51
|
Chen C, Geng F, Wang Y, Yu H, Li L, Yang S, Liu J, Huang W. Design of a nanoswitch for sequentially multi-species assay based on competitive interaction between DNA-templated fluorescent copper nanoparticles, Cr3+ and pyrophosphate and ALP. Talanta 2019; 205:120132. [DOI: 10.1016/j.talanta.2019.120132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 11/15/2022]
|
52
|
Zhao Y, Zhou H, Zhang S, Xu J. The synthesis of metal nanoclusters and their applications in bio-sensing and imaging. Methods Appl Fluoresc 2019; 8:012001. [PMID: 31726445 DOI: 10.1088/2050-6120/ab57e7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Noble metal nanomaterials have been studied by many researchers for their ultra-small size, excellent photophysical properties and good biocompatibility. Metal nanoclusters are a kind of nanoscale ultrafine particle, which have completely different properties from macroscopic metals. In the visible region, they do not usually show the characteristic surface plasmon resonance absorption but instead show fluorescence in the visible to near infrared region. In particular, the noble metallic (Au, Ag, Cu, etc) nanoclusters (NMNCs) have broad application prospects in the field of biomedicine as probes for fluorescence sensing. Their strong photoluminescence, living cell compatibility, and easy availability make up for the shortcomings of traditional fluorescent probes such as organic fluorescent dyes, fluorescent proteins, and fluorescent quantum dots. In this review, we summarize the synthetic method and application of metal nanoclusters as fluorescent probes in bio-sensing and imaging, especially in the early diagnosis of cancer cells.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | | | | | | |
Collapse
|
53
|
Electrons selective uptake of a metal-reducing bacterium Shewanella oneidensis MR-1 from ferrocyanide. Biosens Bioelectron 2019; 142:111571. [DOI: 10.1016/j.bios.2019.111571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 12/24/2022]
|
54
|
Liu F, Csetenyi L, Gadd GM. Amino acid secretion influences the size and composition of copper carbonate nanoparticles synthesized by ureolytic fungi. Appl Microbiol Biotechnol 2019; 103:7217-7230. [PMID: 31289902 PMCID: PMC6691030 DOI: 10.1007/s00253-019-09961-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 11/30/2022]
Abstract
The ureolytic activity of Neurospora crassa results in an alkaline carbonate-rich culture medium which can precipitate soluble metals as insoluble carbonates. Such carbonates are smaller, often of nanoscale dimensions, than metal carbonates synthesized abiotically which infers that fungal excreted products can markedly affect particle size. In this work, it was found that amino acid excretion was a significant factor in affecting the particle size of copper carbonate. Eleven different amino acids were found to be secreted by Neurospora crassa, and L-glutamic acid, L-aspartic acid and L-cysteine were chosen to examine the impact of amino acids on the morphology and chemical composition of copper carbonate minerals. X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) were used to characterize the obtained copper carbonate samples. Copper carbonate nanoparticles with a diameter of 100-200 nm were produced with L-glutamic acid, and the presence of L-glutamic acid was found to stabilize these particles in the early phase of crystal growth and prevent them from aggregation. FTIR and TG analysis revealed that the amino acid moieties were intimately associated with the copper mineral particles. Component analysis of the final products of TG analysis of the copper minerals synthesized under various conditions showed the ultimate formation of Cu, Cu2O and Cu2S, suggesting a novel synthesis method for producing these useful Cu-containing materials.
Collapse
Affiliation(s)
- Feixue Liu
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Laszlo Csetenyi
- Concrete Technology Group, Department of Civil Engineering, University of Dundee, Dundee, DD1 4HN, Scotland, UK
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
55
|
Kaur A, Boghani HC, Milner EM, Kimber RL, Michie IS, Daalmans R, Dinsdale RM, Guwy AJ, Head IM, Lloyd JR, Yu EH, Sadhukhan J, Premier GC. Bioelectrochemical treatment and recovery of copper from distillery waste effluents using power and voltage control strategies. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:18-26. [PMID: 30844646 DOI: 10.1016/j.jhazmat.2019.02.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Copper recovery from distillery effluent was studied in a scalable bioelectro-chemical system with approx. 6.8 L total volume. Two control strategies based on the control of power with maximum power point tracking (MPPT) and the application of 0.5 V using an external power supply were used to investigate the resultant modified electroplating characteristics. The reactor system was constructed from two electrically separated, but hydraulically connected cells, to which the MPPT and 0.5 V control strategies were applied. Three experiments were carried out using a relatively high copper concentration i.e. 1000 mg/L followed by a lower concentration i.e. 50 mg/L, with operational run times defined to meet the treatment requirements for distillery effluents considered. Real distillery waste was introduced into the cathode to reduce ionic copper concentrations. This waste was then recirculated to the anode as a feed stock after the copper depletion step, in order to test the bioenergy self-sustainability of the system. Approx. 60-95% copper was recovered in the form of deposits depending on starting concentration. However, the recovery was low when the anode was supplied with copper depleted distillery waste. Through process control (MPPT or 0.5 V applied voltage) the amount and form of the copper recovered could be manipulated.
Collapse
Affiliation(s)
- Amandeep Kaur
- Sustainable Environment Research Centre (SERC), University of South Wales, Pontypridd, CF37 1DL, UK.
| | - Hitesh C Boghani
- College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Edward M Milner
- Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Richard L Kimber
- School of Earth and Environmental Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Iain S Michie
- Sustainable Environment Research Centre (SERC), University of South Wales, Pontypridd, CF37 1DL, UK
| | | | - Richard M Dinsdale
- Sustainable Environment Research Centre (SERC), University of South Wales, Pontypridd, CF37 1DL, UK
| | - Alan J Guwy
- Sustainable Environment Research Centre (SERC), University of South Wales, Pontypridd, CF37 1DL, UK
| | - Ian M Head
- School of Earth and Environmental Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jonathan R Lloyd
- Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Eileen H Yu
- College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jhuma Sadhukhan
- Centre for Environment & Sustainability, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Giuliano C Premier
- Sustainable Environment Research Centre (SERC), University of South Wales, Pontypridd, CF37 1DL, UK
| |
Collapse
|
56
|
Huang BC, Yi YC, Chang JS, Ng IS. Mechanism study of photo-induced gold nanoparticles formation by Shewanella oneidensis MR-1. Sci Rep 2019; 9:7589. [PMID: 31110216 PMCID: PMC6527576 DOI: 10.1038/s41598-019-44088-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/09/2019] [Indexed: 11/09/2022] Open
Abstract
Shewanella oneidensis MR-1, a bioelectricity generating bacterium, is broadly used in bioremediation, microbial fuel cell and dissimilatory reduction and recovery of precious metals. Herein, we report for the first time that photo induction as a trigger to stimulate gold nanoparticles (Au@NPs) formation by MR-1, with wavelength and light intensity as two key variables. Results indicated that sigmoidal model is the best fit for Au@NPs formation at various wavelengths (with R2 > 0.97). Light intensity in terms of photosynthetic photon flux density (PPFD) critically influences the rate constant in the low-light intensity region (PPFD < 20), while wavelength controls the maximum rate constant in the high-light region (PPFD > 20). By deletion of Mtr pathway genes in MR-1, we proposed the mechanism for light induced Au@NP formation is the excitation effect of light on certain active groups and extracellular polymeric substances (EPS) on the cell surface. Also, the release of electrons from proteins and co-enzyme complexes enhance electron generation. To the best of our knowledge, this is the first-attempt to explore the effect of photo-induction on Au@NPs production by MR-1, which provides an alternative cost-effective and eco-friendly process in green chemical industry.
Collapse
Affiliation(s)
- Bo Chuan Huang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, ROC, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, ROC, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, ROC, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, ROC, Taiwan.
| |
Collapse
|
57
|
Yang Y, Fang Z, Yu YY, Wang YZ, Naraginti S, Yong YC. A mediator-free whole-cell electrochemical biosensing system for sensitive assessment of heavy metal toxicity in water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:1071-1080. [PMID: 31070587 DOI: 10.2166/wst.2019.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A bioelectrochemical sensing system (BES) based on electroactive bacteria (EAB) has been used as a new and promising tool for water toxicity assessment. However, most EAB can reduce heavy metals, which usually results in low toxicity response. Herein, a starvation pre-incubation strategy was developed which successfully avoided the metal reduction during the toxicity sensing period. By integrating this starvation pre-incubation procedure with the amperometric BES, a sensitive, robust and mediator-free biosensing method for heavy metal toxicity assessment was developed. Under the optimized conditions, the IC50 (half maximal inhibitory concentration) values for Cu2+, Ni2+, Cd2+, and Cr6+ obtained were 0.35, 3.49, 6.52, 2.48 mg L-1, respectively. The measurement with real water samples also suggested this method was reliable for practical application. This work demonstrates that it is feasible to use EAB for heavy metal toxicity assessment and provides a new tool for water toxicity warning.
Collapse
Affiliation(s)
- Yuan Yang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Yang-Yang Yu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Yan-Zhai Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Saraschandra Naraginti
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail: ; Zhenjiang Key Laboratory for Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
58
|
Xu H, Xiao Y, Xu M, Cui H, Tan L, Feng N, Liu X, Qiu G, Dong H, Xie J. Microbial synthesis of Pd-Pt alloy nanoparticles using Shewanella oneidensis MR-1 with enhanced catalytic activity for nitrophenol and azo dyes reduction. NANOTECHNOLOGY 2019; 30:065607. [PMID: 30524068 DOI: 10.1088/1361-6528/aaf2a6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bimetallic nanoparticles (NPs) often exhibit improved catalytic performance due to the electronic and spatial structure changes. Herein, a novel green biosynthesis method for Pd-Pt alloy NPs using Shewanella oneidensis MR-1 was proposed. The morphology, size and crystal structure of Pd-Pt alloy NPs were studied by a suite of characterization techniques. Results showed Pd-Pt alloy NPs were successfully synthesized inside and outside the cell. The biosynthesized Pd-Pt alloy NPs were polycrystalline and face-centered-cubic structure with the particle size ranged from 3-40 nm. Furthermore, the catalytic experiment demonstrated that the Pd-Pt alloy NPs exhibited the highest performance for the catalytic reduction of nitrophenol and azo dyes compared with the as-synthesized Pd and Pt monometallic NPs. This enlarged catalytic activity resulted from the synergistic effect of Pd and Pt element. Thereby, this paper provided a simple biosynthesis method for producing bimetallic alloy nanocatalyst with superior activity for contaminant degradation.
Collapse
Affiliation(s)
- Hang Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China. State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou 510070, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Metal and metalloid nanoparticles (NPs) have attracted substantial attention from research communities over the past few decades. Traditional methodologies for NP fabrication have also been intensely explored. However, drawbacks such as the use of toxic agents and the high energy consumption involved in chemical and physical processes hinder their further application in various fields. It is well known that some bacteria are capable of binding and concentrating dissolved metal and metalloid ions, thereby detoxifying their environments. Bioinspired fabrication of NPs is environmentally friendly and inexpensive and requires only low energy consumption. Some biosynthesized NPs are usually used as heterogeneous catalysts in environmental remediation and show higher catalytic efficiency because of their enhanced biocompatibility, stability and large specific surface areas. Therefore, bacteria used as nanofactories can provide a novel approach for removing metal or metalloid ions and fabricating materials with unique properties. Even though a wide range of NPs have been biosynthesized, and their synthetic mechanisms have been proposed, some of these mechanisms are not known in detail. This review focuses on the synthesis and catalytic applications of NPs obtained using bacteria. The known mechanisms of bioreduction and prospects in the design of NPs for catalytic applications are also discussed.
Collapse
|
60
|
Dundas CM, Graham AJ, Romanovicz DK, Keitz BK. Extracellular Electron Transfer by Shewanella oneidensis Controls Palladium Nanoparticle Phenotype. ACS Synth Biol 2018; 7:2726-2736. [PMID: 30396267 DOI: 10.1021/acssynbio.8b00218] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The relative scarcity of well-defined genetic and metabolic linkages to material properties impedes biological production of inorganic materials. The physiology of electroactive bacteria is intimately tied to inorganic transformations, which makes genetically tractable and well-studied electrogens, such as Shewanella oneidensis, attractive hosts for material synthesis. Notably, this species is capable of reducing a variety of transition-metal ions into functional nanoparticles, but exact mechanisms of nanoparticle biosynthesis remain ill-defined. We report two key factors of extracellular electron transfer by S. oneidensis, the outer membrane cytochrome, MtrC, and soluble redox shuttles (flavins), that affect Pd nanoparticle formation. Changes in the expression and availability of these electron transfer components drastically modulated particle synthesis rate and phenotype, including their structure and cellular localization. These relationships may serve as the basis for biologically tailoring Pd nanoparticle catalysts and could potentially be used to direct the biogenesis of other metal nanomaterials.
Collapse
|
61
|
Kim TY, Kim MG, Lee JH, Hur HG. Biosynthesis of Nanomaterials by Shewanella Species for Application in Lithium Ion Batteries. Front Microbiol 2018; 9:2817. [PMID: 30524408 PMCID: PMC6258770 DOI: 10.3389/fmicb.2018.02817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/02/2018] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials exhibit extraordinary properties based on their size, shape, chemical composition, and crystal structure. Owing to their unique properties nanomaterials are preferred over their bulk counterparts for a number of applications. Although conventional physical and chemical routes were established for the massive production of nanomaterials, there are some drawbacks such as environmental burden and high cost that cannot be disregarded. Recently, there has been great interest toward the green synthesis of inorganic nanomaterials. It has been reported that dissimilatory metal reduction by microorganisms is a cost-effective process to remediate toxic organic and inorganic compounds under anaerobic conditions. Particularly, members of the Shewanella genus have been utilized to produce various biogenic nanomaterials with unique micro/nanostructured morphologies through redox transformations as well as to remove harmful metals and metalloids in eco-efficient and environment-friendly methods under ambient conditions. In the present mini-review, we specifically address the active utilization of microbial respiration processes for the synthesis of novel functional biogenic nanomaterials by the members of the Shewanella genus. This biosynthetic method may provide alternative approaches to produce electrode materials for sustainable energy storage applications.
Collapse
Affiliation(s)
- Tae-Yang Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Min Gyu Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, South Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju, South Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
62
|
Biogenic Synthesis of Copper and Silver Nanoparticles Using Green Alga Botryococcus braunii and Its Antimicrobial Activity. Bioinorg Chem Appl 2018; 2018:7879403. [PMID: 30420873 PMCID: PMC6215593 DOI: 10.1155/2018/7879403] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
The spread of infectious diseases and the increase in the drug resistance among microbes has forced the researchers to synthesize biologically active nanoparticles. Improvement of the ecofriendly procedure for the synthesis of nanoparticles is growing day-by-day in the field of nanobiotechnology. In the present study, we use the extract of green alga Botryococcus braunii for the synthesis of copper and silver nanoparticles. The characterization of copper and silver nanoparticles was carried out by using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron spectroscopy (SEM). FTIR measurements showed all functional groups having control over reduction and stabilization of the nanoparticles. The X-ray diffraction pattern revealed that the particles were crystalline in nature with a face-centred cubic (FCC) geometry. SEM micrographs have shown the morphology of biogenically synthesized metal nanoparticles. Furthermore, these biosynthesized nanoparticles were found to be highly toxic against two Gram-negative bacterial strains Pseudomonas aeruginosa (MTCC 441) and Escherichia coli (MTCC 442), two Gram-positive bacterial strains Klebsiella pneumoniae (MTCC 109) and Staphylococcus aureus (MTCC 96), and a fungal strain Fusarium oxysporum (MTCC 2087). The zone of inhibition was measured by the agar well plate method, and furthermore, minimum inhibitory concentration was determined by the broth dilution assay.
Collapse
|
63
|
Liu D, Chen X, Bian B, Lai Z, Situ Y. Dual-Function Conductive Copper Hollow Fibers for Microfiltration and Anti-biofouling in Electrochemical Membrane Bioreactors. Front Chem 2018; 6:445. [PMID: 30320076 PMCID: PMC6167433 DOI: 10.3389/fchem.2018.00445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/07/2018] [Indexed: 11/13/2022] Open
Abstract
Membrane bioreactors (MBRs) with polymeric/ceramic microfiltration (MF) membranes have been commonly used for wastewater treatment today. However, membrane biofouling often results in a dramatically-reduced service life of MF membranes, which limits the application of this technology. In this study, Cu hollow fiber membranes (Cu-HFMs) with low resistivity (104.8-309.8 nΩ·m) and anti-biofouling properties were successfully synthesized. Further analysis demonstrated that Cu-HFMs reduced at 625°C achieved the bimodal pore size distribution of ~1 μm and a porosity of 46%, which enable high N2 permeance (1.56 × 10-5 mol/m2 s pa) and pure water flux (5812 LMH/bar). The Cu-HFMs were further applied as the conductive cathodes, as well as MF membranes, in the electrochemical membrane bioreactor (EMBR) system that was enriched with domestic wastewater at an applied voltage of 0.9 V. Excellent permeate quality (Total suspended solids (TSS) = 11 mg/L) was achieved at a flux of 9.47 LMH after Cu-HFM filtration, with relatively stable transmembrane pressure (TMP) and low Cu2+ dissolvability (<25 μg/L). The anti-biofouling over time was demonstrated by SEM characterization of the rare biofilm formation on the Cu-HFM cathode surface. By using Cu-HFMs in EMBR systems, an effective strategy to control the membrane biofouling is developed in this study.
Collapse
Affiliation(s)
- Defei Liu
- School of Environment and Chemical Engineering, Foshan University, Foshan, China.,School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.,Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xin Chen
- School of Environment and Chemical Engineering, Foshan University, Foshan, China.,School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Bin Bian
- Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhiping Lai
- Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yue Situ
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
64
|
Kim A, Muthuchamy N, Yoon C, Joo SH, Park KH. MOF-Derived Cu@Cu₂O Nanocatalyst for Oxygen Reduction Reaction and Cycloaddition Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E138. [PMID: 29495634 PMCID: PMC5869629 DOI: 10.3390/nano8030138] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/19/2018] [Accepted: 02/24/2018] [Indexed: 11/16/2022]
Abstract
Research on the synthesis of nanomaterials using metal-organic frameworks (MOFs), which are characterized by multi-functionality and porosity, as precursors have been accomplished through various synthetic approaches. In this study, copper and copper oxide nanoparticles were fabricated within 30 min by a simple and rapid method involving the reduction of a copper(II)-containing MOF with sodium borohydride solution at room temperature. The obtained nanoparticles consist of a copper core and a copper oxide shell exhibited catalytic activity in the oxygen reduction reaction. The as-synthesized Cu@Cu₂O core-shell nanocatalyst exhibited an enhanced limit current density as well as onset potential in the electrocatalytic oxygen reduction reaction (ORR). Moreover, the nanoparticles exhibited good catalytic activity in the Huisgen cycloaddition of various substituted azides and alkynes under mild reaction conditions.
Collapse
Affiliation(s)
- Aram Kim
- Department of Chemistry, Pusan National University, Busan 46241, Korea.
| | - Nallal Muthuchamy
- Department of Chemistry, Pusan National University, Busan 46241, Korea.
| | - Chohye Yoon
- Department of Chemistry, Pusan National University, Busan 46241, Korea.
| | - Sang Hoon Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea.
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, Korea.
| |
Collapse
|