51
|
Lovasco LA, Gustafson EA, Seymour KA, de Rooij DG, Freiman RN. TAF4b is required for mouse spermatogonial stem cell development. Stem Cells 2016; 33:1267-76. [PMID: 25727968 DOI: 10.1002/stem.1914] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/23/2014] [Accepted: 11/28/2014] [Indexed: 12/22/2022]
Abstract
Long-term mammalian spermatogenesis requires proper development of spermatogonial stem cells (SSCs) that replenish the testis with germ cell progenitors during adult life. TAF4b is a gonadal-enriched component of the general transcription factor complex, TFIID, which is required for the maintenance of spermatogenesis in the mouse. Successful germ cell transplantation assays into adult TAF4b-deficient host testes suggested that TAF4b performs an essential germ cell autonomous function in SSC establishment and/or maintenance. To elucidate the SSC function of TAF4b, we characterized the initial gonocyte pool and rounds of spermatogenic differentiation in the context of the Taf4b-deficient mouse testis. Here, we demonstrate a significant reduction in the late embryonic gonocyte pool and a deficient expansion of this pool soon after birth. Resulting from this reduction of germ cell progenitors is a developmental delay in meiosis initiation, as compared to age-matched controls. While GFRα1+ spermatogonia are appropriately present as Asingle and Apaired in wild-type testes, TAF4b-deficient testes display an increased proportion of long and clustered chains of GFRα1+ cells. In the absence of TAF4b, seminiferous tubules in the adult testis either lack germ cells altogether or are found to have missing generations of spermatogenic progenitor cells. Together these data indicate that TAF4b-deficient spermatogenic progenitor cells display a tendency for differentiation at the expense of self-renewal and a renewing pool of SSCs fail to establish during the critical window of SSC development.
Collapse
Affiliation(s)
- Lindsay A Lovasco
- Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | | | | | | | | |
Collapse
|
52
|
Abstract
Mammalian spermatogenesis is a complex and highly ordered process by which male germ cells proceed through a series of differentiation steps to produce haploid flagellated spermatozoa. Underlying this process is a pool of adult stem cells, the spermatogonial stem cells (SSCs), which commence the spermatogenic lineage by undertaking a differentiation fate decision to become progenitor spermatogonia. Subsequently, progenitors acquire a differentiating spermatogonia phenotype and undergo a series of amplifying mitoses while becoming competent to enter meiosis. After spermatocytes complete meiosis, post-meiotic spermatids must then undergo a remarkable transformation from small round spermatids to a flagellated spermatozoa with extremely compacted nuclei. This chapter reviews the current literature pertaining to spermatogonial differentiation with an emphasis on the mechanisms controlling stem cell fate decisions and early differentiation events in the life of a spermatogonium.
Collapse
Affiliation(s)
- Jennifer M Mecklenburg
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Brian P Hermann
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
53
|
Testicular expression of the Lin28/let-7 system: Hormonal regulation and changes during postnatal maturation and after manipulations of puberty. Sci Rep 2015; 5:15683. [PMID: 26494358 PMCID: PMC4616161 DOI: 10.1038/srep15683] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/29/2015] [Indexed: 01/17/2023] Open
Abstract
The Lin28/let-7 system, which includes the RNA-binding proteins, Lin28a/Lin28b, and let-7 miRNAs, has emerged as putative regulator of puberty and male gametogenesis; yet, its expression pattern and regulation in postnatal testis remain ill defined. We report herein expression profiles of Lin28 and let-7 members, and related mir-145 and mir-132, in rat testis during postnatal maturation and in models of altered puberty and hormonal deregulation. Neonatal expression of Lin28a and Lin28b was low and rose markedly during the infantile period; yet, expression patterns diverged thereafter, with persistently elevated levels only for Lin28b, which peaked at puberty. Let-7a, let-7b, mir-132 and mir-145 showed profiles opposite to Lin28b. In fact, let-7b and mir-145 were abundant in pachytene spermatocytes, but absent in elongating spermatids, where high expression of Lin28b was previously reported. Perturbation of puberty by neonatal estrogenization reverted the Lin28/let-7 expression ratio; expression changes were also detected in other models of delayed puberty, due to early photoperiod or nutritional manipulations. In addition, hypophysectomy or growth hormone (GH) deficiency revealed regulation of this system by gonadotropins and GH. Our data document the expression profiles of the Lin28/let-7 system in rat testis along postnatal/pubertal maturation, and their perturbation in models of pubertal and hormonal manipulation.
Collapse
|
54
|
Nolta JA. New advances in understanding stem cell fate and function. Stem Cells 2015; 33:313-5. [PMID: 25446041 DOI: 10.1002/stem.1905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 01/01/2023]
|
55
|
Fox PM, Schedl T. Analysis of Germline Stem Cell Differentiation Following Loss of GLP-1 Notch Activity in Caenorhabditis elegans. Genetics 2015; 201:167-84. [PMID: 26158953 PMCID: PMC4566261 DOI: 10.1534/genetics.115.178061] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022] Open
Abstract
Stem cells generate the differentiated progeny cells of adult tissues. Stem cells in the Caenorhabditis elegans hermaphrodite germline are maintained within a proliferative zone of ∼230 cells, ∼20 cell diameters in length, through GLP-1 Notch signaling. The distal tip cell caps the germline and supplies GLP-1-activating ligand, and the distal-most germ cells that occupy this niche are likely self-renewing stem cells with active GLP-1 signaling. As germ cells are displaced from the niche, GLP-1 activity likely decreases, yet mitotically cycling germ cells are found throughout the proliferative zone prior to overt meiotic differentiation. Following loss of GLP-1 activity, it remains unclear whether stem cells undergo transit-amplifying (TA) divisions or more directly enter meiosis. To distinguish between these possibilities we employed a temperature-sensitive (ts) glp-1 mutant to manipulate GLP-1 activity. We characterized proliferative zone dynamics in glp-1(ts) mutants at permissive temperature and then analyzed the kinetics of meiotic entry of proliferative zone cells after loss of GLP-1. We found that entry of proliferative zone cells into meiosis following loss of GLP-1 activity is largely synchronous and independent of their distal-proximal position. Furthermore, the majority of cells complete only a single mitotic division before entering meiosis, independent of their distal-proximal position. We conclude that germ cells do not undergo TA divisions following loss of GLP-1 activity. We present a model for the dynamics of the proliferative zone that utilizes cell cycle rate and proliferative zone size and output and incorporates the more direct meiotic differentiation of germ cells following loss of GLP-1 activity.
Collapse
Affiliation(s)
- Paul M Fox
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
56
|
Lambrot R, Lafleur C, Kimmins S. The histone demethylase KDM1A is essential for the maintenance and differentiation of spermatogonial stem cells and progenitors. FASEB J 2015; 29:4402-16. [PMID: 26243864 DOI: 10.1096/fj.14-267328] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/22/2015] [Indexed: 12/22/2022]
Abstract
Little is known of the fundamental processes governed by epigenetic mechanisms in the supplier cells of spermatogenesis, the spermatogonial stem cells (SSCs). The histone H3 lysine demethylase KDM1A is expressed in spermatogonia. We hypothesized that KDM1A serves in transcriptional regulation of SSCs and fertility. Using a conditional deletion of Kdm1a [conditional knockout (cKO)] in mouse spermatogonia, we determined that Kdm1a is essential for spermatogenesis as adult cKO males completely lack germ cells. Analysis of postnatal testis development revealed that undifferentiated and differentiating spermatogonial populations form in Kdm1a-cKO animals, yet the majority fail to enter meiosis. Loss of germ cells in the cKO was rapid with none remaining by postnatal day (PND) 21. To gain insight into the mechanistic implications of Kdm1a ablation, we isolated PND 6 spermatogonia enriched for SSCs and analyzed their transcriptome by RNA sequencing. Loss of Kdm1a was associated with altered transcription of 1206 genes. Importantly, differentially expressed genes between control and Kdm1a-cKO animals included those that are essential for SSC and progenitor maintenance and spermatogonial differentiation. The complete loss of fertility and failure to establish spermatogenesis indicate that Kdm1a is a master controller of gene transcription in spermatogonia and is required for SSC and progenitor maintenance and differentiation.
Collapse
Affiliation(s)
- Romain Lambrot
- *Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada; and Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Christine Lafleur
- *Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada; and Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sarah Kimmins
- *Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada; and Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
57
|
Ren Y, Suzuki H, Jagarlamudi K, Golnoski K, McGuire M, Lopes R, Pachnis V, Rajkovic A. Lhx8 regulates primordial follicle activation and postnatal folliculogenesis. BMC Biol 2015; 13:39. [PMID: 26076587 PMCID: PMC4487509 DOI: 10.1186/s12915-015-0151-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/10/2015] [Indexed: 12/23/2022] Open
Abstract
Background The early stages of ovarian follicle formation—beginning with the breakdown of germ cell cysts and continuing with the formation of primordial follicles and transition to primary and secondary follicles—are critical in determining reproductive life span and fertility. Previously, we discovered that global knockouts of germ cell-specific transcriptional co-regulators Sohlh1, Sohlh2, Lhx8, and Nobox, cause rapid oocyte loss and ovarian failure. Also factors such as Nobox and Sohlh1 are associated with human premature ovarian failure. In this study, we developed a conditional knockout of Lhx8 to study oocyte-specific pathways in postnatal folliculogenesis. Results The conditional deficiency of Lhx8 in the oocytes of primordial follicles leads to massive primordial oocyte activation, in part, by indirectly interacting with the PI3K-AKT pathway, as shown by synergistic effects on FOXO3 nucleocytoplasmic translocation and rpS6 activation. However, LHX8 does not directly regulate members of the PI3K-AKT pathway; instead, we show that LHX8 represses Lin28a expression, a known regulator of mammalian metabolism and of the AKT/mTOR pathway. LHX8 can bind to the Lin28a promoter, and the depletion of Lin28a in Lhx8-deficient oocytes partially suppresses primordial oocyte activation. Moreover, unlike the PI3K-AKT pathway, LHX8 is critical beyond primordial follicle activation, and blocks the primary to secondary follicle transition. Conclusions Our results indicate that the LHX8-LIN28A pathway is essential in the earliest stages of primordial follicle activation, and LHX8 is an important oocyte-specific transcription factor in the ovary for regulating postnatal folliculogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0151-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Ren
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Hitomi Suzuki
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Department of Experimental Animal Model for Human Disease, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Krishna Jagarlamudi
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Kayla Golnoski
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Megan McGuire
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Rita Lopes
- Division of Molecular Neurobiology, MRC National Institute of Medical Research, London, NW7 1AA, UK.
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC National Institute of Medical Research, London, NW7 1AA, UK.
| | - Aleksandar Rajkovic
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
58
|
Matsubara Y, Kato T, Kashimada K, Tanaka H, Zhi Z, Ichinose S, Mizutani S, Morio T, Chiba T, Ito Y, Saga Y, Takada S, Asahara H. TALEN-Mediated Gene Disruption on Y Chromosome Reveals Critical Role of EIF2S3Y in Mouse Spermatogenesis. Stem Cells Dev 2015; 24:1164-70. [PMID: 25579647 DOI: 10.1089/scd.2014.0466] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Y chromosome plays a critical role in spermatogenesis. Formerly, it had been difficult to generate knockout mice with specific Y chromosome mutations using conventional gene-targeting strategies. Recently, a transcription activator-like effector nuclease (TALEN) was successfully used for editing a mouse Y chromosome-linked gene. Here, we report the generation of a mouse model with a mutation in EIF2S3Y, a Y chromosome-linked gene, and analysis of its phenotype. The mouse carrying a targeted mutation of EIF2S3Y was infertile and had hypoplastic testes. Histological and electron microscopic analyses showed that differentiation of spermatogonia was arrested at the stage of spermatogonial stem cells (undifferentiated spermatogonia) and that the progression of spermatogenesis was interrupted, resulting in azoospermia. Using TALEN, we verified that EIF2S3Y performs a key function in differentiation of spermatogonial stem cells.
Collapse
Affiliation(s)
- Yohei Matsubara
- 1 Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Hobbs RM, La HM, Mäkelä JA, Kobayashi T, Noda T, Pandolfi PP. Distinct germline progenitor subsets defined through Tsc2-mTORC1 signaling. EMBO Rep 2015; 16:467-80. [PMID: 25700280 DOI: 10.15252/embr.201439379] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/15/2015] [Indexed: 12/21/2022] Open
Abstract
Adult tissue maintenance is often dependent on resident stem cells; however, the phenotypic and functional heterogeneity existing within this self-renewing population is poorly understood. Here, we define distinct subsets of undifferentiated spermatogonia (spermatogonial progenitor cells; SPCs) by differential response to hyperactivation of mTORC1, a key growth-promoting pathway. We find that conditional deletion of the mTORC1 inhibitor Tsc2 throughout the SPC pool using Vasa-Cre promotes differentiation at the expense of self-renewal and leads to germline degeneration. Surprisingly, Tsc2 ablation within a subset of SPCs using Stra8-Cre did not compromise SPC function. SPC activity also appeared unaffected by Amh-Cre-mediated Tsc2 deletion within somatic cells of the niche. Importantly, we find that differentiation-prone SPCs have elevated mTORC1 activity when compared to SPCs with high self-renewal potential. Moreover, SPCs insensitive to Tsc2 deletion are preferentially associated with mTORC1-active committed progenitor fractions. We therefore delineate SPC subsets based on differential mTORC1 activity and correlated sensitivity to Tsc2 deletion. We propose that mTORC1 is a key regulator of SPC fate and defines phenotypically distinct SPC subpopulations with varying propensities for self-renewal and differentiation.
Collapse
Affiliation(s)
- Robin M Hobbs
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA Australian Regenerative Medicine Institute and Department of Anatomy and Developmental Biology Monash University, Clayton, VIC, Australia
| | - Hue M La
- Australian Regenerative Medicine Institute and Department of Anatomy and Developmental Biology Monash University, Clayton, VIC, Australia
| | - Juho-Antti Mäkelä
- Australian Regenerative Medicine Institute and Department of Anatomy and Developmental Biology Monash University, Clayton, VIC, Australia
| | - Toshiyuki Kobayashi
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tetsuo Noda
- Department of Cell Biology, JFCR Cancer Institute, Tokyo, Japan
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| |
Collapse
|
60
|
Abstract
microRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. microRNAs have been shown to play an important role in control of reproductive functions, especially in the processes of oocyte maturation, folliculogenesis, corpus luteum function, implantation, and early embryonic development. Knockout of Dicer, the cytoplasmic enzyme that cleaves the pre-miRNA to its mature form, results in postimplantation embryonic lethality in several animal models, attributing to these small RNA vital functions in reproduction and development. Another intriguing characteristic of microRNAs is their presence in body fluids in a remarkably stable form that is protected from endogenous RNase activity. In this chapter we will describe the current knowledge on microRNAs, specifically relating to human gonadal cells. We will focus on their role in the ovarian physiologic process and ovulation dysfunction, regulation of spermatogenesis and male fertility, and putative involvement in human normal and aberrant trophoblast differentiation and invasion through the process of placentation.
Collapse
|
61
|
Hasegawa K, Saga Y. FGF8-FGFR1 signaling acts as a niche factor for maintaining undifferentiated spermatogonia in the mouse. Biol Reprod 2014; 91:145. [PMID: 25359900 DOI: 10.1095/biolreprod.114.121012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In mammalian testes, spermatogonial stem cells (SSCs) maintain spermatogenesis over a long period of time by undergoing self-renewal and differentiation. SSCs are among the most primitive of spermatogenic cells (undifferentiated spermatogonia), and their activities are strictly regulated by extrinsic niche factors. However, the factors that constitute a testicular niche remain poorly understood. In this study, we demonstrate that fibroblast growth factor (FGF) signaling maintains undifferentiated spermatogonia through activating ERK1/2 signaling in vivo. Undifferentiated spermatogonia comprise GFRA1(+) and NANOS3(+) subpopulations, which are likely to undergo self-renewal and enter the differentiation pathway, respectively. In the testis, Fgfr1 was expressed in the entire population of undifferentiated spermatogonia, and deleting FGFR1 in spermatogenic cells partially inactivated ERK1/2 and resulted in reduced numbers of both GFRA1(+) and NANOS3(+) cells. In addition, Fgf8 was expressed in spermatogenic cells, and loss- and gain-of-function models of FGF8 demonstrated that FGF8 positively regulated the numbers of undifferentiated spermatogonia through FGFR1, particularly among NANOS3(+) cells. Finally we show a possible involvement of FGF signaling in the reversion from NANOS3(+) into GFRA1(+) undifferentiated spermatogonia. Taken together, our data suggest that FGF signaling is an important component of the testicular niche and has a unique function for maintaining undifferentiated spermatogonia.
Collapse
Affiliation(s)
- Kazuteru Hasegawa
- Division of Mammalian Development, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yumiko Saga
- Division of Mammalian Development, National Institute of Genetics, Mishima, Shizuoka, Japan Department of Genetics, Sokendai, Mishima, Shizuoka, Japan
| |
Collapse
|
62
|
Kotaja N. MicroRNAs and spermatogenesis. Fertil Steril 2014; 101:1552-62. [PMID: 24882619 DOI: 10.1016/j.fertnstert.2014.04.025] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/26/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022]
Abstract
In mammals, male gametes are produced inside the testis by spermatogenesis, which has three phases: mitotic proliferation of spermatogonia, meiosis of spermatocytes, and haploid differentiation of spermatids. The genome of male germ cells is actively transcribed to produce phase-specific gene expression patterns. Male germ cells have a complex transcriptome. In addition to protein-coding messenger RNAs, many noncoding RNAs, including microRNAs (miRNAs), are produced. The miRNAs are important regulators of gene expression. They function mainly post-transcriptionally to control the stability or translation of their target messenger RNAs. The miRNAs are expressed in a cell-specific manner during spermatogenesis to participate in the control of each step of male germ cell differentiation. Genetically modified mouse models have demonstrated the importance of miRNA pathways for normal spermatogenesis, and functional studies have been designed to dissect the roles of specific miRNAs in distinct cell types. Clinical studies have exploited the well-defined expression profiles of miRNAs, and human spermatozoal or seminal plasma miRNAs have been explored as potential biomarkers for male factor infertility. This review article discusses the current findings that support the central role of miRNAs in the regulation of spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Noora Kotaja
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
63
|
An J, Zhang X, Qin J, Wan Y, Hu Y, Liu T, Li J, Dong W, Du E, Pan C, Zeng W. The histone methyltransferase ESET is required for the survival of spermatogonial stem/progenitor cells in mice. Cell Death Dis 2014; 5:e1196. [PMID: 24763053 PMCID: PMC4001319 DOI: 10.1038/cddis.2014.171] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/22/2022]
Abstract
Self-renewal and differentiation of spermatogonial stem cells (SSCs) are the foundation of spermatogenesis throughout a male's life. SSC transplantation will be a valuable solution for young male patients to preserve their fertility. As SSCs in the collected testis tissue from the patients are very limited, it is necessary to expansion the SSCs in vitro. Previous studies suggested that histone methyltransferase ERG-associated protein with SET domain (ESET) represses gene expression and is essential for the maintenance of the pool of embryonic stem cells and neurons. The objective of this study was to determine the role of ESET in SSCs using in vitrocell culture and germ cell transplantation. Cell transplantation assay showed that knockdown of ESET reduced the number of seminiferous tubules with spermatogenesis when compared with that of the control. Knockdown of ESET also upregulated the expression of apoptosis-associated genes (such as P53, Caspase9, Apaf1), whereas inhibited the expression of apoptosis-suppressing genes (such as Bcl2l1, X-linked inhibitor of apoptosis protein). In addition, suppression of ESET led to increase in expression of Caspase9 and activation of Caspase3 (P17) as well as cleavage of poly (ADP-ribose) polymerase. Among the five ESET-targeting genes (Cox4i2, spermatogenesis and oogenesis Specific Basic Helix-Loop-Helix 2, Nobox, Foxn1 and Dazl) examined by ChIP assay, Cox4i2 was found to regulate SSC apoptosis by the rescue experiment. BSP analyses further showed that DNA methylation in the promoter loci of Cox4i2was influenced by ESET, indicating that ESET also regulated gene expression through DNA methylation in addition to histone methylation. In conclusion, we found that ESET regulated SSC apoptosis by suppressing of Cox4i2 expression through histone H3 lysine 9 tri-methylation and DNA methylation. The results obtained will provide unique insights that would broaden the research on SSC biology and contribute to the treatment of male infertility.
Collapse
Affiliation(s)
- J An
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - X Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - J Qin
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Y Wan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Y Hu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - T Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - J Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - W Dong
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - E Du
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - C Pan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - W Zeng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| |
Collapse
|