51
|
Jones AN, Sattler M. Challenges and perspectives for structural biology of lncRNAs-the example of the Xist lncRNA A-repeats. J Mol Cell Biol 2020; 11:845-859. [PMID: 31336384 PMCID: PMC6917512 DOI: 10.1093/jmcb/mjz086] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Following the discovery of numerous long non-coding RNA (lncRNA) transcripts in the human genome, their important roles in biology and human disease are emerging. Recent progress in experimental methods has enabled the identification of structural features of lncRNAs. However, determining high-resolution structures is challenging as lncRNAs are expected to be dynamic and adopt multiple conformations, which may be modulated by interaction with protein binding partners. The X-inactive specific transcript (Xist) is necessary for X inactivation during dosage compensation in female placental mammals and one of the best-studied lncRNAs. Recent progress has provided new insights into the domain organization, molecular features, and RNA binding proteins that interact with distinct regions of Xist. The A-repeats located at the 5′ end of the transcript are of particular interest as they are essential for mediating silencing of the inactive X chromosome. Here, we discuss recent progress with elucidating structural features of the Xist lncRNA, focusing on the A-repeats. We discuss the experimental and computational approaches employed that have led to distinct structural models, likely reflecting the intrinsic dynamics of this RNA. The presence of multiple dynamic conformations may also play an important role in the formation of the associated RNPs, thus influencing the molecular mechanism underlying the biological function of the Xist A-repeats. We propose that integrative approaches that combine biochemical experiments and high-resolution structural biology in vitro with chemical probing and functional studies in vivo are required to unravel the molecular mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| |
Collapse
|
52
|
Xing Z, Russon MP, Utturkar SM, Tran EJ. The RNA helicase DDX5 supports mitochondrial function in small cell lung cancer. J Biol Chem 2020; 295:8988-8998. [PMID: 32376686 PMCID: PMC7335798 DOI: 10.1074/jbc.ra120.012600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/23/2020] [Indexed: 11/06/2022] Open
Abstract
DEAD-box helicase 5 (DDX5) is a founding member of the DEAD-box RNA helicase family, a group of enzymes that regulate ribonucleoprotein formation and function in every aspect of RNA metabolism, ranging from synthesis to decay. Our laboratory previously found that DDX5 is involved in energy homeostasis, a process that is altered in many cancers. Small cell lung cancer (SCLC) is an understudied cancer type for which effective treatments are currently unavailable. Using an array of methods, including short hairpin RNA-mediated gene silencing, RNA and ChIP sequencing analyses, and metabolite profiling, we show here that DDX5 is overexpressed in SCLC cell lines and that its down-regulation results in various metabolic and cellular alterations. Depletion of DDX5 resulted in reduced growth and mitochondrial dysfunction in the chemoresistant SCLC cell line H69AR. The latter was evidenced by down-regulation of genes involved in oxidative phosphorylation and by impaired oxygen consumption. Interestingly, DDX5 depletion specifically reduced intracellular succinate, a TCA cycle intermediate that serves as a direct electron donor to mitochondrial complex II. We propose that the oncogenic role of DDX5, at least in part, manifests as up-regulation of respiration supporting the energy demands of cancer cells.
Collapse
Affiliation(s)
- Zheng Xing
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Matthew P Russon
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Sagar M Utturkar
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Elizabeth J Tran
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
53
|
Ngo TD, Partin AC, Nam Y. RNA Specificity and Autoregulation of DDX17, a Modulator of MicroRNA Biogenesis. Cell Rep 2019; 29:4024-4035.e5. [PMID: 31851931 PMCID: PMC6953907 DOI: 10.1016/j.celrep.2019.11.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/03/2019] [Accepted: 11/14/2019] [Indexed: 11/23/2022] Open
Abstract
DDX17, a DEAD-box ATPase, is a multifunctional helicase important for various RNA functions, including microRNA maturation. Key questions for DDX17 include how it recognizes target RNAs and influences their structures, as well as how its ATPase activity may be regulated. Through crystal structures and biochemical assays, we show the ability of the core catalytic domains of DDX17 to recognize specific sequences in target RNAs. The RNA sequence preference of the catalytic core is critical for DDX17 to directly bind and remodel a specific region of primary microRNAs 3' to the mature sequence, and consequently enhance processing by Drosha. Furthermore, we identify an intramolecular interaction between the N-terminal tail and the DEAD domain of DDX17 to have an autoregulatory role in controlling the ATPase activity. Thus, we provide the molecular basis for how cognate RNA recognition and functional outcomes are linked for DDX17.
Collapse
Affiliation(s)
- Tri D Ngo
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexander C Partin
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunsun Nam
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
54
|
Ren R, Ghassabi Kondalaji S, Bowman GD. The Chd1 chromatin remodeler forms long-lived complexes with nucleosomes in the presence of ADP·BeF 3 - and transition state analogs. J Biol Chem 2019; 294:18181-18191. [PMID: 31636125 DOI: 10.1074/jbc.ra119.009782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/17/2019] [Indexed: 01/03/2023] Open
Abstract
Chromatin remodelers use helicase-like ATPase domains to reorganize histone-DNA contacts within the nucleosome. Like other remodelers, the chromodomain helicase DNA-binding protein 1 (Chd1) remodeler repositions nucleosomes by altering DNA topology at its internal binding site on the nucleosome, coupling different degrees of DNA twist and DNA movement to distinct nucleotide-bound states of the ATPase motor. In this work, we used a competition assay to study how variations in the bound nucleotide, Chd1, and the nucleosome substrate affect stability of Chd1-nucleosome complexes. We found that Chd1-nucleosome complexes formed in nucleotide-free or ADP conditions were relatively unstable and dissociated within 30 s, whereas those with the nonhydrolyzable ATP analog AMP-PNP had a mean lifetime of 4.8 ± 0.7 min. Chd1-nucleosome complexes were remarkably stable with ADP·BeF3 - and the transition state analogs ADP·AlFX and ADP·MgFX, being resistant to competitor nucleosome over a 24-h period. For the tight ADP·BeF3 --stabilized complex, Mg2+ was a critical component that did not freely exchange, and formation of these long-lived complexes had a slow, concentration-dependent step. The ADP·BeF3 --stabilized complex did not require the Chd1 DNA-binding domain nor the histone H4 tail and appeared relatively insensitive to sequence differences on either side of the Widom 601 sequence. Interestingly, the complex remained stable in ADP·BeF3 - even when nucleosomes contained single-stranded gaps that disrupted most DNA contacts with the guide strand. This finding suggests that binding via the tracking strand alone is sufficient for stabilizing the complex in a hydrolysis-competent state.
Collapse
Affiliation(s)
- Ren Ren
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218
| | | | - Gregory D Bowman
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218.
| |
Collapse
|
55
|
Prall W, Sharma B, Gregory BD. Transcription Is Just the Beginning of Gene Expression Regulation: The Functional Significance of RNA-Binding Proteins to Post-transcriptional Processes in Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1939-1952. [PMID: 31155676 DOI: 10.1093/pcp/pcz067] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Plants have developed sophisticated mechanisms to compensate and respond to ever-changing environmental conditions. Research focus in this area has recently shifted towards understanding the post-transcriptional mechanisms that contribute to RNA transcript maturation, abundance and function as key regulatory steps in allowing plants to properly react and adapt to these never-ending shifts in their environments. At the center of these regulatory mechanisms are RNA-binding proteins (RBPs), the functional mediators of all post-transcriptional processes. In plants, RBPs are becoming increasingly appreciated as the critical modulators of core cellular processes during development and in response to environmental stimuli. With the majority of research on RBPs and their functions historically in prokaryotic and mammalian systems, it has more recently been unveiled that plants have expanded families of conserved and novel RBPs compared with their eukaryotic counterparts. To better understand the scope of RBPs in plants, we present past and current literature detailing specific roles of RBPs during stress response, development and other fundamental transition periods. In this review, we highlight examples of complex regulation coordinated by RBPs with a focus on the diverse mechanisms of plant RBPs and the unique processes they regulate. Additionally, we discuss the importance for additional research into understanding global interactions of RBPs on a systems and network-scale, with genome mining and annotation providing valuable insight for potential uses in improving crop plants in order to maintain high-level production in this era of global climate change.
Collapse
Affiliation(s)
- Wil Prall
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Bishwas Sharma
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
56
|
Sohn SO, Chay KO. The ATP-dependent RNA helicase, DDX42 interacts with paxillin and regulates apoptosis and polarization of Ba/F3 cells. Anim Cells Syst (Seoul) 2019; 23:1-9. [PMID: 30834153 PMCID: PMC6394298 DOI: 10.1080/19768354.2019.1567580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/24/2018] [Accepted: 01/06/2019] [Indexed: 01/08/2023] Open
Abstract
Paxillin is a focal adhesion adaptor protein, heavily phosphorylated at multiple tyrosine residues, as well as at serine 273 (S273), and is known to be critical for cytoskeleton rearrangement and cell migration. We previously found that paxillin plays a regulatory role in IL-3-dependent survival of Ba/F3 cells, a mouse pro-B cell line. In this study, by using overexpressed His6 tagged-paxillin as a bait, we found that DDX42, a DEAD-box RNA helicase, interacted with paxillin, inhibited apoptosis, and promoted polarization of Ba/F3 cells. His6 tagged-paxillin was stably overexpressed in Ba/F3 cells, pulled-down from cell lysates with Ni+-NTA beads, and analyzed by one-dimensional SDS-PAGE followed by LC–MS. We found that DDX42 co-precipitated with paxillin, as demonstrated by western blotting analysis of His6 tagged-paxillin precipitates with anti-DDX42 antibodies and His6 tagged-DDX42 precipitates with anti-paxillin antibodies. In addition, we observed a preferential interaction of DDX42 with the paxillin mutant, S273A, compared to the S273D mutant. Furthermore, DDX42 overexpression in Ba/F3 cells delayed the apoptosis induced by IL-3 deprivation and promoted restoration of the elongated shape in Ba/F3 cells induced by IL-3 re-supply after a 6 h-deprivation. These results suggested that DDX42 interacts with paxillin and participates in IL-3-dependent cell survival, as well as in the cytoskeletal rearrangements underlying polarization of Ba/F3 cells.
Collapse
Affiliation(s)
- Sung Oh Sohn
- Department of Biochemistry, Medical School, Chonnam National University, Jeollanam-do, Republic of Korea
| | - Kee Oh Chay
- Department of Biochemistry, Medical School, Chonnam National University, Jeollanam-do, Republic of Korea
| |
Collapse
|
57
|
Amiri H, Noller HF. Structural evidence for product stabilization by the ribosomal mRNA helicase. RNA (NEW YORK, N.Y.) 2019; 25:364-375. [PMID: 30552154 PMCID: PMC6380275 DOI: 10.1261/rna.068965.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Protein synthesis in all organisms proceeds by stepwise translocation of the ribosome along messenger RNAs (mRNAs), during which the helicase activity of the ribosome unwinds encountered structures in the mRNA. This activity is known to occur near the mRNA tunnel entrance, which is lined by ribosomal proteins uS3, uS4, and uS5. However, the mechanism(s) of mRNA unwinding by the ribosome and the possible role of these proteins in the helicase activity are not well understood. Here, we present a crystal structure of the Escherichia coli ribosome in which single-stranded mRNA is observed beyond the tunnel entrance, interacting in an extended conformation with a positively charged patch on ribosomal protein uS3 immediately outside the entrance. This apparent binding specificity for single-stranded mRNA ahead of the tunnel entrance suggests that product stabilization may play a role in the unwinding of structured mRNA by the ribosomal helicase.
Collapse
Affiliation(s)
- Hossein Amiri
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Harry F Noller
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
58
|
Perčulija V, Ouyang S. Diverse Roles of DEAD/DEAH-Box Helicases in Innate Immunity and Diseases. HELICASES FROM ALL DOMAINS OF LIFE 2019. [PMCID: PMC7158350 DOI: 10.1016/b978-0-12-814685-9.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
DEAD/DEAH-box helicases are enzymes that belong to the DEAD/H-box family of SF2 helicase superfamily. These enzymes are essential in RNA metabolism, where they are involved in a number of processes that require manipulation of RNA structure. Recent studies have found that some DEAD/DEAH-box helicases play important roles in innate immunity, where they act as sensors of cytosolic DNA/RNA, as adaptor proteins, or as regulators of signaling and gene expression. In spite of their function in immunity, DEAD/DEAH-box helicases can also be hijacked and exploited by viruses to circumvent detection and aid in viral replication. These findings not only imply that DEAD/DEAH-box helicases have a broader function than previously thought, but also give us a much better understanding of immune mechanisms and diseases that arise due to the dysregulation or evasion thereof. In this chapter, we demonstrate the known scope of activities of human DEAD/DEAH-box helicases in innate immunity and interaction with viruses or other pathogens. Additionally, we give an outline of diseases in which they are, or may be, involved in the context of immunity.
Collapse
|
59
|
Chen X, Wang C, Zhang X, Tian T, Zang J. Crystal structures of the N-terminal domain of the Staphylococcus aureus DEAD-box RNA helicase CshA and its complex with AMP. Acta Crystallogr F Struct Biol Commun 2018; 74:704-709. [PMID: 30387775 PMCID: PMC6213976 DOI: 10.1107/s2053230x1801292x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 11/10/2022] Open
Abstract
CshA is a DEAD-box RNA helicase that belongs to the DExD/H-box family of proteins, which generally have an RNA-dependent ATPase activity. In Staphylococcus aureus, CshA was identified as a component of the RNA degradosome and plays important roles in RNA turnover. In this study, the crystal structures of the N-terminal RecA-like domain 1 of S. aureus CshA (SaCshAR1) and of its complex with AMP (SaCshAR1-AMP) are reported at resolutions of 1.5 and 1.8 Å, respectively. SaCshAR1 adopts a conserved α/β RecA-like structure with seven parallel strands surrounded by nine α-helices. The Q motif and motif I are responsible for the binding of the adenine group and phosphate group of AMP, respectively. Structure comparison of SaCshAR1-AMP and SaCshAR1 reveals that motif I undergoes a conformational change upon AMP binding. Isothermal titration calorimetry assays further conformed the essential roles of Phe22 in the Q motif and Lys52 in motif I for binding ATP, indicating a conserved substrate-binding mechanism in SaCshA compared with other DEAD-box RNA helicases.
Collapse
Affiliation(s)
- Xiaobao Chen
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, Collaborative Innovation Center of Chemistry for Life Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, People’s Republic of China
| | - Chengliang Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, Collaborative Innovation Center of Chemistry for Life Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, People’s Republic of China
| | - Xuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, Collaborative Innovation Center of Chemistry for Life Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, People’s Republic of China
| | - Tian Tian
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, Collaborative Innovation Center of Chemistry for Life Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, People’s Republic of China
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, Collaborative Innovation Center of Chemistry for Life Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, People’s Republic of China
| |
Collapse
|
60
|
Aguero T, Jin Z, Owens D, Malhotra A, Newman K, Yang J, King ML. Combined functions of two RRMs in Dead-end1 mimic helicase activity to promote nanos1 translation in the germline. Mol Reprod Dev 2018; 85:896-908. [PMID: 30230100 DOI: 10.1002/mrd.23062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/14/2018] [Indexed: 12/31/2022]
Abstract
Dead-end1 (Dnd1) expression is restricted to the vertebrate germline where it is believed to activate translation of messenger RNAs (mRNAs) required to protect and promote that unique lineage. Nanos1 is one such germline mRNA whose translation is blocked by a secondary mRNA structure within the open reading frame (ORF). Dnd1 contains a canonical RNA recognition motif (RRM1) in its N-terminus but also contains a less conserved RRM2. Here we provide a mechanistic picture of the nanos1 mRNA-Dnd1 interaction in the Xenopus germline. We show that RRM1, but not RRM2, is required for binding nanos1. Similar to the zebrafish homolog, Xenopus Dnd1 possesses ATPase activity. Surprisingly, this activity appears to be within the RRM2, different from the C-terminal region where it is found in zebrafish. More importantly, we show that RRM2 is required for nanos1 translation and germline survival. Further, Dnd1 functions as a homodimer and binds nanos1 mRNA just downstream of the secondary structure required for nanos1 repression. We propose a model in which the RRM1 is required to bind nanos1 mRNA while the RRM2 is required to promote translation through the action of ATPase. Dnd1 appears to use RRMs to mimic the function of helicases.
Collapse
Affiliation(s)
- Tristan Aguero
- Department of Cell Biology University of Miami, Miller School of Medicine, Miami, Florida
| | - Zhigang Jin
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Dawn Owens
- Department of Cell Biology University of Miami, Miller School of Medicine, Miami, Florida
| | - Arun Malhotra
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Karen Newman
- Department of Cell Biology University of Miami, Miller School of Medicine, Miami, Florida
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Mary Lou King
- Department of Cell Biology University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
61
|
Sithole N, Williams CA, Vaughan AM, Kenyon JC, Lever AML. DDX17 Specifically, and Independently of DDX5, Controls Use of the HIV A4/5 Splice Acceptor Cluster and Is Essential for Efficient Replication of HIV. J Mol Biol 2018; 430:3111-3128. [PMID: 30131116 PMCID: PMC6119765 DOI: 10.1016/j.jmb.2018.06.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
HIV splicing involves five splice donor and eight splice acceptor sequences which, together with cryptic splice sites, generate over 100 mRNA species. Ninety percent of both partially spliced and fully spliced transcripts utilize the intrinsically weak A4/A5 3' splice site cluster. We show that DDX17, but not its close paralog DDX5, specifically controls the usage of this splice acceptor group. In its absence, production of the viral envelope protein and other regulatory and accessory proteins is grossly reduced, while Vif, which uses the A1 splice acceptor, is unaffected. This is associated with a profound decrease in viral export from the cell. Loss of Vpu expression causing upregulation of cellular Tetherin compounds the phenotype. DDX17 utilizes distinct RNA binding motifs for its role in efficient HIV replication, and we identify RNA binding motifs essential for its role, while the Walker A, Walker B (DEAD), Q motif and the glycine doublet motif are all dispensable. We show that DDX17 interacts with SRSF1/SF2 and the heterodimeric auxiliary factor U2AF65/35, which are essential splicing factors in the generation of Rev and Env/Vpu transcripts.
Collapse
Affiliation(s)
- Nyaradzai Sithole
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Claire A Williams
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Aisling M Vaughan
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Microbiology and Immunology, National University of Singapore, Singapore 117545
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Medicine, National University of Singapore, Singapore 119228.
| |
Collapse
|
62
|
Lee YJ, Wang Q, Rio DC. Coordinate regulation of alternative pre-mRNA splicing events by the human RNA chaperone proteins hnRNPA1 and DDX5. Genes Dev 2018; 32:1060-1074. [PMID: 30042133 PMCID: PMC6075143 DOI: 10.1101/gad.316034.118] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 01/12/2023]
Abstract
Alternative premessenger RNA (pre-mRNA) splicing is a post-transcriptional mechanism for controlling gene expression. Splicing patterns are determined by both RNA-binding proteins and nuclear pre-mRNA structure. Here, we analyzed pre-mRNA splicing patterns, RNA-binding sites, and RNA structures near these binding sites coordinately controlled by two splicing factors: the heterogeneous nuclear ribonucleoprotein hnRNPA1 and the RNA helicase DDX5. We identified thousands of alternative pre-mRNA splicing events controlled by these factors by RNA sequencing (RNA-seq) following RNAi. Enhanced cross-linking and immunoprecipitation (eCLIP) on nuclear extracts was used to identify protein-RNA-binding sites for both proteins in the nuclear transcriptome. We found a significant overlap between hnRNPA1 and DDX5 splicing targets and that they share many closely linked binding sites as determined by eCLIP analysis. In vivo SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemical RNA structure probing data were used to model RNA structures near several exons controlled and bound by both proteins. Both sequence motifs and in vivo UV cross-linking sites for hnRNPA1 and DDX5 were used to map binding sites in their RNA targets, and often these sites flanked regions of higher chemical reactivity, suggesting an organized nature of nuclear pre-mRNPs. This work provides a first glimpse into the possible RNA structures surrounding pre-mRNA splicing factor-binding sites.
Collapse
Affiliation(s)
- Yeon J Lee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
- Center for RNA Systems Biology, University of California at Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
| | - Qingqing Wang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
- Center for RNA Systems Biology, University of California at Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
| | - Donald C Rio
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
- Center for RNA Systems Biology, University of California at Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
63
|
RNA processing in the male germline: Mechanisms and implications for fertility. Semin Cell Dev Biol 2018; 79:80-91. [DOI: 10.1016/j.semcdb.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
|
64
|
Zhang L, Yang Y, Li B, Scott IC, Lou X. The DEAD box RNA helicase Ddx39ab is essential for myocyte and lens development in zebrafish. Development 2018; 145:dev.161018. [DOI: 10.1242/dev.161018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022]
Abstract
RNA helicases from the DEAD-box family are found in almost all organisms and have important roles in RNA metabolism including RNA synthesis, processing and degradation. The function and mechanism of action of most of these helicases in animal development and human disease are largely unexplored. In a zebrafish mutagenesis screen to identify genes essential for heart development we identified a mutant which disrupts the gene encoding the RNA helicase DEAD-box 39ab (ddx39ab). Homozygous ddx39ab mutant embryos exhibit profound cardiac and trunk muscle dystrophy, along with lens abnormalities, caused by abrupt terminal differentiation of cardiomyocyte, myoblast and lens fiber cells. Further investigation indicated that loss of ddx39ab hindered mRNA splicing of members of the kmt2 gene family, leading to mis-regulation of structural gene expression in cardiomyocyte, myoblast and lens fiber cells. Taken together, these results show that Ddx39ab plays an essential role in establishment of proper epigenetic status during differentiation of multiple cell lineages.
Collapse
Affiliation(s)
- Linlin Zhang
- Model Animal Research Center, Nanjing University, China
| | - Yuxi Yang
- Model Animal Research Center, Nanjing University, China
| | - Beibei Li
- Model Animal Research Center, Nanjing University, China
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | - Xin Lou
- Model Animal Research Center, Nanjing University, China
| |
Collapse
|
65
|
Paieri F, Tadini L, Manavski N, Kleine T, Ferrari R, Morandini P, Pesaresi P, Meurer J, Leister D. The DEAD-box RNA Helicase RH50 Is a 23S-4.5S rRNA Maturation Factor that Functionally Overlaps with the Plastid Signaling Factor GUN1. PLANT PHYSIOLOGY 2018; 176:634-648. [PMID: 29138350 PMCID: PMC5761802 DOI: 10.1104/pp.17.01545] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/11/2017] [Indexed: 05/04/2023]
Abstract
DEAD-box RNA helicases (DBRHs) modulate RNA secondary structure, allowing RNA molecules to adopt the conformations required for interaction with their target proteins. RH50 is a chloroplast-located DBRH that colocalizes and is coexpressed with GUN1, a central factor in chloroplast-to-nucleus signaling. When combined with mutations that impair plastid gene expression (prors1-1, prpl11-1, prps1-1, prps21-1, prps17-1, and prpl24-1), rh50 and gun1 mutations evoke similar patterns of epistatic effects. These observations, together with the synergistic growth phenotype of the double mutant rh50-1 gun1-102, suggest that RH50 and GUN1 are functionally related and that this function is associated with plastid gene expression, in particular ribosome functioning. However, rh50-1 itself is not a gun mutant, although-like gun1-102-the rh50-1 mutation suppresses the down-regulation of nuclear genes for photosynthesis induced by the prors1-1 mutation. The RH50 protein comigrates with ribosomal particles, and is required for efficient translation of plastid proteins. RH50 binds to transcripts of the 23S-4.5S intergenic region and, in its absence, levels of the corresponding rRNA processing intermediate are strongly increased, implying that RH50 is required for the maturation of the 23S and 4.5S rRNAs. This inference is supported by the finding that loss of RH50 renders chloroplast protein synthesis sensitive to erythromycin and exposure to cold. Based on these results, we conclude that RH50 is a plastid rRNA maturation factor.
Collapse
Affiliation(s)
- Francesca Paieri
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, I-38010, San Michele all'Adige, Italy
| | - Luca Tadini
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | | | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - Roberto Ferrari
- Department of Biosciences, I-20133 Milano, Università degli studi di Milano, Italy
| | - Piero Morandini
- Department of Biosciences, I-20133 Milano, Università degli studi di Milano, Italy
| | - Paolo Pesaresi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, I-20133 Milano, Università degli studi di Milano, Italy
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
66
|
Lamichhane R, Hammond JA, Pauszek RF, Anderson RM, Pedron I, van der Schans E, Williamson JR, Millar DP. A DEAD-box protein acts through RNA to promote HIV-1 Rev-RRE assembly. Nucleic Acids Res 2017; 45:4632-4641. [PMID: 28379444 PMCID: PMC5416872 DOI: 10.1093/nar/gkx206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/28/2017] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 Rev protein activates nuclear export of unspliced and partially spliced viral RNA transcripts, which encode the viral genome and the genes encoding viral structural proteins, by binding to and oligomerizing on the Rev Response Element (RRE). The human DEAD-box protein 1 (DDX1) enhances the RNA export activity of Rev through an unknown mechanism. Using a single-molecule assembly assay and various DDX1 mutants, we show that DDX1 acts through the RRE RNA to specifically accelerate the nucleation step of the Rev-RRE assembly process. Single-molecule Förster resonance energy transfer (smFRET) experiments using donor-labeled Rev and acceptor-labeled DDX1 show that both proteins can associate with a single RRE molecule. However, simultaneous interaction is only observed in a subset of binding events and does not explain the extent to which DDX1 promotes the nucleation step of Rev-RRE assembly. Together, these results are consistent with a model wherein DDX1 acts as an RNA chaperone, remodeling the RRE into a conformation that is pre-organized to bind the first Rev monomer, thereby promoting the overall Rev-RRE assembly process.
Collapse
Affiliation(s)
- Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John A Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raymond F Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rae M Anderson
- Department of Physics, University of San Diego, San Diego, CA 92110, USA
| | - Ingemar Pedron
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Edwin van der Schans
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
67
|
De Silva D, Poliquin S, Zeng R, Zamudio-Ochoa A, Marrero N, Perez-Martinez X, Fontanesi F, Barrientos A. The DEAD-box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA-specific translation. Nucleic Acids Res 2017; 45:6628-6643. [PMID: 28520979 PMCID: PMC5499750 DOI: 10.1093/nar/gkx426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022] Open
Abstract
Members of the DEAD-box family are often multifunctional proteins involved in several RNA transactions. Among them, yeast Saccharomyces cerevisiae Mss116 participates in mitochondrial intron splicing and, under cold stress, also in mitochondrial transcription elongation. Here, we show that Mss116 interacts with the mitoribosome assembly factor Mrh4, is required for efficient mitoribosome biogenesis, and consequently, maintenance of the overall mitochondrial protein synthesis rate. Additionally, Mss116 is required for efficient COX1 mRNA translation initiation and elongation. Mss116 interacts with a COX1 mRNA-specific translational activator, the pentatricopeptide repeat protein Pet309. In the absence of Mss116, Pet309 is virtually absent, and although mitoribosome loading onto COX1 mRNA can occur, activation of COX1 mRNA translation is impaired. Mutations abolishing the helicase activity of Mss116 do not prevent the interaction of Mss116 with Pet309 but also do not allow COX1 mRNA translation. We propose that Pet309 acts as an adaptor protein for Mss116 action on the COX1 mRNA 5΄-UTR to promote efficient Cox1 synthesis. Overall, we conclude that the different functions of Mss116 in the biogenesis and functioning of the mitochondrial translation machinery depend on Mss116 interplay with its protein cofactors.
Collapse
Affiliation(s)
- Dasmanthie De Silva
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sarah Poliquin
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rui Zeng
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Angelica Zamudio-Ochoa
- Departamento de Genetica Molecular, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Natalie Marrero
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xochitl Perez-Martinez
- Departamento de Genetica Molecular, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
68
|
Wnt signaling in triple-negative breast cancer. Oncogenesis 2017; 6:e310. [PMID: 28368389 PMCID: PMC5520491 DOI: 10.1038/oncsis.2017.14] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/09/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling regulates a variety of cellular processes, including cell fate, differentiation, proliferation and stem cell pluripotency. Aberrant Wnt signaling is a hallmark of many cancers. An aggressive subtype of breast cancer, known as triple-negative breast cancer (TNBC), demonstrates dysregulation in canonical and non-canonical Wnt signaling. In this review, we summarize regulators of canonical and non-canonical Wnt signaling, as well as Wnt signaling dysfunction that mediates the progression of TNBC. We review the complex molecular nature of TNBC and the emerging therapies that are currently under investigation for the treatment of this disease.
Collapse
|
69
|
Hammond JA, Lamichhane R, Millar DP, Williamson JR. A DEAD-Box Helicase Mediates an RNA Structural Transition in the HIV-1 Rev Response Element. J Mol Biol 2017; 429:697-714. [PMID: 28153748 PMCID: PMC5510989 DOI: 10.1016/j.jmb.2017.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/04/2017] [Accepted: 01/21/2017] [Indexed: 01/17/2023]
Abstract
Nuclear export of partially spliced or unspliced HIV-1 RNA transcripts requires binding of the viral protein regulator of expression of virion (Rev) to the Rev response element (RRE) and subsequent oligomerization in a cooperative manner. Cellular DEAD-box helicase DEAD-box protein 1 (DDX1) plays a role in HIV replication, interacting with and affecting Rev-containing HIV transcripts in vivo, interacting directly with the RRE and Rev in vitro, and promoting Rev oligomerization in vitro. Binding of DDX1 results in enhancement of Rev oligomerization on the RRE that is correlated with an RNA structural change within the RRE that persists even after dissociation of DDX1. Furthermore, this structural transition is likely located within the three-way junction of stem II of the RRE that is responsible for initial Rev binding. This discovery of the stem II structural transition leads to a model wherein DDX1 can act as an RNA chaperone, folding stem IIB into a proper Rev binding conformation.
Collapse
Affiliation(s)
- John A Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
70
|
Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen. Sci Rep 2017; 7:43023. [PMID: 28223711 PMCID: PMC5320502 DOI: 10.1038/srep43023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
Targeted cancer therapeutics aim to exploit tumor-specific, genetic vulnerabilities specifically affecting neoplastic cells without similarly affecting normal cells. Here we performed sequencing-based screening of an shRNA library on a panel of cancer cells of different origins as well as normal cells. The shRNA library was designed to target a subset of genes previously identified using a whole genome screening approach. This focused shRNA library was infected into cells followed by analysis of enrichment and depletion of the shRNAs over the course of cell proliferation. We developed a bootstrap likelihood ratio test for the interpretation of the effects of multiple shRNAs over multiple cell line passages. Our analysis identified 44 genes whose depletion preferentially inhibited the growth of cancer cells. Among these genes ribosomal protein RPL35A, putative RNA helicase DDX24, and coatomer complex I (COPI) subunit ARCN1 most significantly inhibited growth of multiple cancer cell lines without affecting normal cell growth and survival. Further investigation revealed that the growth inhibition caused by DDX24 depletion is independent of p53 status underlining its value as a drug target. Overall, our study establishes a new approach for the analysis of proliferation-based shRNA selection strategies and identifies new targets for the development of cancer therapeutics.
Collapse
|
71
|
Dehghani M, Lasko P. C-terminal residues specific to Vasa among DEAD-box helicases are required for its functions in piRNA biogenesis and embryonic patterning. Dev Genes Evol 2016; 226:401-412. [PMID: 27572922 DOI: 10.1007/s00427-016-0560-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
The DEAD-box RNA helicase Vasa (Vas, also known as DDX4) is required for germ cell development. In Drosophila, analysis of hypomorphic mutations has implicated maternally expressed Vas in germ cell formation and posterior embryonic patterning. vas-null females, which rarely complete oogenesis, exhibit defects in mitotic progression of germline stem cells, Piwi-interacting RNA (piRNA)-mediated transposon silencing, and translation of Gurken (Grk), an EGFR ligand. The carboxy-terminal region of Vas orthologs throughout the animal kingdom consists of several acidic residues as well as an invariant tryptophan in the penultimate or ultimate position (Trp660 in Drosophila melanogaster). Using CRISPR/Cas9 gene editing, we made a substitution mutant in this residue. Replacing Trp660 by Glu (W660E) abolishes the ability of Vas to support germ cell formation and embryonic patterning and greatly reduces Vas activity in piRNA biogenesis, as measured by transposon silencing, and in activating Grk translation. A conservative substitution (W660F) has much milder phenotypic consequences. In addition, females expressing only a form of Vas in which the seven C-terminal amino acids were replaced with the corresponding residues from Belle (Bel, also known as DDX3) show defects in perinuclear nuage assembly and transposon silencing. Oogenesis in females expressing only the chimeric Vas arrests early; however, in a vas 1 background, in which early expression of endogenous Vas supports oogenesis, the chimeric protein supports posterior patterning and germ cell specification. These results indicate that the unique C-terminus of Vas is essential for its function in piRNA biogenesis and that the conserved Trp660 residue has an important functional role.
Collapse
Affiliation(s)
- Mehrnoush Dehghani
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec, H3G 0B1, Canada
| | - Paul Lasko
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec, H3G 0B1, Canada.
| |
Collapse
|
72
|
Kim Y, Myong S. RNA Remodeling Activity of DEAD Box Proteins Tuned by Protein Concentration, RNA Length, and ATP. Mol Cell 2016; 63:865-76. [PMID: 27546789 DOI: 10.1016/j.molcel.2016.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/18/2016] [Accepted: 07/15/2016] [Indexed: 01/07/2023]
Abstract
DEAD box RNA helicases play central roles in RNP biogenesis. We reported earlier that LAF-1, a DEAD box RNA helicase in C. elegans, dynamically interacts with RNA and that the interaction likely contributes to the fluidity of RNP droplets. Here we investigate the molecular basis of the interaction of RNA with LAF-1 and its human homolog, DDX3X. We show that both LAF-1 and DDX3X, at low concentrations, are monomers that induce tight compaction of single-stranded RNA. At high concentrations, the proteins are multimeric and dynamically interact with RNA in an RNA length-dependent manner. The dynamic LAF-1-RNA interaction stimulates RNA annealing activity. ATP adversely affects the RNA remodeling ability of LAF-1 by suppressing the affinity, dynamics, and annealing activity of LAF-1, suggesting that ATP may promote disassembly of the RNP complex. Based on our results, we postulate a plausible molecular mechanism underlying the dynamic equilibrium of the LAF-1 RNP complex.
Collapse
Affiliation(s)
- Younghoon Kim
- Bioengineering Department, University of Illinois, 1304 West Springfield Avenue, Urbana, IL 61801, USA
| | - Sua Myong
- Biophysics Department, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 West Green Street, Urbana, IL 61801, USA.
| |
Collapse
|
73
|
Riquelme Medina I, Lubovac-Pilav Z. Gene Co-Expression Network Analysis for Identifying Modules and Functionally Enriched Pathways in Type 1 Diabetes. PLoS One 2016; 11:e0156006. [PMID: 27257970 PMCID: PMC4892488 DOI: 10.1371/journal.pone.0156006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is a complex disease, caused by the autoimmune destruction of the insulin producing pancreatic beta cells, resulting in the body’s inability to produce insulin. While great efforts have been put into understanding the genetic and environmental factors that contribute to the etiology of the disease, the exact molecular mechanisms are still largely unknown. T1D is a heterogeneous disease, and previous research in this field is mainly focused on the analysis of single genes, or using traditional gene expression profiling, which generally does not reveal the functional context of a gene associated with a complex disorder. However, network-based analysis does take into account the interactions between the diabetes specific genes or proteins and contributes to new knowledge about disease modules, which in turn can be used for identification of potential new biomarkers for T1D. In this study, we analyzed public microarray data of T1D patients and healthy controls by applying a systems biology approach that combines network-based Weighted Gene Co-Expression Network Analysis (WGCNA) with functional enrichment analysis. Novel co-expression gene network modules associated with T1D were elucidated, which in turn provided a basis for the identification of potential pathways and biomarker genes that may be involved in development of T1D.
Collapse
Affiliation(s)
| | - Zelmina Lubovac-Pilav
- Bioinformatics research group, School of Biosciences, University of Skövde, Skövde, Sweden
- * E-mail:
| |
Collapse
|
74
|
Ramanathan A, Devarkar SC, Jiang F, Miller MT, Khan AG, Marcotrigiano J, Patel SS. The autoinhibitory CARD2-Hel2i Interface of RIG-I governs RNA selection. Nucleic Acids Res 2016; 44:896-909. [PMID: 26612866 PMCID: PMC4737149 DOI: 10.1093/nar/gkv1299] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 12/24/2022] Open
Abstract
RIG-I (Retinoic Acid Inducible Gene-I) is a cytosolic innate immune receptor that detects atypical features in viral RNAs as foreign to initiate a Type I interferon signaling response. RIG-I is present in an autoinhibited state in the cytoplasm and activated by blunt-ended double-stranded (ds)RNAs carrying a 5' triphosphate (ppp) moiety. These features found in many pathogenic RNAs are absent in cellular RNAs due to post-transcriptional modifications of RNA ends. Although RIG-I is structurally well characterized, the mechanistic basis for RIG-I's remarkable ability to discriminate between cellular and pathogenic RNAs is not completely understood. We show that RIG-I's selectivity for blunt-ended 5'-ppp dsRNAs is ≈3000 times higher than non-blunt ended dsRNAs commonly found in cellular RNAs. Discrimination occurs at multiple stages and signaling RNAs have high affinity and ATPase turnover rate and thus a high katpase/Kd. We show that RIG-I uses its autoinhibitory CARD2-Hel2i (second CARD-helicase insertion domain) interface as a barrier to select against non-blunt ended dsRNAs. Accordingly, deletion of CARDs or point mutations in the CARD2-Hel2i interface decreases the selectivity from ≈3000 to 150 and 750, respectively. We propose that the CARD2-Hel2i interface is a 'gate' that prevents cellular RNAs from generating productive complexes that can signal.
Collapse
Affiliation(s)
- Anand Ramanathan
- Robert Wood Johnson Medical School, Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Swapnil C Devarkar
- Robert Wood Johnson Medical School, Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Fuguo Jiang
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Matthew T Miller
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Abdul G Khan
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Joseph Marcotrigiano
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Smita S Patel
- Robert Wood Johnson Medical School, Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
75
|
Huang CK, Shen YL, Huang LF, Wu SJ, Yeh CH, Lu CA. The DEAD-Box RNA Helicase AtRH7/PRH75 Participates in Pre-rRNA Processing, Plant Development and Cold Tolerance in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:174-91. [PMID: 26637537 DOI: 10.1093/pcp/pcv188] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/18/2015] [Indexed: 05/18/2023]
Abstract
DEAD-box RNA helicases belong to an RNA helicase family that plays specific roles in various RNA metabolism processes, including ribosome biogenesis, mRNA splicing, RNA export, mRNA translation and RNA decay. This study investigated a DEAD-box RNA helicase, AtRH7/PRH75, in Arabidopsis. Expression of AtRH7/PRH75 was ubiquitous; however, the levels of mRNA accumulation were increased in cell division regions and were induced by cold stress. The phenotypes of two allelic AtRH7/PRH75-knockout mutants, atrh7-2 and atrh7-3, resembled auxin-related developmental defects that were exhibited in several ribosomal protein mutants, and were more severe under cold stress. Northern blot and circular reverse transcription-PCR (RT-PCR) analyses indicated that unprocessed 18S pre-rRNAs accumulated in the atrh7 mutants. The atrh7 mutants were hyposensitive to the antibiotic streptomycin, which targets ribosomal small subunits, suggesting that AtRH7 was also involved in ribosome assembly. In addition, the atrh7-2 and atrh7-3 mutants displayed cold hypersensitivity and decreased expression of CBF1, CBF2 and CBF3, which might be responsible for the cold intolerance. The present study indicated that AtRH7 participates in rRNA biogenesis and is also involved in plant development and cold tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC These authors contributed equally to this work
| | - Yu-Lien Shen
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC These authors contributed equally to this work
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Shaw-Jye Wu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Chin-Hui Yeh
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| |
Collapse
|
76
|
RNA Helicase Important for Listeria monocytogenes Hemolytic Activity and Virulence Factor Expression. Infect Immun 2015; 84:67-76. [PMID: 26483402 DOI: 10.1128/iai.00849-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/10/2015] [Indexed: 01/12/2023] Open
Abstract
RNA helicases have been shown to be important for the function of RNA molecules at several levels, although their putative involvement in microbial pathogenesis has remained elusive. We have previously shown that Listeria monocytogenes DExD-box RNA helicases are important for bacterial growth, motility, ribosomal maturation, and rRNA processing. We assessed the importance of the RNA helicase Lmo0866 (here named CshA) for expression of virulence traits. We observed a reduction in hemolytic activity in a strain lacking CshA compared to the wild type. This phenomenon was less evident in strains lacking other RNA helicases. The reduced hemolysis was accompanied by lower expression of major listerial virulence factors in the ΔcshA strain, mainly listeriolysin O, but also to some degree the actin polymerizing factor ActA. Reduced expression of these virulence factors in the strain lacking CshA did not, however, correlate with a decreased level of the virulence regulator PrfA. When combining the ΔcshA knockout with a mutation creating a constitutively active PrfA protein (PrfA*), the effect of the ΔcshA knockout on LLO expression was negated. These data suggest a role for the RNA helicase CshA in posttranslational activation of PrfA. Surprisingly, although the expression of several virulence factors was reduced, the ΔcshA strain did not demonstrate any reduced ability to infect nonphagocytic cells compared to the wild-type strain.
Collapse
|
77
|
Lu J, Jiang C, Li X, Jiang L, Li Z, Schneider-Poetsch T, Liu J, Yu K, Liu JO, Jiang H, Luo C, Dang Y. A gating mechanism for Pi release governs the mRNA unwinding by eIF4AI during translation initiation. Nucleic Acids Res 2015; 43:10157-67. [PMID: 26464436 PMCID: PMC4666354 DOI: 10.1093/nar/gkv1033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/30/2015] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic translation initiation factor eIF4AI, the founding member of DEAD-box helicases, undergoes ATP hydrolysis-coupled conformational changes to unwind mRNA secondary structures during translation initiation. However, the mechanism of its coupled enzymatic activities remains unclear. Here we report that a gating mechanism for Pi release controlled by the inter-domain linker of eIF4AI regulates the coupling between ATP hydrolysis and RNA unwinding. Molecular dynamic simulations and experimental results revealed that, through forming a hydrophobic core with the conserved SAT motif of the N-terminal domain and I357 from the C-terminal domain, the linker gated the release of Pi from the hydrolysis site, which avoided futile hydrolysis cycles of eIF4AI. Further mutagenesis studies suggested this linker also plays an auto-inhibitory role in the enzymatic activity of eIF4AI, which may be essential for its function during translation initiation. Overall, our results reveal a novel regulatory mechanism that controls eIF4AI-mediated mRNA unwinding and can guide further mechanistic studies on other DEAD-box helicases.
Collapse
Affiliation(s)
- Junyan Lu
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenxiao Jiang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaojing Li
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lizhi Jiang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zengxia Li
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | | | - Jianwei Liu
- Department of Chemistry, Shanghai Key Lab of Chemical Biology for Protein Research & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Kunqian Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jun O Liu
- Department of Pharmacology & Molecular Sciences and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
78
|
Tsukamoto Y, Fumoto S, Noguchi T, Yanagihara K, Hirashita Y, Nakada C, Hijiya N, Uchida T, Matsuura K, Hamanaka R, Murakami K, Seto M, Inomata M, Moriyama M. Expression of DDX27 contributes to colony-forming ability of gastric cancer cells and correlates with poor prognosis in gastric cancer. Am J Cancer Res 2015; 5:2998-3014. [PMID: 26693055 PMCID: PMC4656726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023] Open
Abstract
Previously, we have reported that gain at chromosome 20q13 is the most common genomic copy number aberration in gastric cancer (GC) (29/30 cases), and that among the genes located in this region, we have identified DDX27, whose expression level shows the highest correlation with genomic copy number, as a candidate therapeutic target for GC. Here, we analyzed the clinicopathological significance of DDX27 using immunohistochemistry and studied its functions using knockdown assays. We found that DDX27 was frequently upregulated in GC tissues (98 of 140 cases, 70%), and significantly associated with venous invasion and liver metastasis. Furthermore, multivariate analysis of GC patients showed that high expression of DDX27 was independently associated with poorer prognosis. In functional assays, knockdown of DDX27 reduced the ability of GC cells to form colonies both on conventional plates and soft agar, but had little effect on their invasiveness. We also found that knockdown of DDX27 reduced the viability of GC cells through inhibition of cell cycle progression independently of apoptosis. Interestingly, DDX27 depletion induced accumulation of TP53 in a TP53 wild-type cell line, AGS, but not in a TP53-deleted cell line, 44As3, although DDX27 knockdown commonly reduced the viability of both, indicating the TP53-dependent and independent cell cycle control of DDX27. Thus, our results suggest that expression of DDX27 contributes to colony formation by GC cells through cell cycle control and may be a potential therapeutic target for GC patients with chromosome gain at 20q13.
Collapse
Affiliation(s)
- Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita UniversityOita, Japan
| | - Shoichi Fumoto
- Department of Molecular Pathology, Faculty of Medicine, Oita UniversityOita, Japan
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita UniversityOita, Japan
| | - Tsuyoshi Noguchi
- Center for Community Medicine, Division of Surgery, Faculty of Medicine, Oita UniversityOita, Japan
| | - Kazuyoshi Yanagihara
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer CenterChiba, Japan
| | - Yuka Hirashita
- Department of Molecular Pathology, Faculty of Medicine, Oita UniversityOita, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita UniversityOita, Japan
| | - Chisato Nakada
- Department of Molecular Pathology, Faculty of Medicine, Oita UniversityOita, Japan
| | - Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita UniversityOita, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita UniversityOita, Japan
| | - Keiko Matsuura
- Department of Molecular Pathology, Faculty of Medicine, Oita UniversityOita, Japan
| | - Ryoji Hamanaka
- Department of Cell Biology, Faculty of Medicine, Oita UniversityOita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita UniversityOita, Japan
| | - Masao Seto
- Department of Pathology, Kurume University School of MedicineFukuoka, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita UniversityOita, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Faculty of Medicine, Oita UniversityOita, Japan
| |
Collapse
|
79
|
Söderholm H, Derman Y, Lindström M, Korkeala H. Functional csdA is needed for effective adaptation and initiation of growth of Clostridium botulinum ATCC 3502 at suboptimal temperature. Int J Food Microbiol 2015; 208:51-7. [DOI: 10.1016/j.ijfoodmicro.2015.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/20/2015] [Accepted: 05/23/2015] [Indexed: 11/29/2022]
|
80
|
Xia H, Wang P, Wang GC, Yang J, Sun X, Wu W, Qiu Y, Shu T, Zhao X, Yin L, Qin CF, Hu Y, Zhou X. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone. PLoS Pathog 2015. [PMID: 26218680 PMCID: PMC4517893 DOI: 10.1371/journal.ppat.1005067] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71), which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3′-to-5′ unwinds RNA helices in an adenosine triphosphate (ATP)-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16), another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings increase our understanding of enteroviruses and the two types of RNA remodeling activities. Enteroviruses contain a large number of closely related human pathogens, including poliovirus, EV71, and coxsackie viruses, and cause ~3 billion infections annually. Among the nonstructural proteins of enteroviruses or picornaviruses, protein 2CATPase is the most conserved and complex but the least understood. On the basis of sequence analyses, this protein has been predicted as a putative superfamily 3 (SF3) helicase that supposedly plays a pivotal role in enteroviral RNA replication. However, attempts to determine the helicase activity associated with 2CATPase have been unsuccessful. We found that eukaryotically expressed EV71 or CAV16 2CATPase does possess an ATP-dependent RNA helicase activity that 3′→5′ unwinds RNA helices like other SF3 helicases; surprisingly, it also functions as an RNA chaperone that remodels RNA structures in an ATP-independent manner. Moreover, we determined the domain requirements for these two RNA remodeling activities associated with 2CATPase and provide both in vitro and cellular evidence of their potential roles during viral RNA replication. Additionally, our study provides the first evidence that RNA helicase and chaperoning activities can be integrated within one protein, thereby introducing an extended view of RNA remodeling proteins.
Collapse
Affiliation(s)
- Hongjie Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Peipei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Guang-Chuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jie Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xianlin Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenzhe Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ting Shu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaolu Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
81
|
Putnam AA, Gao Z, Liu F, Jia H, Yang Q, Jankowsky E. Division of Labor in an Oligomer of the DEAD-Box RNA Helicase Ded1p. Mol Cell 2015. [PMID: 26212457 DOI: 10.1016/j.molcel.2015.06.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Most aspects of RNA metabolism involve DEAD-box RNA helicases, enzymes that bind and remodel RNA and RNA-protein complexes in an ATP-dependent manner. Here we show that the DEAD-box helicase Ded1p oligomerizes in the cell and in vitro, and unwinds RNA as a trimer. Two protomers bind the single-stranded region of RNA substrates and load a third protomer to the duplex, which then separates the strands. ATP utilization differs between the strand-separating protomer and those bound to the single-stranded region. Binding of the eukaryotic initiation factor 4G to Ded1p interferes with oligomerization and thereby modulates unwinding activity and RNA affinity of the helicase. Our data reveal a strict division of labor between the Ded1p protomers in the oligomer. This mode of oligomerization fundamentally differs from other helicases. Oligomerization represents a previously unappreciated level of regulation for DEAD-box helicase activities.
Collapse
Affiliation(s)
- Andrea A Putnam
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhaofeng Gao
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Fei Liu
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; College of Veterinary Medicine, Nanjing Agricultural University, Number 1 Weigang, Nanjing 210095, P.R. China
| | - Huijue Jia
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; BGI Shenzen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, P.R. China
| | - Quansheng Yang
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; McArdle Laboratory of Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Eckhard Jankowsky
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
82
|
García-García C, Frieda KL, Feoktistova K, Fraser CS, Block SM. RNA BIOCHEMISTRY. Factor-dependent processivity in human eIF4A DEAD-box helicase. Science 2015; 348:1486-8. [PMID: 26113725 DOI: 10.1126/science.aaa5089] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During eukaryotic translation initiation, the small ribosomal subunit, assisted by initiation factors, locates the messenger RNA start codon by scanning from the 5' cap. This process is powered by the eukaryotic initiation factor 4A (eIF4A), a DEAD-box helicase. eIF4A has been thought to unwind structures formed in the untranslated 5' region via a nonprocessive mechanism. Using a single-molecule assay, we found that eIF4A functions instead as an adenosine triphosphate-dependent processive helicase when complexed with two accessory proteins, eIF4G and eIF4B. Translocation occurred in discrete steps of 11 ± 2 base pairs, irrespective of the accessory factor combination. Our findings support a memory-less stepwise mechanism for translation initiation and suggest that similar factor-dependent processivity may be shared by other members of the DEAD-box helicase family.
Collapse
Affiliation(s)
| | - Kirsten L Frieda
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Kateryna Feoktistova
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA 95616, USA
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA 95616, USA
| | - Steven M Block
- Department of Biology, Stanford University, Stanford, CA 94305, USA. Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
83
|
Reynolds KA, Cameron CE, Raney KD. Melting of Duplex DNA in the Absence of ATP by the NS3 Helicase Domain through Specific Interaction with a Single-Strand/Double-Strand Junction. Biochemistry 2015; 54:4248-58. [PMID: 26091150 DOI: 10.1021/acs.biochem.5b00214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Helicases unwind double-stranded nucleic acids, remove secondary structures from single-stranded nucleic acids, and remove proteins bound to nucleic acids. For many helicases, the mechanisms for these different functions share the ability to translocate with a directional bias as a result of ATP binding and hydrolysis. Nonstructural protein 3 (NS3) is an essential enzyme expressed by the hepatitis C virus (HCV) and is known to catalyze the unwinding of both DNA and RNA substrates in a 3'-to-5' direction. We investigated the role of nucleic acid binding in the unwinding mechanism by examining ATP-independent unwinding. We observed that even in the absence of ATP, the NS3 helicase domain (NS3h) unwound duplexes only when they contained a 3'-tail (i.e., 3'-to-5' directionality). Blunt-ended duplexes and 5'-tailed duplexes were not melted even in the presence of a large excess concentration of the protein. NS3h was found to diffuse rapidly along single-stranded DNA at a rate of 30 nucleotides(2) s(-1). Upon encountering an appropriate single-strand/double-strand (ss/ds) junction, NS3h slowly melted the duplex under conditions with an excess protein concentration relative to DNA concentration. When a biotin-streptavidin block was placed into the ssDNA region, no melting of DNA was observed, suggesting that NS3h must diffuse along the ssDNA, and that the streptavidin blocked the diffusion. We conclude that the specific interaction between NS3h and the ss/dsDNA junction, coupled with diffusion, allows binding energy to melt duplex DNA with a directional bias. Alternatively, we found that the full-length NS3 protein did not exhibit strict directionality and was dependent on duplex DNA length. NS3 was able to unwind the duplex even in the presence of the biotin-streptavidin block. We propose a noncanonical model of unwinding for NS3 in which the enzyme binds directly to the duplex via protein-protein interactions to melt the substrate.
Collapse
Affiliation(s)
- Kimberly A Reynolds
- †Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Craig E Cameron
- ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kevin D Raney
- †Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| |
Collapse
|
84
|
Erazo A, Goff SP. Nuclear matrix protein Matrin 3 is a regulator of ZAP-mediated retroviral restriction. Retrovirology 2015; 12:57. [PMID: 26129669 PMCID: PMC4487854 DOI: 10.1186/s12977-015-0182-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/11/2015] [Indexed: 12/01/2022] Open
Abstract
Background Matrin 3 is a nuclear matrix protein involved in multiple nuclear processes. In HIV-1 infection, Matrin 3 serves as a Rev cofactor important for the cytoplasmic accumulation of HIV-1 transcripts. ZAP is a potent host restriction factor of multiple viruses including retroviruses HIV-1 and MoMuLV. In this study we sought to further characterize Matrin 3 functions in the regulation of HIV gene expression. Results Here we describe a function for Matrin 3 as a negative regulator of the ZAP-mediated restriction of retroviruses. Mass spectrometry analysis of Matrin 3-associated proteins uncovered interactions with proteins of the ZAP degradation complex, DDX17 and EXOSC3. Coimmunoprecipitation studies confirmed Matrin 3 associations with DDX17, EXOSC3 and ZAP, in a largely RNA-dependent manner, indicating that RNA is mediating the Matrin 3 interactions with these components of the ZAP degradation complex. Silencing Matrin 3 expression caused a remarkably enhanced ZAP-driven inhibition of HIV-1 and MoMuLV luciferase reporter viruses. This effect was shared with additional nuclear matrix proteins. ZAP targets multiply-spliced HIV-1 transcripts, but in the context of Matrin 3 suppression, this ZAP restriction was broadened to unspliced and multiply-spliced RNAs. Conclusions Here we reveal an unprecedented role for a nuclear matrix protein, Matrin 3, in the regulation of ZAP’s antiretroviral activity. Suppressing Matrin 3 powers a heightened and broader ZAP restriction of HIV-1 gene expression. This study suggests that this ZAP regulatory mechanism is shared with additional nuclear matrix proteins.
Collapse
Affiliation(s)
- Angela Erazo
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY, 10032, USA.
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY, 10032, USA. .,Department of Microbiology and Immunology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
85
|
Sun X, Chen H, Deng Z, Hu B, Luo H, Zeng X, Han L, Cai G, Ma L. The Warsaw breakage syndrome-related protein DDX11 is required for ribosomal RNA synthesis and embryonic development. Hum Mol Genet 2015; 24:4901-15. [PMID: 26089203 DOI: 10.1093/hmg/ddv213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
DDX11 was recently identified as a cause of Warsaw breakage syndrome (WABS). However, the functional mechanism of DDX11 and the contribution of clinically described mutations to the pathogenesis of WABS are elusive. Here, we show that DDX11 is a novel nucleolar protein that preferentially binds to hypomethylated active ribosomal DNA (rDNA) gene loci, where it interacts with upstream binding factor (UBF) and the RNA polymerase I (Pol I). DDX11 knockdown changed the epigenetic state of rDNA loci from euchromatic structures to more heterochromatic structures, reduced the activity of UBF, decreased the recruitment of UBF and RPA194 (a subunit of Pol I) to rDNA promoter, suppressed rRNA transcription and thereby inhibited growth and proliferation of HeLa cells. Importantly, two indentified WABS-derived mutants, R263Q and K897del, and a Fe-S deletion construct demonstrated significantly reduced binding abilities to rDNA promoters and lowered DNA-dependent ATPase activities compared with wild-type DDX11. Knockdown of the zebrafish ortholog of human DDX11 by morpholinos resulted in growth retardation and vertebral and craniofacial malformations in zebrafish, concomitant with the changes in histone epigenetic modifications at rDNA loci, the reduction of Pol I recruitment to the rDNA promoter and a significant decrease in nascent pre-RNA levels. These growth disruptions in zebrafish in response to DDX11 reduction showed similarities to the clinically described developmental abnormalities found in WABS patients for the first time in any vertebrate. Thus, our results indicate that DDX11 functions as a positive regulator of rRNA transcription and provides a novel insight into the pathogenesis of WABS.
Collapse
Affiliation(s)
- Xinliang Sun
- School of Life Sciences, Tsinghua University, Beijing, China, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Hongbo Chen
- School of Life Sciences, Tsinghua University, Beijing, China, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China,
| | - Zaian Deng
- School of Life Sciences, Tsinghua University, Beijing, China, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Bo Hu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Hui Luo
- Department of Pharmacology, Guangdong Medical College, Zhanjiang 524023, Guangdong, China and and
| | - Xiaobin Zeng
- Department of Pharmacology, Guangdong Medical College, Zhanjiang 524023, Guangdong, China and and
| | - Liqiao Han
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Guoping Cai
- School of Life Sciences, Tsinghua University, Beijing, China, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China,
| | - Lan Ma
- School of Life Sciences, Tsinghua University, Beijing, China, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China,
| |
Collapse
|
86
|
Affiliation(s)
- Rick Russell
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
87
|
Abstract
In eukaryotic organisms, the orthologs of the DEAD-box RNA helicase Ded1p from yeast and DDX3 from human form a well-defined subfamily that is characterized by high sequence conservation in their helicase core and their N- and C- termini. Individual members of this Ded1/DDX3 subfamily perform multiple functions in RNA metabolism in both nucleus and cytoplasm. Ded1/DDX3 subfamily members have also been implicated in cellular signaling pathways and are targeted by diverse viruses. In this review, we discuss the considerable body of work on the biochemistry and biology of these proteins, including the recently discovered link of human DDX3 to tumorigenesis.
Collapse
Affiliation(s)
- Deepak Sharma
- Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| | | |
Collapse
|
88
|
Kellner JN, Reinstein J, Meinhart A. Synergistic effects of ATP and RNA binding to human DEAD-box protein DDX1. Nucleic Acids Res 2015; 43:2813-28. [PMID: 25690890 PMCID: PMC4357711 DOI: 10.1093/nar/gkv106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA helicases of the DEAD-box protein family form the largest group of helicases. The human DEAD-box protein 1 (DDX1) plays an important role in tRNA and mRNA processing, is involved in tumor progression and is also hijacked by several virus families such as HIV-1 for replication and nuclear export. Although important in many cellular processes, the mechanism of DDX1′s enzymatic function is unknown. We have performed equilibrium titrations and transient kinetics to determine affinities for nucleotides and RNA. We find an exceptional tight binding of DDX1 to adenosine diphosphate (ADP), one of the strongest affinities observed for DEAD-box helicases. ADP binds tighter by three orders of magnitude when compared to adenosine triphosphate (ATP), arresting the enzyme in a potential dead-end ADP conformation under physiological conditions. We thus suggest that a nucleotide exchange factor leads to DDX1 recycling. Furthermore, we find a strong cooperativity in binding of RNA and ATP to DDX1 that is also reflected in ATP hydrolysis. We present a model in which either ATP or RNA binding alone can partially shift the equilibrium from an ‘open’ to a ‘closed’-state; this shift appears to be not further pronounced substantially even in the presence of both RNA and ATP as the low rate of ATP hydrolysis does not change.
Collapse
Affiliation(s)
- Julian N Kellner
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Jochen Reinstein
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Anton Meinhart
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
89
|
Abstract
Despite the highly conserved helicase core, individual DEAD-box proteins are specialized in diverse RNA metabolic processes. One mechanism that determines DEAD-box protein specificity is enzymatic regulation by other protein cofactors. In this chapter, we describe a protocol for purifying the Saccharomyces cerevisiae DEAD-box RNA helicase Dbp2 and RNA-binding protein Yra1 and subsequent analysis of helicase regulation. The experiments described here can be adapted to other RNA helicases and their purified cofactor(s).
Collapse
Affiliation(s)
- Wai Kit Ma
- Department of Biochemistry, Purdue University, BCHM 305, 175 S. University Street, West Lafayette, Indiana 47907-2063
| | - Elizabeth J. Tran
- Department of Biochemistry, Purdue University, BCHM 305, 175 S. University Street, West Lafayette, Indiana 47907-2063
- Purdue University Center for Cancer Research, Purdue University, Hansen Life Sciences Research, Building, Room 141, 201 S. University Street West Lafayette, Indiana 47907-2064
- Correspondence should be addressed to: Elizabeth J. Tran, PhD., Phone: (765) 496-3889, Fax: (765) 494-7897,
| |
Collapse
|
90
|
DEAD-box helicase proteins disrupt RNA tertiary structure through helix capture. PLoS Biol 2014; 12:e1001981. [PMID: 25350280 PMCID: PMC4211656 DOI: 10.1371/journal.pbio.1001981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/18/2014] [Indexed: 01/11/2023] Open
Abstract
Single-molecule fluorescence experiments reveal how DEAD-box proteins unfold structured RNAs to promote conformational transitions and refolding to the native functional state. DEAD-box helicase proteins accelerate folding and rearrangements of highly structured RNAs and RNA–protein complexes (RNPs) in many essential cellular processes. Although DEAD-box proteins have been shown to use ATP to unwind short RNA helices, it is not known how they disrupt RNA tertiary structure. Here, we use single molecule fluorescence to show that the DEAD-box protein CYT-19 disrupts tertiary structure in a group I intron using a helix capture mechanism. CYT-19 binds to a helix within the structured RNA only after the helix spontaneously loses its tertiary contacts, and then CYT-19 uses ATP to unwind the helix, liberating the product strands. Ded1, a multifunctional yeast DEAD-box protein, gives analogous results with small but reproducible differences that may reflect its in vivo roles. The requirement for spontaneous dynamics likely targets DEAD-box proteins toward less stable RNA structures, which are likely to experience greater dynamic fluctuations, and provides a satisfying explanation for previous correlations between RNA stability and CYT-19 unfolding efficiency. Biologically, the ability to sense RNA stability probably biases DEAD-box proteins to act preferentially on less stable misfolded structures and thereby to promote native folding while minimizing spurious interactions with stable, natively folded RNAs. In addition, this straightforward mechanism for RNA remodeling does not require any specific structural environment of the helicase core and is likely to be relevant for DEAD-box proteins that promote RNA rearrangements of RNP complexes including the spliceosome and ribosome. In addition to carrying genetic information from DNA to protein, RNAs function in many essential cellular processes. This often requires the RNA to form a specific three-dimensional structure, and some functions require cycling between multiple structures. However, RNAs have a strong propensity to become trapped in nonfunctional, misfolded structures. Due to the intrinsic stability of local structure for RNA, these misfolded species can be long-lived and therefore accumulate. ATP-dependent RNA chaperone proteins called DEAD-box proteins are known to promote native RNA folding by disrupting misfolded structures. Although these proteins can unwind short RNA helices, the mechanism by which they act upon higher order tertiary contacts is unknown. Our current work shows that DEAD-box proteins capture transiently exposed RNA helices, preventing any tertiary contacts from reforming and potentially destabilizing the global RNA architecture. Helix unwinding by the DEAD-box protein then allows the product RNA strands to form new contacts. This helix capture mechanism for manipulation of RNA tertiary structure does not require a specific binding motif or structural environment and may be general for DEAD-box helicase proteins that act on structured RNAs.
Collapse
|
91
|
Dahlsten E, Lindström M, Korkeala H. Mechanisms of food processing and storage-related stress tolerance in Clostridium botulinum. Res Microbiol 2014; 166:344-52. [PMID: 25303833 DOI: 10.1016/j.resmic.2014.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 12/28/2022]
Abstract
Vegetative cultures of Clostridium botulinum produce the extremely potent botulinum neurotoxin, and may jeopardize the safety of foods unless sufficient measures to prevent growth are applied. Minimal food processing relies on combinations of mild treatments, primarily to avoid deterioration of the sensory qualities of the food. Tolerance of C. botulinum to minimal food processing is well characterized. However, data on effects of successive treatments on robustness towards further processing is lacking. Developments in genetic manipulation tools and the availability of annotated genomes have allowed identification of genetic mechanisms involved in stress tolerance of C. botulinum. Most studies focused on low temperature, and the importance of various regulatory mechanisms in cold tolerance of C. botulinum has been demonstrated. Furthermore, novel roles in cold tolerance were shown for metabolic pathways under the control of these regulators. A role for secondary oxidative stress in tolerance to extreme temperatures has been proposed. Additionally, genetic mechanisms related to tolerance to heat, low pH, and high salinity have been characterized. Data on genetic stress-related mechanisms of psychrotrophic Group II C. botulinum strains are scarce; these mechanisms are of interest for food safety research and should thus be investigated. This minireview encompasses the importance of C. botulinum as a food safety hazard and its central physiological characteristics related to food-processing and storage-related stress. Special attention is given to recent findings considering genetic mechanisms C. botulinum utilizes in detecting and countering these adverse conditions.
Collapse
Affiliation(s)
- Elias Dahlsten
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, FI-00014 Helsinki, Finland.
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, FI-00014 Helsinki, Finland.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, FI-00014 Helsinki, Finland.
| |
Collapse
|
92
|
DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA. Proc Natl Acad Sci U S A 2014; 111:E2928-36. [PMID: 25002474 DOI: 10.1073/pnas.1404307111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DEAD-box proteins are nonprocessive RNA helicases and can function as RNA chaperones, but the mechanisms of their chaperone activity remain incompletely understood. The Neurospora crassa DEAD-box protein CYT-19 is a mitochondrial RNA chaperone that promotes group I intron splicing and has been shown to resolve misfolded group I intron structures, allowing them to refold. Building on previous results, here we use a series of tertiary contact mutants of the Tetrahymena group I intron ribozyme to demonstrate that the efficiency of CYT-19-mediated unfolding of the ribozyme is tightly linked to global RNA tertiary stability. Efficient unfolding of destabilized ribozyme variants is accompanied by increased ATPase activity of CYT-19, suggesting that destabilized ribozymes provide more productive interaction opportunities. The strongest ATPase stimulation occurs with a ribozyme that lacks all five tertiary contacts and does not form a compact structure, and small-angle X-ray scattering indicates that ATPase activity tracks with ribozyme compactness. Further, deletion of three helices that are prominently exposed in the folded structure decreases the ATPase stimulation by the folded ribozyme. Together, these results lead to a model in which CYT-19, and likely related DEAD-box proteins, rearranges complex RNA structures by preferentially interacting with and unwinding exposed RNA secondary structure. Importantly, this mechanism could bias DEAD-box proteins to act on misfolded RNAs and ribonucleoproteins, which are likely to be less compact and more dynamic than their native counterparts.
Collapse
|
93
|
Overexpression of DDX43 Mediates MEK Inhibitor Resistance through RAS Upregulation in Uveal Melanoma Cells. Mol Cancer Ther 2014; 13:2073-80. [DOI: 10.1158/1535-7163.mct-14-0095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
94
|
Ostareck DH, Naarmann-de Vries IS, Ostareck-Lederer A. DDX6 and its orthologs as modulators of cellular and viral RNA expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:659-78. [PMID: 24788243 DOI: 10.1002/wrna.1237] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 12/21/2022]
Abstract
DDX6 (Rck/p54), a member of the DEAD-box family of helicases, is highly conserved from unicellular eukaryotes to vertebrates. Functions of DDX6 and its orthologs in dynamic ribonucleoproteins contribute to global and transcript-specific messenger RNA (mRNA) storage, translational repression, and decay during development and differentiation in the germline and somatic cells. Its role in pathways that promote mRNA-specific alternative translation initiation has been shown to be linked to cellular homeostasis, deregulated tissue development, and the control of gene expression in RNA viruses. Recently, DDX6 was found to participate in mRNA regulation mediated by miRNA-mediated silencing. DDX6 and its orthologs have versatile functions in mRNA metabolism, which characterize them as important post-transcriptional regulators of gene expression.
Collapse
Affiliation(s)
- Dirk H Ostareck
- Experimental Research Unit, Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
95
|
Abstract
Superfamily 2 helicase proteins are ubiquitous in RNA biology and have an extraordinarily broad set of functional roles. Central among these roles are the promotion of rearrangements of structured RNAs and the remodeling of ribonucleoprotein complexes (RNPs), allowing formation of native RNA structure or progression through a functional cycle of structures. Although all superfamily 2 helicases share a conserved helicase core, they are divided evolutionarily into several families, and it is principally proteins from three families, the DEAD-box, DEAH/RHA, and Ski2-like families, that function to manipulate structured RNAs and RNPs. Strikingly, there are emerging differences in the mechanisms of these proteins, both between families and within the largest family (DEAD-box), and these differences appear to be tuned to their RNA or RNP substrates and their specific roles. This review outlines basic mechanistic features of the three families and surveys individual proteins and the current understanding of their biological substrates and mechanisms.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712; ,
| | | |
Collapse
|
96
|
Hausner G, Hafez M, Edgell DR. Bacterial group I introns: mobile RNA catalysts. Mob DNA 2014; 5:8. [PMID: 24612670 PMCID: PMC3984707 DOI: 10.1186/1759-8753-5-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/24/2014] [Indexed: 12/02/2022] Open
Abstract
Group I introns are intervening sequences that have invaded tRNA, rRNA and protein coding genes in bacteria and their phages. The ability of group I introns to self-splice from their host transcripts, by acting as ribozymes, potentially renders their insertion into genes phenotypically neutral. Some group I introns are mobile genetic elements due to encoded homing endonuclease genes that function in DNA-based mobility pathways to promote spread to intronless alleles. Group I introns have a limited distribution among bacteria and the current assumption is that they are benign selfish elements, although some introns and homing endonucleases are a source of genetic novelty as they have been co-opted by host genomes to provide regulatory functions. Questions regarding the origin and maintenance of group I introns among the bacteria and phages are also addressed.
Collapse
Affiliation(s)
- Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2 N2, Canada
| | - Mohamed Hafez
- Department of Biochemistry, Faculty of Medicine, University of Montreal, Montréal, QC H3C 3 J7, Canada
- Department of Botany, Faculty of Science, Suez University, Suez, Egypt
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
97
|
|
98
|
Dahlsten E, Isokallio M, Somervuo P, Lindström M, Korkeala H. Transcriptomic analysis of (group I) Clostridium botulinum ATCC 3502 cold shock response. PLoS One 2014; 9:e89958. [PMID: 24587151 PMCID: PMC3933689 DOI: 10.1371/journal.pone.0089958] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/24/2014] [Indexed: 11/19/2022] Open
Abstract
Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon temperature downshift from 37°C to 15°C was performed to identify the cold-responsive gene set of this organism. Significant up- or down-regulation of 16 and 11 genes, respectively, was observed 1 h after the cold shock. At 5 h after the temperature downshift, 199 and 210 genes were up- or down-regulated, respectively. Thus, the relatively small gene set affected initially indicated a targeted acute response to cold shock, whereas extensive metabolic remodeling appeared to take place after prolonged exposure to cold. Genes related to fatty acid biosynthesis, oxidative stress response, and iron uptake and storage were induced, in addition to mechanisms previously characterized as cold-tolerance related in bacteria. Furthermore, several uncharacterized DNA-binding transcriptional regulator-encoding genes were induced, suggesting involvement of novel regulatory mechanisms in the cold shock response of C. botulinum. The role of such regulators, CBO0477 and CBO0558A, in cold tolerance of C. botulinum ATCC 3502 was demonstrated by deteriorated growth of related mutants at 17°C.
Collapse
Affiliation(s)
- Elias Dahlsten
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Marita Isokallio
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Panu Somervuo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
99
|
Abstract
For structured RNAs that possess catalytic activity, this activity provides a powerful probe for measuring the progress of folding and the effects of RNA chaperone proteins on the folding rate. The crux of this approach is that only the natively folded RNA is able to perform the catalytic reaction. This method can provide a quantitative measure of the fraction of native RNA over time, and it can readily distinguish the native state from all misfolded conformations. Here we describe an activity-based method measuring native folding of ribozymes derived from self-splicing group I introns, and we show how the assay can be used to monitor acceleration of native folding by DEAD-box RNA helicase proteins that function as general RNA chaperones. By measuring the amount of substrate that is converted to product in a rapid first turnover, we describe how to determine the fraction of the ribozyme population that is present in the native state. Further, we describe how to perform a two-stage or discontinuous assay in which folding proceeds in stage one and then solution conditions are changed in stage two to permit catalytic activity and block further folding. This protocol allows folding to be followed under a broad range of solution conditions, including those that do not support catalytic activity, and facilitates studies of chaperone proteins.
Collapse
Affiliation(s)
- Brant Gracia
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
100
|
Mallam AL, Sidote DJ, Lambowitz AM. Molecular insights into RNA and DNA helicase evolution from the determinants of specificity for a DEAD-box RNA helicase. eLife 2014; 3:e04630. [PMID: 25497230 PMCID: PMC4383044 DOI: 10.7554/elife.04630] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/10/2014] [Indexed: 01/07/2023] Open
Abstract
How different helicase families with a conserved catalytic 'helicase core' evolved to function on varied RNA and DNA substrates by diverse mechanisms remains unclear. In this study, we used Mss116, a yeast DEAD-box protein that utilizes ATP to locally unwind dsRNA, to investigate helicase specificity and mechanism. Our results define the molecular basis for the substrate specificity of a DEAD-box protein. Additionally, they show that Mss116 has ambiguous substrate-binding properties and interacts with all four NTPs and both RNA and DNA. The efficiency of unwinding correlates with the stability of the 'closed-state' helicase core, a complex with nucleotide and nucleic acid that forms as duplexes are unwound. Crystal structures reveal that core stability is modulated by family-specific interactions that favor certain substrates. This suggests how present-day helicases diversified from an ancestral core with broad specificity by retaining core closure as a common catalytic mechanism while optimizing substrate-binding interactions for different cellular functions.
Collapse
Affiliation(s)
- Anna L Mallam
- Institute for Cellular
and Molecular Biology, University of Texas at
Austin, Austin, United States,Department of Molecular
Biosciences, University of Texas at
Austin, Austin, United States
| | - David J Sidote
- Institute for Cellular
and Molecular Biology, University of Texas at
Austin, Austin, United States,Department of Molecular
Biosciences, University of Texas at
Austin, Austin, United States
| | - Alan M Lambowitz
- Institute for Cellular
and Molecular Biology, University of Texas at
Austin, Austin, United States,Department of Molecular
Biosciences, University of Texas at
Austin, Austin, United States,For correspondence:
| |
Collapse
|