51
|
Wang J, Wang J, Zhu L, Xie H, Shao B, Hou X. The enzyme toxicity and genotoxicity of chlorpyrifos and its toxic metabolite TCP to zebrafish Danio rerio. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1858-1869. [PMID: 25142351 DOI: 10.1007/s10646-014-1321-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2014] [Indexed: 06/03/2023]
Abstract
Chlorpyrifos is a broad-spectrum organophosphorus insecticide (O,O-diethyl -O-3,5,6-trichloro-2-pyridyl phosphorothioate) that is used in numerous agricultural and urban pest controls. The primary metabolite of chlorpyrifos is 3,5,6-trichloro pyridine-2-phenol (TCP). Because of its strong water solubility and mobility, this harmful metabolite exists in the environment in a large amount. Although TCP has potentially harmful effects on organisms in the environment, few studies have addressed TCP pollution. Therefore, this study was undertaken to investigate the effect of chlorpyrifos and TCP on the microsomal cytochrome P450 content in the liver, on the activity of NADPH-P450 reductase and antioxidative enzymes [catalase (CAT) and superoxide dismutase (SOD)], and on reactive oxygen species (ROS) generation and DNA damage in zebrafish. Male and female zebrafish were separated and exposed to a control solution and three concentrations of chlorpyrifos (0.01, 0.1, 1 mg L(-1)) and TCP (0.01, 0.1, 0.5 mg L(-1)), respectively, sampled after 5, 10, 15, 20 and 25 days. The results indicated that the P450 content and the NADPH-P450 reductase and antioxidative enzyme (CAT and SOD) activities could be induced by chlorpyrifos and TCP. DNA damage of zebrafish was enhanced with increasing chlorpyrifos and TCP concentrations. Meanwhile, chlorpyrifos and TCP induced a significant increase of ROS generation in the zebrafish hepatopancreas. In conclusion, this study proved that chlorpyrifos (0.01-1 mg L(-1)) and TCP (0.01-0.5 mg L(-1)) are both highly toxic to zebrafish.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Agricultural Environment in the University of Shandong, College of Resources and Environment, Shandong Agriculture University, 61 Daizong Road, Taian, 271018, China
| | | | | | | | | | | |
Collapse
|
52
|
Huang P, Yang J, Song Q. Atrazine affects phosphoprotein and protein expression in MCF-10A human breast epithelial cells. Int J Mol Sci 2014; 15:17806-26. [PMID: 25275270 PMCID: PMC4227191 DOI: 10.3390/ijms151017806] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/26/2014] [Accepted: 09/11/2014] [Indexed: 11/17/2022] Open
Abstract
Atrazine, a member of the 2-chloro-s-triazine family of herbicides, is the most widely used pesticide in the world and often detected in agriculture watersheds. Although it was generally considered as an endocrine disruptor, posing a potential threat to human health, the molecular mechanisms of atrazine effects remain unclear. Using two-dimensional gel electrophoresis, we identified a panel of differentially expressed phosphoproteins and total proteins in human breast epithelial MCF-10A cells after being exposed to environmentally relevant concentrations of atrazine. Atrazine treatments for 6 h resulted in differential expression of 4 phosphoproteins and 8 total-proteins as compared to the control cells (>1.5-fold, p < 0.05). MALDI-TOF MS/MS analysis revealed that the differentially expressed proteins belong to various cellular compartments (nucleus, cytosol, membrane) and varied in function, including those regulating the stress response such as peroxiredoxin I, HSP70 and HSP27; structural proteins such as tropomyosin and profilin 1; and oncogenesis proteins such as ANP32A. Six of the 12 identified proteins were verified by quantitative PCR for their transcript levels. The most up-regulated phosphoprotein by atrazine treatment, ANP32A, was further analyzed for its expression, distribution and cellular localization using Western blot and immunocytochemical approaches. The results revealed that ANP32 expression after atrazine treatment increased dose and time dependently and was primarily located in the nucleus. This study may provide new evidence on the potential toxicity of atrazine in human cells.
Collapse
Affiliation(s)
- Peixin Huang
- Department of Agriculture & Environmental Science, Lincoln University of Missouri, Jefferson City, MO 65120, USA.
| | - John Yang
- Department of Agriculture & Environmental Science, Lincoln University of Missouri, Jefferson City, MO 65120, USA.
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
53
|
Liu T, Zhu L, Han Y, Wang J, Wang J, Zhao Y. The cytotoxic and genotoxic effects of metalaxy-M on earthworms (Eisenia fetida). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2344-2350. [PMID: 25043480 DOI: 10.1002/etc.2682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/13/2014] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
As the main optical isomer of metalaxyl, metalaxyl-M has been widely used worldwide in recent years because of its notable effect on the prevention and control of crop diseases. Together with the toxicity and degradation of metalaxyl-M, the chemical has attracted the attention of researchers. The present study examined the toxic effects of metalaxyl-M on earthworms at 0 mg kg(-1) , 0.1 mg kg(-1) , 1 mg kg(-1) , and 3 mg kg(-1) on days 7, 14, 21 and 28 after exposure. The results showed that metalaxyl-M could cause an obvious increase in the production of reactive oxygen species (ROS) when the concentration was higher than 0.1 mg kg(-1) , which led to lipid peroxidation in earthworms. Metalaxyl-M can induce DNA damage in earthworms, and the level of DNA damage markedly increased with increasing the concentration of metalaxyl-M. Metalaxyl-M also has a serious influence on the activities of antioxidant enzymes, which results in irreversible oxidative damage in cells. The changes of these indicators all indicated that metalaxyl-M may cause cytotoxic and genotoxic effects on earthworms.
Collapse
Affiliation(s)
- Tong Liu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, Taian, Peoples Republic of China, China
| | | | | | | | | | | |
Collapse
|
54
|
Novais SC, Gomes NC, Soares AMVM, Amorim MJB. Antioxidant and neurotoxicity markers in the model organism Enchytraeus albidus (Oligochaeta): mechanisms of response to atrazine, dimethoate and carbendazim. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1220-1233. [PMID: 24912478 DOI: 10.1007/s10646-014-1265-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
The present study aimed to investigate the effects of dimethoate, atrazine and carbendazim on the antioxidant defences and neuronal function of the soil organism Enchytraeus albidus. Effects were studied at concentrations known to affect their reproduction (EC20, EC50 and EC90) and along time (2, 4, 8, 14 and 21 days). In general, responses were more pronounced at periods of exposure longer than 8 days and at the highest concentrations. Multivariate statistics (RDA-PRC) clearly displayed that exposure duration had an effect itself, biomarkers' responses showed interaction for all pesticides and catalase scored consistently high, indicating its relevancy in the group of measured markers. Univariate analysis indicated oxidative stress for all pesticides and atrazine induced oxidative damage in lipids. Atrazine seems to be effectively metabolized by GST of the biotransformation system, as its activity significantly increased after exposure to this pesticide. Dimethoate caused ChE inhibition, indicating an impairment of the neuronal function. Carbendazim impaired the antioxidant system, but no oxidative damage was observed, along with any effects on the ChE activity. The integrated biomarker response analysis was performed but we suggest modifications due to limiting artefacts.
Collapse
Affiliation(s)
- Sara C Novais
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | |
Collapse
|
55
|
Papoulias DM, Tillitt DE, Talykina MG, Whyte JJ, Richter CA. Atrazine reduces reproduction in Japanese medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:230-239. [PMID: 24929351 DOI: 10.1016/j.aquatox.2014.05.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Atrazine is an effective broadleaf herbicide and the second most heavily used herbicide in the United States. Effects along the hypothalamus-pituitary-gonad axis in a number of vertebrate taxa have been demonstrated. Seasonally elevated concentrations of atrazine in surface waters may adversely affect fishes, but only a few studies have examined reproductive effects of this chemical. The present study was designed to evaluate a population endpoint (egg production) in conjunction with histological (reproductive stage, gonad pathology) and biochemical (aromatase activity, sex hormone production) phenotypes associated with atrazine exposure in Japanese medaka. Adult virgin breeding groups of one male and four females were exposed to nominal concentrations of 0, 0.5, 5.0, and 50 μg/L (0, 2.3, 23.2, 231 nM) of atrazine in a flow-through diluter for 14 or 38 days. Total egg production was lower (36-42%) in all atrazine-exposed groups as compared to the controls. The decreases in cumulative egg production of atrazine-treated fish were significant by exposure day 24. Reductions in total egg production in atrazine treatment groups were most attributable to a reduced number of eggs ovulated by females in atrazine-treated tanks. Additionally, males exposed to atrazine had a greater number of abnormal germ cells. There was no effect of atrazine on gonadosomatic index, aromatase protein, or whole body 17 β-estradiol or testosterone. Our results suggest that atrazine reduces egg production through alteration of final maturation of oocytes. The reduced egg production observed in this study was very similar to our previously reported results for fathead minnow. This study provides further information with which to evaluate atrazine's risk to fish populations.
Collapse
Affiliation(s)
- Diana M Papoulias
- US Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd., Columbia, MO 65251, United States.
| | - Donald E Tillitt
- US Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd., Columbia, MO 65251, United States
| | - Melaniya G Talykina
- Institute of Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Nekouz, Yaroslavl, Russia
| | - Jeffrey J Whyte
- US Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd., Columbia, MO 65251, United States
| | - Catherine A Richter
- US Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd., Columbia, MO 65251, United States
| |
Collapse
|
56
|
Han Y, Zhu L, Wang J, Wang J, Xie H, Zhang S. Integrated assessment of oxidative stress and DNA damage in earthworms (Eisenia fetida) exposed to azoxystrobin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 107:214-9. [PMID: 25011117 DOI: 10.1016/j.ecoenv.2014.06.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 05/21/2023]
Abstract
Azoxystrobin has been widely used in recent years. The present study investigated the oxidative stress and DNA damage effects of azoxystrobin on earthworms (Eisenia fetida). Earthworms were exposed to different azoxystrobin concentrations in an artificial soil (0, 0.1, 1, and 10mg/kg) and sampled on days 7, 14, 21, and 28. Superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), glutathione-S-transferase (GST), reactive oxygen species (ROS), and malondialdehyde (MDA) content were measured by an ultraviolet spectrophotometer to determine the antioxidant responses and lipid peroxidation. Single cell gel electrophoresis (SCGE) was used to detect DNA damage in the coelomocytes. Compared with these in the controls, earthworms exposed to azoxystrobin had excess ROS accumulation and greater SOD, POD, and GST activity while the opposite trend occurred for CAT activity. MDA content increased after 14-day exposure, and DNA damage was enhanced with an increase in the concentration of azoxystrobin. In conclusion, azoxystrobin caused oxidative stress leading to lipid peroxidation and DNA damage in earthworms.
Collapse
Affiliation(s)
- Yingnan Han
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agriculture University, 61 Daizong Road, Taian 271018, PR China.
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agriculture University, 61 Daizong Road, Taian 271018, PR China.
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agriculture University, 61 Daizong Road, Taian 271018, PR China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agriculture University, 61 Daizong Road, Taian 271018, PR China.
| | - Hui Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agriculture University, 61 Daizong Road, Taian 271018, PR China.
| | - Shumin Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agriculture University, 61 Daizong Road, Taian 271018, PR China.
| |
Collapse
|
57
|
Keshk WA, Soliman NA, Abo El-Noor MM, Wahdan AA, Shareef MM. Modulatory Effects of Curcumin on Redox Status, Mitochondrial Function, and Caspace-3 Expression During Atrazin-Induced Toxicity. J Biochem Mol Toxicol 2014; 28:378-85. [DOI: 10.1002/jbt.21574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/11/2014] [Accepted: 04/30/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Walaa A. Keshk
- Department of Medical Biochemistry; Faculty of Medicine, Tanta University; Tanta Egypt
| | - Nema A. Soliman
- Department of Medical Biochemistry; Faculty of Medicine, Tanta University; Tanta Egypt
| | - Mona M. Abo El-Noor
- Department of Forensic Medicine and Clinical Toxicology; Faculty of Medicine, Tanta University; Tanta Egypt
| | - Amira A. Wahdan
- Department of Forensic Medicine and Clinical Toxicology; Faculty of Medicine, Tanta University; Tanta Egypt
| | - Mohamed M. Shareef
- Department of Pathology; Faculty of Medicine, Tanta University; Tanta Egypt
| |
Collapse
|
58
|
Feng M, Li Y, Qu R, Wang L, Wang Z. Oxidative stress biomarkers in freshwater fish Carassius auratus exposed to decabromodiphenyl ether and ethane, or their mixture. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:1101-1110. [PMID: 23839511 DOI: 10.1007/s10646-013-1097-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2013] [Indexed: 06/02/2023]
Abstract
Decabromodiphenyl ether (BDE-209) and its commercial alternative decabromodiphenyl ethane (DBDPE) are two structurally similar brominated flame retardants, with evidence of their ubiquitous existence in aquatic ecosystems. The present study was conducted to investigate the hepatic oxidative stress inducing potential of BDE-209, DBDPE, and their mixture in Carassius auratus after exposure to different doses (10, 50 and 100 mg/kg) for 7, 14 and 30 days. Results showed that oxidative stress was evoked evidently for the experimental groups with longer exposure duration, as indicated by significant inhibition in the antioxidant enzymes activities and decrease in the reduced glutathione level, as well as simultaneous elevation of lipid peroxidation level measured by malondialdehyde content. In addition, it was found that BDE-209 possessed a higher oxidative stress inducing ability than DBDPE. Considering the more pronounced antioxidant responses in combined exposure, the interaction of BDE-209 and DBDPE was presumed to be additive action.
Collapse
Affiliation(s)
- Mingbao Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210046, Jiangsu, People's Republic of China
| | | | | | | | | |
Collapse
|
59
|
Zhao X, Wang S, Wu Y, You H, Lv L. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 136-137:49-59. [PMID: 23643724 DOI: 10.1016/j.aquatox.2013.03.019] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 05/15/2023]
Abstract
Nano-scale zinc oxide (nano-ZnO) is widely used in various industrial and commercial applications. However, the available toxicological information was inadequate to assess the potential ecological risk of nano-ZnO to aquatic organisms and the publics. In this study, the developmental toxicity, oxidative stress and DNA damage of nano-ZnO embryos were investigated in the embryo-larval zebrafish, the toxicity of Zn(2+) releasing from nano-ZnO were also investigated to ascertain the relationship between the nano-ZnO and corresponding Zn(2+). Zebrafish embryos were exposed to 1, 5, 10, 20, 50, and 100mg/L nano-ZnO and 0.59, 2.15, 3.63, 4.07, 5.31, and 6.04 mg/L Zn(2+) for 144 h post-fertilisation (hpf), respectively. Up to 144 hpf, activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and malondialdehyde (MDA) contents, the genes related to oxidative damage, reactive oxygen species (ROS) generation and DNA damage in zebrafish embryos were measured. The nano-ZnO was found to exert a dose-dependent toxicity to zebrafish embryos and larvae, reducing the hatching rate and inducing malformation and the acute toxicity to zebrafish embryos was greater than that of the Zn(2+) solution. The generation of ROS was significantly increased at 50 and 100mg/L nano-ZnO. DNA damage of zebrafish embryo was evaluated by single-cell gel electrophoresis and was enhanced with increasing nano-ZnO concentration. Moreover, the transcriptional expression of mitochondrial inner membrane genes related to ROS production, such as Bcl-2, in response to oxidative damage, such as Nqo1, and related to antioxidant response element such as Gstp2 were significantly down-regulated in the nano-ZnO treatment groups. However, the nano-ZnO up-regulated the transcriptional expression of Ucp2-related to ROS production. In conclusion, nano-ZnO induces developmental toxicity, oxidative stress and DNA damage on zebrafish embryos and the dissolved Zn(2+) only partially contributed to the toxicity of nano-ZnO. The adverse effects of nano-ZnO may be the important mechanisms of its toxicity to zebrafish embryos.
Collapse
Affiliation(s)
- Xuesong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | | | | | | | | |
Collapse
|
60
|
Botelho RG, Rossi ML, Maranho LA, Olinda RA, Tornisielo VL. Evaluation of surface water quality using an ecotoxicological approach: a case study of the Piracicaba River (São Paulo, Brazil). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:4382-4395. [PMID: 23512238 DOI: 10.1007/s11356-013-1613-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
A long-term study was conducted to evaluate Piracicaba River water (São Paulo state, Brazil) using different methodologies and organisms. During 1 year (February 2011 to January 2012), water samples were collected monthly at six different locations and exposed under laboratory conditions to the microcrustaceans Ceriodaphnia dubia and Ceriodaphnia silvestrii for 7 days and to the fish Danio rerio for 4 days to evaluate effects on reproduction and on gill morphology, respectively. Physical-chemical parameters of the water were also measured. Physical-chemical characteristics demonstrated decreasing water quality from upstream to downstream of the river. Effects on the reproduction of C. dubia and C. silvestrii were observed in 3 months (February and March 2011 and January 2012) and occurred in samples collected close to industrialized cities like Americana and Piracicaba. Evaluation of the gills showed normal function of the organ during all months, except in February, September, and October for some locations.
Collapse
Affiliation(s)
- R G Botelho
- Laboratório de Ecotoxicologia Aquática, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo-CENA/USP, Avenida Centenário, 303, 13416-000 São Dimas, Piracicaba, SP, Brazil.
| | | | | | | | | |
Collapse
|
61
|
Dong M, Zhu L, Zhu S, Wang J, Wang J, Xie H, Du Z. Toxic effects of 1-decyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system and DNA in zebrafish (Danio rerio) livers. CHEMOSPHERE 2013; 91:1107-1112. [PMID: 23399308 DOI: 10.1016/j.chemosphere.2013.01.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 11/30/2012] [Accepted: 01/02/2013] [Indexed: 06/01/2023]
Abstract
Ionic liquids were recently found to be toxic to aquatic organisms. Therefore, the present study investigated the effects of 1-decyl-3-methylimidazolium bromide ([C10mim]Br) on oxidative stress and DNA damage in zebrafish. Male and female zebrafish were separated and exposed to five concentrations of [C10mim]Br (0, 5, 10, 20, and 40 mg L(-1)) and were sampled on days 7, 14, 21 and 28. Compared to control groups, the activities of antioxidant enzymes were significantly decreased at most exposure intervals. This decreased activity resulted in the production of excess reactive oxygen species (ROS) and increased malondialdehyde (MDA) content in zebrafish liver. Additionally, it was noteworthy that a clear dose-response was found for DNA damage. As for sex differences, significant differences in catalase (CAT) and ROS were found on the 7th day. In conclusion, the exposure of [C10mim]Br caused DNA damage, leading to antioxidant responses in zebrafish livers.
Collapse
Affiliation(s)
- Miao Dong
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | | | | | | | | | | | | |
Collapse
|
62
|
Shao B, Zhu L, Dong M, Wang J, Wang J, Xie H, Zhang Q, Du Z, Zhu S. DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio). ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1533-1540. [PMID: 22535316 DOI: 10.1007/s10646-012-0907-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/05/2012] [Indexed: 05/31/2023]
Abstract
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzo-dioxathiepin-3-oxide), an organochlorine pesticide, is prevalently used all around the world. It is considered to be a new candidate for the persistent organic pollutants group. Endosulfan residues in the environment may cause serious damage to ecosystems, especially in aquatic environments. The present study was conducted to investigate the effect of endosulfan on antioxidant enzymes [catalase (CAT) and superoxide dismutase (SOD)], reactive oxygen species (ROS) generation and DNA damage in zebrafish. Male and female zebrafish were separated and exposed to a control solution and four concentrations of endosulfan (0.01, 0.1, 1, and 10 μg L⁻¹) and were sampled after 7, 14, 21, and 28 days. It is noteworthy that the present research explored the correlation among the three indicators induced by endosulfan. Low endosulfan concentrations (0.01 μg L⁻¹) induced a slight increase of SOD and CAT activity, which kept ROS in a stable level. High endosulfan concentration (10 μg L⁻¹) induced excessive ROS production which exceeded the capacity of the cellular antioxidants and exhausted the enzyme including CAT and SOD. The DNA damage of zebrafish was evaluated by single-cell gel electrophoresis and was enhanced with increasing endosulfan concentration. In conclusion, the present study showed that endosulfan (0.01-10 μg L⁻¹) has toxic effects on zebrafish.
Collapse
Affiliation(s)
- Bo Shao
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | | | | | | | | | | | | | | | | |
Collapse
|