51
|
Lünsdorf H, Gurramkonda C, Adnan A, Khanna N, Rinas U. Virus-like particle production with yeast: ultrastructural and immunocytochemical insights into Pichia pastoris producing high levels of the hepatitis B surface antigen. Microb Cell Fact 2011; 10:48. [PMID: 21703024 PMCID: PMC3142206 DOI: 10.1186/1475-2859-10-48] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A protective immune response against Hepatitis B infection can be obtained through the administration of a single viral polypeptide, the Hepatitis B surface antigen (HBsAg). Thus, the Hepatitis B vaccine is generated through the utilization of recombinant DNA technology, preferentially by using yeast-based expression systems. However, the polypeptide needs to assemble into spherical particles, so-called virus-like particles (VLPs), to elicit the required protective immune response. So far, no clear evidence has been presented showing whether HBsAg assembles in vivo inside the yeast cell into VLPs or later in vitro during down-stream processing and purification. RESULTS High level production of HBsAg was carried out with recombinant Pichia pastoris using the methanol inducible AOX1 expression system. The recombinant vaccine was isolated in form of VLPs after several down-stream steps from detergent-treated cell lysates. Search for the intracellular localization of the antigen using electron microscopic studies in combination with immunogold labeling revealed the presence of HBsAg in an extended endoplasmic reticulum where it was found to assemble into defined multi-layered, lamellar structures. The distance between two layers was determined as ~6 nm indicating that these lamellas represent monolayers of well-ordered HBsAg subunits. We did not find any evidence for the presence of VLPs within the endoplasmic reticulum or other parts of the yeast cell. CONCLUSIONS It is concluded that high level production and intrinsic slow HBsAg VLP assembly kinetics are leading to retention and accumulation of the antigen in the endoplasmic reticulum where it assembles at least partly into defined lamellar structures. Further transport of HBsAg to the Golgi apparatus is impaired thus leading to secretory pathway disfunction and the formation of an extended endoplasmic reticulum which bulges into irregular cloud-shaped formations. As VLPs were not found within the cells it is concluded that the VLP assembly process must take place during down-stream processing after detergent-mediated disassembly of HBsAg lamellas and subsequent reassembly of HBsAg into spherical VLPs.
Collapse
Affiliation(s)
- Heinrich Lünsdorf
- Helmholtz Centre for Infection Research (VAM), Braunschweig, Germany
| | | | | | | | | |
Collapse
|
52
|
Nazarko VY, Nazarko TY, Farré JC, Stasyk OV, Warnecke D, Ulaszewski S, Cregg JM, Sibirny AA, Subramani S. Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy 2011; 7:375-85. [PMID: 21169734 DOI: 10.4161/auto.7.4.14369] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autophagy-related (Atg) pathways deliver cytosol and organelles to the vacuole in double-membrane vesicles called autophagosomes, which are formed at the phagophore assembly site (PAS), where most of the core Atg proteins assemble. Atg28 is a component of the core autophagic machinery partially required for all Atg pathways in Pichia pastoris. This coiled-coil protein interacts with Atg17 and is essential for micropexophagy. However, the role of Atg28 in micropexophagy was unknown. We used the yeast two-hybrid system to search for Atg28 interaction partners from P. pastoris and identified a new Atg protein, named Atg35. The atg35∆ mutant was not affected in macropexophagy, cytoplasm-to-vacuole targeting or general autophagy. However, both Atg28 and Atg35 were required for micropexophagy and for the formation of the micropexophagic apparatus (MIPA). This requirement correlated with a stronger expression of both proteins on methanol and glucose. Atg28 mediated the interaction of Atg35 with Atg17. Trafficking of overexpressed Atg17 from the peripheral ER to the nuclear envelope was required to organize a peri-nuclear structure (PNS), the site of Atg35 colocalization during micropexophagy. In summary, Atg35 is a new Atg protein that relocates to the PNS and specifically regulates MIPA formation during micropexophagy.
Collapse
|
53
|
Ternes P, Wobbe T, Schwarz M, Albrecht S, Feussner K, Riezman I, Cregg JM, Heinz E, Riezman H, Feussner I, Warnecke D. Two pathways of sphingolipid biosynthesis are separated in the yeast Pichia pastoris. J Biol Chem 2011; 286:11401-14. [PMID: 21303904 DOI: 10.1074/jbc.m110.193094] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as many other fungi have a second class, glucosylceramide, which has a glucose head group. These two sphingolipid classes are in addition distinguished by a characteristic structure of their ceramide backbones. Here, we investigate the mechanisms controlling substrate entry into the glucosylceramide branch of the pathway. By a combination of enzymatic in vitro studies and lipid analysis of genetically engineered yeast strains, we show that the ceramide synthase Bar1p occupies a key branching point in sphingolipid biosynthesis in P. pastoris. By preferring dihydroxy sphingoid bases and C(16)/C(18) acyl-coenzyme A as substrates, Bar1p produces a structurally well defined group of ceramide species, which is the exclusive precursor for glucosylceramide biosynthesis. Correlating with the absence of glucosylceramide in this yeast, a gene encoding Bar1p is missing in S. cerevisiae. We could not successfully investigate the second ceramide synthase in P. pastoris that is orthologous to S. cerevisiae Lag1p/Lac1p. By analyzing the ceramide and glucosylceramide species in a collection of P. pastoris knock-out strains in which individual genes encoding enzymes involved in glucosylceramide biosynthesis were systematically deleted, we show that the ceramide species produced by Bar1p have to be modified by two additional enzymes, sphingolipid Δ4-desaturase and fatty acid α-hydroxylase, before the final addition of the glucose head group by the glucosylceramide synthase. Together, this set of four enzymes specifically defines the pathway leading to glucosylceramide biosynthesis.
Collapse
Affiliation(s)
- Philipp Ternes
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Levi SK, Bhattacharyya D, Strack RL, Austin JR, Glick BS. The yeast GRASP Grh1 colocalizes with COPII and is dispensable for organizing the secretory pathway. Traffic 2010; 11:1168-79. [PMID: 20573068 DOI: 10.1111/j.1600-0854.2010.01089.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In mammalian cells, the 'Golgi reassembly and stacking protein' (GRASP) family has been implicated in Golgi stacking, but the broader functions of GRASP proteins are still unclear. The yeast Saccharomyces cerevisiae contains a single non-essential GRASP homolog called Grh1. However, Golgi cisternae in S. cerevisiae are not organized into stacks, so a possible structural role for Grh1 has been difficult to test. Here, we examined the localization and function of Grh1 in S. cerevisiae and in the related yeast Pichia pastoris, which has stacked Golgi cisternae. In agreement with earlier studies indicating that Grh1 interacts with coat protein II (COPII) vesicle coat proteins, we find that Grh1 colocalizes with COPII at transitional endoplasmic reticulum (tER) sites in both yeasts. Deletion of P. pastoris Grh1 had no obvious effect on the structure of tER-Golgi units. To test the role of S. cerevisiae Grh1, we exploited the observation that inhibiting ER export in S. cerevisiae generates enlarged tER sites that are often associated with the cis Golgi. This tER-Golgi association was preserved in the absence of Grh1. The combined data suggest that Grh1 acts early in the secretory pathway, but is dispensable for the organization of secretory compartments.
Collapse
Affiliation(s)
- Stephanie K Levi
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
55
|
Klompmaker SH, Kilic A, Baerends RJ, Veenhuis M, van der Klei IJ. Activation of a peroxisomal Pichia pastoris D-amino acid oxidase, which uses d-alanine as a preferred substrate, depends on pyruvate carboxylase. FEMS Yeast Res 2010; 10:708-16. [PMID: 20550580 DOI: 10.1111/j.1567-1364.2010.00647.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
d-Amino acid oxidase (DAO) is an important flavo-enzyme that catalyzes the oxidative deamination of d-amino acids into the corresponding alpha-keto acid, ammonia and H(2)O(2). We identified two amino acid oxidases in the methylotrophic yeast Pichia pastoris: Dao1p, which preferentially uses d-alanine as a substrate, and Dao2p, which uses d-aspartate as a preferred substrate. Dao1p has a molecular mass of 38.2 kDa and a pH optimum of 9.6. This enzyme was localized to peroxisomes, albeit a typical peroxisomal targeting signal is lacking. Interestingly, P. pastoris mutant strains, defective in the enzyme pyruvate carboxylase, showed a pronounced growth defect on d-alanine, concomitant with a significant reduction in Dao1p activity relative to the wild-type control. This indicates that pyruvate carboxylase functions in import and/or activation of P. pastoris Dao1p.
Collapse
|
56
|
Farré JC, Mathewson RD, Manjithaya R, Subramani S. Roles of Pichia pastoris Uvrag in vacuolar protein sorting and the phosphatidylinositol 3-kinase complex in phagophore elongation in autophagy pathways. Autophagy 2010; 6:86-99. [PMID: 19946209 DOI: 10.4161/auto.6.1.10535] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although it has been established that Atg6/Beclin 1, the phosphatidylinositol 3-kinase (PI3K) Vps34, and associated proteins have direct or indirect roles in autophagic pathways in both mammals and yeasts, the elucidation of these roles and the proteins required for them is ongoing. The involvement of the Beclin 1-binding protein, UVRAG, has been a particular source of disagreement. We found that PpAtg6 is required for all autophagic pathways that have been identified in the yeast Pichia pastoris, as well as for the carboxypeptidase Y (PpCPY) vacuolar protein sorting pathway. We localized PpAtg6 to the phagophore assembly site (PAS) and observed its continued presence at that site as the isolation membrane grew from it and matured into a pexophagosome. PpUvrag, however, was required for proper PpCPY sorting, but not for any autophagic pathway. Rather, the defects in all autophagic pathways observed when PpUvrag was overexpressed support its presence in a complex that competes with the PI3K complex required for autophagy.
Collapse
Affiliation(s)
- Jean-Claude Farré
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, CA, USA
| | | | | | | |
Collapse
|
57
|
|
58
|
Nazarko TY, Farré JC, Subramani S. Peroxisome size provides insights into the function of autophagy-related proteins. Mol Biol Cell 2009; 20:3828-39. [PMID: 19605559 DOI: 10.1091/mbc.e09-03-0221] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a major pathway of intracellular degradation mediated by formation of autophagosomes. Recently, autophagy was implicated in the degradation of intracellular bacteria, whose size often exceeds the capacity of normal autophagosomes. However, the adaptations of the autophagic machinery for sequestration of large cargos were unknown. Here we developed a yeast model system to study the effect of cargo size on the requirement of autophagy-related (Atg) proteins. We controlled the size of peroxisomes before their turnover by pexophagy, the selective autophagy of peroxisomes, and found that peroxisome size determines the requirement of Atg11 and Atg26. Small peroxisomes can be degraded without these proteins. However, Atg26 becomes essential for degradation of medium peroxisomes. Additionally, the pexophagy-specific phagophore assembly site, organized by the dual interaction of Atg30 with functionally active Atg11 and Atg17, becomes essential for degradation of large peroxisomes. In contrast, Atg28 is partially required for all autophagy-related pathways independent of cargo size, suggesting it is a component of the core autophagic machinery. As a rule, the larger the cargo, the more cargo-specific Atg proteins become essential for its sequestration.
Collapse
Affiliation(s)
- Taras Y Nazarko
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
59
|
Lee PC, Yoon YG, Schmidt-Dannert C. Investigation of cellular targeting of carotenoid pathway enzymes in Pichia pastoris. J Biotechnol 2009; 140:227-33. [DOI: 10.1016/j.jbiotec.2009.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
60
|
Yan M, Rachubinski DA, Joshi S, Rachubinski RA, Subramani S. Dysferlin domain-containing proteins, Pex30p and Pex31p, localized to two compartments, control the number and size of oleate-induced peroxisomes in Pichia pastoris. Mol Biol Cell 2008; 19:885-98. [PMID: 18094040 PMCID: PMC2262989 DOI: 10.1091/mbc.e07-10-1042] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/26/2007] [Accepted: 12/11/2007] [Indexed: 11/11/2022] Open
Abstract
Yarrowia lipolytica Pex23p and Saccharomyces cerevisiae Pex30p, Pex31p, and Pex32p comprise a family of dysferlin domain-containing peroxins. We show that the deletion of their Pichia pastoris homologues, PEX30 and PEX31, does not affect the function or division of methanol-induced peroxisomes but results in fewer and enlarged, functional, oleate-induced peroxisomes. Synthesis of Pex30p is constitutive, whereas that of Pex31p is oleate-induced but at a much lower level relative to Pex30p. Pex30p interacts with Pex31p and is required for its stability. At steady state, both Pex30p and Pex31p exhibit a dual localization to the endoplasmic reticulum (ER) and peroxisomes. However, Pex30p is localized mostly to the ER, whereas Pex31p is predominantly on peroxisomes. Consistent with ER-to-peroxisome trafficking of these proteins, Pex30p accumulates on peroxisomes upon overexpression of Pex31p. Additionally, Pex31p colocalizes with Pex30p at the ER in pex19Delta cells and can be chased from the ER to peroxisomes in a Pex19p-dependent manner. The dysferlin domains of Pex30p and Pex31p, which are dispensable for their interaction, stability, and subcellular localization, are essential for normal peroxisome number and size. The growth environment-specific role of these peroxins, their dual localization, and the function of their dysferlin domains provide novel insights into peroxisome morphogenesis.
Collapse
Affiliation(s)
- Mingda Yan
- *Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322; and
| | | | - Saurabh Joshi
- *Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322; and
| | | | - Suresh Subramani
- *Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322; and
| |
Collapse
|
61
|
Struck NS, Herrmann S, Schmuck-Barkmann I, de Souza Dias S, Haase S, Cabrera AL, Treeck M, Bruns C, Langer C, Cowman AF, Marti M, Spielmann T, Gilberger TW. Spatial dissection of the cis- and trans-Golgi compartments in the malaria parasite Plasmodium falciparum. Mol Microbiol 2008; 67:1320-30. [DOI: 10.1111/j.1365-2958.2008.06125.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
62
|
Abstract
The peroxisome is an organelle whose quantity is tightly regulated in response to changes in metabolic status, and much knowledge has been accumulated regarding its dynamics. The turnover of peroxisomes through autophagic pathways, termed pexophagy, has been especially studied in several methylotrophic yeast strains capable of growth on methanol as a sole carbon source, which led to the identification of factors involved in pexophagy (Dunn et al., 2005; Sakai et al., 2006). In the methylotrophic yeast Pichia pastoris, several types of membrane dynamics during pexophagy can be visualized simultaneously under live cell imaging. The decrease of abundant peroxisomal proteins in the cell lysate can be used as a convenient indicator of the completion of pexophagy. In combination, these methods provide basic information for further analysis of pexophagy at the molecular level.
Collapse
Affiliation(s)
- Masahide Oku
- CREST, Japan Science and Technology Agency, Japan, and Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
63
|
Abstract
A full mechanistic understanding of how secretory cargo proteins are exported from the endoplasmic reticulum for passage through the early secretory pathway is essential for us to comprehend how cells are organized, maintain compartment identity, as well as how they selectively secrete proteins and other macromolecules to the extracellular space. This process depends on the function of a multi-subunit complex, the COPII coat. Here we describe progress towards a full mechanistic understanding of COPII coat function, including the latest findings in this area. Much of our understanding of how COPII functions and is regulated comes from studies of yeast genetics, biochemical reconstitution and single cell microscopy. New developments arising from clinical cases and model organism biology and genetics enable us to gain far greater insight in to the role of membrane traffic in the context of a whole organism as well as during embryogenesis and development. A significant outcome of such a full understanding is to reveal how the machinery and processes of membrane trafficking through the early secretory pathway fail in disease states.
Collapse
|
64
|
Dmytruk KV, Sibirny AA. Molecular mechanisms of insertional mutagenesis in yeasts and mycelium fungi. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407080017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
65
|
|
66
|
Abstract
Intracellular structures in Pichia pastoris can be visualized by the complementary methods of fluorescence microscopy and electron microscopy. An improved immunofluorescence protocol yields better optics and more reliable antigen preservation than conventional methods. As an alternative to immunofluorescence, if a protein of interest is fused to GFP or another fluorescent tag, the cells can be fixed and viewed directly. For higher-resolution studies of organelle morphology, thin-section electron microscopy of permanganate-fixed cells yields good preservation of intracellular membranes.
Collapse
Affiliation(s)
- Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
67
|
Bhattacharyya D, Glick BS. Two mammalian Sec16 homologues have nonredundant functions in endoplasmic reticulum (ER) export and transitional ER organization. Mol Biol Cell 2006; 18:839-49. [PMID: 17192411 PMCID: PMC1805085 DOI: 10.1091/mbc.e06-08-0707] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast Sec16 is a large peripheral endoplasmic reticulum (ER) membrane protein that functions in generating COPII transport vesicles and in clustering COPII components at transitional ER (tER) sites. Sec16 interacts with multiple COPII components. Although the COPII assembly pathway is evolutionarily conserved, Sec16 homologues have not been described in higher eukaryotes. Here, we show that mammalian cells contain two distinct Sec16 homologues: a large protein that we term Sec16L and a smaller protein that we term Sec16S. These proteins localize to tER sites, and an N-terminal region of each protein is necessary and sufficient for tER localization. The Sec16L and Sec16S genes are both expressed in every tissue examined, and both proteins are required in HeLa cells for ER export and for normal tER organization. Sec16L resembles yeast Sec16 in having a C-terminal conserved domain that interacts with the COPII coat protein Sec23, but Sec16S lacks such a C-terminal conserved domain. Immunoprecipitation data indicate that Sec16L and Sec16S are each present at multiple copies in a heteromeric complex. We infer that mammalian cells have preserved and extended the function of Sec16.
Collapse
Affiliation(s)
- Dibyendu Bhattacharyya
- Department of Molecular Genetics and Cell Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| | - Benjamin S. Glick
- Department of Molecular Genetics and Cell Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
68
|
Fujiki Y, Okumoto K, Kinoshita N, Ghaedi K. Lessons from peroxisome-deficient Chinese hamster ovary (CHO) cell mutants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1374-81. [PMID: 17045664 DOI: 10.1016/j.bbamcr.2006.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Cells with a genetic defect affecting a biological activity and/or a cell phenotype are generally called "cell mutants" and are a highly useful tool in genetic, biochemical, as well as cell biological research. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders, more than a dozen complementation groups of Chinese hamster ovary (CHO) cell mutants defective in peroxisome assembly have been successfully isolated and established as a model system. Moreover, successful PEX gene cloning studies by taking advantage of rapid functional complementation assay of CHO cell mutants invaluably contributed to the accomplishment of isolation of pathogenic genes responsible for peroxisome biogenesis diseases. Molecular mechanisms of peroxisome assembly are currently investigated by making use of such mammalian cell mutants.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|
69
|
Williams C, Distel B. Pex13p: docking or cargo handling protein? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1585-91. [PMID: 17056133 DOI: 10.1016/j.bbamcr.2006.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 11/20/2022]
Abstract
The Src homology 3 (SH3) domain-containing peroxisomal membrane protein Pex13p is an essential component of the import machinery for matrix proteins and forms a binding site for the peroxisomal targeting type I (PTS1) receptor Pex5p. The interaction between these two proteins can be described as novel in several ways. In the yeasts Saccharomyces cerevisiae and Pichia pastoris, the SH3 domain itself is responsible for the interaction but not via the typical P-x-x-P motifs that are common to SH3 ligands as Pex5p lacks such a motif. Instead, a region of Pex5p containing a W-x-x-x-F/Y motif is crucial for this binding. In mammals, again W-x-x-x-F/Y motifs appear to be important for the interaction but the SH3 domain seems not to be the site for Pex5p binding, this being located in the N-terminus of Pex13p. Despite these differences in the details of the Pex13p-Pex5p interaction, the association of the two proteins is a crucial step in Pex5p-mediated protein import into peroxisomes in both yeasts and mammals.
Collapse
Affiliation(s)
- Chris Williams
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
70
|
Esaki M, Liu Y, Glick BS. The budding yeastPichia pastorishas a novel Sec23p homolog. FEBS Lett 2006; 580:5215-21. [PMID: 16962585 DOI: 10.1016/j.febslet.2006.08.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 12/22/2022]
Abstract
In Pichia pastoris, coat protein complex II (COPII) vesicles form at discrete transitional ER (tER) sites. Analyzing COPII coat proteins in this yeast will help to reveal the mechanisms of tER organization. Here, we show that like Saccharomyces cerevisiae, P. pastoris contains essential SEC23 and SEC24 genes, as well as the non-essential SEC24 homolog LST1. In addition, P. pastoris contains a novel non-essential SEC23 homolog that we have designated SHL23. The products of all four genes are concentrated at tER sites. Deletion of SHL23 does not disrupt tER morphology. As judged by two-hybrid analysis, Sec23p associates with both Sec24p and Lst1p, whereas Shl23p associates selectively with Lst1p. These results suggest that P. pastoris COPII vesicles contain an Shl23p/Lst1p complex that is absent in S. cerevisiae.
Collapse
Affiliation(s)
- Masatoshi Esaki
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, IL 60637, USA
| | | | | |
Collapse
|
71
|
Léon S, Zhang L, McDonald WH, Yates J, Cregg JM, Subramani S. Dynamics of the peroxisomal import cycle of PpPex20p: ubiquitin-dependent localization and regulation. ACTA ACUST UNITED AC 2006; 172:67-78. [PMID: 16390998 PMCID: PMC2063535 DOI: 10.1083/jcb.200508096] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We characterize the peroxin PpPex20p from Pichia pastoris and show its requirement for translocation of PTS2 cargoes into peroxisomes. PpPex20p docks at the peroxisomal membrane and translocates into peroxisomes. Its peroxisomal localization requires the docking peroxin Pex14p but not the peroxins Pex2p, Pex10p, and Pex12p, whose absence causes peroxisomal accumulation of Pex20p. Similarities between Pex5p and Pex20p were noted in their protein interactions and dynamics during import, and both contain a conserved NH2-terminal domain. In the absence of the E2-like Pex4p or the AAA proteins Pex1p and Pex6p, Pex20p is degraded via polyubiquitylation of residue K19, and the K19R mutation causes accumulation of Pex20p in peroxisome remnants. Finally, either interference with K48-branched polyubiquitylation or removal of the conserved NH2-terminal domain causes accumulation of Pex20p in peroxisomes, mimicking a defect in its recycling to the cytosol. Our data are consistent with a model in which Pex20p enters peroxisomes and recycles back to the cytosol in an ubiquitin-dependent manner.
Collapse
Affiliation(s)
- Sébastien Léon
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | |
Collapse
|
72
|
Connerly PL, Esaki M, Montegna EA, Strongin DE, Levi S, Soderholm J, Glick BS. Sec16 is a determinant of transitional ER organization. Curr Biol 2006; 15:1439-47. [PMID: 16111939 DOI: 10.1016/j.cub.2005.06.065] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 06/29/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Proteins are exported from the ER at transitional ER (tER) sites, which produce COPII vesicles. However, little is known about how COPII components are concentrated at tER sites. The budding yeast Pichia pastoris contains discrete tER sites and is, therefore, an ideal system for studying tER organization. RESULTS We show that the integrity of tER sites in P. pastoris requires the peripheral membrane protein Sec16. P. pastoris Sec16 is an order of magnitude less abundant than a COPII-coat protein at tER sites and seems to show a saturable association with these sites. A temperature-sensitive mutation in Sec16 causes tER fragmentation at elevated temperature. This effect is specific because when COPII assembly is inhibited with a dominant-negative form of the Sar1 GTPase, tER sites remain intact. The tER fragmentation in the sec16 mutant is accompanied by disruption of Golgi stacks. CONCLUSIONS Our data suggest that Sec16 helps to organize patches of COPII-coat proteins into clusters that represent tER sites. The Golgi disruption that occurs in the sec16 mutant provides evidence that Golgi structure in budding yeasts depends on tER organization.
Collapse
Affiliation(s)
- Pamela L Connerly
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60615, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Lin-Cereghino GP, Godfrey L, de la Cruz BJ, Johnson S, Khuongsathiene S, Tolstorukov I, Yan M, Lin-Cereghino J, Veenhuis M, Subramani S, Cregg JM. Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris. Mol Cell Biol 2006; 26:883-97. [PMID: 16428444 PMCID: PMC1347016 DOI: 10.1128/mcb.26.3.883-897.2006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/26/2005] [Accepted: 10/24/2005] [Indexed: 11/20/2022] Open
Abstract
Growth of the yeast Pichia pastoris on methanol induces the expression of genes whose products are required for its metabolism. Three of the methanol pathway enzymes are located in an organelle called the peroxisome. As a result, both methanol pathway enzymes and proteins involved in peroxisome biogenesis (PEX proteins) are induced in response to this substrate. The most highly regulated of these genes is AOX1, which encodes alcohol oxidase, the first enzyme of the methanol pathway, and a peroxisomal enzyme. To elucidate the molecular mechanisms responsible for methanol regulation, we identify genes required for the expression of AOX1. Mutations in one gene, named MXR1 (methanol expression regulator 1), result in strains that are unable to (i) grow on the peroxisomal substrates methanol and oleic acid, (ii) induce the transcription of AOX1 and other methanol pathway and PEX genes, and (iii) form normal-appearing peroxisomes in response to methanol. MXR1 encodes a large protein with a zinc finger DNA-binding domain near its N terminus that has similarity to Saccharomyces cerevisiae Adr1p. In addition, Mxr1p is localized to the nucleus in cells grown on methanol or other gluconeogenic substrates. Finally, Mxr1p specifically binds to sequences upstream of AOX1. We conclude that Mxr1p is a transcription factor that is necessary for the activation of many genes in response to methanol. We propose that MXR1 is the P. pastoris homologue of S. cerevisiae ADR1 but that it has gained new functions and lost others through evolution as a result of changes in the spectrum of genes that it controls.
Collapse
Affiliation(s)
- Geoffrey Paul Lin-Cereghino
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, 2000 N.W. Walker Road, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Kajikawa M, Yamato KT, Kohzu Y, Shoji SI, Matsui K, Tanaka Y, Sakai Y, Fukuzawa H. A front-end desaturase from Chlamydomonas reinhardtii produces pinolenic and coniferonic acids by omega13 desaturation in methylotrophic yeast and tobacco. PLANT & CELL PHYSIOLOGY 2006; 47:64-73. [PMID: 16267098 DOI: 10.1093/pcp/pci224] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Pinolenic acid (PA; 18:3Delta(5,9,12)) and coniferonic acid (CA; 18:4Delta(5,9,12,15)) are Delta(5)-unsaturated bis-methylene-interrupted fatty acids (Delta(5)-UBIFAs) commonly found in pine seed oil. They are assumed to be synthesized from linoleic acid (LA; 18:2Delta(9,12)) and alpha-linolenic acid (ALA; 18:3Delta(9,12,15)), respectively, by Delta(5)-desaturation. A unicellular green microalga Chlamydomonas reinhardtii also accumulates PA and CA in a betain lipid. The expressed sequence tag (EST) resource of C. reinhardtii led to the isolation of a cDNA clone that encoded a putative fatty acid desaturase named as CrDES containing a cytochrome b5 domain at the N-terminus. When the coding sequence was expressed heterologously in the methylotrophic yeast Pichia pastoris, PA and CA were newly detected and comparable amounts of LA and ALA were reduced, demonstrating that CrDES has Delta(5)-desaturase activity for both LA and ALA. CrDES expressed in the yeast showed Delta(5)-desaturase activity on 18:1Delta(9) but not 18:1Delta(11). Unexpectedly, CrDES also showed Delta(7)-desaturase activity on 20:2Delta(11,14) and 20:3Delta(11,14,17) to produce 20:3Delta(7,11,14) and 20:4Delta(7,11,14,17), respectively. Since both the Delta(5) bond in C18 and the Delta(7) bond in C20 fatty acids are 'omega13' double bonds, these results indicate that CrDES has omega13 desaturase activity for omega9 unsaturated C18/C20 fatty acids, in contrast to the previously reported front-end desaturases. In order to evaluate the activity of CrDES in higher plants, transgenic tobacco plants expressing CrDES were created. PA and CA accumulated in the leaves of transgenic plants. The highest combined yield of PA and CA was 44.7% of total fatty acids, suggesting that PA and CA can be produced in higher plants on a large scale.
Collapse
Affiliation(s)
- Masataka Kajikawa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Kajikawa M, Yamato KT, Sakai Y, Fukuzawa H, Ohyama K, Kohchi T. Isolation and functional characterization of fatty acid delta5-elongase gene from the liverwort Marchantia polymorpha L. FEBS Lett 2005; 580:149-54. [PMID: 16359669 DOI: 10.1016/j.febslet.2005.11.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 11/25/2005] [Accepted: 11/25/2005] [Indexed: 11/24/2022]
Abstract
Bryophyte Marchantia polymorpha L. produces C22 very-long-chain polyunsaturated fatty acid (VLCPUFA). Thus far, no enzyme that mediates elongation of C20 VLCPUFAs has been identified in land plants. Here, we report the isolation and characterization of the gene MpELO2, which encodes an ELO-like fatty acid elongase in M. polymorpha. Heterologous expression in yeast demonstrated that MpELO2 encodes delta5-elongase, which mediates elongation of arachidonic (20:4) and eicosapentaenoic acids (20:5). Phylogenetic and gene structural analysis indicated that the MpELO2 gene is closely related to bryophyte Delta6-elongase genes for C18 fatty acid elongation and diverged from them by local gene duplication.
Collapse
Affiliation(s)
- Masataka Kajikawa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
76
|
Zhang L, Léon S, Subramani S. Two independent pathways traffic the intraperoxisomal peroxin PpPex8p into peroxisomes: mechanism and evolutionary implications. Mol Biol Cell 2005; 17:690-9. [PMID: 16319171 PMCID: PMC1356580 DOI: 10.1091/mbc.e05-08-0758] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Among peroxins involved in peroxisome biogenesis, only Pex8p is predominantly intraperoxisomal at steady state. Pex8p is necessary for peroxisomal matrix protein import via the PTS1 and PTS2 pathways. It is proposed to bridge two peroxisomal membrane subcomplexes comprised of the docking (Pex13p, Pex14p, Pex17p) and RING (Pex2p, Pex10p, Pex12p) peroxins and is also implicated in cargo release of PTS1 proteins in the matrix. We show that Pichia pastoris Pex8p (PpPex8p) enters the peroxisome matrix using two redundant pathways in a Pex14p-dependent, but Pex2p-independent, manner, showing that the intact importomer and RING subcomplex are not required for its import. One pathway depends on the TPR motifs in Pex5p, the C-terminal PTS1 sequence (AKL) in PpPex8p, and the intraperoxisomal presence of this peroxin. The alternative pathway uses the PTS2 receptor, Pex7p, its accessory protein, Pex20p, and a putative PTS2 motif in PpPex8p, but does not require intraperoxisomal PpPex8p. Pex20p interaction with PpPex8p is independent of Pex7p, but the interaction of PpPex8p with Pex7p requires Pex20p. These data suggest a direct interaction between PpPex8p and Pex20p. Our studies shed light on the mechanism and evolution of the dual import pathways for PpPex8p.
Collapse
Affiliation(s)
- Lan Zhang
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
77
|
Licata L, Haase W, Eckhardt-Strelau L, Parcej DN. Over-expression of a mammalian small conductance calcium-activated K+ channel in Pichia pastoris: effects of trafficking signals and subunit fusions. Protein Expr Purif 2005; 47:171-8. [PMID: 16290007 DOI: 10.1016/j.pep.2005.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 09/30/2005] [Accepted: 10/05/2005] [Indexed: 11/15/2022]
Abstract
Mammalian SK proteins are Ca2+-activated K+ channels, which show a sub-20 pS conductance. We have expressed the SK2 variant gene in Pichia pastoris and found protein to be produced at considerably higher levels than in brain tissue. The channel was correctly folded as evidenced by its high affinity interaction with apamin, a specific ligand from bee venom. However, the protein was largely unable to reach the plasma membrane, its normal destination, instead remaining in the endoplasmic reticulum. Adding a putative translocation sequence altered the intracellular distribution significantly with enhanced trafficking out of the endoplamic reticulum. Fusion of SK2 with the associated protein calmodulin also altered the channel localisation but in a different manner with channels now found mainly in transit between endoplasmic reticulum and Golgi compartments.
Collapse
Affiliation(s)
- Luana Licata
- Department of Structural Biology, Max Planck Institute for Biophysics, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
78
|
Sakai Y, Yoshida H, Yurimoto H, Takabe K, Kato N. Subcellular localization of fructosyl amino acid oxidases in peroxisomes of Aspergillus terreus and Penicillium janthinellum. J Biosci Bioeng 2005; 87:108-11. [PMID: 16232435 DOI: 10.1016/s1389-1723(99)80018-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/1998] [Accepted: 09/25/1998] [Indexed: 11/18/2022]
Abstract
Fructosyl amino acid oxidase (FAOD) is the enzyme catalyzing the oxidative deglycation of Amadori compounds, such as fructosyl amino acids, yielding the corresponding amino acids, glucosone, and H(2)O(2). In a previous report, we determined the primary structures of cDNAs coding for FAODs from two fungal strains Aspergillus terreus AP1 and Penicillium janthinellum and we found that both fungal FAODs included the putative peroxisome targeting signal 1 (PTS1) at the carboxyl terminal (Yoshida, N. et al., Eur. J. Biochem., 242, 499-505, 1996). In this study, we determined the intracellular localization of FAODs in these two fungi. Subcellular fractionation experiments and immuno-electronmicroscopic observations, together with the previous findings indicated that the FAODs were localized in peroxisomes of A. terreus AP1 and P. janthinellum. These FAODs were also found to belong to a new member of "peroxisomal sarcosine oxidase family protein" in eucaryotic cells.
Collapse
Affiliation(s)
- Y Sakai
- Division of Applied Life Sciences Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
79
|
Kajikawa M, Yamato KT, Fukuzawa H, Sakai Y, Uchida H, Ohyama K. Cloning and characterization of a cDNA encoding beta-amyrin synthase from petroleum plant Euphorbia tirucalli L. PHYTOCHEMISTRY 2005; 66:1759-66. [PMID: 16005035 DOI: 10.1016/j.phytochem.2005.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 03/14/2005] [Indexed: 05/03/2023]
Abstract
Euphorbia tirucalli L., known as the petroleum plant, produces a large amount of triterpenes, such as beta-amyrin. Degenerate RT-PCR based on the sequences conserved among known beta-amyrin synthases led to cloning of a putative triterpene synthase cDNA, EtAS, from leaves of E. tirucalli. The deduced amino acid sequence of the EtAS cDNA showed the highest identity of 82% to the Panax ginseng beta-amyrin synthase. Heterologous expression of the EtAS ORF in the methylotrophic yeast, Pichia pastoris, resulted in production of beta-amyrin, revealing that the EtAS cDNA codes for a beta-amyrin synthase. This is the first report of a gene involved in the triterpene synthetic pathway from Euphorbiaceae plants.
Collapse
Affiliation(s)
- Masataka Kajikawa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
80
|
Watson P, Stephens DJ. ER-to-Golgi transport: form and formation of vesicular and tubular carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:304-15. [PMID: 15979504 DOI: 10.1016/j.bbamcr.2005.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/22/2005] [Accepted: 03/07/2005] [Indexed: 11/24/2022]
Abstract
The transport of proteins and lipids between the endoplasmic reticulum and Golgi apparatus is initiated by the collection of secretory cargo from within the lumen of the endoplasmic reticulum. Subsequently, transport carriers are formed that bud from this membrane and are transported to, and subsequently merge with, the Golgi. The principle driving force behind the budding process is the multi-subunit coat protein complex, COPII. A considerable amount of information is now available regarding the molecular mechanisms by which COPII components operate together to drive cargo selection and transport carrier formation. In contrast, the precise nature of the transport carriers formed is still a matter of considerable debate. Vesicular and tubular carriers have been characterized that are, or in other cases are not, coated with the COPII complex. Here, we seek to integrate much of the data surrounding this topic and try to understand the mechanisms by which vesicular and/or tubular carriers might be generated.
Collapse
Affiliation(s)
- Peter Watson
- Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
81
|
Moyersoen J, Choe J, Fan E, Hol WGJ, Michels PAM. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. FEMS Microbiol Rev 2005; 28:603-43. [PMID: 15539076 DOI: 10.1016/j.femsre.2004.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 06/14/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022] Open
Abstract
In trypanosomatids (Trypanosoma and Leishmania), protozoa responsible for serious diseases of mankind in tropical and subtropical countries, core carbohydrate metabolism including glycolysis is compartmentalized in peculiar peroxisomes called glycosomes. Proper biogenesis of these organelles and the correct sequestering of glycolytic enzymes are essential to these parasites. Biogenesis of glycosomes in trypanosomatids and that of peroxisomes in other eukaryotes, including the human host, occur via homologous processes involving proteins called peroxins, which exert their function through multiple, transient interactions with each other. Decreased expression of peroxins leads to death of trypanosomes. Peroxins show only a low level of sequence conservation. Therefore, it seems feasible to design compounds that will prevent interactions of proteins involved in biogenesis of trypanosomatid glycosomes without interfering with peroxisome formation in the human host cells. Such compounds would be suitable as lead drugs against trypanosomatid-borne diseases.
Collapse
Affiliation(s)
- Juliette Moyersoen
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, ICP-TROP 74.39, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
82
|
Soderholm J, Bhattacharyya D, Strongin D, Markovitz V, Connerly PL, Reinke CA, Glick BS. The transitional ER localization mechanism of Pichia pastoris Sec12. Dev Cell 2004; 6:649-59. [PMID: 15130490 DOI: 10.1016/s1534-5807(04)00129-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 03/24/2004] [Accepted: 03/24/2004] [Indexed: 10/26/2022]
Abstract
COPII vesicles assemble at ER subdomains called transitional ER (tER) sites, but the mechanism that generates tER sites is unknown. To study tER biogenesis, we analyzed the transmembrane protein Sec12, which initiates COPII vesicle formation. Sec12 is concentrated at discrete tER sites in the budding yeast Pichia pastoris. We find that P. pastoris Sec12 exchanges rapidly between tER sites and the general ER. The tER localization of Sec12 is saturable and is mediated by interaction of the Sec12 cytosolic domain with a partner component. This interaction apparently requires oligomerization of the Sec12 lumenal domain. Redistribution of P. pastoris Sec12 to the general ER does not perturb the localization of downstream tER components, suggesting that Sec12 and other COPII proteins associate with a tER scaffold. These results provide evidence that tER sites form by a network of dynamic associations at the cytosolic face of the ER.
Collapse
Affiliation(s)
- Jon Soderholm
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Nett JH, Gerngross TU. Cloning and disruption of the PpURA5 gene and construction of a set of integration vectors for the stable genetic modification of Pichia pastoris. Yeast 2004; 20:1279-90. [PMID: 14618566 DOI: 10.1002/yea.1049] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A pair of degenerate primers was used for amplification and cloning of a DNA fragment containing parts of the P. pastoris URA5 and SEC65 genes. Using additional information from a partial genomic sequence of P. pastoris, we cloned and sequenced a 1.9 kb chromosomal fragment containing the complete orotate-phosphoribosyltransferase-encoding URA5 gene. A disruption cassette was constructed by replacing a small part of the open reading frame with a kanamycin-resistance gene. The P. pastoris wild-type strain NRRL Y-11430 was transformed with the disruption cassette and an ura5 auxotrophic strain was identified. To generate marker constructs that can be reused in successive transformations of a single strain, we constructed two lacZ-PpURA3-lacZ and lacZ-PpURA5-lacZ cassettes and used them to disrupt PpOCH1. The PpURA3 and PpURA5 genes in the disruptants were then successfully recycled by selecting for resistance to 5'-fluoro-orotic acid. We also assembled a set of modular plasmids that can be used for the stable genetic modification of P. pastoris via a double cross-over event. The sequence presented here has been submitted to the EMBL data library under Accession No. AY303544.
Collapse
Affiliation(s)
- Juergen H Nett
- GlycoFi Inc 21 Lafayette St., Suite 200, Lebanon, NH, USA
| | | |
Collapse
|
84
|
Mukaiyama H, Baba M, Osumi M, Aoyagi S, Kato N, Ohsumi Y, Sakai Y. Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure. Mol Biol Cell 2003; 15:58-70. [PMID: 13679515 PMCID: PMC307527 DOI: 10.1091/mbc.e03-05-0340] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microautophagy is a versatile process in which vacuolar or lysosomal membranes directly sequester cytosolic targets for degradation. Recent genetic evidence suggested that microautophagy uses molecular machineries essential for macroautophagy, but the details of this process are still unknown. In this study, a ubiquitin-like protein Paz2 essential for micropexophagy in the yeast Pichia pastoris has been shown to receive modification through the function of Paz8 and Gsa7, yielding a modified form Paz2-I, similar to the ubiquitin-like lipidation of Aut7 that is essential for macroautophagy in Saccharomyces cerevisiae. We identified a novel membrane structure formed after the onset of micropexophagy, which we suggest is necessary for the sequestration of peroxisomes by the vacuole. Assembly of this newly formed membrane structure, which is followed by localization of Paz2 to it, was found to require a properly functioning Paz2-modification system. We herein show that Paz2 and its modification system conduct micropexophagy through formation of the membrane structure, which explains the convergence between micropexophagy and macroautophagy with regard to de novo membrane formation.
Collapse
Affiliation(s)
- Hiroyuki Mukaiyama
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
85
|
Mogelsvang S, Gomez-Ospina N, Soderholm J, Glick BS, Staehelin LA. Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. Mol Biol Cell 2003; 14:2277-91. [PMID: 12808029 PMCID: PMC260745 DOI: 10.1091/mbc.e02-10-0697] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The budding yeast Pichia pastoris contains ordered Golgi stacks next to discrete transitional endoplasmic reticulum (tER) sites, making this organism ideal for structure-function studies of the secretory pathway. Here, we have used P. pastoris to test various models for Golgi trafficking. The experimental approach was to analyze P. pastoris tER-Golgi units by using cryofixed and freeze-substituted cells for electron microscope tomography, immunoelectron microscopy, and serial thin section analysis of entire cells. We find that tER sites and the adjacent Golgi stacks are enclosed in a ribosome-excluding "matrix." Each stack contains three to four cisternae, which can be classified as cis, medial, trans, or trans-Golgi network (TGN). No membrane continuities between compartments were detected. This work provides three major new insights. First, two types of transport vesicles accumulate at the tER-Golgi interface. Morphological analysis indicates that the center of the tER-Golgi interface contains COPII vesicles, whereas the periphery contains COPI vesicles. Second, fenestrae are absent from cis cisternae, but are present in medial through TGN cisternae. The number and distribution of the fenestrae suggest that they form at the edges of the medial cisternae and then migrate inward. Third, intact TGN cisternae apparently peel off from the Golgi stacks and persist for some time in the cytosol, and these "free-floating" TGN cisternae produce clathrin-coated vesicles. These observations are most readily explained by assuming that Golgi cisternae form at the cis face of the stack, progressively mature, and ultimately dissociate from the trans face of the stack.
Collapse
Affiliation(s)
- Soren Mogelsvang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347, USA.
| | | | | | | | | |
Collapse
|
86
|
Bevis BJ, Hammond AT, Reinke CA, Glick BS. De novo formation of transitional ER sites and Golgi structures in Pichia pastoris. Nat Cell Biol 2002; 4:750-6. [PMID: 12360285 DOI: 10.1038/ncb852] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2001] [Revised: 07/26/2002] [Accepted: 07/26/2002] [Indexed: 11/09/2022]
Abstract
Transitional ER (tER) sites are ER subdomains that are functionally, biochemically and morphologically distinct from the surrounding rough ER. Here we have used confocal video microscopy to study the dynamics of tER sites and Golgi structures in the budding yeast Pichia pastoris. The biogenesis of tER sites is tightly linked to the biogenesis of Golgi, and both compartments can apparently form de novo. tER sites often fuse with one another, but they maintain a consistent average size through shrinkage after fusion and growth after de novo formation. Golgi dynamics are similar, although late Golgi elements often move away from tER sites towards regions of polarized growth. Our results can be explained by assuming that tER sites give rise to Golgi cisternae that continually mature.
Collapse
Affiliation(s)
- Brooke J Bevis
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
87
|
Sumita T, Iida T, Hirata A, Horiuchi H, Takagi M, Ohta A. Peroxisome deficiency represses the expression of n-alkane-inducible YlALK1 encoding cytochrome P450ALK1 in Yarrowia lipolytica. FEMS Microbiol Lett 2002; 214:31-8. [PMID: 12204369 DOI: 10.1111/j.1574-6968.2002.tb11321.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Among the eight genes (YlALK1-YlALK8) encoding P450 cytochromes of the CYP52 family of the n-alkane-assimilating yeast Yarrowia lipolytica, Y1ALK1 is most highly induced by n-alkanes with short hydrocarbon chains, such as n-decane, and involved in the initial hydroxylation of n-alkane. To determine the factors regulating YlALK1 expression, we isolated an n-decane assimilation-deficient mutant, B0-6-1, whose YlALK1 expression level was lower than that of the wild-type. By complementation of the mutation of B0-6-1, we cloned a gene having an open reading frame of 1062 bp. The putative gene product is a protein of 354 amino acids and has significant homology to Pex10ps of other organisms. We named this gene YlPEX10. YlPex10p has a C(3)HC(4) ring finger motif common among Pex10ps in its C-terminal region. This motif was also essential for the function of YlPex10p. Both B0-6-1 and a null mutant of YlPEX10 failed to form peroxisome and showed low-level transcription of YlALK1 after the change of carbon source to n-decane. Furthermore, YlPEX5 and YlPEX6 disruptants also showed low-level transcription of YlALK1 like the YlPEX10 disruptant and B0-6-1 mutant. We propose that in this organism peroxisome deficiency represses the expression of n-alkane-inducible YlALK1 encoding cytochrome P450ALK1.
Collapse
Affiliation(s)
- Toru Sumita
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
88
|
Poirier Y, Erard N, MacDonald-Comber Petétot J. Synthesis of polyhydroxyalkanoate in the peroxisome of Pichia pastoris. FEMS Microbiol Lett 2002; 207:97-102. [PMID: 11886758 DOI: 10.1111/j.1574-6968.2002.tb11035.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are polyesters naturally produced by bacteria that have properties of biodegradable plastics and elastomers. A PHA synthase from Pseudomonas aeruginosa modified at the carboxy-end for peroxisomal targeting was transformed in Pichia pastoris. The PHA synthase was expressed under the control of the promoter of the P. pastoris acyl-CoA oxidase gene. Synthesis of up to 1% medium-chain-length PHA per g dry weight was dependent on both the expression of the PHA synthase and the presence of oleic acid in the medium. PHA accumulated as inclusions within the peroxisomes. P. pastoris could be used as a model system to study how peroxisomal metabolism needs to be modified to increase PHA production in other eukaryotes, such as plants.
Collapse
Affiliation(s)
- Yves Poirier
- Laboratoire de Biotechnologie Végétale, Institut d'Ecologie, Université de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
89
|
Mukaiyama H, Oku M, Baba M, Samizo T, Hammond AT, Glick BS, Kato N, Sakai Y. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells 2002; 7:75-90. [PMID: 11856375 DOI: 10.1046/j.1356-9597.2001.00499.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In the methylotrophic yeast Pichia pastoris, peroxisomes can be selectively degraded through direct engulfment by the vacuole in a process known as micropexophagy, but the mechanism of micropexophagy is not known. RESULTS To gain molecular insights into micropexophagy, we used fluorescence time-lapse microscopy, coupled with gene-tagging mutagenesis to isolate P. pastoris mutants defective in micropexophagy. The relevant genes have been designated PAZ genes. Morphological and genetic analyses enabled us to postulate a schematic model for micropexophagy. This new model invokes the generation of new vacuolar compartments as an intermediate structure during micropexophagy. Different classes of paz mutants arrest micropexophagy at distinct stages of the process. Most of APG-related paz mutants ceased micropexophagy at Stage 1c and that GCN-family paz mutants ceased micropexophagy at Stage 2. The paz2Delta strain shows a unique phenotype. Paz2 is the homologue of Saccharomyces cerevisiae Apg8, which is necessary for macroautophagy in that yeast. Our analysis revealed that in P. pastoris, Paz2 plays a key role in repressing the engulfment of peroxisomes by the vacuole before the onset of micropexophagy. Paz2 is proteolytically processed by another autophagy-related Paz protein Paz8, but this processing is not required for the ability of Paz2 to suppress aberrant micropexophagy. CONCLUSION Micropexophagy has been dissected into a multistep reaction that involves 14 identified Paz gene products. Our studies indicate that Paz2 controls the engulfment of peroxisomes by the vacuole, pointing to a novel early function of this protein.
Collapse
Affiliation(s)
- Hiroyuki Mukaiyama
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Rossanese OW, Reinke CA, Bevis BJ, Hammond AT, Sears IB, O'Connor J, Glick BS. A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J Cell Biol 2001; 153:47-62. [PMID: 11285273 PMCID: PMC2185536 DOI: 10.1083/jcb.153.1.47] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Accepted: 01/29/2001] [Indexed: 11/22/2022] Open
Abstract
In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells.
Collapse
Affiliation(s)
- Olivia W. Rossanese
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - Catherine A. Reinke
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - Brooke J. Bevis
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - Adam T. Hammond
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - Irina B. Sears
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - James O'Connor
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - Benjamin S. Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
91
|
Abstract
The segregation of metabolic functions within discrete organelles is a hallmark of eukaryotic cells. These compartments allow for the concentration of related metabolic functions, the separation of competing metabolic functions, and the formation of unique chemical microenvironments. However, such organization is not spontaneous and requires an array of genes that are dedicated to the assembly and maintenance of these structures. In this review we focus on the genetics of peroxisome biogenesis and on how defects in this process cause human disease.
Collapse
Affiliation(s)
- K A Sacksteder
- Department of Biological Chemistry, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
92
|
Lin Cereghino GP, Lin Cereghino J, Sunga AJ, Johnson MA, Lim M, Gleeson MA, Cregg JM. New selectable marker/auxotrophic host strain combinations for molecular genetic manipulation of Pichia pastoris. Gene 2001; 263:159-69. [PMID: 11223254 DOI: 10.1016/s0378-1119(00)00576-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We describe the isolation and characterization of three new biosynthetic genes-ARG4, ADE1, and URA3-from the methylotrophic yeast Pichia pastoris. The predicted products of the genes share significant sequence similarity to their Saccharomyces cerevisiae counterparts, namely argininosuccinate lyase, PR-aminoimidazolesuccinocarboxamide synthase, and orotidine-5'-phosphate decarboxylase, respectively. Along with the previously described HIS4 gene, each gene was incorporated as the yeast selectable marker into a set of shuttle vectors designed to express foreign genes in P. pastoris. In addition, we have constructed a series of host strains containing all possible combinations of ade1, arg4, his4, and ura3 auxotrophies to be used with these new vectors.
Collapse
Affiliation(s)
- G P Lin Cereghino
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, 20000 N.W. Walker Road, Beaverton, OR 97006-8921, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Hayashi Y, Hayashi M, Hayashi H, Hara-Nishimura I, Nishimura M. Direct interaction between glyoxysomes and lipid bodies in cotyledons of the Arabidopsis thaliana ped1 mutant. PROTOPLASMA 2001; 218:83-94. [PMID: 11732324 DOI: 10.1007/bf01288364] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
During germination and subsequent growth of fatty seeds, higher plants obtain energy from the glyconeogenic pathway in which fatty acids are converted to succinate in glyoxysomes, which contain enzymes for fatty acid beta-oxidation and the glyoxylate cycle. The Arabidopsis thaliana ped1 gene encodes a 3-ketoacyl-CoA thiolase (EC 2.3.1.16) involved in fatty acid beta-oxidation. The ped1 mutant shows normal germination and seedling growth under white light. However, etiolated cotyledons of the ped1 mutant grow poorly in the dark and have small cotyledons. To elucidate the mechanisms of lipid degradation during germination in the ped1 mutant, we examined the morphology of the ped1 mutant. The glyoxysomes in etiolated cotyledons of the ped1 mutant appeared abnormal, having tubular structures that contained many vesicles. Electron microscopic analysis revealed that the tubular structures in glyoxysomes are derived from invagination of the glyoxysomal membrane. By immunoelectron microscopic analysis, acyl-CoA synthetase (EC 6.2.1.3), which was located on the membrane of glyoxysomes in wild-type plants, was located on the membranes of the tubular structures in the glyoxysomes in the ped1 mutant. These invagination sites were always in contact with lipid bodies. The tubular structure had many vesicles containing substances with the same electron density as those in the lipid bodies. From these results, we propose a model in which there is a direct mechanism of transporting lipids from the lipid bodies to glyoxysomes during fatty acid beta-oxidation.
Collapse
Affiliation(s)
- Y Hayashi
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
94
|
Collins CS, Kalish JE, Morrell JC, McCaffery JM, Gould SJ. The peroxisome biogenesis factors pex4p, pex22p, pex1p, and pex6p act in the terminal steps of peroxisomal matrix protein import. Mol Cell Biol 2000; 20:7516-26. [PMID: 11003648 PMCID: PMC86304 DOI: 10.1128/mcb.20.20.7516-7526.2000] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisomes are independent organelles found in virtually all eukaryotic cells. Genetic studies have identified more than 20 PEX genes that are required for peroxisome biogenesis. The role of most PEX gene products, peroxins, remains to be determined, but a variety of studies have established that Pex5p binds the type 1 peroxisomal targeting signal and is the import receptor for most newly synthesized peroxisomal matrix proteins. The steady-state abundance of Pex5p is unaffected in most pex mutants of the yeast Pichia pastoris but is severely reduced in pex4 and pex22 mutants and moderately reduced in pex1 and pex6 mutants. We used these subphenotypes to determine the epistatic relationships among several groups of pex mutants. Our results demonstrate that Pex4p acts after the peroxisome membrane synthesis factor Pex3p, the Pex5p docking factors Pex13p and Pex14p, the matrix protein import factors Pex8p, Pex10p, and Pex12p, and two other peroxins, Pex2p and Pex17p. Pex22p and the interacting AAA ATPases Pex1p and Pex6p were also found to act after Pex10p. Furthermore, Pex1p and Pex6p were found to act upstream of Pex4p and Pex22p. These results suggest that Pex1p, Pex4p, Pex6p, and Pex22p act late in peroxisomal matrix protein import, after matrix protein translocation. This hypothesis is supported by the phenotypes of the corresponding mutant strains. As has been shown previously for P. pastoris pex1, pex6, and pex22 mutant cells, we show here that pex4Delta mutant cells contain peroxisomal membrane protein-containing peroxisomes that import residual amounts of peroxisomal matrix proteins.
Collapse
Affiliation(s)
- C S Collins
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
95
|
Payne WE, Kaiser CA, Bevis BJ, Soderholm J, Fu D, Sears IB, Glick BS. Isolation of Pichia pastoris genes involved in ER-to-Golgi transport. Yeast 2000; 16:979-93. [PMID: 10923020 DOI: 10.1002/1097-0061(200008)16:11<979::aid-yea594>3.0.co;2-c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pichia pastoris has discrete transitional ER sites and coherent Golgi stacks, making this yeast an ideal system for studying the organization of the early secretory pathway. To provide molecular tools for this endeavour, we isolated P. pastoris homologues of the SEC12, SEC13, SEC17, SEC18 and SAR1 genes. The P. pastoris SEC12, SEC13, SEC17 and SEC18 genes were shown to complement the corresponding S. cerevisiae mutants. The SEC17 and SAR1 genes contain introns at the same relative positions in both P. pastoris and S. cerevisiae, whereas the SEC13 gene contains an intron in P. pastoris but not in S. cerevisiae. Intron structure is similar in the two yeasts, although the favoured 5' splice sequence appears to be GTAAGT in P. pastoris vs. GTATGT in S. cerevisiae. The predicted amino acid sequences of Sec13p, Sec17p, Sec18p and Sar1p show strong conservation in the two yeasts. By contrast, the predicted lumenal domain of Sec12p is much larger in P. pastoris, suggesting that this domain may help localize Sec12p to transitional ER sites. A comparison of the SEC12 loci in various budding yeasts indicates that the SEC12-related gene SED4 is probably unique to the Saccharomyces lineage.
Collapse
Affiliation(s)
- W E Payne
- Department of Biology, 68-533, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
We report the construction of a Pichia pastoris integrating vector which contains the inducible CUP1 promoter from Saccharomyces cerevisiae. We show that the promoter is indeed inducible by copper when used in P. pastoris and that the level of induction is dependent on the amount of copper in the medium.
Collapse
Affiliation(s)
- A Koller
- Department of Biology, University of California San Diego, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
97
|
Urquhart AJ, Kennedy D, Gould SJ, Crane DI. Interaction of Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal membrane proteins Pex14p and Pex13p. J Biol Chem 2000; 275:4127-36. [PMID: 10660573 DOI: 10.1074/jbc.275.6.4127] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pex5p, a receptor for peroxisomal matrix proteins with a type 1 peroxisome targeting signal (PTS1), has been proposed to cycle from the cytoplasm to the peroxisomal membrane where it docks with Pex14p and Pex13p, the latter an SH3 domain-containing protein. Using in vitro binding assays we have demonstrated that binding of Pex5p to Pex14p is enhanced when Pex5p is loaded with a PTS1-containing peptide. In contrast, Pex5p binding to Pex13p, which involves only the SH3 domain, occurs at 20-40-fold lower levels and is reduced when Pex5p is preloaded with a PTS1 peptide. Pex14p was also shown to bind weakly to the Pex13p SH3 domain. Site-directed mutagenesis of the Pex13p SH3 domain attenuated binding to Pex5p and Pex14p, consistent with both of these proteins being binding partners for this domain. The SH3 binding site in Pex5p was determined to lie within a 114-residue peptide (Trp(100)-Glu(213)) in the amino-terminal region of the protein. The interaction between this peptide and the SH3 domain was competitively inhibited by Pex14p. We interpret these data as suggesting that docking of the Pex5p-PTS1 protein complex at the peroxisome membrane occurs at Pex14p and that the Pex13p SH3 domain functions as an associated component possibly involved in sequestering Pex5p after relinquishment of the PTS1 protein cargo to components of the translocation machinery.
Collapse
Affiliation(s)
- A J Urquhart
- School of Biomolecular and Biomedical Science, Griffith University, Nathan, Queensland 4111, Australia
| | | | | | | |
Collapse
|
98
|
Snyder WB, Koller A, Choy AJ, Johnson MA, Cregg JM, Rangell L, Keller GA, Subramani S. Pex17p is required for import of both peroxisome membrane and lumenal proteins and interacts with Pex19p and the peroxisome targeting signal-receptor docking complex in Pichia pastoris. Mol Biol Cell 1999; 10:4005-19. [PMID: 10588639 PMCID: PMC25739 DOI: 10.1091/mbc.10.12.4005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pichia pastoris PEX17 was cloned by complementation of a peroxisome-deficient strain obtained from a novel screen for mutants disrupted in the localization of a peroxisomal membrane protein (PMP) reporter. PEX17 encodes a 267-amino-acid protein with low identity (18%) to the previously characterized Saccharomyces cerevisiae Pex17p. Like ScPex17p, PpPex17p contains a putative transmembrane domain near the amino terminus and two carboxyl-terminal coiled-coil regions. PpPex17p behaves as an integral PMP with a cytosolic carboxyl-terminal domain. pex17Delta mutants accumulate peroxisomal matrix proteins and certain integral PMPs in the cytosol, suggesting a critical role for Pex17p in their localization. Peroxisome remnants were observed in the pex17Delta mutant by morphological and biochemical means, suggesting that Pex17p is not absolutely required for remnant formation. Yeast two-hybrid analysis demonstrated that the carboxyl terminus of Pex19p was required for interaction with Pex17p lacking the carboxyl-terminal coiled-coil domains. Biochemical evidence confirmed the interaction between Pex19p and Pex17p. Additionally, Pex17p cross-linked to components of the peroxisome targeting signal-receptor docking complex, which unexpectedly contained Pex3p. Our evidence suggests the existence of distinct subcomplexes that contain separable pools of Pex3p, Pex19p, Pex17p, Pex14p, and the peroxisome targeting signal receptors. These distinct pools may serve different purposes for the import of matrix proteins or PMPs.
Collapse
Affiliation(s)
- W B Snyder
- Department of Biology, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Liu Y, Björkman J, Urquhart A, Wanders RJ, Crane DI, Gould SJ. PEX13 is mutated in complementation group 13 of the peroxisome-biogenesis disorders. Am J Hum Genet 1999; 65:621-34. [PMID: 10441568 PMCID: PMC1377968 DOI: 10.1086/302534] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The peroxisome-biogenesis disorders (PBDs) are a genetically and phenotypically diverse group of diseases caused by defects in peroxisome assembly. One of the milder clinical variants within the PBDs is neonatal adrenoleukodystrophy (NALD), a disease that is usually associated with partial defects in the import of peroxisomal matrix proteins that carry the type 1 or type 2 peroxisomal targeting signals. Here, we characterize the sole representative of complementation group 13 of the PBDs, a patient with NALD (patient PBD222). Skin fibroblasts from patient PBD222 display defects in the import of multiple peroxisomal matrix proteins. However, residual matrix-protein import can be detected in cells from patient PBD222, consistent with the relatively mild phenotypes of the patient. PEX13 encodes a peroxisomal membrane protein with a cytoplasmically exposed SH3 domain, and we find that expression of human PEX13 restores peroxisomal matrix-protein import in cells from patient PBD222. Furthermore, these cells are homozygous for a missense mutation at a conserved position in the PEX13 SH3 domain. This mutation attenuated the activity of human PEX13, and an analogous mutation in yeast PEX13 also reduced its activity. The mutation was absent in >100 control alleles, indicating that it is not a common polymorphism. Previous studies have demonstrated extragenic suppression in the PBDs, but the phenotypes of patient PBD222 cells could not be rescued by expression of any other human PEX genes. Taken together, these results provide strong evidence that mutations in PEX13 are responsible for disease in patient PBD222 and, by extension, in complementation group 13 of the PBDs.
Collapse
Affiliation(s)
- Y Liu
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
100
|
Koller A, Spong AP, Lüers GH, Subramani S. Analysis of the peroxisomal acyl-CoA oxidase gene product from Pichia pastoris and determination of its targeting signal. Yeast 1999; 15:1035-44. [PMID: 10455228 DOI: 10.1002/(sici)1097-0061(199908)15:11<1035::aid-yea432>3.0.co;2-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Acyl-CoA oxidase (Pox1p) is involved in the beta-oxidation of fatty acids and is targeted to the peroxisomal matrix via the use of different signals in various organisms. In rat, mouse and human, Pox1p contains a canonical peroxisomal targeting signal 1 (PTS1), whereas in the yeasts Candida tropicalis, Saccharomyces cerevisiae, C. maltosa and Yarrowia lipolytica neither a PTS1 nor a PTS2 sequence is present, suggesting that Pox1p might be targeted to the peroxisomes via a third unknown pathway. Alternatively, since proteins lacking a PTS sequence can enter peroxisomes in association with other polypeptides containing a PTS, Pox1p might 'piggy-back' its way into the peroxisomal matrix together with other proteins. To understand the mechanism of peroxisomal targeting of a yeast Pox1p, we cloned the Pichia pastoris POX1 gene to study the pathway of import of PpPox1p into peroxisomes. The gene was cloned by PCR, hybridization and plasmid rescue. The 2157 bp gene encodes a protein with a predicted molecular weight of 80 kDa. Antisera against PpPox1p detected a protein specifically induced on oleate with an apparent molecular weight of 72 kDa. Immunolocalization studies confirmed the peroxisomal localization of PpPox1p. The carboxy-terminus of PpPox1p ends with a PTS1-like sequence, APKI. The sequence PKI was necessary for transport of PpPox1p into peroxisomes and interacted with the PTS1 receptor, Pex5p. Furthermore, addition of the sequence APKI to the C-terminus of the green fluorescent protein directed this fusion protein to the peroxisome. Therefore, PpPox1p uses the PTS1 pathway for its import into peroxisomes.
Collapse
Affiliation(s)
- A Koller
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0322, USA
| | | | | | | |
Collapse
|