51
|
Koike M, Sakaki S, Amano Y, Kurosawa H. Characterization of embryoid bodies of mouse embryonic stem cells formed under various culture conditions and estimation of differentiation status of such bodies. J Biosci Bioeng 2007; 104:294-9. [PMID: 18023802 DOI: 10.1263/jbb.104.294] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 07/11/2007] [Indexed: 11/17/2022]
Abstract
Various types of embryoid body (EB) that were formed from mouse embryonic stem (ES) cells under various culture conditions were characterized in terms of gene expression pattern to estimate the differentiation status of the bodies. The gene expression of typical markers (i.e., GATA-4, GATA-6, transthyretin [TTR], alpha-fetoprotein [AFP], Nkx2.5, and alpha-myosin heavy chain [alpha-MHC]) was quantitatively analyzed in various types of EB, and the gene expression pattern of those marker genes was graphically shown for each EB. The gene expression pattern accurately represented the differentiation status of the EBs. The gene expression pattern indicated that the Nkx2.5 and alpha-MHC genes were highly expressed in the EBs formed from 1000 ES cells in a low-adherence 96-well plate. By transferring the EBs into an attachment culture, cardiomyocytes were more efficiently generated in the outgrowth of the EBs. When we increased the seeding cell number from 1000 to 4000 ES cells, the gene expression pattern changed, that is, the expression levels of the TTR and AFP genes increased, whereas those of the Nkx2.5 and alpha-MHC genes decreased, and the trend of differentiation changed from cardiomyogenesis to visceral yolk-sac-like structure formation.
Collapse
Affiliation(s)
- Mikiko Koike
- Division of Medicine and Engineering Science, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | | | | | | |
Collapse
|
52
|
Min J, Shang CZ, Chen YJ, Zhang L, Liu L, Deng XG, Yang M, Chen DP, Cao J, Song EW, Chen JS. Selective enrichment of hepatocytes from mouse embryonic stem cells with a culture system containing cholestatic serum. Acta Pharmacol Sin 2007; 28:1931-7. [PMID: 18031607 DOI: 10.1111/j.1745-7254.2007.00715.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM There is increasing evidence indicating that embryonic stem (ES) cells are capable of differentiating into hepatocyte-like cells in vitro. However, it is necessary to improve the differentiation efficiency so as to promote the clinical application. Here, we report an efficient culture system to support hepatocyte differentiation from ES cells by utilizing cholestatic serum. METHODS One week after the induction of E14 mouse ES cells into hepatocytes with sodium butyrate, cholestatic serum was added into the culture system at various concentrations and hepatocyte-like cells were induced to proliferate. The morphological and phenotypic markers of hepatocytes were characterized using light microscopy, immunocytochemistry, and RT-PCR, respectively. The function of glycogen storage of the differentiated cells was detected by Periodic acid-Schiff (PAS) reaction, and the ratio of hepatic differentiation was determined by counting the albumin and PAS-positive cells. RESULTS In the presence of conditional selective medium containing cholestatic serum, numerous epithelial cells resembling hepatocytes were observed. The RT-PCR analysis showed that undifferentiated ES cells did not express any hepatic-specific markers; however, in the presence of sodium butyrate and conditional selective medium containing cholestatic serum, hepatic differentiation markers were detected. Immunofluorescence staining showed that those ES-derived hepatocytes were alpha-fetoprotein, albumin, and cytokeratin 18 positive, with the ability of storing glycogen. Further determination of the hepatic differentiation ratio showed that the application of cholestatic serum efficiently enriched ES-derived hepatocyte-like cells by inducing lineage differentiation and enhancing lineage proliferation. CONCLUSION The conditional selective medium containing cholestatic serum is optimal to selectively enrich hepatocyte-like cells from mixed differentiated ES cells, which may provide a novel method to improve the hepatic differentiation ratio of ES cells.
Collapse
Affiliation(s)
- Jun Min
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou 510120, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Cho CH, Parashurama N, Park EYH, Suganuma K, Nahmias Y, Park J, Tilles AW, Berthiaume F, Yarmush ML. Homogeneous differentiation of hepatocyte-like cells from embryonic stem cells: applications for the treatment of liver failure. FASEB J 2007; 22:898-909. [PMID: 17942827 DOI: 10.1096/fj.06-7764com] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
One of the major hurdles of cellular therapies for the treatment of liver failure is the low availability of functional human hepatocytes. While embryonic stem (ES) cells represent a potential cell source for therapy, current methods for differentiation result in mixed cell populations or low yields of the cells of interest. Here we describe a rapid, direct differentiation method that yields a homogeneous population of endoderm-like cells with 95% purity. Mouse ES cells cultured on top of collagen-sandwiched hepatocytes differentiated and proliferated into a uniform and homogeneous cell population of endoderm-like cells. The endoderm-like cell population was positive for Foxa2, Sox17, and AFP and could be further differentiated into hepatocyte-like cells, demonstrating hepatic morphology, functionality, and gene and protein expression. Incorporating the hepatocyte-like cells into a bioartificial liver device to treat fulminant hepatic failure improved animal survival, thereby underscoring the therapeutic potential of these cells.
Collapse
Affiliation(s)
- Cheul H Cho
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
The lung is a relatively quiescent tissue comprised of infrequently proliferating epithelial, endothelial, and interstitial cell populations. No classical stem cell hierarchy has yet been described for the maintenance of this essential tissue; however, after injury, a number of lung cell types are able to proliferate and reconstitute the lung epithelium. Differentiated mature epithelial cells and newly recognized local epithelial progenitors residing in specialized niches may participate in this repair process. This review summarizes recent discoveries and controversies, in the field of stem cell biology, that are not only challenging, but also advancing an understanding of lung injury and repair. Evidence supporting a role for the numerous cell types believed to contribute to lung epithelial homeostasis is reviewed, and initial studies employing cell-based therapies for lung disease are presented. As a detailed understanding of stem cell biology, lung development, lineage commitment, and epithelial differentiation emerges, an ability to modulate lung injury and repair is likely to follow.
Collapse
Affiliation(s)
- Darrell N Kotton
- Boston University Pulmonary Center, Boston University School of Medicine, 715 Albany Street, R-304, Boston, MA 02118, USA.
| | | |
Collapse
|
55
|
Améen C, Strehl R, Björquist P, Lindahl A, Hyllner J, Sartipy P. Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol 2007; 65:54-80. [PMID: 17689256 DOI: 10.1016/j.critrevonc.2007.06.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 06/11/2007] [Accepted: 06/27/2007] [Indexed: 12/28/2022] Open
Abstract
The efficiency and accuracy of the drug development process is severely restricted by the lack of functional human cell systems. However, the successful derivation of pluripotent human embryonic stem (hES) cell lines in the late 1990s is expected to revolutionize biomedical research in many areas. Due to their growth capacity and unique developmental potential to differentiate into almost any cell type of the human body, hES cells have opened novel avenues both in basic and applied research as well as for therapeutic applications. In this review we describe, from an industrial perspective, the basic science that underlies the hES cell technology and discuss the current and future prospects for hES cells in novel and improved stem cell based applications for drug discovery, toxicity testing as well as regenerative medicine.
Collapse
Affiliation(s)
- Caroline Améen
- Cellartis AB, Arvid Wallgrens Backe 20, 413 46 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
56
|
Kurosawa H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 2007; 103:389-98. [PMID: 17609152 DOI: 10.1263/jbb.103.389] [Citation(s) in RCA: 349] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 02/13/2007] [Indexed: 02/07/2023]
Abstract
When cultured in suspension without antidifferentiation factors, embryonic stem (ES) cells spontaneously differentiate and form three-dimensional multicellular aggregates called embryoid bodies (EBs). EBs recapitulate many aspects of cell differentiation during early embryogenesis, and play an important role in the differentiation of ES cells into a variety of cell types in vitro. There are several methods for inducing the formation of EBs from ES cells. The three basic methods are liquid suspension culture in bacterial-grade dishes, culture in methylcellulose semisolid media, and culture in hanging drops. Recently, the methods using a round-bottomed 96-well plate and a conical tube are adopted for forming EBs from predetermined numbers of ES cells. For the production of large numbers of EBs, stirred-suspension culture using spinner flasks and bioreactors is performed. Each of these methods has its own peculiarity; thus, the features of formed EBs depending on the method used. Therefore, we should choose an appropriate method for EB formation according to the objective to be attained. In this review, we summarize the studies on in vitro differentiation of ES cells via EB formation and highlight the EB formation methods recently developed including the techniques, devices, and procedures involved.
Collapse
Affiliation(s)
- Hiroshi Kurosawa
- Division of Medicine and Engineering Science, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, Japan.
| |
Collapse
|
57
|
Abstract
The restoration of functional myocardium following heart failure still remains a formidable challenge among researchers. Irreversible damage caused by myocardial infarction is followed by left ventricular remodeling. The current pharmacologic and interventional strategies fail to regenerate dead myocardium and are usually insufficient to meet the challenge caused by necrotic cardiac myocytes. There is growing evidence, suggesting that the heart has the ability to regenerate through the activation of resident cardiac stem cells or through the recruitment of a stem cell population from other tissues such as bone marrow. These new findings belie the earlier conception about the poor regenerating ability of myocardial tissue. Stem cell therapy is a promising new approach for myocardial repair. However, it has been limited by the paucity of cell sources for functional human cardiomyocytes. Moreover, cells isolated from different sources exhibit idiosyncratic characteristics including modes of isolation, ease of expansion in culture, proliferative ability, characteristic markers, etc., which are the basis for several technical manipulations to achieve successful engraftment. Clinical trials show some evidence for the successful integration of stem cells of extracardiac origin in adult human heart with an improved functional outcome. This may be attributed to the discrepancies in the methods of detection, study subject selection (early or late post transplantation), presence of inflammation, and false identification of infiltrating leukocytes. This review discusses these issues in a comprehensive manner so that their physiological significance in animal as well as in human studies can be better understood.
Collapse
Affiliation(s)
- Rishi Sharma
- Division of Pharmacology, Central Drug Research Institute, POB-173, Lucknow-226001, India
| | | |
Collapse
|
58
|
Pouton CW, Haynes JM. Embryonic stem cells as a source of models for drug discovery. Nat Rev Drug Discov 2007; 6:605-16. [PMID: 17667955 DOI: 10.1038/nrd2194] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) will become a source of models for a wide range of adult differentiated cells, providing that reliable protocols for directed differentiation can be established. Stem-cell technology has the potential to revolutionize drug discovery, making models available for primary screens, secondary pharmacology, safety pharmacology, metabolic profiling and toxicity evaluation. Models of differentiated cells that are derived from mouse ESCs are already in use in drug discovery, and are beginning to find uses in high-throughput screens. Before analogous human models can be obtained in adequate numbers, reliable methods for the expansion of human ESC cultures will be needed. For applications in drug discovery, involving either species, protocols for directed differentiation will need to be robust and affordable. Here, we explore current challenges and future opportunities in relation to the use of stem-cell technology in drug discovery, and address the use of both mouse and human models.
Collapse
Affiliation(s)
- Colin W Pouton
- Department of Pharmaceutical Biology, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Melbourne, Australia.
| | | |
Collapse
|
59
|
Chen B, Shi J, Zheng J, Chen Y, Wang K, Yang Q, Chen X, Yang Z, Zhou X, Zhu Y, Chu J, Liu A, Sheng HZ. Differentiation of liver cells from human primordial germ cell-derived progenitors. Differentiation 2007; 75:350-9. [PMID: 17286597 DOI: 10.1111/j.1432-0436.2006.00151.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In previous studies, progenitor embryoid body-derived (EBD) cells have been derived from human embryonic germ cells. These cells express lineage markers of three primary germ layers, although their potential to produce true fetal cells of various types has yet to be tested. To this end, we have transplanted EBD cells into the fetal sheep liver. We show that these cells respond appropriately to environmental cues and give rise to hepatocytes and well-structured bile ducts. These results suggest that EBD cells are relatively uncommitted early progenitors capable of effective incorporation and differentiation in vivo. The ability to generate functional liver cells makes EBD cells potentially useful for cell therapy.
Collapse
Affiliation(s)
- Bin Chen
- Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, 1665 Kong Jiang Road, Shanghai 200092, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Growing organs for transplantation from embryonic precursor tissues. Immunol Res 2007; 38:261-73. [DOI: 10.1007/s12026-007-0041-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/27/2022]
|
61
|
Zhou QJ, Huang YD, Xiang LX, Shao JZ, Zhou GS, Yao H, Dai LC, Lu YL. In vitro differentiation of embryonic stem cells into hepatocytes induced by fibroblast growth factors and bone morphological protein-4. Int J Biochem Cell Biol 2007; 39:1714-21. [PMID: 17600753 DOI: 10.1016/j.biocel.2007.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/18/2007] [Accepted: 04/23/2007] [Indexed: 12/14/2022]
Abstract
The feasibility of transforming embryonic endoderm into different cell types is tightly controlled by mesodermal and septum transversumal signalings during early embryonic development. Here, an induction protocol tracing embryonic liver development was designed, in which, three growth factors, acid fibroblast growth factor, basic fibroblast growth factor and bone morphological protein-4 that secreted from pre-cardiac mesoderm and septum transversum mesenchyme, respectively, were employed to investigate their specific potency of modulating the mature hepatocyte proportion during the differentiation process. Results showed that hepatic differentiation took place spontaneously at a low level, however, supplements of the three growth factors gave rise to a significant up-regulation of mature hepatocytes. Bone morphological protein-4 highlighted the differentiation ratio to 40-55%, showing the most effective promotion, and also exhibited a synergistic effect with the other two fibroblast factors, whereas no similar phenomenon was observed between the other two factors, which was reported for the first time. Our study not only provides a high-performance system of embryonic stem cells differentiating into hepatocytes, which would supply a sufficient hepatic population for related studies, but also make it clear of the inductive effects of three important growth factors, which could support for further investigation on the mechanisms of mesodermal and septumal derived signalings that regulate hepatic differentiation.
Collapse
Affiliation(s)
- Qing-Jun Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Zhou QJ, Xiang LX, Shao JZ, Hu RZ, Lu YL, Yao H, Dai LC. In vitro differentiation of hepatic progenitor cells from mouse embryonic stem cells induced by sodium butyrate. J Cell Biochem 2007; 100:29-42. [PMID: 16888815 DOI: 10.1002/jcb.20970] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recently it was shown that embryonic stem (ES) cells could differentiate into hepatocytes both in vitro and in vivo, however, prospective hepatic progenitor cells have not yet been isolated and characterized from ES cells. Here we presented a novel 4-step procedure for the differentiation of mouse ES cells into hepatic progenitor cells and then hepatocytes. The differentiated hepatocytes were identified by morphological, biochemical, and functional analyses. The hepatic progenitor cells were isolated from the cultures after the withdrawal of sodium butyrate, which was characterized by scant cytoplasm, ovoid nuclei, the ability of rapid proliferation, expression of a series of hepatic progenitor cell markers, and the potential of differentiation into hepatocytes and bile duct-like cells under the proper conditions that favor hepatocyte and bile epithelial differentiation. The differentiation of hepatocytes from hepatic progenitor cells was characterized by a number of hepatic cell markers including albumin secretion, upregulated transcription of glucose-6-phosphatase and tyrosine aminotransferase, and functional phenotypes such as glycogen storage. The results from our experiments demonstrated that ES cells could differentiate into a novel bipotential hepatic progenitor cell and mature into hepatocytes with typical morphological, phenotypic and functional characteristics, which provides an useful model for the studies of key events during early liver development and a potential source of transplantable cells for cell-replacement therapies.
Collapse
Affiliation(s)
- Qing-Jun Zhou
- College of Life Science, Zhejiang University, Hangzhou 310012, PR China
| | | | | | | | | | | | | |
Collapse
|
63
|
Watt AJ, Forrester LM. Deriving and identifying hepatocytes from embryonic stem cells. ACTA ACUST UNITED AC 2007; 2:19-22. [PMID: 17142882 DOI: 10.1007/s12015-006-0004-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/26/2023]
Abstract
The generation of hepatocytes from embryonic stem cells (ESCs) holds considerable promise for basic and applied research. However, the unequivocal identification of hepatocytes in ESC differentiation strategies has been hampered by a lack of hepatocyte-specific markers. Recent studies are beginning to address this issue with the identification of hepatocyte-specific genes and the production of hepatocytes from intermediate cell types like definitive endoderm. Assuming the successful identification of ESC-derived hepatocytes, the next challenge will be in balancing the proliferation and differentiation of these cells in order to generate usable numbers of functional hepatocytes in vitro.
Collapse
Affiliation(s)
- Alistair J Watt
- John Hughes Bennett Laboratory, University of Edinburgh,Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, Scotland
| | | |
Collapse
|
64
|
Sharma AD, Cantz T, Manns MP, Ott M. The role of stem cells in physiology, pathophysiology, and therapy of the liver. ACTA ACUST UNITED AC 2007; 2:51-8. [PMID: 17142887 DOI: 10.1007/s12015-006-0009-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 02/07/2023]
Abstract
The objectives of the present review is to update readers with the rapidly changing concepts in liver stem cell biology and related clinical applications. The liver has adapted to the inflow of ingested toxins by the evolutionary development of unique regenerative properties and responds to injury or tissue loss by rapid division of the mature cells, hepatocytes, and bile duct epithelial cells. Proliferation of the parenchymal cells is regulated by numerous cytokine/growth factor-mediated pathways and is timely synchronized with extracellular matrix degradation and the restoration of the vasculature. The putative role of stem cells in physiology, pathophysiology, and therapy is not yet precisely known but currently is under intensive investigation. Resident hepatic stem/ progenitor cells have been identified in small numbers and implicated in liver tissue repair, when hepatocyte and bile duct replication capacity is exhausted or experimentally inhibited. Several independent reports have suggested that bone marrow cells can give rise to different hepatic epithelial cells types, including hepatic stem cells, hepatocytes, and bile duct epithelium. These observations have resulted in the hypothesis that extrahepatic stem cells, specifically bone marrow-derived stem cells, are an important source for liver epithelial cell replacement, particularly during chronic injury. Most of published data, however, now suggest that they do not play a relevant role in replacement of epithelial cells in any known form of hepatic injury. In vitro differentiation protocols for various adult extrahepatic stem cells might eventually provide valuable sources of cells for transplantation and therapy. Amniotic epithelial stem cells, fetal liver progenitor cells as well as embryonic stem cells currently emerge as alternative stem cell sources and open new possibilities for cellular therapies of liver disease.
Collapse
Affiliation(s)
- Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Endocrinology, Center of Internal Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
65
|
Luh SP, Chiang CH. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS): the mechanism, present strategies and future perspectives of therapies. J Zhejiang Univ Sci B 2007; 8:60-9. [PMID: 17173364 PMCID: PMC1764923 DOI: 10.1631/jzus.2007.b0060] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), which manifests as non-cardiogenic pulmonary edema, respiratory distress and hypoxemia, could be resulted from various processes that directly or indirectly injure the lung. Extensive investigations in experimental models and humans with ALI/ARDS have revealed many molecular mechanisms that offer therapeutic opportunities for cell or gene therapy. Herein the present strategies and future perspectives of the treatment for ALI/ARDS, include the ventilatory, pharmacological, as well as cell therapies.
Collapse
Affiliation(s)
- Shi-ping Luh
- Department of Surgery, Chung-Shan Medical University Hospital, 402 Taichung, Taiwan, China
- †E-mail:
| | - Chi-huei Chiang
- Division of Pulmonary Immunology and Infectious Diseases, Taipei Veterans General Hospital, 112 Taipei, Taiwan, China
- †E-mail:
| |
Collapse
|
66
|
Moriya K, Yoshikawa M, Saito K, Ouji Y, Nishiofuku M, Hayashi N, Ishizaka S, Fukui H. Embryonic stem cells develop into hepatocytes after intrasplenic transplantation in CCl 4-treated mice. World J Gastroenterol 2007; 13:866-73. [PMID: 17352015 PMCID: PMC4065921 DOI: 10.3748/wjg.v13.i6.866] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To transplant undifferentiated embryonic stem (ES) cells into the spleens of carbon tetrachloride (CCl4)-treated mice to determine their ability to differentiate into hepatocytes in the liver.
METHODS: CCl4, 0.5 mL/kg body weight, was injected into the peritoneum of C57BL/6 mice twice a week for 5 wk. In group 1 (n = 12), 1 x 105 undifferentiated ES cells (0.1 mL of 1 x 106/mL solution), genetically labeled with GFP, were transplanted into the spleens 1 d after the second injection. Group 2 mice (n = 12) were injected with 0.2 mL of saline twice a week, instead of CCl4, and the same amount of ES cells was transplanted into the spleens. Group 3 mice (n = 6) were treated with CCl4 and injected with 0.1 mL of saline into the spleen, instead of ES cells. Histochemical analyses of the livers were performed on post-transplantation d (PD) 10, 20, and 30.
RESULTS: Considerable numbers of GFP-immunopositive cells were found in the periportal regions in group 1 mice (CCl4-treated) on PD 10, however, not in those untreated with CCl4 (group 2). The GFP-positive cells were also immunopositive for albumin (ALB), alpha-1 antitrypsin, cytokeratin 18, and hepatocyte nuclear factor 4 alpha on PD 20. Interestingly, most of the GFP-positive cells were immunopositive for DLK, a hepatoblast marker, on PD 10. Although very few ES-derived cells were demonstrated immunohistologically in the livers of group 1 mice on PD 30, improvements in liver fibrosis were observed. Unexpectedly, liver tumor formation was not observed in any of the mice that received ES cell transplantation during the experimental period.
CONCLUSION: Undifferentiated ES cells developed into hepatocyte-like cells with appropriate integration into tissue, without uncontrolled cell growth.
Collapse
Affiliation(s)
- Kei Moriya
- Division of Hepatology, Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
The liver is the central organ for metabolism and has strong regenerative capability. Although the liver has been studied mostly biochemically and histopathologically, genetic studies using gene-targeting technology have identified a number of cytokines, intracellular signaling molecules, and transcription factors involved in liver development and regeneration. In addition, various in vitro systems such as fetal liver explant culture and primary culture of fetal liver cells have been established, and the combination of genetic and in vitro studies has accelerated investigation of liver development. Identification of the cell-surface molecules of liver progenitors has made it possible to identify and isolate liver progenitors, making the liver a unique model for stem cell biology. In this review, we summarize progresses in understanding liver development and regeneration.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Anatomy, University of California San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
68
|
Banas A, Yamamoto Y, Teratani T, Ochiya T. Stem cell plasticity: Learning from hepatogenic differentiation strategies. Dev Dyn 2007; 236:3228-41. [PMID: 17907200 DOI: 10.1002/dvdy.21330] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Many studies on stem cell plasticity are challenging the concept that stem cells contain an intrinsically predefined, unidirectional differentiation program. This means that the developmental fate of a stem cell is dependent on the general potential of the cell (pre-determined stem cell fate) as well as on microenvironmental cues, such as stimuli from growth factors (stem cell niche). Here, we reviewed reports that examined the hepatocyte differentiation ability of stem cells from two different sources: embryonic stem cells and adult stem cells. All of those stem cells revealed the ability to give rise to hepatocyte-like cells using different induction strategies. However, it is still not clear which of those stem cells would be the best source for hepatocyte replacement or which would be the best protocol. We herein present the current knowledge regarding available protocols and factors used in order to obtain functional hepatocytes from stem cells.
Collapse
Affiliation(s)
- Agnieszka Banas
- Section for Studies on Metastasis, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | |
Collapse
|
69
|
Heo J, Factor VM, Uren T, Takahama Y, Lee JS, Major M, Feinstone SM, Thorgeirsson SS. Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver. Hepatology 2006; 44:1478-86. [PMID: 17133486 DOI: 10.1002/hep.21441] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
We established an efficient system for differentiation, expansion and isolation of hepatic progenitor cells from mouse embryonic stem (ES) cells and evaluated their capacity to repopulate injured liver. Using mouse ES cells transfected with the green fluorescent protein (GFP) reporter gene regulated by albumin (ALB) enhancer/promoter, we found that a serum-free chemically defined medium supports formation of embryoid bodies (EBs) and differentiation of hepatic lineage cells in the absence of exogenous growth factors or feeder cell layers. The first GFP+ cells expressing ALB were detected in close proximity to "beating" myocytes after 7 days of EB cultures. GFP+ cells increased in number, acquired hepatocyte-like morphology and hepatocyte-specific markers (i.e., ALB, AAT, TO, and G6P), and by 28 days represented more than 30% of cells isolated from EB outgrowths. The FACS-purified GFP+ cells developed into functional hepatocytes without evidence of cell fusion and participated in the repairing of diseased liver when transplanted into MUP-uPA/SCID mice. The ES cell-derived hepatocytes were responsive to normal growth regulation and proliferated at the same rate as the host hepatocytes after an additional growth stimulus from CCl(4)-induced liver injury. The transplanted GFP+ cells also differentiated into biliary epithelial cells. In conclusion, a highly enriched population of committed hepatocyte precursors can be generated from ES cells in vitro for effective cell replacement therapy.
Collapse
Affiliation(s)
- Jeonghoon Heo
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Saito K, Yoshikawa M, Ouji Y, Moriya K, Nishiofuku M, Ueda S, Hayashi N, Ishizaka S, Fukui H. Promoted differentiation of cynomolgus monkey ES cells into hepatocyte-like cells by co-culture with mouse fetal liver-derived cells. World J Gastroenterol 2006; 12:6818-27. [PMID: 17106931 PMCID: PMC4087437 DOI: 10.3748/wjg.v12.i42.6818] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore whether a co-culture of cynomolgus monkey embryonic stem (cES) cells with embryonic liver cells could promote their differentiation into hepatocytes.
METHODS: Mouse fetal liver-derived cells (MFLCs) were prepared as adherent cells from mouse embryos on embryonic d (ED) 14, after which undifferentiated cES cells were co-cultured with MFLCs. The induction of cES cells along a hepatic lineage was examined in MFLC-assisted differentiation, spontaneous differentiation, and growth factors (GF) and chemicals-induced differentiations (GF-induced differentiation) using retinoic acid, leukemia inhibitory factor (LIF), FGF2, FGF4, hepatocyte growth factor (HGF), oncostatin M (OSM), and dexamethasone.
RESULTS: The mRNA expression of α-fetoprotein, albumin (ALB), α-1-antitrypsin, and hepatocyte nuclear factor 4α was observed earlier in the differentiating cES cells co-cultured with MFLCs, as compared to cES cells undergoing spontaneous differentiation and those subjected to GF-induced differentiation. The expression of cytochrome P450 7a1, a possible marker for embryonic endoderm-derived mature hepatocytes, was only observed in cES cells that had differentiated in a co-culture with MFLCs. Further, the disappearance of Oct3/4, a representative marker of an undifferentiated state, was noted in cells co-cultured with MFLCs, but not in those undergoing spontaneous or GF-induced differentiation. Immunocytochemical analysis revealed an increased ratio of ALB-immunopositive cells among cES cells co-cultured with MFLCs, while glycogen storage and urea synthesis were also demonstrated.
CONCLUSION: MFLCs showed an ability to induce cES cells to differentiate toward hepatocytes. The co-culture system with MFLCs is a useful method for induction of hepatocyte-like cells from undifferentiated cES cells.
Collapse
Affiliation(s)
- Ko Saito
- Department of Gastroenterology and Hepatology, Nara Medical University, Nara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Kulkarni JS, Khanna A. Functional hepatocyte-like cells derived from mouse embryonic stem cells: A novel in vitro hepatotoxicity model for drug screening. Toxicol In Vitro 2006; 20:1014-22. [PMID: 16497475 DOI: 10.1016/j.tiv.2005.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 10/18/2005] [Accepted: 12/30/2005] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to differentiate mouse embryonic stem (mES) cells into a high percentage of hepatocyte-like cells, and to demonstrate their utility as an in vitro hepatotoxicity model. We were able to differentiate 80-90% of mES cells using optimized hepatocyte differentiation medium. These differentiated cells showed typical hepatocyte morphology, expressed hepatic specific genes as shown by RT-PCR and displayed antibody detectable expression of markers specific for hepatic maturation. These hepatocyte-like cells also demonstrated evidence of glycogen storage. These cells when exposed to CCl4, a commonly used hepatotoxicant, showed an elevation of liver function enzymes, SGOT, SGPT and LDH, indicating hepatic damage. Further, this increase was prevented by pre-treatment with N-acetylcysteine, a known anti-oxidant. Thus we propose that the hepatocyte-like cells derived by the present method may prove to be useful as an in vitro model of hepatotoxicity, thereby providing a novel and promising alternative for obtaining large numbers of functional hepatocyte-like cells for in vitro drug metabolism and hepatotoxicity screening of potential drug candidates.
Collapse
Affiliation(s)
- J S Kulkarni
- Embryonic Stem Cell Group, Reliance Life Sciences Pvt Ltd., Dhirubhai Ambani Life Sciences Centre, R-282, TTC Industrial Area of MIDC, Thane Belapur Road, Rabale, Navi Mumbai 400 071, India
| | | |
Collapse
|
72
|
Meng Y, Huang S, Min J, Guo Z. In vitro differentiation of mouse ES cells into hepatocytes with coagulation factors VIII and IX expression profiles. ACTA ACUST UNITED AC 2006; 49:259-64. [PMID: 16856495 DOI: 10.1007/s11427-006-0259-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Coagulation factors II, V, VII, VIII, IX and X are produced by hepatocytes. So factors VIII and IX deficiencies, which result in hemophilia A and B, have the potential to respond to cellular replacement therapy. Embryonic stem (ES) cells provide a unique source for therapeutic applications. Here, E14 mouse ES cells have been induced into hepatocytes in vitro. Morphology revealed that ES-derived hepatic-like cells were round or polyhedral shaped with distinct boundary of individual cells, and some arranged in trabeculae. These cells expressed endodermal- or liver-specific mRNA--transthyretin (TTR), alpha1-anti-trypsin (AAT), alpha-fetoprotein (AFP), albumin (ALB), glucose-6-phoshpatase (G6P) and tyrosine aminotransferase (TAT). Approximately (85.1 +/- 0.5)% of the ES-derived cells was stained positive green with ICG uptake. These cells were also stained magenta as a result of PAS reaction. In this paper, expression of coagulation factors VIII and IX mRNA in the ES-derived cells is documented. Therefore, ES cells might be developed as substitute donor cells for the therapy of coagulation factor deficiencies.
Collapse
Affiliation(s)
- Ying Meng
- Center for Stem Cell Research, the Second Affiliated Hospital of Sun Yat-sen University, Guangzhou 510120, China.
| | | | | | | |
Collapse
|
73
|
Abstract
The liver has many crucial functions including metabolizing dietary molecules, detoxifying compounds, and storing glycogen. The hepatocytes, comprising most of the liver organ, progressively modify their gene expression profile during the fetal development according to their roles in the different phases of development. Embryonic stem (ES) cells serve as a major tool in understanding liver development. These cells may also serve as a source of hepatic cells for cellular therapy. In this review, we aim to summarize the research that has been performed in the field of hepatocyte differentiation from mouse and human ES cells. We discuss the various methodologies for the differentiation of ES cells towards hepatic cells using either spontaneous or directed differentiation protocols. Although many protocols for differentiating ES cells to hepatic cells have been developed, the analysis of their status is not trivial and can lead to various conclusions. Hence, we discuss the issues of analyzing hepatocytes by means of the specificity of the markers for hepatocytes and the status of the cells as fetal or adult hepatocytes.
Collapse
Affiliation(s)
- Neta Lavon
- Department of Genetics, The Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | |
Collapse
|
74
|
Narang AS, Mahato RI. Biological and Biomaterial Approaches for Improved Islet Transplantation. Pharmacol Rev 2006; 58:194-243. [PMID: 16714486 DOI: 10.1124/pr.58.2.6] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Islet transplantation may be used to treat type I diabetes. Despite tremendous progress in islet isolation, culture, and preservation, the clinical use of this modality of treatment is limited due to post-transplantation challenges to the islets such as the failure to revascularize and immune destruction of the islet graft. In addition, the need for lifelong strong immunosuppressing agents restricts the use of this option to a limited subset of patients, which is further restricted by the unmet need for large numbers of islets. Inadequate islet supply issues are being addressed by regeneration therapy and xenotransplantation. Various strategies are being tried to prevent beta-cell death, including immunoisolation using semipermeable biocompatible polymeric capsules and induction of immune tolerance. Genetic modification of islets promises to complement all these strategies toward the success of islet transplantation. Furthermore, synergistic application of more than one strategy is required for improving the success of islet transplantation. This review will critically address various insights developed in each individual strategy and for multipronged approaches, which will be helpful in achieving better outcomes.
Collapse
Affiliation(s)
- Ajit S Narang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 26 S. Dunlap St., Feurt Building, Room 413, Memphis, TN 38163, USA
| | | |
Collapse
|
75
|
Kuai XL, Cong XQ, Du ZW, Bian YH, Xiao SD. Treatment of surgically induced acute liver failure by transplantation of HNF4-overexpressing embryonic stem cells. ACTA ACUST UNITED AC 2006; 7:109-16. [PMID: 16643339 DOI: 10.1111/j.1443-9573.2006.00253.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Tissue-specific stem cells from differentiating embryonic stem (ES) cells are both pluripotent and genetically flexible. Recent observations indicate that ES cells can differentiate into hepatocytes. Therefore, cell-based therapy can potentially be a therapeutic alternative to liver transplantation. In this study the treatment of acute liver failure in rats by transplantation of hepatocyte nuclear factor 4 (HNF4)-overexpressing ES cells was investigated. METHODS The HNF4 was transfected into ES cells and ES cell clones overexpressing HNF4 were selected. The levels of markers of hepatocyte differentiation, including albumin, transthyretin, glucose-6-phosphates (G-6-P) and SAPK/ERK kinase-1 (SEK1) mRNA, were tested in spontaneously differentiated HNF4-overexpressing ES cells by reverse transcription-polymerase chain reaction (RT-PCR). The ultrastructure of the spontaneously differentiated HNF4-overexpressing ES cells was examined by electron microscopy. To induce acute liver failure, Sprague-Dawley rats were subjected to 90% hepatectomy and given 5% oral dextrose. The rats were divided into three groups. The rats in the treatment group (n = 12) received intraliver injection of 2 x 10(7) undifferentiated HNF4-overexpressing ES cells from the same clone, the rats in control group 1 (n = 12) received 2 x 10(7) undifferentiated ES cells, and the rats in control group 2 (n = 12) received the same volume of media without any cells. RESULTS All rats in control group 1 and control group 2 died within 72 h, while 33% of rats that received undifferentiated HNF4-overexpressing ES cells transplantation survived more than 1 month. Spontaneously differentiated HNF4-overexpressing ES cells only expressed transthyretin mRNA. The cells were rich in mitochondrion and catalase-containing peroxisomes in ultrastructure. CONCLUSIONS Transplantation of ES cells could be a potential treatment in supporting life during acute liver insufficiency and could be a bridge to orthotopic liver transplantation.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Cell Differentiation
- Disease Models, Animal
- Hepatectomy/adverse effects
- Hepatocyte Nuclear Factor 4/biosynthesis
- Hepatocyte Nuclear Factor 4/therapeutic use
- Hepatocyte Nuclear Factor 4/ultrastructure
- Hepatocytes/metabolism
- Hepatocytes/ultrastructure
- Liver Failure, Acute/etiology
- Liver Failure, Acute/mortality
- Liver Failure, Acute/pathology
- Liver Failure, Acute/therapy
- Male
- Mitochondria, Liver/metabolism
- Mitochondria, Liver/ultrastructure
- Peroxisomes/metabolism
- Peroxisomes/ultrastructure
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Stem Cell Transplantation
- Stem Cells/metabolism
- Stem Cells/ultrastructure
- Up-Regulation
Collapse
Affiliation(s)
- Xiao Ling Kuai
- Shanghai Institute of Digestive Diseases, Renji Hospital, Shanghai Second Medical University, 145 Shandong Zhong Road, Shanghai 200001, China
| | | | | | | | | |
Collapse
|
76
|
Stem Cells and Herbal Acupuncture Therapy. J Pharmacopuncture 2005. [DOI: 10.3831/kpi.2005.8.3.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
77
|
Teramoto K, Asahina K, Kumashiro Y, Kakinuma S, Chinzei R, Shimizu-Saito K, Tanaka Y, Teraoka H, Arii S. Hepatocyte differentiation from embryonic stem cells and umbilical cord blood cells. ACTA ACUST UNITED AC 2005; 12:196-202. [PMID: 15995807 DOI: 10.1007/s00534-005-0980-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 03/02/2005] [Indexed: 12/17/2022]
Abstract
With the development of regeneration medicine, many researchers have attempted hepatic differentiation from nonhepatic-origin cell sources. The differentiation of embryonic stem (ES) cells into hepatocyte-like cells has been reported in several papers. Mouse ES cells have shown a potential to develop into hepatocyte-like cells in vitro on the basis of hepatic gene expression after adding several growth factors. We transplanted cultured embryoid body (EB) cells (male) into female mice. A liver specimen of the recipient was examined by immunohistochemical staining for albumin and fluorescence in situ hybridization for the Y chromosome after transplantation. Both Y chromosome- and albumin-positive cells were recognized in the recipient female liver, and were considered to be hepatocyte-like cells derived from ES cells containing the Y chromosome. Many groups, including ourselves, have studied hepatocyte-like cell differentiation from umbilical cord blood cells (UBCs). We cultured nucleated cells isolated from UBCs. Using immunostaining, ALB-positive and CK-19-positive cells were recognized in the culture. Dual staining of ALB and CK-19 demonstrated that ALB was coexpressed with CK-19, suggesting the existence of hepatic progenitors. In this review, we consider recent studies of the differentiation of hepatocytes from nonhepatic origins, especially ES cells and umbilical cord blood.
Collapse
Affiliation(s)
- Kenichi Teramoto
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Ishii T, Yasuchika K, Fujii H, Hoppo T, Baba S, Naito M, Machimoto T, Kamo N, Suemori H, Nakatsuji N, Ikai I. In vitro differentiation and maturation of mouse embryonic stem cells into hepatocytes. Exp Cell Res 2005; 309:68-77. [PMID: 16009362 DOI: 10.1016/j.yexcr.2005.05.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 05/25/2005] [Accepted: 05/29/2005] [Indexed: 01/12/2023]
Abstract
It is difficult to induce the maturation of embryonic stem (ES) cells into hepatocytes in vitro. We previously reported that Thy1-positive mesenchymal cells derived from the mouse fetal liver promote the maturation of hepatic progenitor cells. Here, we isolated alpha-fetoprotein (AFP)-producing cells from mouse ES cells for subsequent differentiation into hepatocytes in vitro by coculture with Thy1-positive cells. ES cells expressing green fluorescent protein (GFP) under the control of an AFP promoter were cultured under serum- and feeder layer-free culture conditions. The proportion of GFP-positive cells plateaued at 41.6 +/- 12.2% (means +/- SD) by day 7. GFP-positive cells, isolated by flow cytometry, were cultured in the presence or absence of Thy1-positive cells as a feeder layer. Isolated GFP-positive cells were stained for AFP, Foxa2, and albumin. The expression of mRNAs encoding tyrosine amino transferase, tryptophan 2,3-dioxygenase, and glucose-6-phosphatase were only detected following coculture with Thy1-positive cells. Following coculture with Thy1-positive cells, the isolated cells produced and stored glycogen. Ammonia clearance activity was also enhanced following coculture. Electron microscopic analysis indicated that the cocultured cells exhibited the morphologic features of mature hepatocytes. In conclusion, coculture with Thy1-positive cells in vitro induced the maturation of AFP-producing cells isolated from ES cell cultures into hepatocytes.
Collapse
Affiliation(s)
- Takamichi Ishii
- Department of Gastroenterological Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Wakitani S, Aoki H, Harada Y, Sonobe M, Morita Y, Mu Y, Tomita N, Nakamura Y, Takeda S, Watanabe TK, Tanigami A. Embryonic stem cells form articular cartilage, not teratomas, in osteochondral defects of rat joints. Cell Transplant 2005; 13:331-6. [PMID: 15468674 DOI: 10.3727/000000004783983891] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Embryonic stem (ES) cells are considered to be a potential tool for repairing articular cartilage defects, but so far it has been impossible to cause these cells to differentiate into chondrocytes exclusively, either in vivo or in vitro. To explore a potential new cell source of cell transplantation for articular cartilage defects, we transplanted ES cells into articular cartilage defects in immunosuppressed rats. ES cells (AB2.2 or CCE cells) were transplanted into articular cartilage defects in the patellar groove of immunosuppressed rats treated with cyclosporine. The cells were histologically observed until 8 weeks after transplantation. To determine whether the repair tissue in the defect in the AB2.2-transplanted group was derived from the transplanted cells, the neomycin-resistant gene, which had been transfected into AB2.2 cells but does not exist in rat cells, was used for detection. The cells produced cartilage, resulting in repair of the defects from 4 weeks until 8 weeks after the transplantation without forming any teratomas. The neomycin-resistant gene was detected in every sample, demonstrating that the repair tissue in the AB2.2-transplanted group was derived from the transplanted AB2.2 cells. The environment of osteochondral defects is chondrogenic for ES cells. ES cells may thus be a potential tool for repairing articular cartilage defects.
Collapse
Affiliation(s)
- Shigeyuki Wakitani
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, Nishikawa S, Chiba T, Era T, Nishikawa SI. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 2005; 23:1542-50. [PMID: 16311587 DOI: 10.1038/nbt1167] [Citation(s) in RCA: 398] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 10/20/2005] [Indexed: 12/31/2022]
Abstract
Preparation of specific lineages at high purities from embryonic stem (ES) cells requires both selective culture conditions and markers to guide and monitor the differentiation. In this study, we distinguished definitive and visceral endoderm by using a mouse ES cell line that bears the gfp and human IL2R alpha (also known as CD25) marker genes in the goosecoid (Gsc) and Sox17 loci, respectively. This cell line allowed us to monitor the generation of Gsc+ Sox17+ definitive endoderm and Gsc- Sox17+ visceral endoderm and to define culture conditions that differentially induce definitive and visceral endoderm. By comparing the gene expression profiles of definitive and visceral endoderm, we identified seven surface molecules that are expressed differentially in the two populations. One of the seven markers, Cxcr4, to which a monoclonal antibody is available allowed us to monitor and purify the Gsc+ population from genetically unmanipulated ES cells under the condition that selects definitive endoderm.
Collapse
Affiliation(s)
- Masahiro Yasunaga
- Basic Research Laboratory, Stem Cell Sciences KK, Kobe, Hyogo 650-0047, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Ogawa S, Tagawa YI, Kamiyoshi A, Suzuki A, Nakayama J, Hashikura Y, Miyagawa S. Crucial roles of mesodermal cell lineages in a murine embryonic stem cell-derived in vitro liver organogenesis system. Stem Cells 2005; 23:903-13. [PMID: 16043458 DOI: 10.1634/stemcells.2004-0295] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies in the field of regenerative medicine have exploited the pluripotency of embryonic stem (ES) cells to generate a variety of cell lineages. However, the target has always been only a single lineage, which was isolated from other differentiated cell populations. In the present study, we selected sublines with a high capability for differentiation to contracting cardiomyocytes and also produced germ-line chimeric mice from a parent ES line. We also succeed in establishing embryoid bodies prepared from the ES cells that differentiated into not only hepatocytes but also at least two mesodermal lineages: cardiomyocytes that supported liver development and endothelial cells corresponding to sinusoids. This allowed the development of an in vitro system using murine ES cells that approximated the events of liver development in vivo. The expression of albumin was significantly higher in cardiomyocytes that had arisen in differentiated ES cells than in those that had not. Our in vitro system for liver organogenesis consists of a blood/sinusoid vascular-like network and hepatocyte layers and shows higher levels of hepatic function, such as albumin production and ammonia degradation, than hepatic cell lines and primary cultures of murine adult hepatocytes. This innovative system will lead to the development of second-generation regenerative medicine techniques using ES cells and is expected to be useful for the development of bioartificial liver systems and drug-metabolism assays.
Collapse
Affiliation(s)
- Shinichiro Ogawa
- Division of Laboratory Animal Research, Research Center for Human and Environmental Sciences, Shinshu University, Japan
| | | | | | | | | | | | | |
Collapse
|
82
|
N/A, 唐 红, 王 晓, 刘 真, 叶 慧. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13:2401-2403. [DOI: 10.11569/wcjd.v13.i19.2401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
83
|
Ranamukhaarachchi DG, Unger ER, Vernon SD, Lee D, Rajeevan MS. Gene expression profiling of dysplastic differentiation in cervical epithelial cells harboring human papillomavirus 16. Genomics 2005; 85:727-38. [PMID: 15885499 DOI: 10.1016/j.ygeno.2005.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2004] [Revised: 01/25/2005] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
Molecular events occurring with high-risk human papillomavirus (HPV)-associated dysplastic differentiation of cervical epithelial cells are largely unknown. This study used differential display PCR to identify expression changes between nondifferentiating monolayer and differentiated organotypic (raft) cultures of W12 keratinocytes. These cells were originally derived from a clinical biopsy of HPV 16-positive dysplastic cervical epithelium and retain high-risk HPV 16 and the ability to differentiate, albeit with dysplastic morphology. Using this model system we identified 84 genes with changed expression during dysplastic differentiation. Most (70/84, approximately 80%) were down-regulated with differentiation, consistent with a restriction of expression during terminal differentiation. Twenty-two genes had no known function and 6 novel expressed sequence tags were identified among this group. Of the 62 genes with known functions, 25 belonged to transcription-, translation-, and posttranslation-related categories and 30 had functions associated with neoplastic initiation/progression, calcium signaling, epithelial differentiation, and structure remodeling. Some of the genes with altered expression identified in this model of dysplastic differentiation may be useful biomarkers for early detection of cervical neoplasia and other HPV-associated oropharyngeal and anogenital cancers.
Collapse
Affiliation(s)
- Daya G Ranamukhaarachchi
- Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service/US DHHS, Atlanta, GA 30333, USA
| | | | | | | | | |
Collapse
|
84
|
Allen KJ, Buck NE, Williamson R. Stem cells for the treatment of liver disease. Transpl Immunol 2005; 15:99-112. [PMID: 16412955 DOI: 10.1016/j.trim.2005.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 09/09/2005] [Indexed: 12/31/2022]
Abstract
Stem cells tantalise. They alone have the capacity to divide exponentially, recreate the stem cell compartment as well as create differentiated cells to build tissues. They should be the natural candidates to provide a renewable source of cells for transplantation. Does the reality support the promise of this exciting alternative to conventional therapies for metabolic and degenerative liver disease? Can techniques be developed to provide the large number of cells that could be required? Must there be "space" in the liver to accept the cells? To what extent is the liver immunoprivileged, and is immunosuppression necessary for stem cell therapy? Is it better to use haematopoietic stem cells, fetal stem cells, mesenchymal cells, embryonic stem cells, hepatocytes or all of the above, but for different disease indications? This paper discusses why the exploration of stem cells for the treatment of liver disease is of great potential, and delineates some of the hurdles that need to be overcome before patients see benefits from laboratory-based research into stem cell transplantation and function.
Collapse
Affiliation(s)
- K J Allen
- Liver Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | | | | |
Collapse
|
85
|
Hussain SZ, Strom SC, Kirby MR, Burns S, Langemeijer S, Ueda T, Hsieh M, Tisdale JF. Side population cells derived from adult human liver generate hepatocyte-like cells in vitro. Dig Dis Sci 2005; 50:1755-63. [PMID: 16187169 PMCID: PMC2676905 DOI: 10.1007/s10620-005-2933-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 02/18/2005] [Indexed: 12/09/2022]
Abstract
We sought to determine whether hepatic side population (SP) cells derived from adult human liver possess the potential of a novel candidate hepatic stem cell. Human cadaveric donor liver was subjected to collagenase perfusion and hepatocytes were separated from nonparenchymal cells by differential centrifugation. SP cells were isolated from the nonparenchymal portion after Hoechst 33342 staining. Since CD45 is a panleukocyte antigen, CD45-negative SP cells were separated from the vast majority of CD45-positive SP cells (90%), and hepatic growth medium was used to culture both groups. Both CD45-negative and CD45-positive hepatic SP cells generated colonies in the hepatic growth medium in 2-3 weeks. The colonies yielded large cells morphologically consistent with human hepatocytes, demonstrating granule-rich cytoplasm, dense, often double nuclei, and intracellular lipofuscin pigment. The cultured cells from both sources were positive for markers of human hepatocytes: HepPar, cytokeratin 8 (CK8), and human albumin. Reverse transcriptase-polymerase chain reaction (RT-PCR) performed on both groups demonstrated positivity for additional liver markers including human albumin, CK18, alpha-1 anti-trypsin, and the human cytochrome P450 enzyme CYP2B6. Double immunostaining (CD45 and HepPar) and RT-PCR confirmed that the hepatocyte-like cells derived from the CD45-negative SP cells acquired HepPar positivity but had no detectable CD45 antigen expression. In contrast, the cultured cells derived from the CD45-positive SP cells also acquired HepPar positivity, but only a minimal fraction expressed the CD45 antigen. We conclude that hepatic SP cells derived from the nonparenchymal portion of human liver are a potential source of human hepatocytes irrespective of their CD45 status, and further animal studies will be required to assess their regenerative potential.
Collapse
Affiliation(s)
- Sunny Zaheed Hussain
- Division of Gastroenterology, Children's National Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Okamura K, Asahina K, Fujimori H, Ozeki R, Shimizu-Saito K, Tanaka Y, Teramoto K, Arii S, Takase K, Kataoka M, Soeno Y, Tateno C, Yoshizato K, Teraoka H. Generation of hybrid hepatocytes by cell fusion from monkey embryoid body cells in the injured mouse liver. Histochem Cell Biol 2005; 125:247-57. [PMID: 16195892 DOI: 10.1007/s00418-005-0065-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2005] [Indexed: 01/09/2023]
Abstract
Monkey embryonic stem (ES) cells have characteristics that are similar to human ES cells, and might be useful as a substitute model for preclinical research. When embryoid bodies (EBs) formed from monkey ES cells were cultured, expression of many hepatocyte-related genes including cytochrome P450 (Cyp) 3a and Cyp7a1 was observed. Hepatocytes were immunocytochemically observed using antibodies against albumin (ALB), cytokeratin-8/18, and alpha1-antitrypsin in the developing EBs. The in vitro differentiation potential of monkey ES cells into the hepatic lineage prompted us to examine the transplantability of monkey EB cells. As an initial approach to assess the repopulation potential, we transplanted EB cells into immunodeficient urokinase-type plasminogen activator transgenic mice that undergo liver failure. After transplantation, the hepatocyte colonies expressing monkey ALB were observed in the mouse liver. Fluorescence in-situ hybridization revealed that the repopulating hepatocytes arise from cell fusion between transplanted monkey EB cells and recipient mouse hepatocytes. In contrast, neither cell fusion nor repopulation of hepatocytes was observed in the recipient liver after undifferentiated ES cell transplantation. These results indicate that the differentiated cells in developing monkey EBs, but not contaminating ES cells, generate functional hepatocytes by cell fusion with recipient mouse hepatocytes, and repopulate injured mouse liver.
Collapse
Affiliation(s)
- Kentaro Okamura
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Choi D, Lee HJ, Jee S, Jin S, Koo SK, Paik SS, Jung SC, Hwang SY, Lee KS, Oh B. In vitro differentiation of mouse embryonic stem cells: enrichment of endodermal cells in the embryoid body. Stem Cells 2005; 23:817-27. [PMID: 15917477 DOI: 10.1634/stemcells.2004-0262] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryonic stem (ES) cells have the potential to differentiate into all three germ layers, providing new perspectives not only for embryonic development but also for the application in cell replacement therapies. Even though the formation of an embryoid body (EB) in a suspension culture has been the most popular method to differentiate ES cells into a wide range of cells, not much is known about the characteristics of EB cells. To this end, we investigated the process of EB formation in the suspension culture of ES cells at weekly intervals for up to 6 weeks. We observed that the central apoptotic area is most active in the first week of EB formation and that the cell adhesion molecules, except beta-catenin, are highly expressed throughout the examination period. The sequential expression of endodermal genes in EBs during the 6-week culture correlated closely with that of normal embryo development. The outer surface of EBs stained positive for alpha-fetoprotein and GATA-4. When isolated from the 2-week-old EB by trypsin treatment, these endodermal lineage cells matured in vitro into hepatocytes upon stimulation with various hepatotrophic factors. In conclusion, our results demonstrate that endodermal cells can be retrieved from EBs and matured into specific cell types, opening new therapeutic usage of these in vitro differentiated cells in the cell replacement therapy of various diseases.
Collapse
Affiliation(s)
- Dongho Choi
- Department of Surgery, Stem Cell Therapy Center, Soonchunhyang University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Yamamoto Y, Teratani T, Yamamoto H, Quinn G, Murata S, Ikeda R, Kinoshita K, Matsubara K, Kato T, Ochiya T. Recapitulation of in vivo gene expression during hepatic differentiation from murine embryonic stem cells. Hepatology 2005; 42:558-67. [PMID: 16104048 DOI: 10.1002/hep.20825] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Hepatic differentiation at the molecular level is poorly understood, mainly because of the lack of a suitable model. Recently, using adherent monoculture conditions, we demonstrated the direct differentiation of hepatocytes from embryonic stem (ES) cells. In this study, we exploited the direct differentiation model to compare the gene expression profiles of ES cell-derived hepatocytes with adult mouse liver using DNA microarray technology. The results showed that the ES cell-derived hepatocyte gene expression pattern is very similar to adult mouse liver. Through further analysis of gene ontology categories for the 232 most radically altered genes, we found that the significant categories related to hepatic function. Furthermore, through the use of small interfering RNA technology in vitro, hepatocyte nuclear factor 3beta/FoxA2 was identified as having an essential role in hepatic differentiation. These results demonstrate that ES cell-derived hepatocytes recapitulate the gene expression profile of adult mouse liver to a significant degree and indicate that our direct induction system progresses via endoderm differentiation. In conclusion, our system closely mimics in vivo hepatic differentiation at the transcriptional level and could, therefore, be useful for studying the molecular basis of hepatocyte differentiation per se.
Collapse
Affiliation(s)
- Yusuke Yamamoto
- Section for Studies on Metastasis, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Asahina K, Fujimori H, Shimizu-Saito K, Kumashiro Y, Okamura K, Tanaka Y, Teramoto K, Arii S, Teraoka H. Expression of the liver-specific gene Cyp7a1 reveals hepatic differentiation in embryoid bodies derived from mouse embryonic stem cells. Genes Cells 2005; 9:1297-308. [PMID: 15569160 DOI: 10.1111/j.1365-2443.2004.00809.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatic differentiation from mouse embryonic stem (ES) cells via the formation of embryoid bodies (EBs) has been revealed by the expression of hepatocyte-related genes such as alpha-fetoprotein and albumin. It is known, however, that the visceral endoderm differentiates in early EBs and expresses these hepatocyte-related genes. Thus, it remains unclear whether ES cells are capable of differentiating into hepatocytes derived from definitive endoderm in vitro. In the present study, yolk sac tissues isolated from the foetal mouse were found to express many hepatocyte-related genes. Among the hepatocyte-related genes examined, cytochrome P450 7A1 (Cyp7a1) was identified as a liver-specific gene that was not expressed in the yolk sac. Cyp7a1 was induced in developing EBs, and hepatic differentiation was preferentially observed in the developing EBs in attached culture as compared to those in suspension culture. Leukaemia inhibitory factor permitted the differentiation of visceral endoderm, but inhibited the expression of gastrulation-related genes and the hepatic differentiation in cultured EBs. ES cells expressing green fluorescent protein (GFP) under the control of the Cyp7a1 enhancer/promoter showed that cultured EBs contained GFP-positive epithelial-like cells. These results demonstrate that ES cells can differentiate in vitro into hepatocytes derived from definitive endoderm.
Collapse
Affiliation(s)
- Kinji Asahina
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Jiang HH, Xiang DD, Liu GD, Wang YM. Differentiation of mouse embryonic stem cells into hepatocytes in vitro. Shijie Huaren Xiaohua Zazhi 2005; 13:1849-1851. [DOI: 10.11569/wcjd.v13.i15.1849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore a method for the differentiation of embryonic stem (ES) cells into hepatocytes in vitro.
METHODS: ES cells were cultured on the feeder layer of mouse embryonic fibroblasts (MEF) in the medium containing leukemia inhibitory factor (LIF). The inductive factors, such as acid-fibroblast growth factor (acid-FGF), HGF, oncostatin M (OSM), Dex and ITS mixture (5 g/L insulin, 5 g/L transferring, 5 mg/L selenic acid), were added at day 9, 12, 12, 15 of induction. The activity of alkaline phosphatase (ALP) was detected by cytochemical method and visualized by NBT/BCIP. Albumin (ALB) and CK18 were examined by immunohistochemistry and DAB staining.
RESULTS: ALP was positive in the undifferentiated ES cells. Four days after induction, embryonid bodies came into formation. After the inductive factors were added, ES cells were differentiated into single morphological cells like epithelium. ALB and CK18 were positive in some differentiated cells.
CONCLUSION: Embryonic stem cells can be selectively differentiated into hepatocytes in vitro.
Collapse
|
91
|
Affiliation(s)
- David Tosh
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | |
Collapse
|
92
|
Fujikawa T, Oh SH, Shupe T, Petersen BE. Stem-cell therapy for hepatobiliary pancreatic disease. ACTA ACUST UNITED AC 2005; 12:190-5. [PMID: 15995806 DOI: 10.1007/s00534-005-0982-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 02/23/2005] [Indexed: 12/16/2022]
Abstract
The transplantation of pancreatic beta cells or hepatocytes represents a potential therapeutic approach for type I diabetes and inherited liver diseases, respectively. Furthermore, acquired liver diseases, particularly acute hepatic failure due to toxic or viral injury, have been treated in limited clinical trials with fetal and adult hepatocytes. However, a major limitation is the insufficient amount of beta cells and hepatocytes available for grafts. Alternative sources of these cells have yet to be determined. During the past few years, progress has been made in the development of new strategies to produce mature beta cells and hepatocytes. In this review, we outline the current state of scientific understanding and controversy regarding the properties of embryonic and adult stem cells in the field of hepatobiliary and pancreatic diseases. Our objective is to provide a framework of understanding for the challenges behind translating fundamental stem cell biology into clinical therapies.
Collapse
Affiliation(s)
- Takahisa Fujikawa
- Department of Pathology, Immunology and Laboratory Medicine and Program in Stem Cell Biology and Regenerative Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
93
|
Abstract
The discovery of mouse embryonic stem (ES) cells >20 years ago represented a major advance in biology and experimental medicine, as it enabled the routine manipulation of the mouse genome. Along with the capacity to induce genetic modifications, ES cells provided the basis for establishing an in vitro model of early mammalian development and represented a putative new source of differentiated cell types for cell replacement therapy. While ES cells have been used extensively for creating mouse mutants for more than a decade, their application as a model for developmental biology has been limited and their use in cell replacement therapy remains a goal for many in the field. Recent advances in our understanding of ES cell differentiation, detailed in this review, have provided new insights essential for establishing ES cell-based developmental models and for the generation of clinically relevant populations for cell therapy.
Collapse
Affiliation(s)
- Gordon Keller
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
94
|
Tremblay KD, Zaret KS. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol 2005; 280:87-99. [PMID: 15766750 DOI: 10.1016/j.ydbio.2005.01.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 12/20/2004] [Accepted: 01/05/2005] [Indexed: 01/13/2023]
Abstract
The location and movement of mammalian gut tissue progenitors, prior to the expression of tissue-specific genes, has been unknown, but this knowledge is essential to identify transitions that lead to cell type specification. To address this, we used vital dyes to label exposed anterior endoderm cells of early somite stage mouse embryos, cultured the embryos into the tissue bud phase of development, and determined the tissue fate of the dye labeled cells. This approach was performed at three embryonic stages that are prior to, or coincident with, foregut tissue patterning (1-3 somites, 4-6 somites, and 7-10 somites). Short-term labeling experiments tracked the movement of tissue progenitor cells during foregut closure. Surprisingly, we found that two distinct types of endoderm-progenitor cells, lateral and medial, arising from three spatially separated embryonic domains, converge to generate the epithelial cells of the liver bud. Whereas the lateral endoderm-progenitors give rise to descendants that are constrained in tissue fate and position along the anterior-posterior axis of the gut, the medial gut endoderm-progenitors give rise to descendants that stream along the anterior-posterior axis at the ventral midline and contribute to multiple gut tissues. The fate map reveals extensive morphogenetic movement of progenitors prior to tissue specification, it permits a detailed analysis of endoderm tissue patterning, and it illustrates that diverse progenitor domains can give rise to individual tissue cell types.
Collapse
Affiliation(s)
- Kimberly D Tremblay
- Cell and Developmental Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
95
|
Affiliation(s)
- Roong Zhao
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
96
|
Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 2005; 85:635-78. [PMID: 15788707 DOI: 10.1152/physrev.00054.2003] [Citation(s) in RCA: 531] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Stem cells represent natural units of embryonic development and tissue regeneration. Embryonic stem (ES) cells, in particular, possess a nearly unlimited self-renewal capacity and developmental potential to differentiate into virtually any cell type of an organism. Mouse ES cells, which are established as permanent cell lines from early embryos, can be regarded as a versatile biological system that has led to major advances in cell and developmental biology. Human ES cell lines, which have recently been derived, may additionally serve as an unlimited source of cells for regenerative medicine. Before therapeutic applications can be realized, important problems must be resolved. Ethical issues surround the derivation of human ES cells from in vitro fertilized blastocysts. Current techniques for directed differentiation into somatic cell populations remain inefficient and yield heterogeneous cell populations. Transplanted ES cell progeny may not function normally in organs, might retain tumorigenic potential, and could be rejected immunologically. The number of human ES cell lines available for research may also be insufficient to adequately determine their therapeutic potential. Recent molecular and cellular advances with mouse ES cells, however, portend the successful use of these cells in therapeutics. This review therefore focuses both on mouse and human ES cells with respect to in vitro propagation and differentiation as well as their use in basic cell and developmental biology and toxicology and presents prospects for human ES cells in tissue regeneration and transplantation.
Collapse
Affiliation(s)
- Anna M Wobus
- In Vitro Differentiation Group, IPK Gatersleben, Germany.
| | | |
Collapse
|
97
|
Teratani T, Yamamoto H, Aoyagi K, Sasaki H, Asari A, Quinn G, Sasaki H, Terada M, Ochiya T. Direct hepatic fate specification from mouse embryonic stem cells. Hepatology 2005; 41:836-46. [PMID: 15742390 DOI: 10.1002/hep.20629] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The molecules responsible for hepatic differentiation from embryonic stem (ES) cells have yet to be elucidated. Here we have identified growth factors that allow direct hepatic fate-specification from ES cells by using simple adherent monolayer culture conditions. ES cell-derived hepatocytes showed liver-specific characteristics, including several metabolic activities, suggesting that ES cells can differentiate into functional hepatocytes without the requirement for embryoid body (EB) formation, in vivo transplantation, or a coculture system. Most importantly, transplantation of ES cell-derived hepatocytes in mice with cirrhosis showed significant therapeutic effects. In conclusion, this novel system for hepatic fate specification will help elucidate the precise molecular mechanisms of hepatic differentiation in vitro and could represent an attractive approach for developing stem cell therapies for treatment of hepatic disease in humans. Supplementary material for this article can be found on the HEPATOLOGY website ( http://www.interscience.wiley.com/jpages/0270-9139/suppmat/index.html).
Collapse
Affiliation(s)
- Takumi Teratani
- Section for Studies on Metastasis, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Kumashiro Y, Asahina K, Ozeki R, Shimizu-Saito K, Tanaka Y, Kida Y, Inoue K, Kaneko M, Sato T, Teramoto K, Arii S, Teraoka H. Enrichment of hepatocytes differentiated from mouse embryonic stem cells as a transplantable source. Transplantation 2005; 79:550-7. [PMID: 15753844 DOI: 10.1097/01.tp.0000153637.44069.c6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND We previously reported that hepatocytes can be differentiated from embryonic stem (ES) cells by way of embryoid body (EB) formation and are transplantable into the mouse liver. However, the transplantation of EB-derived cells frequently resulted in teratoma formation in the recipient liver. In the present study, we eliminated the tumorigenic cells from EB outgrowths and examined the effects of enriched ES-cell-derived hepatocyte transplantation into an injured liver. METHODS On day 15 in culture, the EBs were partially disaggregated and subcultured. Hepatocytes in the subcultured cells were examined by the expression of hepatocyte markers. Undifferentiated cells contaminating in the EB-derived cells were eliminated by Percoll discontinuous gradient centrifugation. Furthermore, undifferentiated cells, endothelial cells, and macrophages were eliminated by magnetic cell sorting using platelet/endothelial cell adhesion molecule (PECAM)-1 and Mac-1 antibodies. These enriched ES-cell-derived hepatocytes were then transplanted into the injured mouse liver. RESULTS Percoll centrifugation and PECAM-1 antibodies eliminated the undifferentiated cells expressing Oct-3/4 from the EB-derived cells. ES-cell-derived hepatocytes showed expression of liver-related genes, synthesis of urea and glycogen, and structural characteristics during subculture. A transplantation study showed that the enriched ES-cell-derived hepatocytes integrated into the injured mouse liver and produced no teratomas. When the ES-cell-derived hepatocytes were transplanted into a CCl4-injured liver, the liver function was subsequently improved. CONCLUSIONS Functional hepatocytes can be differentiated from mouse ES cells by way of EB formation. The elimination of undifferentiated cells from the EBs provides transplantable cells for liver failure without tumorigenicity.
Collapse
Affiliation(s)
- Yuji Kumashiro
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Kania G, Blyszczuk P, Jochheim A, Ott M, Wobus AM. Generation of glycogen- and albumin-producing hepatocyte-like cells from embryonic stem cells. Biol Chem 2005; 385:943-53. [PMID: 15551869 DOI: 10.1515/bc.2004.123] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We present a novel two-step protocol for the differentiation of embryonic stem (ES) cells into the hepatic lineage. Differentiated hepatocyte-like cells express genes and proteins characteristic for endodermal and hepatic cells and acquire a functional hepatic phenotype as demonstrated by albumin secretion and glycogen storage. During differentiation, alpha-fetoprotein, albumin, transthyretin, alpha-1-antitrypsin, cytochrome P450 subunits 2b9 and 2b13 and tyrosine aminotransferase transcripts are upregulated. Quantitative RT-PCR data revealed a fetal hepatic phenotype corresponding to day 13-14 of liver development. Terminally differentiated hepatocyte-like cells show a bi-nucleated, cuboidal morphology labeled by albumin, alpha-1-antitrypsin, liver amylase, dipeptidyl peptidase IV, c-met and cytokeratin 18. ES-derived intermediate cell types transiently and partially co-express nestin with albumin and alpha-fetoprotein, respectively, but not cytokeratin 19. This finding suggests an ES-derived potential hepatic progenitor cell type, which is partially nestin-, albumin- and alpha-fetoprotein-positive, but cytokeratin 19-negative.
Collapse
Affiliation(s)
- Gabriela Kania
- In vitro Differentiation Group, IPK Gatersleben, D-06466 Gatersleben, Germany
| | | | | | | | | |
Collapse
|
100
|
Eventov-Friedman S, Katchman H, Shezen E, Aronovich A, Tchorsh D, Dekel B, Freud E, Reisner Y. Embryonic pig liver, pancreas, and lung as a source for transplantation: optimal organogenesis without teratoma depends on distinct time windows. Proc Natl Acad Sci U S A 2005; 102:2928-33. [PMID: 15710886 PMCID: PMC548800 DOI: 10.1073/pnas.0500177102] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pig embryonic tissues represent an attractive option for organ transplantation. However, the achievement of optimal organogenesis after transplantation, namely, maximal organ growth and function without teratoma development, represents a major challenge. In this study, we determined distinct gestational time windows for the growth of pig embryonic liver, pancreas, and lung precursors. Transplantation of embryonic-tissue precursors at various gestational ages [from E (embryonic day) 21 to E100] revealed a unique pattern of growth and differentiation for each embryonic organ. Maximal liver growth and function were achieved at the earliest teratoma-free gestational age (E28), whereas the growth and functional potential of the pancreas gradually increased toward E42 and E56 followed by a marked decline in insulin-secreting capacity at E80 and E100. Development of mature lung tissue containing essential respiratory system elements was observed at a relatively late gestational age (E56). These findings, showing distinct, optimal gestational time windows for transplantation of embryonic pig liver, pancreas, and lung, might explain, in part, the disappointing results in previous transplantation trials and could help enhance the chances for successful implementation of embryonic pig tissue in the treatment of a wide spectrum of human diseases.
Collapse
|