DB, Hoskins AA, Robertson JL, Cui Q, Senes A. The FtsLB subcomplex of the bacterial divisome is a tetramer with an uninterrupted FtsL helix linking the transmembrane and periplasmic regions. J Biol Chem 2018; 293:1623-1641. [PMID: 29233891 PMCID: PMC5798294 DOI: 10.1074/jbc.ra117.000426] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/04/2017] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, FtsLB plays a central role in the initiation of cell division, possibly transducing a signal that will eventually lead to the activation of peptidoglycan remodeling at the forming septum. The molecular mechanisms by which FtsLB operates in the divisome, however, are not understood. Here, we present a structural analysis of the FtsLB complex, performed with biophysical, computational, and in vivo methods, that establishes the organization of the transmembrane region and proximal coiled coil of the complex. FRET analysis in vitro is consistent with formation of a tetramer composed of two FtsL and two FtsB subunits. We predicted subunit contacts through co-evolutionary analysis and used them to compute a structural model of the complex. The transmembrane region of FtsLB is stabilized by hydrophobic packing and by a complex network of hydrogen bonds. The coiled coil domain probably terminates near the critical constriction control domain, which might correspond to a structural transition. The presence of strongly polar amino acids within the core of the tetrameric coiled coil suggests that the coil may split into two independent FtsQ-binding domains. The helix of FtsB is interrupted between the transmembrane and coiled coil regions by a flexible Gly-rich linker. Conversely, the data suggest that FtsL forms an uninterrupted helix across the two regions and that the integrity of this helix is indispensable for the function of the complex. The FtsL helix is thus a candidate for acting as a potential mechanical connection to communicate conformational changes between periplasmic, membrane, and cytoplasmic regions.
Collapse
Affiliation(s)
- Samson G F Condon
- From the Department of Biochemistry
- the Integrated Program in Biochemistry
| | - Deena-Al Mahbuba
- From the Department of Biochemistry
- the Integrated Program in Biochemistry
| | | | | | - Samuel J Craven
- From the Department of Biochemistry
- the Integrated Program in Biochemistry
| | - Loren M LaPointe
- From the Department of Biochemistry
- the Integrated Program in Biochemistry
| | - Ambalika S Khadria
- From the Department of Biochemistry
- the Integrated Program in Biochemistry
| | - Rahul Chadda
- the Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - John A Crooks
- From the Department of Biochemistry
- the Integrated Program in Biochemistry
| | | | | | | | - Janice L Robertson
- the Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Qiang Cui
- the Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 and
| | | |
Collapse
|
60
|
Hill SE, Nguyen E, Donegan RK, Patterson-Orazem AC, Hazel A, Gumbart JC, Lieberman RL. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin. Structure 2017; 25:1697-1707.e5. [PMID: 29056483 PMCID: PMC5685557 DOI: 10.1016/j.str.2017.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/07/2017] [Accepted: 09/18/2017] [Indexed: 01/15/2023]
Abstract
Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains. Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma.
Collapse
Affiliation(s)
- Shannon E Hill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Elaine Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rebecca K Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Anthony Hazel
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
61
|
Wood CW, Woolfson DN. CCBuilder 2.0: Powerful and accessible coiled-coil modeling. Protein Sci 2017; 27:103-111. [PMID: 28836317 PMCID: PMC5734305 DOI: 10.1002/pro.3279] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/22/2017] [Indexed: 01/06/2023]
Abstract
The increased availability of user-friendly and accessible computational tools for biomolecular modeling would expand the reach and application of biomolecular engineering and design. For protein modeling, one key challenge is to reduce the complexities of 3D protein folds to sets of parametric equations that nonetheless capture the salient features of these structures accurately. At present, this is possible for a subset of proteins, namely, repeat proteins. The α-helical coiled coil provides one such example, which represents ≈ 3-5% of all known protein-encoding regions of DNA. Coiled coils are bundles of α helices that can be described by a small set of structural parameters. Here we describe how this parametric description can be implemented in an easy-to-use web application, called CCBuilder 2.0, for modeling and optimizing both α-helical coiled coils and polyproline-based collagen triple helices. This has many applications from providing models to aid molecular replacement for X-ray crystallography, in silico model building and engineering of natural and designed protein assemblies, and through to the creation of completely de novo "dark matter" protein structures. CCBuilder 2.0 is available as a web-based application, the code for which is open-source and can be downloaded freely. http://coiledcoils.chm.bris.ac.uk/ccbuilder2. LAY SUMMARY We have created CCBuilder 2.0, an easy to use web-based application that can model structures for a whole class of proteins, the α-helical coiled coil, which is estimated to account for 3-5% of all proteins in nature. CCBuilder 2.0 will be of use to a large number of protein scientists engaged in fundamental studies, such as protein structure determination, through to more-applied research including designing and engineering novel proteins that have potential applications in biotechnology.
Collapse
Affiliation(s)
- Christopher W Wood
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom.,School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom.,BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| |
Collapse
|
62
|
Dubois E, Mathy N, Régnier V, Bischerour J, Baudry C, Trouslard R, Bétermier M. Multimerization properties of PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements. Nucleic Acids Res 2017; 45:3204-3216. [PMID: 28104713 PMCID: PMC5389696 DOI: 10.1093/nar/gkw1359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/28/2016] [Indexed: 02/05/2023] Open
Abstract
During sexual processes, the ciliate Paramecium eliminates 25–30% of germline DNA from its somatic genome. DNA elimination includes excision of ∼45 000 short, single-copy internal eliminated sequences (IESs) and depends upon PiggyMac (Pgm), a domesticated piggyBac transposase that is essential for DNA cleavage at IES ends. Pgm carries a core transposase region with a putative catalytic domain containing three conserved aspartic acids, and a downstream cysteine-rich (CR) domain. A C-terminal extension of unknown function is predicted to adopt a coiled-coil (CC) structure. To address the role of the three domains, we designed an in vivo complementation assay by expressing wild-type or mutant Pgm-GFP fusions in cells depleted for their endogenous Pgm. The DDD triad and the CR domain are essential for Pgm activity and mutations in either domain have a dominant-negative effect in wild-type cells. A mutant lacking the CC domain is partially active in the presence of limiting Pgm amounts, but inactive when Pgm is completely absent, suggesting that presence of the mutant protein increases the overall number of active complexes. We conclude that IES excision involves multiple Pgm subunits, of which at least a fraction must contain the CC domain.
Collapse
Affiliation(s)
- Emeline Dubois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Nathalie Mathy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Vinciane Régnier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Bischerour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Céline Baudry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Raphaëlle Trouslard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Mireille Bétermier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
63
|
Bahloul A, Pepermans E, Raynal B, Wolff N, Cordier F, England P, Nouaille S, Baron B, El-Amraoui A, Hardelin JP, Durand D, Petit C. Conformational switch of harmonin, a submembrane scaffold protein of the hair cell mechanoelectrical transduction machinery. FEBS Lett 2017; 591:2299-2310. [PMID: 28653419 PMCID: PMC5599985 DOI: 10.1002/1873-3468.12729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/15/2017] [Accepted: 06/08/2017] [Indexed: 11/25/2022]
Abstract
Mutations in the gene encoding harmonin, a multi‐PDZ domain‐containing submembrane protein, cause Usher syndrome type 1 (congenital deafness and balance disorder, and early‐onset sight loss). The structure of the protein and biological activities of its three different classes of splice isoforms (a, b, and c) remain poorly understood. Combining biochemical and biophysical analyses, we show that harmonin‐a1 can switch between open and closed conformations through intramolecular binding of its C‐terminal PDZ‐binding motif to its N‐terminal supramodule NTD‐PDZ1 and through a flexible PDZ2‐PDZ3 linker. This conformational switch presumably extends to most harmonin isoforms, and it is expected to have an impact on the interaction with some binding partners, as shown here for cadherin‐related 23, another component of the hair cell mechanoelectrical transduction machinery.
Collapse
Affiliation(s)
- Amel Bahloul
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,UMRS1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Sorbonne Universités, UPMC Université Paris 6, Paris, France
| | - Elise Pepermans
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,UMRS1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Sorbonne Universités, UPMC Université Paris 6, Paris, France
| | - Bertrand Raynal
- Plateforme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Nicolas Wolff
- Unité de RMN des Biomolécules, Institut Pasteur, Paris, France
| | | | - Patrick England
- Plateforme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Sylvie Nouaille
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,UMRS1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Sorbonne Universités, UPMC Université Paris 6, Paris, France
| | - Bruno Baron
- Plateforme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Aziz El-Amraoui
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,UMRS1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Sorbonne Universités, UPMC Université Paris 6, Paris, France
| | - Jean-Pierre Hardelin
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,UMRS1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Sorbonne Universités, UPMC Université Paris 6, Paris, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,UMRS1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Sorbonne Universités, UPMC Université Paris 6, Paris, France.,Collège de France, Paris, France
| |
Collapse
|
64
|
The Variable Internal Structure of the Mycoplasma penetrans Attachment Organelle Revealed by Biochemical and Microscopic Analyses: Implications for Attachment Organelle Mechanism and Evolution. J Bacteriol 2017; 199:JB.00069-17. [PMID: 28373274 DOI: 10.1128/jb.00069-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/27/2017] [Indexed: 01/13/2023] Open
Abstract
Although mycoplasmas have small genomes, many of them, including the HIV-associated opportunist Mycoplasma penetrans, construct a polar attachment organelle (AO) that is used for both adherence to host cells and gliding motility. However, the irregular phylogenetic distribution of similar structures within the mycoplasmas, as well as compositional and ultrastructural differences among these AOs, suggests that AOs have arisen several times through convergent evolution. We investigated the ultrastructure and protein composition of the cytoskeleton-like material of the M. penetrans AO with several forms of microscopy and biochemical analysis, to determine whether the M. penetrans AO was constructed at the molecular level on principles similar to those of other mycoplasmas, such as Mycoplasma pneumoniae and Mycoplasma mobile We found that the M. penetrans AO interior was generally dissimilar from that of other mycoplasmas, in that it exhibited considerable heterogeneity in size and shape, suggesting a gel-like nature. In contrast, several of the 12 potential protein components identified by mass spectrometry of M. penetrans detergent-insoluble proteins shared certain distinctive biochemical characteristics with M. pneumoniae AO proteins, although not with M. mobile proteins. We conclude that convergence between M. penetrans and M. pneumoniae AOs extends to the molecular level, leading to the possibility that the less organized material in both M. pneumoniae and M. penetrans is the substance principally responsible for the organization and function of the AO.IMPORTANCEMycoplasma penetrans is a bacterium that infects HIV-positive patients and may contribute to the progression of AIDS. It attaches to host cells through a structure called an AO, but it is not clear how it builds this structure. Our research is significant not only because it identifies the novel protein components that make up the material within the AO that give it its structure but also because we find that the M. penetrans AO is organized unlike AOs from other mycoplasmas, suggesting that similar structures have evolved multiple times. From this work, we derive some basic principles by which mycoplasmas, and potentially all organisms, build structures at the subcellular level.
Collapse
|
65
|
Pal K, Bandyopadhyay A, Zhou XE, Xu Q, Marciano DP, Brunzelle JS, Yerrum S, Griffin PR, Vande Woude G, Melcher K, Xu HE. Structural Basis of TPR-Mediated Oligomerization and Activation of Oncogenic Fusion Kinases. Structure 2017; 25:867-877.e3. [PMID: 28528776 DOI: 10.1016/j.str.2017.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/22/2017] [Accepted: 04/28/2017] [Indexed: 01/01/2023]
Abstract
The nuclear pore complex subunit TPR is found in at least five different oncogenic fusion kinases, including TPR-MET, yet how TPR fusions promote activation of kinases and their oncogenic activities remains poorly understood. Here we report the crystal structure of TPR(2-142), the MET fusion partner of oncogenic TPR-MET. TPR(2-142) contains a continuous 124-residue α helix that forms an antiparallel tetramer from two leucine zipper-containing parallel coiled coils. Remarkably, single mutations cause strikingly different conformations of the coiled coil, indicating its highly dynamic nature. We further show that fusion of TPR(2-142) to the MET intracellular domain strongly and selectively stabilizes the αG helix of the MET kinase domain, and mutations of only the TPR leucine zipper residues at the junction to MET, but not other leucine zipper residues, abolish kinase activation. Together, these results provide critical insight into the TPR structure and its ability to induce dimerization and activation of fusion kinases.
Collapse
Affiliation(s)
- Kuntal Pal
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Abhishek Bandyopadhyay
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - X Edward Zhou
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Qingping Xu
- GMCA at Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - David P Marciano
- Department of Molecular Medicine, Translational Research Institute, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Joseph S Brunzelle
- Department of Molecular Pharmacology & Biological Chemistry, Life Sciences Collaborative Access Team, Synchrotron Research Center, Northwestern University, Argonne, IL 60439, USA
| | - Smitha Yerrum
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, Translational Research Institute, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - George Vande Woude
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Karsten Melcher
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - H Eric Xu
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA; VARI-SIMM Center for Structure and Function of Drug Targets and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
66
|
Mohanasundaram KA, Grover MP, Crowley TM, Goscinski A, Wouters MA. Mapping genotype-phenotype associations of nsSNPs in coiled-coil oligomerization domains of the human proteome. Hum Mutat 2017; 38:1378-1393. [PMID: 28489284 DOI: 10.1002/humu.23252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 04/13/2017] [Accepted: 05/05/2017] [Indexed: 11/11/2022]
Abstract
We assessed the impact of disease mutations (DMs) versus polymorphisms (PYs) in coiled-coil (CC) domains in UniProt by modeling the structural and functional impact of variants in silico with the CC prediction program Multicoil. The structural impact of variants was evaluated with respect to three main metrics: the oligomerization score-to determine whether the variant is stabilizing or destabilizing-the oligomerization state, and the register-specific score. The functional impact was queried indirectly in several ways. First, we examined marginally stable CCs that were either stabilized or destabilized by the variant. Second, we looked for variants that altered the register of the wild-type CC near wild-type irregularities of likely functional importance, such as skips and stammers. Third, we searched for variants that altered the oligomerization state of the CC. DMs tended to be more destabilizing than PYs; but interestingly, PYs were more frequently associated with predicted changes in the oligomerization state. The functional impact was also queried by testing the association of CC variants with multiple phenotypes, that is, pleiotropy. Mutations in CC regions of proteins cause 155 different phenotypes and are more frequently associated with pleiotropy than proteins in general. Importantly, the CC region itself often encodes the pleiotropy.
Collapse
Affiliation(s)
| | - Mani P Grover
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Tamsyn M Crowley
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,Australian Animal Health Laboratory, CSIRO Biosecurity Flagship, Geelong, Victoria, Australia
| | - Andrzej Goscinski
- School of Information Technology, Faculty of Science Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
| | - Merridee A Wouters
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
67
|
Abstract
α-Helical coiled coils constitute one of the most diverse folds yet described. They range in length over two orders of magnitude; they form rods, segmented ropes, barrels, funnels, sheets, spirals, and rings, which encompass anywhere from two to more than 20 helices in parallel or antiparallel orientation; they assume different helix crossing angles, degrees of supercoiling, and packing geometries. This structural diversity supports a wide range of biological functions, allowing them to form mechanically rigid structures, provide levers for molecular motors, project domains across large distances, mediate oligomerization, transduce conformational changes and facilitate the transport of other molecules. Unlike almost any other protein fold known to us, their structure can be computed from parametric equations, making them an ideal model system for rational protein design. Here we outline the principles by which coiled coils are structured, review the determinants of their folding and stability, and present an overview of their diverse architectures.
Collapse
|
68
|
Functionally conserved RNA-binding and protein-protein interaction properties of LINE-ORF1p in an ancient clade of non-LTR retrotransposons of Entamoeba histolytica. Mol Biochem Parasitol 2017; 211:84-93. [DOI: 10.1016/j.molbiopara.2016.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/17/2016] [Accepted: 11/24/2016] [Indexed: 11/23/2022]
|
69
|
Hill BJ, Xu Y, Sherwood J, Raddatz AD, Kim Y, Bao Y, Duffy C. A coiled-coil strategy for the directional display of multiple proteins on the surface of iron oxide nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra00092h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Utilization of a coiled-coil strategy for the display of multiple proteins on nanoparticles under physiological conditions.
Collapse
Affiliation(s)
- Brandon J. Hill
- Department of Biological Sciences
- University of Alabama
- Tuscaloosa
- USA
| | - Yaolin Xu
- Department of Chemical and Biological Engineering
- University of Alabama
- Tuscaloosa
- USA
| | - Jennifer Sherwood
- Department of Chemical and Biological Engineering
- University of Alabama
- Tuscaloosa
- USA
| | - Andrew D. Raddatz
- Department of Chemical and Biological Engineering
- University of Alabama
- Tuscaloosa
- USA
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering
- University of Alabama
- Tuscaloosa
- USA
| | - Yuping Bao
- Department of Chemical and Biological Engineering
- University of Alabama
- Tuscaloosa
- USA
| | - Carol Duffy
- Department of Biological Sciences
- University of Alabama
- Tuscaloosa
- USA
| |
Collapse
|
70
|
Mukawa M, Nariai T, Onda H, Yoneyama T, Aihara Y, Hirota K, Kudo T, Sumita K, Maehara T, Kawamata T, Kasuya H, Akagawa H. Exome Sequencing Identified CCER2 as a Novel Candidate Gene for Moyamoya Disease. J Stroke Cerebrovasc Dis 2017; 26:150-161. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/01/2016] [Accepted: 09/03/2016] [Indexed: 10/20/2022] Open
|
71
|
Soda N, Sharan A, Gupta BK, Singla-Pareek SL, Pareek A. Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance. Sci Rep 2016; 6:34762. [PMID: 27708383 PMCID: PMC5052524 DOI: 10.1038/srep34762] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 02/05/2023] Open
Abstract
Soil salinity is being perceived as a major threat to agriculture. Plant breeders and molecular biologist are putting their best efforts to raise salt-tolerant crops. The discovery of the Saltol QTL, a major QTL localized on chromosome I, responsible for salt tolerance at seedling stage in rice has given new hopes for raising salinity tolerant rice genotypes. In the present study, we have functionally characterized a Saltol QTL localized cytoskeletal protein, intermediate filament like protein (OsIFL), of rice. Studies related to intermediate filaments are emerging in plants, especially with respect to their involvement in abiotic stress response. Our investigations clearly establish that the heterologous expression of OsIFL in three diverse organisms (bacteria, yeast and tobacco) provides survival advantage towards diverse abiotic stresses. Screening of rice cDNA library revealed OsIFL to be strongly interacting with metallothionein protein. Bimolecular fluorescence complementation assay further confirmed this interaction to be occurring inside the nucleus. Overexpression of OsIFL in transgenic tobacco plants conferred salinity stress tolerance by maintaining favourable K+/Na+ ratio and thus showed protection from salinity stress induced ion toxicity. This study provides the first evidence for the involvement of a cytoskeletal protein in salinity stress tolerance in diverse organisms.
Collapse
Affiliation(s)
- Neelam Soda
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashutosh Sharan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Brijesh K Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
72
|
Sadanandan SA, Ekström JO, Jonna VR, Hofer A, Hultmark D. VP3 is crucial for the stability of Nora virus virions. Virus Res 2016; 223:20-7. [PMID: 27329665 DOI: 10.1016/j.virusres.2016.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Nora virus is an enteric virus that causes persistent, non-pathological infection in Drosophila melanogaster. It replicates in the fly gut and is transmitted via the fecal-oral route. Nora virus has a single-stranded positive-sense RNA genome, which is translated in four open reading frames. Reading frame three encodes the VP3 protein, the structure and function of which we have investigated in this work. We have shown that VP3 is a trimer that has an α-helical secondary structure, with a functionally important coiled-coil domain. In order to identify the role of VP3 in the Nora virus life cycle, we constructed VP3-mutants using the cDNA clone of the virus. Our results show that VP3 does not have a role in the actual assembly of the virus particles, but virions that lack VP3 or harbor VP3 with a disrupted coiled coil domain are incapable of transmission via the fecal-oral route. Removing the region downstream of the putative coiled coil appears to have an effect on the fitness of the virus but does not hamper its replication or transmission. We also found that the VP3 protein and particularly the coiled coil domain are crucial for the stability of Nora virus virions when exposed to heat or proteases. Hence, we propose that VP3 is imperative to Nora virus virions as it confers stability to the viral capsid.
Collapse
Affiliation(s)
| | - Jens-Ola Ekström
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; Institute of Biomedical Technology, University of Tampere, FI-33520 Tampere, Finland
| | - Venkateswara Rao Jonna
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; Institute of Biomedical Technology, University of Tampere, FI-33520 Tampere, Finland.
| |
Collapse
|
73
|
Cryo-electron Microscopy Structure of the Native Prototype Foamy Virus Glycoprotein and Virus Architecture. PLoS Pathog 2016; 12:e1005721. [PMID: 27399201 PMCID: PMC4939959 DOI: 10.1371/journal.ppat.1005721] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022] Open
Abstract
Foamy viruses (FV) belong to the genus Spumavirus, which forms a distinct lineage in the Retroviridae family. Although the infection in natural hosts and zoonotic transmission to humans is asymptomatic, FVs can replicate well in human cells making it an attractive gene therapy vector candidate. Here we present cryo-electron microscopy and (cryo-)electron tomography ultrastructural data on purified prototype FV (PFV) and PFV infected cells. Mature PFV particles have a distinct morphology with a capsid of constant dimension as well as a less ordered shell of density between the capsid and the membrane likely formed by the Gag N-terminal domain and the cytoplasmic part of the Env leader peptide gp18LP. The viral membrane contains trimeric Env glycoproteins partly arranged in interlocked hexagonal assemblies. In situ 3D reconstruction by subtomogram averaging of wild type Env and of a Env gp48TM- gp80SU cleavage site mutant showed a similar spike architecture as well as stabilization of the hexagonal lattice by clear connections between lower densities of neighboring trimers. Cryo-EM was employed to obtain a 9 Å resolution map of the glycoprotein in its pre-fusion state, which revealed extensive trimer interactions by the receptor binding subunit gp80SU at the top of the spike and three central helices derived from the fusion protein subunit gp48TM. The lower part of Env, presumably composed of interlaced parts of gp48TM, gp80SU and gp18LP anchors the spike at the membrane. We propose that the gp48TM density continues into three central transmembrane helices, which interact with three outer transmembrane helices derived from gp18LP. Our ultrastructural data and 9 Å resolution glycoprotein structure provide important new insights into the molecular architecture of PFV and its distinct evolutionary relationship with other members of the Retroviridae. Foamy viruses (FVs), which belong to the retroviral genus Spumavirus, are endemic to non-human primates and can be transmitted to humans. They are considered as potential vectors for gene therapy due to their broad cell tropism and their apparent apathogenicity in natural hosts and humans. In order to gain more insight into the ultrastructure of the prototype FV (PFV) we performed (cryo-)electron tomography and microscopy of infected cells and of isolated virions. We find that PFV contains a nucleocapsid of constant dimensions at its center, an intermediate shell of protein positioned between the core capsid and the viral membrane and glycoprotein that arranges into regular hexagonal lattices on the virus membrane. Structural analysis of the glycoprotein was performed in situ to a resolution of 9Å, which shows regular helical features such as a trimeric coiled coil of the fusion protein subunit, a hallmark of class I fusion proteins, spacer arms between the glycoprotein trimers and the arrangement of six transmembrane helices, a characteristic feature of the PFV Env glycoprotein. We discuss our results in light of the evolutionary relationship of PFV with other retroviruses as well as the role of the unique glycoprotein architecture on the virus life cycle.
Collapse
|
74
|
Rezabkova L, Kraatz SHW, Akhmanova A, Steinmetz MO, Kammerer RA. Biophysical and Structural Characterization of the Centriolar Protein Cep104 Interaction Network. J Biol Chem 2016; 291:18496-504. [PMID: 27402853 DOI: 10.1074/jbc.m116.739771] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 11/06/2022] Open
Abstract
Dysfunction of cilia is associated with common genetic disorders termed ciliopathies. Knowledge on the interaction networks of ciliary proteins is therefore key for understanding the processes that are underlying these severe diseases and the mechanisms of ciliogenesis in general. Cep104 has recently been identified as a key player in the regulation of cilia formation. Using a combination of sequence analysis, biophysics, and x-ray crystallography, we obtained new insights into the domain architecture and interaction network of the Cep104 protein. We solved the crystal structure of the tumor overexpressed gene (TOG) domain, identified Cep104 as a novel tubulin-binding protein, and biophysically characterized the interaction of Cep104 with CP110, Cep97, end-binding (EB) protein, and tubulin. Our results represent a solid platform for the further investigation of the microtubule-EB-Cep104-tubulin-CP110-Cep97 network of proteins. Ultimately, such studies should be of importance for understanding the process of cilia formation and the mechanisms underlying different ciliopathies.
Collapse
Affiliation(s)
- Lenka Rezabkova
- From the Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland and
| | - Sebastian H W Kraatz
- From the Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland and
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michel O Steinmetz
- From the Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland and
| | - Richard A Kammerer
- From the Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland and
| |
Collapse
|
75
|
Takei T, Tsumoto K, Yoshino M, Kojima S, Yazaki K, Ueda T, Takei T, Arisaka F, Miura KI. Role of positions e and g in the fibrous assembly formation of an amphipathic α-helix-forming polypeptide. Biopolymers 2016; 102:260-72. [PMID: 24615557 DOI: 10.1002/bip.22479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/02/2014] [Accepted: 02/13/2014] [Indexed: 12/30/2022]
Abstract
We previously characterized α3, a polypeptide that has a three times repeated sequence of seven amino acids (abcdefg: LETLAKA) and forms fibrous assemblies composed of amphipathic α-helices. Upon comparison of the amino acid sequences of α3 with other α-helix forming polypeptides, we proposed that the fibrous assemblies were formed due to the alanine (Ala) residues at positions e and g. Here, we characterized seven α3 analog polypeptides with serine (Ser), glycine (Gly), or charged residues substituted for Ala at positions e and g. The α-helix forming abilities of the substituted polypeptides were less than that of α3. The polypeptides with amino acid substitutions at position g and the polypeptide KEα3, in which Ala was substituted with charged amino acids, formed few fibrous assemblies. In contrast, polypeptides with Ala replaced by Ser at position e formed β-sheets under several conditions. These results show that Ala residues at position e and particularly at position g are involved in the formation of fibrous assemblies.
Collapse
Affiliation(s)
- Toshiaki Takei
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan; Institute for Biomolecular Science, Gakushuin University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Hantaviruses are emerging zoonotic pathogens that belong to the Bunyaviridae family. They have been classified as category A pathogens by CDC (centers for disease control and prevention). Hantaviruses pose a serious threat to human health because their infection causes two highly fatal diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). These pathogens are transmitted to humans through aerosolized excreta of their infected rodent hosts. Hantaviruses have a tripartite-segmented negative-sense RNA genome. The three genomic RNA segments, S, M, and L, encode a nucleocapsid protein (N), a precursor glycoprotein that is processed into two envelope glycoproteins (Gn and Gc) and the viral RNA-dependent RNA polymerase (RdRp), respectively. N protein is the major structural component of the virus, its main function is to protect and encapsidate the three genomic RNAs forming three viral ribonucleocapsids. Recent studies have proposed that N in conjunction with RdRp plays important roles in the transcription and replication of viral genome. In addition, N preferentially facilitates the translation of viral mRNA in cells. Glycoproteins, Gn and Gc, play major roles in viral attachment and entry to the host cells, virulence, and assembly and packaging of new virions in infected cells. RdRp functions as RNA replicase and transcriptase to replicate and transcribe the viral RNA and is also thought to have endonuclease activity. Currently, no antiviral therapy or vaccine is available for the treatment of hantavirus-associated diseases. Understanding the molecular details of hantavirus life cycle will help in the identification of targets for antiviral therapeutics and in the design of potential antiviral drug for the treatment of HFRS and HCPS. Due to the alarming fatality of hantavirus diseases, development of an effective vaccine against hantaviruses is a necessity.
Collapse
|
77
|
Chang JB, Kim YH, Thompson E, No YH, Kim NH, Arrieta J, Manfrinato VR, Keating AE, Berggren KK. The Orientations of Large Aspect-Ratio Coiled-Coil Proteins Attached to Gold Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1498-1505. [PMID: 26799936 DOI: 10.1002/smll.201502419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Methods for patterning biomolecules on a substrate at the single molecule level have been studied as a route to sensors with single-molecular sensitivity or as a way to probe biological phenomena at the single-molecule level. However, the arrangement and orientation of single biomolecules on substrates has been less investigated. Here, the arrangement and orientation of two rod-like coiled-coil proteins, cortexillin and tropomyosin, around patterned gold nanostructures is examined. The high aspect ratio of the coiled coils makes it possible to study their orientations and to pursue a strategy of protein orientation via two-point attachment. The proteins are anchored to the surfaces using thiol groups, and the number of cysteine residues in tropomyosin is varied to test how this variation affects the structure and arrangement of the surface-attached proteins. Molecular dynamics studies are used to interpret the observed positional distributions. Based on initial studies of protein attachment to gold post structures, two 31-nm-long tropomyosin molecules are aligned between the two sidewalls of a trench with a width of 68 nm. Because the approach presented in this study uses one of twenty natural amino acids, this method provides a convenient way to pattern biomolecules on substrates using standard chemistry.
Collapse
Affiliation(s)
- Jae-Byum Chang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yong Ho Kim
- Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, South Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Evan Thompson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Young Hyun No
- Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Nam Hyeong Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Jose Arrieta
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vitor R Manfrinato
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Karl K Berggren
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
78
|
Li C, Ching Han Chang C, Nagel J, Porebski BT, Hayashida M, Akutsu T, Song J, Buckle AM. Critical evaluation of in silico methods for prediction of coiled-coil domains in proteins. Brief Bioinform 2016; 17:270-82. [PMID: 26177815 PMCID: PMC6078162 DOI: 10.1093/bib/bbv047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/29/2015] [Indexed: 12/19/2022] Open
Abstract
Coiled-coils refer to a bundle of helices coiled together like strands of a rope. It has been estimated that nearly 3% of protein-encoding regions of genes harbour coiled-coil domains (CCDs). Experimental studies have confirmed that CCDs play a fundamental role in subcellular infrastructure and controlling trafficking of eukaryotic cells. Given the importance of coiled-coils, multiple bioinformatics tools have been developed to facilitate the systematic and high-throughput prediction of CCDs in proteins. In this article, we review and compare 12 sequence-based bioinformatics approaches and tools for coiled-coil prediction. These approaches can be categorized into two classes: coiled-coil detection and coiled-coil oligomeric state prediction. We evaluated and compared these methods in terms of their input/output, algorithm, prediction performance, validation methods and software utility. All the independent testing data sets are available at http://lightning.med.monash.edu/coiledcoil/. In addition, we conducted a case study of nine human polyglutamine (PolyQ) disease-related proteins and predicted CCDs and oligomeric states using various predictors. Prediction results for CCDs were highly variable among different predictors. Only two peptides from two proteins were confirmed to be CCDs by majority voting. Both domains were predicted to form dimeric coiled-coils using oligomeric state prediction. We anticipate that this comprehensive analysis will be an insightful resource for structural biologists with limited prior experience in bioinformatics tools, and for bioinformaticians who are interested in designing novel approaches for coiled-coil and its oligomeric state prediction.
Collapse
|
79
|
A topological and conformational stability alphabet for multipass membrane proteins. Nat Chem Biol 2016; 12:167-73. [PMID: 26780406 DOI: 10.1038/nchembio.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/13/2015] [Indexed: 12/27/2022]
Abstract
Multipass membrane proteins perform critical signal transduction and transport across membranes. How transmembrane helix (TMH) sequences encode the topology and conformational flexibility regulating these functions remains poorly understood. Here we describe a comprehensive analysis of the sequence-structure relationships at multiple interacting TMHs from all membrane proteins with structures in the Protein Data Bank (PDB). We found that membrane proteins can be deconstructed in interacting TMH trimer units, which mostly fold into six distinct structural classes of topologies and conformations. Each class is enriched in recurrent sequence motifs from functionally unrelated proteins, revealing unforeseen consensus and evolutionary conserved networks of stabilizing interhelical contacts. Interacting TMHs' topology and local protein conformational flexibility were remarkably well predicted in a blinded fashion from the identified binding-hotspot motifs. Our results reveal universal sequence-structure principles governing the complex anatomy and plasticity of multipass membrane proteins that may guide de novo structure prediction, design, and studies of folding and dynamics.
Collapse
|
80
|
Liu YB, Tewari A, Salameh J, Arystarkhova E, Hampton TG, Brashear A, Ozelius LJ, Khodakhah K, Sweadner KJ. A dystonia-like movement disorder with brain and spinal neuronal defects is caused by mutation of the mouse laminin β1 subunit, Lamb1. eLife 2015; 4. [PMID: 26705335 PMCID: PMC4749547 DOI: 10.7554/elife.11102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022] Open
Abstract
A new mutant mouse (lamb1t) exhibits intermittent dystonic hindlimb movements and postures when awake, and hyperextension when asleep. Experiments showed co-contraction of opposing muscle groups, and indicated that symptoms depended on the interaction of brain and spinal cord. SNP mapping and exome sequencing identified the dominant causative mutation in the Lamb1 gene. Laminins are extracellular matrix proteins, widely expressed but also known to be important in synapse structure and plasticity. In accordance, awake recording in the cerebellum detected abnormal output from a circuit of two Lamb1-expressing neurons, Purkinje cells and their deep cerebellar nucleus targets, during abnormal postures. We propose that dystonia-like symptoms result from lapses in descending inhibition, exposing excess activity in intrinsic spinal circuits that coordinate muscles. The mouse is a new model for testing how dysfunction in the CNS causes specific abnormal movements and postures.
Collapse
Affiliation(s)
- Yi Bessie Liu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Ambika Tewari
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Johnny Salameh
- Department of Neurology, University of Massachusetts Medical School, Worcester, United States
| | - Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Thomas G Hampton
- Neuroscience Discovery Core, Mouse Specifics Inc., Framingham, United States
| | - Allison Brashear
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, United States
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Kathleen J Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
81
|
Basu A, Das A, Mondal A, Datta S. Structural analysis of inter-genus complexes of V-antigen and its regulator and their stabilization by divalent metal ions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:113-28. [PMID: 26463823 DOI: 10.1007/s00249-015-1081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
Gram-negative bacteria like Yersinia, Pseudomonas, and Aeromonas need type III secretion system (T3SS) for their pathogenicity. V-antigen and its regulator are essential for functioning of T3SS. There is significant functional conservation amongst V-antigen and its regulator belonging to the Ysc family. In this study, we have structurally characterized the inter-genus complexes of V-antigen and its regulator. ConSurf analysis demonstrates that V-antigens belonging to the Ysc family show high structural identity predominantly confined to the two long helical regions. The regulator of V-antigen shows high conservation in its first intramolecular coiled-coil domain, responsible for interaction with V-antigen. ∆LcrG(1-70) localizes within the groove formed by long helices of LcrV, as observed in PcrV-∆PcrG(13-72) interaction. Inter-genus complexes of LcrV-PcrG and PcrV-LcrG exhibited elongated conformation and 1:1 heterodimeric state like the native complex of PcrV-PcrG and LcrV-LcrG. Both native and inter-genus complexes showed rigid tertiary structure, solvent-exposed hydrophobic patches, and cooperative melting behavior with high melting temperature. LcrV-PcrG and PcrV-LcrG showed nanomolar affinity of interaction, identical to PcrV-PcrG interaction, but stronger than LcrV-LcrG interaction. Calcium (a secretion blocker of T3SS) propels all the complexes towards a highly monodisperse form. Calcium and magnesium increase the helicity of the native and inter-genus complexes, and causes helix-helix stabilization. Stabilization of helices leads to a slight increase in the melting temperature by 1.5-2.0 °C. However, calcium does not alter the affinity of interaction of V-antigen and its regulator, emphasizing the effect of divalent of cations at the structural level without any regulatory implications. Therefore, the structural conservation of these inter-genus complexes could be the basis for their functional complementation.
Collapse
Affiliation(s)
- Abhishek Basu
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Atanu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Abhisek Mondal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Saumen Datta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
82
|
Interaction of Myosin Phosphatase Target Subunit (MYPT1) with Myosin Phosphatase-RhoA Interacting Protein (MRIP): A Role of Glutamic Acids in the Interaction. PLoS One 2015; 10:e0139875. [PMID: 26445108 PMCID: PMC4596477 DOI: 10.1371/journal.pone.0139875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022] Open
Abstract
Scaffold proteins bind to and functionally link protein members of signaling pathways. Interaction of the scaffold proteins, myosin phosphatase target subunit (MYPT1) and myosin phosphatase-RhoA interacting protein (MRIP), causes co-localization of myosin phosphatase and RhoA to actomyosin. To examine biophysical properties of interaction of MYPT1 with MRIP, we employed analytical ultracentrifugation and surface plasmon resonance. In regard to MRIP, its residues 724-837 are sufficient for the MYPT1/MRIP interaction. Moreover, MRIP binds to MYPT1 as either a monomer or a dimer. With respect to MYPT1, its leucine repeat region, LR (residues 991-1030) is sufficient to account for the MYPT1/MRIP interaction. Furthermore, point mutations that replace glutamic acids 998-1000 within LR reduced the binding affinity toward MRIP. This suggests that the glutamic acids of MYPT1 play an important role in the interaction.
Collapse
|
83
|
Gáspári Z, Nyitray L. Coiled coils as possible models of protein structure evolution. Biomol Concepts 2015; 2:199-210. [PMID: 25962029 DOI: 10.1515/bmc.2011.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 03/01/2011] [Indexed: 01/05/2023] Open
Abstract
Coiled coils are formed by two or more α-helices wrapped around one another. This structural motif often guides di-, tri- or multimerization of proteins involved in diverse biological processes such as membrane fusion, signal transduction and the organization of the cytoskeleton. Although coiled coil motifs seem conceptually simple and their existence was proposed in the early 1950s, the high variability of the motif makes coiled coil prediction from sequence a difficult task. They might be confused with intrinsically disordered sequences and even more with a recently described structural motif, the charged single α-helix. By contrast, the versatility of coiled coil structures renders them an ideal candidate for protein (re)design and many novel variants have been successfully created to date. In this paper, we review coiled coils in the light of protein evolution by putting our present understanding of the motif and its variants in the context of structural interconversions. We argue that coiled coils are ideal subjects for studies of subtle and large-scale structural changes because of their well-characterized and versatile nature.
Collapse
|
84
|
Watkins A, Wuo MG, Arora PS. Protein-Protein Interactions Mediated by Helical Tertiary Structure Motifs. J Am Chem Soc 2015; 137:11622-30. [PMID: 26302018 PMCID: PMC4577960 DOI: 10.1021/jacs.5b05527] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 12/26/2022]
Abstract
The modulation of protein-protein interactions (PPIs) by means of creating or stabilizing secondary structure conformations is a rapidly growing area of research. Recent success in the inhibition of difficult PPIs by secondary structure mimetics also points to potential limitations, because often, specific cases require tertiary structure mimetics. To streamline protein structure-based inhibitor design, we have previously described the examination of protein complexes in the Protein Data Bank where α-helices or β-strands form critical contacts. Here, we examined coiled coils and helix bundles that mediate complex formation to create a platform for the discovery of potential tertiary structure mimetics. Though there has been extensive analysis of coiled coil motifs, the interactions between pre-formed coiled coils and globular proteins have not been systematically analyzed. This article identifies critical features of these helical interfaces with respect to coiled coil and other helical PPIs. We expect the analysis to prove useful for the rational design of modulators of this fundamental class of protein assemblies.
Collapse
Affiliation(s)
- Andrew
M. Watkins
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Michael G. Wuo
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
85
|
Self-sorting heterodimeric coiled coil peptides with defined and tuneable self-assembly properties. Sci Rep 2015; 5:14063. [PMID: 26370878 PMCID: PMC4570195 DOI: 10.1038/srep14063] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/17/2015] [Indexed: 01/23/2023] Open
Abstract
Coiled coils with defined assembly properties and dissociation constants are highly attractive components in synthetic biology and for fabrication of peptide-based hybrid nanomaterials and nanostructures. Complex assemblies based on multiple different peptides typically require orthogonal peptides obtained by negative design. Negative design does not necessarily exclude formation of undesired species and may eventually compromise the stability of the desired coiled coils. This work describe a set of four promiscuous 28-residue de novo designed peptides that heterodimerize and fold into parallel coiled coils. The peptides are non-orthogonal and can form four different heterodimers albeit with large differences in affinities. The peptides display dissociation constants for dimerization spanning from the micromolar to the picomolar range. The significant differences in affinities for dimerization make the peptides prone to thermodynamic social self-sorting as shown by thermal unfolding and fluorescence experiments, and confirmed by simulations. The peptides self-sort with high fidelity to form the two coiled coils with the highest and lowest affinities for heterodimerization. The possibility to exploit self-sorting of mutually complementary peptides could hence be a viable approach to guide the assembly of higher order architectures and a powerful strategy for fabrication of dynamic and tuneable nanostructured materials.
Collapse
|
86
|
Manck R, Ishitsuka Y, Herrero S, Takeshita N, Nienhaus GU, Fischer R. Genetic evidence for a microtubule-capture mechanism during polarised growth of Aspergillus nidulans. J Cell Sci 2015; 128:3569-82. [PMID: 26272919 DOI: 10.1242/jcs.169094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022] Open
Abstract
The cellular switch from symmetry to polarity in eukaryotes depends on the microtubule (MT) and actin cytoskeletons. In fungi such as Schizosaccharomyces pombe or Aspergillus nidulans, the MT cytoskeleton determines the sites of actin polymerization through cortical cell-end marker proteins. Here we describe A. nidulans MT guidance protein A (MigA) as the first ortholog of the karyogamy protein Kar9 from Saccharomyces cerevisiae in filamentous fungi. A. nidulans MigA interacts with the cortical ApsA protein and is involved in spindle positioning during mitosis. MigA is also associated with septal and nuclear MT organizing centers (MTOCs). Super-resolution photoactivated localization microscopy (PALM) analyses revealed that MigA is recruited to assembling and retracting MT plus ends in an EbA-dependent manner. MigA is required for MT convergence in hyphal tips and plays a role in correct localization of the cell-end markers TeaA and TeaR. In addition, MigA interacts with a class-V myosin, suggesting that an active mechanism exists to capture MTs and to pull the ends along actin filaments. Hence, the organization of MTs and actin depend on each other, and positive feedback loops ensure robust polar growth.
Collapse
Affiliation(s)
- Raphael Manck
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| | - Yuji Ishitsuka
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Physics and Center for Functional Nanostructures, Karlsruhe 76131, Germany
| | - Saturnino Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| | - Norio Takeshita
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki 305-8572, Japan
| | - G Ulrich Nienhaus
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Physics and Center for Functional Nanostructures, Karlsruhe 76131, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| |
Collapse
|
87
|
Meinke P, Schirmer EC. LINC'ing form and function at the nuclear envelope. FEBS Lett 2015; 589:2514-21. [PMID: 26096784 DOI: 10.1016/j.febslet.2015.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 11/15/2022]
Abstract
The nuclear envelope is an amazing piece of engineering. On one hand it is built like a mediaeval fortress with filament systems reinforcing its membrane walls and its double membrane structure forming a lumen like a castle moat. On the other hand its structure can adapt while maintaining its integrity like a reed bending in a river. Like a fortress it has guarded drawbridges in the nuclear pore complexes, but also has other mechanical means of communication. All this is enabled largely because of the LINC complex, a multi-protein structure that connects the intermediate filament nucleoskeleton across the lumen of the double membrane nuclear envelope to multiple cytoplasmic filament systems that themselves could act simultaneously both like mediaeval buttresses and like lines on a suspension bridge. Although many details of the greater LINC structure remain to be discerned, a number of recent findings are giving clues as to how its structural organization can yield such striking dynamic yet stable properties. Combining double- and triple-helical coiled-coils, intrinsic disorder and order, tissue-specific components, and intermediate filaments enables these unique properties.
Collapse
Affiliation(s)
- Peter Meinke
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
88
|
Wang Y, Barth P. Evolutionary-guided de novo structure prediction of self-associated transmembrane helical proteins with near-atomic accuracy. Nat Commun 2015; 6:7196. [PMID: 25995083 DOI: 10.1038/ncomms8196] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/15/2015] [Indexed: 11/09/2022] Open
Abstract
How specific protein associations regulate the function of membrane receptors remains poorly understood. Conformational flexibility currently hinders the structure determination of several classes of membrane receptors and associated oligomers. Here we develop EFDOCK-TM, a general method to predict self-associated transmembrane protein helical (TMH) structures from sequence guided by co-evolutionary information. We show that accurate intermolecular contacts can be identified using a combination of protein sequence covariation and TMH binding surfaces predicted from sequence. When applied to diverse TMH oligomers, including receptors characterized in multiple conformational and functional states, the method reaches unprecedented near-atomic accuracy for most targets. Blind predictions of structurally uncharacterized receptor tyrosine kinase TMH oligomers provide a plausible hypothesis on the molecular mechanisms of disease-associated point mutations and binding surfaces for the rational design of selective inhibitors. The method sets the stage for uncovering novel determinants of molecular recognition and signalling in single-spanning eukaryotic membrane receptors.
Collapse
Affiliation(s)
- Y Wang
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - P Barth
- 1] Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [2] Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [3] Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
89
|
Zhang R, Yang J, Chu TW, Hartley JM, Kopeček J. Multimodality imaging of coiled-coil mediated self-assembly in a "drug-free" therapeutic system. Adv Healthc Mater 2015; 4:1054-65. [PMID: 25612325 DOI: 10.1002/adhm.201400679] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/15/2014] [Indexed: 01/23/2023]
Abstract
Two complementary coiled-coil peptides CCE/CCK are used to develop a "drug free" therapeutic system, which can specifically kill cancer cells without a drug. CCE is attached to the Fab' fragment of anti-CD20 1F5 antibody (Fab'-CCE), and CCK is conjugated in multiple grafts to poly[N-(2-hydroxypropyl)methacrylamide] (P-(CCK)x ). Two conjugates are consecutively administered: First, Fab'-CCE coats peptide CCE at CD20 antigen of lymphoma cell surface; second, CCE/CCK biorecognition between Fab'-CCE and P-(CCK)x leads to coiled-coil formation, CD20 crosslinking, membrane reorganization, and ultimately cell apoptosis. To prove that two conjugates can assemble at cell surface, multiple fluorescence imaging studies are performed, including 2-channel FMT, 3D confocal microscopy, and 4-color FACS. Confocal microscopy shows colocalization of two fluorescently labeled conjugates on non-Hodgkin's lymphoma (NHL) Raji cell surface, indicating "two-step" targeting specificity. The fluorescent images also reveal that these two conjugates can disrupt normal membrane lipid distribution and form lipid raft clusters, leading to cancer cell apoptosis. This "two-step" biorecognition capacity is further demonstrated in a NHL xenograft model, using fluorescent images at whole-body, tissue and cell levels. It is also found that delaying injection of P-(CCK)x can significantly enhance targeting efficacy. This high-specificity therapeutics provide a safe option to treat NHL and other B cell malignancies.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Te-Wei Chu
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Jonathan M. Hartley
- Department of Bioengineering; University of Utah; Salt Lake City UT 84112 USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
- Department of Bioengineering; University of Utah; Salt Lake City UT 84112 USA
| |
Collapse
|
90
|
Brenig J, de Boor S, Knyphausen P, Kuhlmann N, Wroblowski S, Baldus L, Scislowski L, Artz O, Trauschies P, Baumann U, Neundorf I, Lammers M. Structural and Biochemical Basis for the Inhibitory Effect of Liprin-α3 on Mouse Diaphanous 1 (mDia1) Function. J Biol Chem 2015; 290:14314-27. [PMID: 25911102 DOI: 10.1074/jbc.m114.621946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 11/06/2022] Open
Abstract
Diaphanous-related formins are eukaryotic actin nucleation factors regulated by an autoinhibitory interaction between the N-terminal RhoGTPase-binding domain (mDiaN) and the C-terminal Diaphanous-autoregulatory domain (DAD). Although the activation of formins by Rho proteins is well characterized, its inactivation is only marginally understood. Recently, liprin-α3 was shown to interact with mDia1. Overexpression of liprin-α3 resulted in a reduction of the cellular actin filament content. The molecular mechanisms of how liprin-α3 exerts this effect and counteracts mDia1 activation by RhoA are unknown. Here, we functionally and structurally define a minimal liprin-α3 core region, sufficient to recapitulate the liprin-α3 determined mDia1-respective cellular functions. We show that liprin-α3 alters the interaction kinetics and thermodynamics of mDiaN with RhoA·GTP and DAD. RhoA displaces liprin-α3 allosterically, whereas DAD competes with liprin-α3 for a highly overlapping binding site on mDiaN. Liprin-α3 regulates actin polymerization by lowering the regulatory potency of RhoA and DAD on mDiaN. We present a model of a mechanistically unexplored and new aspect of mDiaN regulation by liprin-α3.
Collapse
Affiliation(s)
- Julian Brenig
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Susanne de Boor
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Philipp Knyphausen
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Nora Kuhlmann
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Sarah Wroblowski
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Linda Baldus
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Lukas Scislowski
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Oliver Artz
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Philip Trauschies
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Ulrich Baumann
- the Institute for Biochemistry, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| | - Ines Neundorf
- the Institute for Biochemistry, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| | - Michael Lammers
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| |
Collapse
|
91
|
Modeling transmembrane domain dimers/trimers of plexin receptors: implications for mechanisms of signal transmission across the membrane. PLoS One 2015; 10:e0121513. [PMID: 25837709 PMCID: PMC4383379 DOI: 10.1371/journal.pone.0121513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/03/2015] [Indexed: 01/01/2023] Open
Abstract
Single-pass transmembrane (TM) receptors transmit signals across lipid bilayers by helix association or by configurational changes within preformed dimers. The structure determination for such TM regions is challenging and has mostly been accomplished by NMR spectroscopy. Recently, the computational prediction of TM dimer structures is becoming recognized for providing models, including alternate conformational states, which are important for receptor regulation. Here we pursued a strategy to predict helix oligomers that is based on packing considerations (using the PREDDIMER webserver) and is followed by a refinement of structures, utilizing microsecond all-atom molecular dynamics simulations. We applied this method to plexin TM receptors, a family of 9 human proteins, involved in the regulation of cell guidance and motility. The predicted models show that, overall, the preferences identified by PREDDIMER are preserved in the unrestrained simulations and that TM structures are likely to be diverse across the plexin family. Plexin-B1 and -B3 TM helices are regular and tend to associate, whereas plexin-A1, -A2, -A3, -A4, -C1 and -D1 contain sequence elements, such as poly-Glycine or aromatic residues that distort helix conformation and association. Plexin-B2 does not form stable dimers due to the presence of TM prolines. No experimental structural information on the TM region is available for these proteins, except for plexin-C1 dimeric and plexin-B1 - trimeric structures inferred from X-ray crystal structures of the intracellular regions. Plexin-B1 TM trimers utilize Ser and Thr sidechains for interhelical contacts. We also modeled the juxta-membrane (JM) region of plexin-C1 and plexin-B1 and show that it synergizes with the TM structures. The structure and dynamics of the JM region and TM-JM junction provide determinants for the distance and distribution of the intracellular domains, and for their binding partners relative to the membrane. The structures suggest experimental tests and will be useful for the interpretation of future studies.
Collapse
|
92
|
St-Denis N, Gupta GD, Lin ZY, Gonzalez-Badillo B, Pelletier L, Gingras AC. Myotubularin-related proteins 3 and 4 interact with polo-like kinase 1 and centrosomal protein of 55 kDa to ensure proper abscission. Mol Cell Proteomics 2015; 14:946-60. [PMID: 25659891 PMCID: PMC4390272 DOI: 10.1074/mcp.m114.046086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/22/2015] [Indexed: 11/06/2022] Open
Abstract
The myotubularins are a family of phosphatases that dephosphorylate the phosphatidylinositols phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-phosphate. Several family members are mutated in disease, yet the biological functions of the majority of myotubularins remain unknown. To gain insight into the roles of the individual enzymes, we have used affinity purification coupled to mass spectrometry to identify protein-protein interactions for the myotubularins. The myotubularin interactome comprises 66 high confidence (false discovery rate ≤1%) interactions, including 18 pairwise interactions between individual myotubularins. The results reveal a number of potential signaling contexts for this family of enzymes, including an intriguing, novel role for myotubularin-related protein 3 and myotubularin-related protein 4 in the regulation of abscission, the final step of mitosis in which the membrane bridge remaining between two daughter cells is cleaved. Both depletion and overexpression of either myotubularin-related protein 3 or myotubularin-related protein 4 result in abnormal midbody morphology and cytokinesis failure. Interestingly, myotubularin-related protein 3 and myotubularin-related protein 4 do not exert their effects through lipid regulation at the midbody, but regulate abscission during early mitosis, by interacting with the mitotic kinase polo-like kinase 1, and with centrosomal protein of 55 kDa (CEP55), an important regulator of abscission. Structure-function analysis reveals that, consistent with known intramyotubularin interactions, myotubularin-related protein 3 and myotubularin-related protein 4 interact through their respective coiled coil domains. The interaction between myotubularin-related protein 3 and polo-like kinase 1 relies on the divergent, nonlipid binding Fab1, YOTB, Vac1, and EEA1 domain of myotubularin-related protein 3, and myotubularin-related protein 4 interacts with CEP55 through a short GPPXXXY motif, analogous to endosomal sorting complex required for transport-I components. Disruption of any of these interactions results in abscission failure, by disrupting the proper recruitment of CEP55, and subsequently, of endosomal sorting complex required for transport-I, to the midbody. Our data suggest that myotubularin-related protein 3 and myotubularin-related protein 4 may act as a bridge between CEP55 and polo-like kinase 1, ensuring proper CEP55 phosphorylation and regulating CEP55 recruitment to the midbody. This work provides a novel role for myotubularin-related protein 3/4 heterodimers, and highlights the temporal and spatial complexity of the regulation of cytokinesis.
Collapse
Affiliation(s)
- Nicole St-Denis
- From the ‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Gagan D Gupta
- From the ‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Zhen Yuan Lin
- From the ‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Beatriz Gonzalez-Badillo
- From the ‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Laurence Pelletier
- From the ‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; §Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- From the ‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; §Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| |
Collapse
|
93
|
Nakayama N, Hagiwara K, Ito Y, Ijiro K, Osada Y, Sano KI. Superior cell penetration by a rigid and anisotropic synthetic protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2826-2832. [PMID: 25710086 DOI: 10.1021/la504494x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Molecules with structural anisotropy and rigidity, such as asbestos, demonstrate high cell-penetrating activity but also high toxicity. Here we synthesize a biodegradable, rigid, and fibrous artificial protein, CCPC 140, as a potential vehicle for cellular delivery. CCPC 140 penetrated 100% of cells tested in vitro, even at a concentration of 3.1 nM-superior to previously reported cell-penetrating peptides. The effects of cell-strain-dependency and aspect ratio on the cell-penetrating activity of CCPC 140 were also investigated.
Collapse
Affiliation(s)
- Norihisa Nakayama
- Graduate School of Environmental Symbiotic System Major and ‡Department of Innovative Systems Engineering, Nippon Institute of Technology , Miyashiro, Saitama 345-8501, Japan
| | | | | | | | | | | |
Collapse
|
94
|
Liu J, Yang J, Wen J, Yang Y, Wei X, Zhang X, Wang YP. Mutational analysis of dimeric linkers in peri- and cytoplasmic domains of histidine kinase DctB reveals their functional roles in signal transduction. Open Biol 2015; 4:140023. [PMID: 24898140 PMCID: PMC4077058 DOI: 10.1098/rsob.140023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Membrane-associated histidine kinases (HKs) in two-component systems respond to environmental stimuli by autophosphorylation and phospho-transfer. HK typically contains a periplasmic sensor domain that regulates the cytoplasmic kinase domain through a conserved cytoplasmic linker. How signal is transduced from the ligand-binding site across the membrane barrier remains unclear. Here, we analyse two linker regions of a typical HK, DctB. One region connects the first transmembrane helix with the periplasmic Per-ARNT-Sim domains, while the other one connects the second transmembrane helix with the cytoplasmic kinase domains. We identify a leucine residue in the first linker region to be essential for the signal transduction and for maintaining the delicate balance of the dimeric interface, which is key to its activities. We also show that the other linker, belonging to the S-helix coiled-coil family, plays essential roles in signal transduction inside the cell. Furthermore, by combining mutations with opposing activities in the two regions, we show that these two signalling transduction elements are integrated to produce a combined effect on the final activity of DctB.
Collapse
Affiliation(s)
- Jiwei Liu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jianguo Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jin Wen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yun Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xiaolu Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xiaodong Zhang
- Department of Life Sciences, Centre for Structural Biology, Imperial College London, London SW7 2AZ, UK
| | - Yi-Ping Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
95
|
Brain expressed and X-linked (Bex) proteins are intrinsically disordered proteins (IDPs) and form new signaling hubs. PLoS One 2015; 10:e0117206. [PMID: 25612294 PMCID: PMC4303428 DOI: 10.1371/journal.pone.0117206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/20/2014] [Indexed: 11/19/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are abundant in complex organisms. Due to their promiscuous nature and their ability to adopt several conformations IDPs constitute important points of network regulation. The family of Brain Expressed and X-linked (Bex) proteins consists of 5 members in humans (Bex1-5). Recent reports have implicated Bex proteins in transcriptional regulation and signaling pathways involved in neurodegeneration, cancer, cell cycle and tumor growth. However, structural and biophysical data for this protein family is almost non-existent. We used bioinformatics analyses to show that Bex proteins contain long regions of intrinsic disorder which are conserved across all members. Moreover, we confirmed the intrinsic disorder by circular dichroism spectroscopy of Bex1 after expression and purification in E. coli. These observations strongly suggest that Bex proteins constitute a new group of IDPs. Based on these findings, together with the demonstrated promiscuity of Bex proteins and their involvement in different signaling pathways, we propose that Bex family members play important roles in the formation of protein network hubs.
Collapse
|
96
|
Li C, Wang XF, Chen Z, Zhang Z, Song J. Computational characterization of parallel dimeric and trimeric coiled-coils using effective amino acid indices. MOLECULAR BIOSYSTEMS 2015; 11:354-60. [DOI: 10.1039/c4mb00569d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RFCoil is a novel predictor for parallel coiled-coil dimer and trimer.
Collapse
Affiliation(s)
- Chen Li
- Department of Biochemistry and Molecular Biology
- Faculty of Medicine
- Monash University
- Melbourne
- Australia
| | - Xiao-Feng Wang
- State Key Laboratory of Agrobiotechnology
- College of Biological Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Zhen Chen
- State Key Laboratory of Agrobiotechnology
- College of Biological Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology
- College of Biological Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology
- Faculty of Medicine
- Monash University
- Melbourne
- Australia
| |
Collapse
|
97
|
Negron C, Keating AE. A set of computationally designed orthogonal antiparallel homodimers that expands the synthetic coiled-coil toolkit. J Am Chem Soc 2014; 136:16544-56. [PMID: 25337788 PMCID: PMC4277747 DOI: 10.1021/ja507847t] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 12/11/2022]
Abstract
Molecular engineering of protein assemblies, including the fabrication of nanostructures and synthetic signaling pathways, relies on the availability of modular parts that can be combined to give different structures and functions. Currently, a limited number of well-characterized protein interaction components are available. Coiled-coil interaction modules have been demonstrated to be useful for biomolecular design, and many parallel homodimers and heterodimers are available in the coiled-coil toolkit. In this work, we sought to design a set of orthogonal antiparallel homodimeric coiled coils using a computational approach. There are very few antiparallel homodimers described in the literature, and none have been measured for cross-reactivity. We tested the ability of the distance-dependent statistical potential DFIRE to predict orientation preferences for coiled-coil dimers of known structure. The DFIRE model was then combined with the CLASSY multistate protein design framework to engineer sets of three orthogonal antiparallel homodimeric coiled coils. Experimental measurements confirmed the successful design of three peptides that preferentially formed antiparallel homodimers that, furthermore, did not interact with one additional previously reported antiparallel homodimer. Two designed peptides that formed higher-order structures suggest how future design protocols could be improved. The successful designs represent a significant expansion of the existing protein-interaction toolbox for molecular engineers.
Collapse
Affiliation(s)
- Christopher Negron
- Program
in Computational and Systems Biology and Departments of Biology and Biological
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 021393, United States
| | - Amy E. Keating
- Program
in Computational and Systems Biology and Departments of Biology and Biological
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 021393, United States
| |
Collapse
|
98
|
Pessi A. Cholesterol-conjugated peptide antivirals: a path to a rapid response to emerging viral diseases. J Pept Sci 2014; 21:379-86. [PMID: 25331523 PMCID: PMC7167725 DOI: 10.1002/psc.2706] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/01/2014] [Accepted: 09/15/2014] [Indexed: 12/18/2022]
Abstract
While it is now possible to identify and genetically fingerprint the causative agents of emerging viral diseases, often with extraordinary speed, suitable therapies cannot be developed with equivalent speed, because drug discovery requires information that goes beyond knowledge of the viral genome. Peptides, however, may represent a special opportunity. For all enveloped viruses, fusion between the viral and the target cell membrane is an obligatory step of the life cycle. Class I fusion proteins harbor regions with a repeating pattern of amino acids, the heptad repeats (HRs), that play a key role in fusion, and HR‐derived peptides such as enfuvirtide, in clinical use for HIV, can block the process. Because of their characteristic sequence pattern, HRs are easily identified in the genome by means of computer programs, providing the sequence of candidate peptide inhibitors directly from genomic information. Moreover, a simple chemical modification, the attachment of a cholesterol group, can dramatically increase the antiviral potency of HR‐derived inhibitors and simultaneously improve their pharmacokinetics. Further enhancement can be provided by dimerization of the cholesterol‐conjugated peptide. The examples reported so far include inhibitors of retroviruses, paramyxoviruses, orthomyxoviruses, henipaviruses, coronaviruses, and filoviruses. For some of these viruses, in vivo efficacy has been demonstrated in suitable animal models. The combination of bioinformatic lead identification and potency/pharmacokinetics improvement provided by cholesterol conjugation may form the basis for a rapid response strategy, where development of an emergency cholesterol‐conjugated therapeutic would immediately follow the availability of the genetic information of a new enveloped virus. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Antonello Pessi
- PeptiPharma, Viale Città D'Europa 679, 00141, Roma, Italy; JV Bio, Via Gaetano Salvatore 486, 80145, Napoli, Italy; CEINGE, Via Gaetano Salvatore 486, 80145, Napoli, Italy
| |
Collapse
|
99
|
Abarca F, Gutierrez-Maldonado SE, Parada P, Martinez P, Maass A, Perez-Acle T. Insights on the structure and stability of Licanantase: a trimeric acid-stable coiled-coil lipoprotein from Acidithiobacillus thiooxidans. PeerJ 2014; 2:e457. [PMID: 25165619 PMCID: PMC4137666 DOI: 10.7717/peerj.457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/06/2014] [Indexed: 12/29/2022] Open
Abstract
Licanantase (Lic) is the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulphur. When used as an additive, Lic improves copper recovery from bioleaching processes. However, this recovery enhancement is not fully understood. In this context, our aim is to predict the 3D structure of Lic, to shed light on its structure-function relationships. Bioinformatics analyses on the amino acid sequence of Lic showed a great similarity with Lpp, an Escherichia coli Lipoprotein that can form stable trimers in solution. Lic and Lpp share the secretion motif, intracellular processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads forming a hydrophobic core, typical of coiled-coil structures. Cross-linking experiments showed the presence of Lic trimers, supporting our predictions. Taking the in vitro and in silico evidence as a whole, we propose that the most probable structure for Lic is a trimeric coiled-coil. According to this prediction, a suitable model for Lic was produced using the de novo algorithm "Rosetta Fold-and-Dock". To assess the structural stability of our model, Molecular Dynamics (MD) and Replica Exchange MD simulations were performed using the structure of Lpp and a 14-alanine Lpp mutant as controls, at both acidic and neutral pH. Our results suggest that Lic was the most stable structure among the studied proteins in both pH conditions. This increased stability can be explained by a higher number of both intermonomer hydrophobic contacts and hydrogen bonds, key elements for the stability of Lic's secondary and tertiary structure.
Collapse
Affiliation(s)
- Fernando Abarca
- Computational Biology Lab (DLab), Fundación Ciencia y Vida, Ñuñoa, Santiago, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastian E. Gutierrez-Maldonado
- Computational Biology Lab (DLab), Fundación Ciencia y Vida, Ñuñoa, Santiago, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | | | | | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling (CMM) and Center for Genome Regulation (CRG), Universidad de Chile, Santiago, Chile
- Department of Mathematical Engineering, Universidad de Chile, Santiago, Chile
| | - Tomas Perez-Acle
- Computational Biology Lab (DLab), Fundación Ciencia y Vida, Ñuñoa, Santiago, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
100
|
Acidic pH triggers conformational changes at the NH2-terminal propeptide of the precursor of pulmonary surfactant protein B to form a coiled coil structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1738-51. [DOI: 10.1016/j.bbamem.2014.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 11/21/2022]
|