51
|
Sarkar P, Bharill S, Gryczynski I, Gryczynski Z, Nair MP, Lacko AG. Binding of 8-anilino-1-naphthalenesulfonate to lecithin:cholesterol acyltransferase studied by fluorescence techniques. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 92:19-23. [DOI: 10.1016/j.jphotobiol.2008.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/31/2008] [Accepted: 03/31/2008] [Indexed: 11/16/2022]
|
52
|
Liu JW, Almaguel FG, Bu L, De Leon DD, De Leon M. Expression of E-FABP in PC12 cells increases neurite extension during differentiation: involvement of n-3 and n-6 fatty acids. J Neurochem 2008; 106:2015-29. [PMID: 18513372 DOI: 10.1111/j.1471-4159.2008.05507.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidermal fatty acid-binding protein (E-FABP), a member of the family of FABPs, exhibits a robust expression in neurons during axonal growth in development and in nerve regeneration following nerve injury. This study examines the impact of E-FABP expression in normal neurite extension in differentiating pheochromocytoma cell (PC12) cultures supplemented with selected long chain free fatty acids (LCFFA). We found that E-FABP binds to a broad range of saturated and unsaturated LCFFAs, including those with potential interest for neuronal differentiation and axonal growth such as C22:6n-3 docosahexaenoic acid (DHA), C20:5n-3 eicosapentaenoic acid (EPA), and C20:4n-6 arachidonic acid (ARA). PC12 cells exposed to nerve growth factor (NGFDPC12) exhibit high E-FABP expression that is blocked by mitogen-activated protein kinase kinase (MEK) inhibitor U0126. Nerve growth factor-differentiated pheochromocytoma cells (NGFDPC12) antisense clones (NGFDPC12-AS) which exhibit low E-FABP expression have fewer/shorter neurites than cells transfected with vector only or NGFDPC12 sense cells (NGFDPC12-S). Replenishing NGFDPC12-AS cells with biotinylated recombinant E-FABP (biotin-E-FABP) protein restores normal neurite outgrowth. Cellular localization of biotin-E-FABP in NGFDPC12 was detected mostly in the cytoplasm and in the nuclear region. Treatment of NGFDPC12 with DHA, EPA, or ARA further enhances neurite length but it does not trigger further induction of TrkA or MEK phosphorylation or E-FABP mRNA observed in differentiating PC12 cells without LCFFA supplementation. Significantly, DHA and EPA neurite stimulating effects are higher in NGFDPC12-S than in NGFDPC12-AS cells. These findings are consistent with the scenario that neurite extension of differentiating PC12 cells, including further stimulation by DHA and EPA, requires sufficient cellular levels of E-FABP.
Collapse
Affiliation(s)
- Jo-Wen Liu
- Center for Health Disparities and Molecular Medicine, Department of Basic Science, Loma Linda University, California 92350, USA
| | | | | | | | | |
Collapse
|
53
|
Heli H, Sattarahmady N, Jabbari A, Moosavi-Movahedi A, Hakimelahi G, Tsai FY. Adsorption of human serum albumin onto glassy carbon surface – Applied to albumin-modified electrode: Mode of protein–ligand interactions. J Electroanal Chem (Lausanne) 2007. [DOI: 10.1016/j.jelechem.2007.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
54
|
Ahnström J, Faber K, Axler O, Dahlbäck B. Hydrophobic ligand binding properties of the human lipocalin apolipoprotein M. J Lipid Res 2007; 48:1754-62. [PMID: 17525477 DOI: 10.1194/jlr.m700103-jlr200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein M (apoM) is a plasma protein associated mainly with HDL. ApoM is suggested to be important for the formation of prebeta-HDL, but its mechanism of action is unknown. Homology modeling has suggested apoM to be a lipocalin. Lipocalins share a structurally conserved beta-barrel, which in many lipocalins bind hydrophobic ligands. The aim of this study was to test the ability of apoM to bind different hydrophobic substances. ApoM was produced both in Escherichia coli and in HEK 293 cells. Characterization of both variants with electrophoretic and immunological methods suggested apoM from E. coli to be correctly folded. Intrinsic tryptophan fluorescence of both apoM variants revealed that retinol, all-trans-retinoic acid, and 9-cis-retinoic acid bound (dissociation constant = 2-3 microM), whereas other tested substances (e.g., cholesterol, vitamin K, and arachidonic acid) did not. The intrinsic fluorescence of two apoM mutants carrying single tryptophans was quenched by retinol and retinoic acid to the same extent as wild-type apoM, indicating that the environment of both tryptophans was affected by the binding. In conclusion, the binding of retinol and retinoic acid supports the hypothesis that apoM is a lipocalin. The physiological relevance of this binding has yet to be elucidated.
Collapse
Affiliation(s)
- Josefin Ahnström
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, University Hospital, SE-20502 Malmö, Sweden
| | | | | | | |
Collapse
|
55
|
Grimsrud PA, Picklo MJ, Griffin TJ, Bernlohr DA. Carbonylation of adipose proteins in obesity and insulin resistance: identification of adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal. Mol Cell Proteomics 2007; 6:624-37. [PMID: 17205980 DOI: 10.1074/mcp.m600120-mcp200] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Obesity is a state of mild inflammation correlated with increased oxidative stress. In general, pro-oxidative conditions lead to production of reactive aldehydes such as trans-4-hydroxy-2-nonenal (4-HNE) and trans-4-oxo-2-nonenal implicated in the development of a variety of metabolic diseases. To investigate protein modification by 4-HNE as a consequence of obesity and its potential relationship to the development of insulin resistance, proteomics technologies were utilized to identify aldehyde-modified proteins in adipose tissue. Adipose proteins from lean insulin-sensitive and obese insulin-resistant C57Bl/6J mice were incubated with biotin hydrazide and detected using horseradish peroxidase-conjugated streptavidin. High carbohydrate, high fat feeding of mice resulted in a approximately 2-3-fold increase in total adipose protein carbonylation. Consistent with an increase in oxidative stress in obesity, the abundance of glutathione S-transferase A4 (GSTA4), a key enzyme responsible for metabolizing 4-HNE, was decreased approximately 3-4-fold in adipose tissue of obese mice. To identify specific carbonylated proteins, biotin hydrazide-modified adipose proteins from obese mice were captured using avidin-Sepharose affinity chromatography, proteolytically digested, and subjected to LC-ESI MS/MS. Interestingly enzymes involved in cellular stress response, lipotoxicity, and insulin signaling such as glutathione S-transferase M1, peroxiredoxin 1, glutathione peroxidase 1, eukaryotic elongation factor 1alpha-1 (eEF1alpha1), and filamin A were identified. The adipocyte fatty acid-binding protein, a protein implicated in the regulation of insulin resistance, was found to be carbonylated in vivo with 4-HNE. In vitro modification of adipocyte fatty acid-binding protein with 4-HNE was mapped to Cys-117, occurred equivalently using either the R or S enantiomer of 4-HNE, and reduced the affinity of the protein for fatty acids approximately 10-fold. These results indicate that obesity is accompanied by an increase in the carbonylation of a number of adipose-regulatory proteins that may serve as a mechanistic link between increased oxidative stress and the development of insulin resistance.
Collapse
Affiliation(s)
- Paul A Grimsrud
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
56
|
Darios F, Davletov B. Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature 2006; 440:813-7. [PMID: 16598260 DOI: 10.1038/nature04598] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/21/2005] [Indexed: 11/09/2022]
Abstract
Growth of neurite processes from the cell body is the critical step in neuronal development and involves a large increase in cell membrane surface area. Arachidonic-acid-releasing phospholipases are highly enriched in nerve growth cones and have previously been implicated in neurite outgrowth. Cell membrane expansion is achieved through the fusion of transport organelles with the plasma membrane; however, the identity of the molecular target of arachidonic acid has remained elusive. Here we show that syntaxin 3 (STX3), a plasma membrane protein, has an important role in the growth of neurites, and also serves as a direct target for omega-6 arachidonic acid. By using syntaxin 3 in a screening assay, we determined that the dietary omega-3 linolenic and docosahexaenoic acids can efficiently substitute for arachidonic acid in activating syntaxin 3. Our findings provide a molecular basis for the previously established action of omega-3 and omega-6 polyunsaturated fatty acids in membrane expansion at the growth cones, and represent the first identification of a single effector molecule for these essential nutrients.
Collapse
Affiliation(s)
- Frédéric Darios
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
57
|
Banerjee T, Kishore N. Binding of 8-Anilinonaphthalene Sulfonate to Dimeric and Tetrameric Concanavalin A: Energetics and Its Implications on Saccharide Binding Studied by Isothermal Titration Calorimetry and Spectroscopy. J Phys Chem B 2006; 110:7022-8. [PMID: 16571017 DOI: 10.1021/jp0563179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The binding of 8-anilinonaphthalene sulfonate to concanavalin A has been investigated. Isothermal titration calorimetry (ITC) and circular dichroism studies have been performed under different experimental conditions to understand the binding quantitatively and evaluate contributions of different forces responsible for it. Isothermal titration calorimetric results of concanavalin A with ANS at pH 5.2 and 2.5, where it exists as a dimer, indicated binding heterogeneity and two classes of noninteracting sites. Enhancement of the binding constants from native to pH 2.5 suggests that the ANS binding is strongly influenced by the protein charge and the favorable alteration in the structure of concanavalin A as suggested by near-UV CD results. No binding was observed with the tetrameric form of concanavalin A, indicating shielding of sites due to dimerization of canonical dimers. The results have also demonstrated existence of a hydrophobic binding site that is distinct from the saccharide binding site.
Collapse
Affiliation(s)
- Tuhina Banerjee
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | | |
Collapse
|
58
|
Velkov T, Chuang S, Prankerd R, Sakellaris H, Porter CJH, Scanlon MJ. An improved method for the purification of rat liver-type fatty acid binding protein from Escherichia coli. Protein Expr Purif 2006; 44:23-31. [PMID: 15914028 DOI: 10.1016/j.pep.2005.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/10/2005] [Accepted: 04/12/2005] [Indexed: 11/23/2022]
Abstract
Rat liver fatty acid binding protein (L-FABP) was efficiently expressed in Escherichia coli and purified to homogeneity. The cDNA encoding L-FABP was ligated into the pTrc99A expression vector and expressed by induction with isopropyl-beta-d-thiogalactopyranoside under the control of the P(trc) promoter. Following an 18 h induction period, L-FABP constituted approximately 3% of the cytosolic protein. The protein could be purified to electrophoretic homogeneity (silver-stained polyacrylamide gel detection) by ammonium sulfate fractionation (65% saturation) of the soluble bacterial lysate followed by the chromatographic sequence of anion-exchange-->hydrophobic interaction-->anion-exchange chromatography. The recombinant protein displayed an isoelectric point of 7.0 and cross-reactivity with rabbit anti-(human L-FABP) polyclonal antibody. The ligand binding properties of the delipidated L-FABP were examined by titration with the fluorescent probe 1-anilino-8-naphthalene sulfonic acid and isothermal titration calorimetric analysis of oleic acid binding. The purified rat L-FABP displayed a binding stoichiometry of 2:1 (ANS:L-FABP) with dissociation constants (K(d)) of 1.7 and 15.5 microM for the high and low affinity binding sites, respectively. The K(d) values determined by ITC for oleic acid binding were 0.155 and 4.04 microM with a binding stoichiometry of approximately 2 mol of fatty acid/mol of protein. These physicochemical and binding properties are in agreement with those of L-FABP isolated from rat liver tissue.
Collapse
Affiliation(s)
- Tony Velkov
- Department of Medicinal Chemistry, Victorian College of Pharmacy, Monash University, 381 Royal Parade, Parkville, 3052 Victoria, Australia
| | | | | | | | | | | |
Collapse
|
59
|
Velkov T, Chuang S, Wielens J, Sakellaris H, Charman WN, Porter CJH, Scanlon MJ. The Interaction of Lipophilic Drugs with Intestinal Fatty Acid-binding Protein. J Biol Chem 2005; 280:17769-76. [PMID: 15722357 DOI: 10.1074/jbc.m410193200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intestinal fatty acid-binding protein (I-FABP) is a small protein that binds long-chain dietary fatty acids in the cytosol of the columnar absorptive epithelial cells (enterocytes) of the intestine. The binding cavity of I-FABP is much larger than is necessary to bind a fatty acid molecule, which suggests that the protein may be able to bind other hydrophobic and amphipathic ligands such as lipophilic drugs. Herein we describe the binding of three structurally diverse lipophilic drugs, bezafibrate, ibuprofen (both R- and S-isomers) and nitrazepam to I-FABP. The rank order of affinity for I-FABP determined for these compounds was found to be R-ibuprofen approximately bezafibrate > S-ibuprofen >> nitrazepam. The binding affinities were not directly related to aqueous solubility or partition coefficient of the compounds; however, the freely water-soluble drug diltiazem showed no affinity for I-FABP. Drug-I-FABP interaction interfaces were defined by analysis of chemical shift perturbations in NMR spectra, which revealed that the drugs bound within the central fatty acid binding cavity. Each drug participated in a different set of interactions within the cavity; however, a number of common contacts were observed with residues also involved in fatty acid binding. These data suggest that the binding of non-fatty acid lipophilic drugs to I-FABP may increase the cytosolic solubility of these compounds and thereby facilitate drug transport from the intestinal lumen across the enterocyte to sites of distribution and metabolism.
Collapse
Affiliation(s)
- Tony Velkov
- Department of Medicinal Chemistry, Pharmaceutics, and Microbiology, Monash University, Parkville 3052, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
60
|
Falabella P, Perugino G, Caccialupi P, Riviello L, Varricchio P, Tranfaglia A, Rossi M, Malva C, Graziani F, Moracci M, Pennacchio F. A novel fatty acid binding protein produced by teratocytes of the aphid parasitoid Aphidius ervi. INSECT MOLECULAR BIOLOGY 2005; 14:195-205. [PMID: 15796753 DOI: 10.1111/j.1365-2583.2004.00548.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aphidius ervi is an endophagous braconid, parasitoid of the pea aphid, Acyrthosiphon pisum. A. ervi teratocytes, deriving from the dissociation of the embryonic serosa, synthesize and release two major proteins into the host haemocoel. The gene of one of these proteins has been cloned and characterized. This gene codes for a 15.8 kDa protein belonging to the fatty acid binding protein (FABP) family, named Ae-FABP (A. ervi-FABP). It is abundantly present in the host haemolymph when the parasitoid larva attains its maximum growth rate. The recombinant Ae-FABP binds to fatty acids in vitro, showing a high affinity to C14-C18 saturated fatty acids and to oleic and arachidonic acid. The possible nutritional role for the parasitoid larva of Ae-FABP is discussed.
Collapse
Affiliation(s)
- P Falabella
- Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, Università della Basilicata, Potenza, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Folli C, Ramazzina I, Percudani R, Berni R. Ligand-binding specificity of an invertebrate (Manduca sexta) putative cellular retinoic acid binding protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1747:229-37. [PMID: 15698958 DOI: 10.1016/j.bbapap.2004.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 11/11/2004] [Accepted: 11/17/2004] [Indexed: 11/16/2022]
Abstract
Intracellular lipid-binding proteins (iLBPs) are small cytoplasmic proteins that specifically interact with hydrophobic ligands. Fatty acid-binding proteins (FABPs), cellular retinoic acid-binding proteins (CRABPs) and cellular retinol-binding proteins (CRBPs) belong to the iLBP family. A recently identified insect (Manduca sexta) iLBP has been reported to possibly represent an invertebrate CRABP mimicking the role of CRABPs in vertebrate organisms. The presence in this protein of the characteristic binding triad residues involved in the interaction with ligand carboxylate head groups, a feature pertaining to several FABPs and to CRABPs, and the close phylogenetic relationships with both groups of vertebrate heart-type FABPs and CRBPs/CRABPs, makes it difficult to assign it to either FABPs or CRABPs. However, its negligible interaction with retinoic acid and high affinity (K(d) values in the 10(-8) M range) for fatty acids have been established by means of direct and competitive binding assays. As shown by phylogenetic analysis, the M. sexta iLBP belongs to a wide group of invertebrate iLBPs, which, besides being closely related phylogenetically, share distinctive features, such as the conservation of chemically distinct residues in their amino acid sequences and the ability to bind fatty acids. Our results are in keeping with the lack of cellular retinoid-binding proteins in invertebrates and with their later appearance during the course of chordate evolution.
Collapse
Affiliation(s)
- Claudia Folli
- Department of Biochemistry and Molecular Biology, University of Parma, P.co Area delle Scienze 23/A, 43100 Parma, Italy
| | | | | | | |
Collapse
|
62
|
|
63
|
Torta F, Dyuysekina AE, Cavazzini D, Fantuzzi A, Bychkova VE, Rossi GL. Solvent-induced ligand dissociation and conformational states of Cellular Retinol-Binding Protein Type I. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1703:21-9. [PMID: 15588699 DOI: 10.1016/j.bbapap.2004.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 09/09/2004] [Indexed: 11/26/2022]
Abstract
Cellular Retinol-Binding Protein type I (CRBP) exhibits very high affinity for its ligand, bound within a buried cavity completely shielded from the outside medium. Three-dimensional structure and backbone dynamics in aqueous solution at neutral pH, either in the absence or in the presence of retinol, fail to represent the protein in a state capable of ligand uptake and release. The question was asked whether changes in the composition of the outside medium might facilitate ligand dissociation. Acidic aqueous solutions and water-alcohol mixtures were selected, among the best described denaturing solvents, to investigate their effects on the stability of the carrier-ligand complex and the conformational state of the protein upon ligand release. Circular dichroism (CD) and fluorescence spectroscopy were used to probe protein secondary and tertiary structure, compactness and retinol dissociation. While in purely aqueous media retinol dissociation parallels the acid-induced denaturation of the carrier, in water-alcohol mixtures it occurs in a range of co-solvent content lower than that required for protein denaturation. In light of these results, it is suggested that local solvent properties in vivo might modulate protein conformation and flexibility and thus play a fundamental role in the control of retinol exchange between carrier and membrane-bound donors and acceptors.
Collapse
Affiliation(s)
- Federico Torta
- Department of Biochemistry and Molecular Biology, University of Parma, Parco Area delle Scienze 23/A, I-43100 Parma, Italy
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
We studied the equilibrium binding of two hydrophobic fluorescent dyes, ANS and bisANS, to four members of a family of intracellular lipid-binding proteins: IFABP, CRABP I, CRABP II, and ILBP. The spectral and binding parameters for the probes bound to the proteins were determined. Typically, there was a single binding site on each protein for the ligands. However, IFABP cooperatively bound a second bisANS molecule in the binding pocket. Comparative analysis of affinities and spectral characteristics for the two probes allowed us to examine the contributions of electrostatic and hydrophobic interactions to the binding process, and to address some aspects of the internal structure of the studied proteins.
Collapse
Affiliation(s)
- Alexander V Pastukhov
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
65
|
Jenkins-Kruchten AE, Bennaars-Eiden A, Ross JR, Shen WJ, Kraemer FB, Bernlohr DA. Fatty acid-binding protein-hormone-sensitive lipase interaction. Fatty acid dependence on binding. J Biol Chem 2003; 278:47636-43. [PMID: 13129924 DOI: 10.1074/jbc.m307680200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adipose lipolysis is mediated, in part, via interaction of fatty acid-binding protein (FABP) with hormone-sensitive lipase (HSL). Mice with reduced FABP content in fat (adipocyte FABP null) exhibit diminished fat cell lipolysis, whereas transgenic mice with increased FABP content in fat (epithelial FABP transgenic) exhibit enhanced lipolysis. To examine the relationship between the binding of FABP to HSL and activation of catalytic activity, isothermal titration microcalorimetry as well as kinetic analysis using a variety of FABP isoforms have been employed. In the absence of fatty acids, no FABP-HSL association could be demonstrated for any FABP form. However, in the presence of 10 microm oleate, A-FABP and E-FABP each bound to HSL with high affinity (Kd of 0.5 and 3 nM, respectively) in a approximately 1:1 molar stoichiometry, whereas liver FABP and intestinal FABP did not exhibit any association. To compare binding to catalysis, each FABP isoform was incubated with HSL in vitro, and enzymatic activity was assessed. Importantly, each FABP form stimulated HSL activity approximately 2-fold using cholesteryl oleate as substrate but exhibited no activation using p-nitrophenyl butyrate. The activation by A-FABP was dependent upon its fatty acid binding properties because a non-fatty acid binding mutant, R126Q, failed to activate HSL. These results suggest that binding and activation of HSL by FABPs are separate and distinct functions and that HSL contains a site for fatty acid binding that allows for FABP association.
Collapse
|
66
|
Abstract
The family of proteins accountable for the intracellular movement of lipids is characterized by a 10-stranded beta-barrel that forms an internalized cavity varying in size and binding preferences. The loop connecting beta-strands E and F (the fifth and sixth strands) is the most striking conformational difference between adipocyte lipid binding protein (ALBP; fatty acids) and cellular retinoic acid binding protein type I (CRABP I). A three-residue mutation was made in wild-type (WT)-ALBP [ALBP with a three-residue mutation (EF-ALBP)] to mimic CRABP I. Crystal structures of ligand-free and EF-ALBP with bound oleic acid were solved to resolutions of 1.5 A and 1.7 A, respectively, and compared with previous studies of WT-ALBP. The changes in three residues of one loop of the protein appear to have altered the positioning of the C18 fatty acid, as observed in the electron density of EF-ALBP. The crystallographic studies made it possible to compare the protein conformation and ligand positioning with those found in the WT protein. Although the cavity binding sites in both the retinoid and fatty acid binding proteins are irregular, the ligand atoms appear to favor a relatively planar region of the cavities. Preliminary chemical characterization of the mutant protein indicated changes in some binding properties and overall protein stability.
Collapse
Affiliation(s)
- Amy J Reese
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
67
|
Schoeffler AJ, Ruiz CR, Joubert AM, Yang X, LiCata VJ. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins. J Biol Chem 2003; 278:33268-75. [PMID: 12794068 DOI: 10.1074/jbc.m304955200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.
Collapse
Affiliation(s)
- Allyn J Schoeffler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | |
Collapse
|
68
|
Arighi CN, Rossi JPFC, Delfino JM. Temperature-induced conformational switch in intestinal fatty acid binding protein (IFABP) revealing an alternative mode for ligand binding. Biochemistry 2003; 42:7539-51. [PMID: 12809510 DOI: 10.1021/bi020680d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
IFABP is a small beta-barrel protein with a short helix-turn-helix motif near the N-terminus that is thought to participate in the regulation of the uptake and delivery of fatty acids. In a previous work, we detected by near UV circular dichroism a reversible conformational transition of this protein occurring between 35 and 50 degrees C in the absence of fatty acids. The addition of the natural ligand oleic acid prevents this phenomenon. In both cases, the overall structure of the beta-barrel is maintained. This thermal transition is also detected by the fluorescent probe bis-anilino naphthalene sulfonic acid (bisANS) but not by its monomer ANS. In the present work, we studied in detail the interaction of each compound with IFABP as a function of temperature and in the absence or in the presence of oleic acid. A contrasting behavior was observed for these probes: (i) IFABP is able to bind two molecules of bisANS but only one molecule of ANS and (ii) oleic acid can fully displace ANS but only partially bisANS. Three independent lines of evidence, namely, fluorescence spectroscopy, circular dichroism, and limited proteolysis, indicate that there is an equilibrium among different conformations of IFABP, which differ in the extent of flexibility of the helical domain. This equilibrium can be shifted by raising temperature. bisANS is able to probe a population of IFABP in an altered state, which is more susceptible to cleavage by clostripain as compared to the apo-form, whereas the conformation of IFABP bound to oleic acid is characteristically more ordered. These results highlight the idea of an enhanced flexibility exhibited by IFABP that bears importance on its transport function, supporting the role of a dynamic entry portal region for the fatty acid ligand.
Collapse
Affiliation(s)
- Cecilia N Arighi
- Department of Biological Chemistry and Institute of Biochemistry and Biophysics (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | | | |
Collapse
|
69
|
Davies JK, Hagan RM, Wilton DC. Effect of charge reversal mutations on the ligand- and membrane-binding properties of liver fatty acid-binding protein. J Biol Chem 2002; 277:48395-402. [PMID: 12379651 DOI: 10.1074/jbc.m208141200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liver fatty acid-binding protein (FABP) is able to bind to anionic phospholipid vesicles under conditions of low ionic strength. This binding results in the release of ligand, the fluorescent fatty acid analogue 11-dansylaminoundecanoic acid (DAUDA), with loss of fluorescence intensity (Davies, J. K., Thumser, A. E. A., and Wilton, D. C. (1999) Biochemistry 38, 16932-16940). Using a strategy of charge reversal mutagenesis, the potential role of specific cationic residues in promoting interfacial binding of FABP to anionic phospholipid vesicles has been investigated. Cationic residues chosen included those within the alpha-helical region (Lys-20, Lys-31, and Lys-33) and those that make a significant contribution to the positive surface potential of the protein (Lys-31, Lys-36, Lys-47, Lys-57, and Arg-126). Only three cationic residues make a significant contribution to interfacial binding, and these residues (Lys-31, Lys-36, and Lys-57) are all located within the ligand portal region, where the protein may be predicted to exhibit maximum disorder. The binding of tryptophan mutants, F3W, F18W, and C69W, to dioleoylphosphatidylglycerol vesicles, containing 5 mol% of the fluorescent phospholipid dansyldihexadecanoylphosphatidylethanolamine, was monitored by fluorescence resonance energy transfer (FRET). All three mutants showed enhanced dansyl fluorescence due to FRET on addition of phospholipid to protein; however, this fluorescence was considerably greater with the F3W mutant, consistent with the N-terminal region of the protein coming in close proximity to the phospholipid interface. These results were confirmed by succinimide quenching studies. Overall, the results indicate that the portal region of liver FABP and specifically Lys-31, Lys-36, and Lys-57 are involved in the interaction with the interface of anionic vesicles and that the N-terminal region of the protein undergoes a conformational change, resulting in DAUDA release.
Collapse
Affiliation(s)
- Joanna K Davies
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, United Kingdom
| | | | | |
Collapse
|
70
|
Mogensen JE, Wimmer R, Larsen JN, Spangfort MD, Otzen DE. The major birch allergen, Bet v 1, shows affinity for a broad spectrum of physiological ligands. J Biol Chem 2002; 277:23684-92. [PMID: 11953433 DOI: 10.1074/jbc.m202065200] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bet v 1 is a 17-kDa protein abundantly present in the pollen of the White birch tree and is the primary cause of birch pollen allergy in humans. Its three-dimensional structure is remarkable in that a solvent-accessible cavity traverses the core of the molecule. The biological function of Bet v 1 is unknown, although it is homologous to a family of pathogenesis-related proteins in plants. In this study we first show that Bet v 1 in the native state is able to bind the fluorescent probe 8-anilino-1-naphthalenesulfonic acid (ANS). ANS binds to Bet v 1 with 1:1 stoichiometry, and NMR data indicate that binding takes place in the cavity. Using an ANS displacement assay, we then identify a range of physiologically relevant ligands, including fatty acids, flavonoids, and cytokinins, which generally bind with low micromolar affinity. The ability of these ligands to displace ANS suggests that they also bind in the cavity, although the exact binding sites seem to vary among different ligands. The cytokinins, for example, seem to bind at a separate site close to ANS, because they increase the fluorescence of the ANS. Bet v 1 complex. Also, the fluorescent sterol dehydroergosterol binds to Bet v 1 as demonstrated by direct titrations. This study provides the first qualitative and quantitative data on the ligand binding properties of this important pollen allergen. Our findings indicate that ligand binding is important for the biological function of Bet v 1.
Collapse
Affiliation(s)
- Jesper E Mogensen
- Department of Biotechnology, Institute of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, Aalborg DK-9000, Denmark
| | | | | | | | | |
Collapse
|
71
|
Burkoth TS, Beausoleil E, Kaur S, Tang D, Cohen FE, Zuckermann RN. Toward the synthesis of artificial proteins: the discovery of an amphiphilic helical peptoid assembly. CHEMISTRY & BIOLOGY 2002; 9:647-54. [PMID: 12031671 DOI: 10.1016/s1074-5521(02)00140-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
While nature exploits folded biopolymers to achieve molecular recognition and catalysis, comparable abiological heteropolymer systems have been difficult to create. We synthesized and identified abiological peptoid heteroploymers capable of binding a dye. Using combinatorial synthesis, we constructed a library of 3400 amphiphilic 15-mer peptoids on an ultra-high-capacity beaded support. Individual macrobeads, each containing a single peptoid sequence, were arrayed into plates, cleaved, and screened in aqueous solution to locate dye binding heteropolymer assemblies. Resynthesis and characterization demonstrated the formation of defined helical assemblies as judged by size-exclusion chromatography, circular dichroism, and analytical ultracentrifugation. Inspired by nature's process of sequence variation and natural selection, we identified rare abiological sequence-specific heteropolymers that begin to mimic the structure and functional properties of their biological counterparts.
Collapse
Affiliation(s)
- Timothy S Burkoth
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
72
|
Norris AW, Spector AA. Very long chain n-3 and n-6 polyunsaturated fatty acids bind strongly to liver fatty acid-binding protein. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)31495-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
73
|
Zimmerman AW, van Moerkerk HT, Veerkamp JH. Ligand specificity and conformational stability of human fatty acid-binding proteins. Int J Biochem Cell Biol 2001; 33:865-76. [PMID: 11461829 DOI: 10.1016/s1357-2725(01)00070-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. At least eight different types of FABP occur, each with a specific tissue distribution and possibly with a distinct function. To define the functional characteristics of all eight human FABPs, viz. heart (H), brain (B), myelin (M), adipocyte (A), epidermal (E), intestinal (I), liver (L) and ileal lipid-binding protein (I-LBP), we studied their ligand specificity, their conformational stability and their immunological crossreactivity. Additionally, binding of bile acids to I-LBP was studied. The FABP types showed differences in fatty acid binding affinity. Generally, the affinity for palmitic acid was lower than for oleic and arachidonic acid. All FABP types, except E-FABP, I-FABP and I-LBP interacted with 1-anilinonaphtalene-8-sulphonic acid (ANS). Only L-FABP, I-FABP and M-FABP showed binding of 11-((5-dimethylaminonaphtalene-1-sulfonyl)amino)undecanoic acid (DAUDA). I-LBP showed increasing binding of bile acids in the order taurine-conjugated>glycine-conjugated>unconjugated bile acids. A hydroxylgroup of bile acids at position 7 decreased and at position 12 increased the binding affinity to I-LBP. The fatty acid-binding affinity and the conformation of FABP types were differentially affected in the presence of urea. Our results demonstrate significant differences in ligand binding, conformational stability and surface properties between different FABP types which may point to a specific function in certain cells and tissues. The preference of I-LBP (but not L-FABP) for conjugated bile acids is in accordance with a specific role in bile acid reabsorption in the ileum.
Collapse
Affiliation(s)
- A W Zimmerman
- Department of Biochemistry, University Medical Center Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | |
Collapse
|
74
|
Reese-Wagoner A, Thompson J, Banaszak L. Structural properties of the adipocyte lipid binding protein. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1441:106-16. [PMID: 10570239 DOI: 10.1016/s1388-1981(99)00154-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The adipocyte lipid binding protein, ALBP (also adipocyte fatty acid binding protein, A-FABP, 422 protein, aP2, and p15 protein), is one of the most studied of the intracellular lipid binding protein family. Here we sequentially compare the different sources of ALBP and describe the idea that one-third of the amino acid side chains near the N-terminal end appear to play a major role in conformational dynamics and in ligand transfer. Crystallographic data for mouse ALBP are summarized and the ligand binding cavity analyzed in terms of the overall surface and conformational dynamics. The region of the proposed ligand portal is described. Amino acid side chains critical to cavity formation and fatty acid interactions are analyzed by comparing known crystal structures containing a series of different hydrophobic ligands. Finally, we address ALBP ligand binding affinity and thermodynamic studies.
Collapse
Affiliation(s)
- A Reese-Wagoner
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
75
|
Clément-Collin V, Leroy A, Monteilhet C, Aggerbeck LP. Mimicking lipid-binding-induced conformational changes in the human apolipoprotein E N-terminal receptor binding domain effects of low pH and propanol. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:358-68. [PMID: 10491080 DOI: 10.1046/j.1432-1327.1999.00608.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied the effects of n-propanol and pH on the structure of the apolipoprotein E3 N-terminal receptor binding domain, apo E3(1-191), to determine whether conditions similar to those occurring near lipid surfaces (decreased dielectric constant and pH) can mimic lipid-induced conformational changes in apo E3. The addition of 30% n-propanol, at pH 7, induces a conformational change in apo E3(1-191) as shown by changes in the intrinsic tryptophan fluorescence and by an increase in the Stokes radius of the majority of the protein from 3.0 to 4.1 nm, although the protein remains monomeric as shown by chemical cross-linking. These changes are accompanied by increased resistance to limited proteolysis with trypsin, chymotrypsin, subtilisin and endoproteinase glu-C, as is the case for apo E3(1-191) reconstituted into phospholipid/cholesterol lipid bicelles. Far and near UV circular dichroism showed that n-propanol increases the amount of calculated alpha-helical structure (42-65%) and alters the tertiary structure of the protein although not as much as when apo E3(1-191) is incorporated into lipid bicelles. In the absence of n-propanol, lowering the pH to 4.5 decreases the Stokes radius of the majority of the protein somewhat, with little effect upon the secondary and the tertiary structures. The addition of 30% n-propanol at pH 4.5 increases the Stokes radius of apo E3(1-191) from 2.2 to 5.0 nm, even more than at pH 7 (3.0-4.1 nm) although the protein still remains predominantly monomeric. There is increased resistance to limited proteolysis with endoproteinase glu-C. As assessed by far and near UV circular dichroism, the addition of 30% n-propanol at pH 4.5, in contrast to pH 7, markedly increases the alpha-helical structure and changes the tertiary structure of the protein similarly to that resulting from the incorporation of apo E3(1-191) into lipid bicelles. The results suggest that a combination of n-propanol and low pH in aqueous solutions may be useful as a simple model system for studying conformational changes in apo E3 similar to those, which occur upon interaction of the protein with lipids.
Collapse
Affiliation(s)
- V Clément-Collin
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, Associé à l'Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
76
|
Ory JJ, Banaszak LJ. Studies of the ligand binding reaction of adipocyte lipid binding protein using the fluorescent probe 1, 8-anilinonaphthalene-8-sulfonate. Biophys J 1999; 77:1107-16. [PMID: 10423455 PMCID: PMC1300401 DOI: 10.1016/s0006-3495(99)76961-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The fluorescent probe anilinonaphthalene-8-sulfonate binds to adipocyte lipid binding protein at a site that competes with normal physiological ligands, such as fatty acids. Binding to the protein is accompanied by a relatively large increase in fluorescent intensity. To correlate the major change in optical properties and to determine the mechanism of competitive inhibition with fatty acids, the crystal structure of the protein with the bound fluorophore has been determined. In addition, the thermodynamic contributions to the binding reaction have been studied by titration calorimetry. Because the binding site is in a relatively internal position, kinetic studies have also been carried out to determine k(on). The results indicate that binding is not accompanied by any major conformational change. However, the negatively charged sulfonate moiety is not positioned the same as the carboxylate of fatty acid ligands as determined in previous studies. Nonetheless, the binding reaction is still driven by enthalpic effects. As judged by the crystallographic structure, a significant amount of the surface of the fluorophore is no longer exposed to water in the bound state.
Collapse
Affiliation(s)
- J J Ory
- Department of Biochemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
77
|
Matulis D, Lovrien R. 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophys J 1998; 74:422-9. [PMID: 9449342 PMCID: PMC1299394 DOI: 10.1016/s0006-3495(98)77799-9] [Citation(s) in RCA: 315] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ANS- (1-anilino-8-naphthalene sulfonate) anion is strongly, dominantly bound to cationic groups of water-soluble proteins and polyamino acids through ion pair formation. This mode of ANS- binding, broad and pH dependent, is expressed by the quite rigorous stoichiometry of ANS- bound with respect to the available summed number of H+ titrated lysine, histidine, and arginine groups. By titration calorimetry, the integral or overall enthalpies of ANS- binding to four proteins, bovine serum albumin, lysozyme, papain, and protease omega, were arithmetic sums of individual ANS(-)-polyamino acid sidechain binding enthalpies (polyhistidine, polyarginine, polylysine), weighted by numbers of such cationic groups of each protein (additivity of binding enthalpies). ANS- binding energetics to both classes of macromolecules, cationic proteins and synthetic cationic polyamino acids, is reinforced by the organic moiety (anilinonaphthalene) of ANS-. In a much narrower range of binding, where ANS- is sometimes assumed to act as a hydrophobic probe, ANS- may become fluorescent. However, the broad overall range is sharply dependent on electrostatic, ion pair formation, where the organic sulfonate group is the major determinant of binding.
Collapse
Affiliation(s)
- D Matulis
- Biochemistry Department, University of Minnesota, St. Paul 55108, USA.
| | | |
Collapse
|
78
|
Bernlohr DA, Coe NR, Simpson MA, Hertzel AV. Regulation of gene expression in adipose cells by polyunsaturated fatty acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 422:145-56. [PMID: 9361822 DOI: 10.1007/978-1-4757-2670-1_12] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In fat cells polyunsaturated fatty acids are both substrates for, and products of, triacylglycerol metabolism. Dietary fatty acids are efficiently incorporated into the triacylglycerol droplet under lipogenic conditions while rapidly mobilizing them during lipolytic stimulation. Hence, the flux and magnitude of the fatty acid pool in adipocytes is constantly changing in response to hormonal, metabolic and genetic determinants. Due to the rapidly changing flux of fatty acids, the majority of genes encoding enzymes and proteins of lipid metabolism are largely refractory to long-term regulatory control by fatty acids. Only at extremes of high or low lipid levels, or under pathophysiological conditions, do adipose genes respond by up- or down-regulating gene expression. Despite the lack of responsiveness to lipids in adipose tissue, a surprisingly large number of genes have been characterized recently as lipid responsive when assayed in heterologous systems. These observations suggest an endogenous negative element exists in the lipid signaling pathway in adipocytes. The major intracellular lipid binding protein in adipose cells is the adipocyte lipid binding protein (ALBP), the product of the aP2 gene. This protein is 15 kDa, abundant and found exclusively in the cytoplasm of adipocytes. The protein binds fatty acids and related lipids in a 1:1 stoichiometry within a large water filled interior cavity. The lipid binding protein forms high affinity associations with polyunsaturated fatty acids such as arachidonic acid (Kd approximately 250 nM) but not with prostaglandins of the E, D or J series (Kd > 4 microM). The upstream region of the aP2 gene contains a peroxisome-proliferator activated receptor response element which associates with PPARs to regulate its expression. A positive autoregulatory circuit exists to upregulate lipid binding protein expression when polyunsaturated fatty acid levels are increased. Analysis of adipose tissue from aP2 null animals generated by a targeted disruption revealed that the partial loss of ALBP expression in heterozygotes and complete lack of ALBP in the nulls was accompanied by a compensatory up-regulation of the keratinocyte lipid binding protein. However, the total amount of lipid binding protein in the nulls was less than 15% that in the wild type littermates. No evidence was found for upregulation of other lipid binding proteins such as the heart FABP or liver FABP. In aP2 nulls, the fatty acid composition was unaltered but the mass of fatty acid per gram tissue more than doubled relative to wild type. In heterozygotes, the level of fatty acid was intermediate to that of wild-type and nulls, consistent with an intermediate level of lipid binding protein. These results indicate that the fatty acid pool level in adipocytes is inversely correlated with the amount of lipid binding protein. Since prostaglandin biosynthesis is dependent upon polyunsaturated fatty acid substrates, the intracellular lipid binding proteins control accessibility of substrates of the prostanoid pathway. Intracellular lipid binding proteins therefore are negative elements in polyunsaturated fatty acid control of gene expression.
Collapse
Affiliation(s)
- D A Bernlohr
- Department of Biochemistry, University of Minnesota, St. Paul 55108-1022, USA.
| | | | | | | |
Collapse
|
79
|
Ory J, Kane CD, Simpson MA, Banaszak LJ, Bernlohr DA. Biochemical and crystallographic analyses of a portal mutant of the adipocyte lipid-binding protein. J Biol Chem 1997; 272:9793-801. [PMID: 9092513 DOI: 10.1074/jbc.272.15.9793] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A number of crystallographic studies of the adipocyte lipid-binding protein have established that the fatty acid-binding site is within an internalized water-filled cavity. The same studies have also suggested the existence of a region physically distinct from the fatty acid-binding site which connects the cavity of the protein with the external solvent, hereafter referred to as the portal. In an effort to examine the portal region, we have used site-directed mutagenesis to introduce the mutations V32D/F57H into the murine ALBP cDNA. Mutant protein has been isolated, crystallized, and its stability and binding properties studied by biochemical methods. As assessed by guanidine-HCl denaturation, the mutant form exhibited a slight overall destabilization relative to the wild-type protein under both acid and alkaline conditions. Accessibility to the cavity in both the mutant and wild-type proteins was observed by stopped-flow analysis of the modification of a cavity residue, Cys117, by the sulfhydryl reactive agent 5, 5'-dithiobis(2-nitrobenzoic acid) at pH 8.5. Cys117 of V32D/F57H ALBP was modified 7-fold faster than the wild-type protein. The ligand binding properties of both the V32D/F57H mutant and wild-type proteins were analyzed using a fluorescent probe at pH 6.0 and 8.0. The apparent dissociation constants for 1-anilinonaphthalene-8-sulfonic acid were approximately 9-10-fold greater than the wild-type protein, independent of pH. In addition, there is a 6-fold increase in the Kd for oleic acid for the portal mutant relative to the wild-type at pH 8.0. To study the effect of pH on the double mutant, it was crystallized and analyzed in two distinct space groups at pH 4.5 and 6.4. While in general the differences in the overall main chain conformations are negligible, changes were observed in the crystallographic structures near the site of the mutations. At both pH values, the mutant side chains are positioned somewhat differently than in wild-type protein. To ensure that the mutations had not altered ionic conditions near the binding site, the crystallographic coordinates were used to monitor the electrostatic potentials from the head group site to the positions near the portal region. The differences in the electrostatic potentials were small in all regions, and did not explain the differences in ligand affinity. We present these results within the context of fatty acid binding and suggest lipid association is more complex than that described within a single equilibrium event.
Collapse
Affiliation(s)
- J Ory
- Department of Biochemistry, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | |
Collapse
|
80
|
Bernlohr DA, Simpson MA, Hertzel AV, Banaszak LJ. Intracellular lipid-binding proteins and their genes. Annu Rev Nutr 1997; 17:277-303. [PMID: 9240929 DOI: 10.1146/annurev.nutr.17.1.277] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intracellular lipid-binding proteins are a family of low-molecular-weight single-chain polypeptides that form 1:1 complexes with fatty acids, retinoids, or other hydrophobic ligands. These proteins are products of a large multigene family of unlinked loci distributed throughout the genome. Each lipid-binding protein exhibits a distinctive pattern of tissue distribution. Transcriptional control, regulated by a combination of peroxisome proliferator activated receptors and CCAAT/enhancer-binding proteins, allows for a variety of both cell and tissue-specific expression patterns. In some cells, fatty acids increase the expression of the lipid-binding protein genes. Fatty acids, or their metabolites, are activators of the peroxisome proliferator-activated receptor family of transcription factors. Therefore, as the concentration of lipid in the diet increases, the expression of lipid-binding proteins coordinately increases. As revealed by X-ray crystallography, the lipid-binding proteins fold into beta-barrels, forming a large internal water-filled cavity. Fatty acid ligands are bound within the cavity, occupying only about one-third of the accessible volume. The bound fatty acid is stabilized via a combination of enthalpic and entropic forces that govern ligand affinity and selectivity. Cytoplasmic lipid-binding proteins are the intracellular receptors for hydrophobic ligands, delivering them to the appropriate site for use as metabolic fuels and regulatory agents.
Collapse
Affiliation(s)
- D A Bernlohr
- Department of Biochemistry, College of Biological Sciences, Institute of Human Genetics, Medical School, University of Minnesota, St. Paul 55108-1022, USA
| | | | | | | |
Collapse
|