51
|
Marr L, Lülf AT, Freudenstein A, Sutter G, Volz A. Myristoylation increases the CD8+T-cell response to a GFP prototype antigen delivered by modified vaccinia virus Ankara. J Gen Virol 2016; 97:934-940. [PMID: 26864442 DOI: 10.1099/jgv.0.000425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of CD8(+)T-cells is an essential part of immune responses elicited by recombinant modified vaccinia virus Ankara (MVA). Strategies to enhance T-cell responses to antigens may be particularly necessary for broadly protective immunization against influenza A virus infections or for candidate vaccines targeting chronic infections and cancer. Here, we tested recombinant MVAs that targeted a model antigen, GFP, to different localizations in infected cells. In vitro characterization demonstrated that GFP accumulated in the nucleus (MVA-nls-GFP), associated with cellular membranes (MVA-myr-GFP) or was equally distributed throughout the cell (MVA-GFP). On vaccination, we found significantly higher levels of GFP-specific CD8(+)T-cells in MVA-myr-GFP-vaccinated BALB/c mice than in those immunized with MVA-GFP or MVA-nls-GFP. Thus, myristoyl modification may be a useful strategy to enhance CD8(+)T-cell responses to MVA-delivered target antigens.
Collapse
Affiliation(s)
- Lisa Marr
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539, Munich, Germany
| | - Anna-Theresa Lülf
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539, Munich, Germany
| | - Astrid Freudenstein
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539, Munich, Germany
| | - Gerd Sutter
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539, Munich, Germany
| | - Asisa Volz
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539, Munich, Germany
| |
Collapse
|
52
|
Morita D, Yamamoto Y, Mizutani T, Ishikawa T, Suzuki J, Igarashi T, Mori N, Shiina T, Inoko H, Fujita H, Iwai K, Tanaka Y, Mikami B, Sugita M. Crystal structure of the N-myristoylated lipopeptide-bound MHC class I complex. Nat Commun 2016; 7:10356. [PMID: 26758274 PMCID: PMC4735555 DOI: 10.1038/ncomms10356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022] Open
Abstract
The covalent conjugation of a 14-carbon saturated fatty acid (myristic acid) to the amino-terminal glycine residue is critical for some viral proteins to function. This protein lipidation modification, termed N-myristoylation, is targeted by host cytotoxic T lymphocytes (CTLs) that specifically recognize N-myristoylated short peptides; however, the molecular mechanisms underlying lipopeptide antigen (Ag) presentation remain elusive. Here we show that a primate major histocompatibility complex (MHC) class I-encoded protein is capable of binding N-myristoylated 5-mer peptides and presenting them to specific CTLs. A high-resolution X-ray crystallographic analysis of the MHC class I:lipopeptide complex reveals an Ag-binding groove that is elaborately constructed to bind N-myristoylated short peptides rather than prototypic 9-mer peptides. The identification of lipopeptide-specific, MHC class I-restricted CTLs indicates that the widely accepted concept of MHC class I-mediated presentation of long peptides to CTLs may need some modifications to incorporate a novel MHC class I function of lipopeptide Ag presentation. Lipid antigens have been added to the antigenic repertoire in recent years. Here, the authors have identified Mamu-B*098 as a lipopeptide antigen presenting molecule and using structural and biochemical analysis have shown that it has a different antigen binding pocket to previously analysed proteins.
Collapse
Affiliation(s)
- Daisuke Morita
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukie Yamamoto
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsuaki Mizutani
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeshi Ishikawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Juri Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Tatsuhiko Igarashi
- Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naoki Mori
- Laboratory of Chemical Ecology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Hidetoshi Inoko
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Hiroaki Fujita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
53
|
Alberti MO, Jones JJ, Miglietta R, Ding H, Bakshi RK, Edmonds TG, Kappes JC, Ochsenbauer C. Optimized Replicating Renilla Luciferase Reporter HIV-1 Utilizing Novel Internal Ribosome Entry Site Elements for Native Nef Expression and Function. AIDS Res Hum Retroviruses 2015; 31:1278-96. [PMID: 26101895 DOI: 10.1089/aid.2015.0074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We previously developed replication-competent reporter HIV-1 (referred to herein as LucR.T2A reporter viruses), utilizing a "ribosome skipping" T2A peptide strategy to link Renilla luciferase (LucR) with Nef expression. The demonstrated utility for HIV-1 vaccine and transmission study applications included measurement of neutralizing antibody (NAb) activity in vaccine sera, improved cell-mediated virus inhibition assays, such as T cell-mediated virus inhibition and antibody-dependent cell-mediated cytotoxicity (ADCC) assays, and humanized mouse models. Herein, we extend our prior work and introduce reporter virus technology for applications that require fully functional Nef. We demonstrate that in CD4(+) T cells productively infected with LucR.T2A reporter viruses, T2A peptide-driven Nef expression and function, such as down-regulation of surface CD4 and MHC-I, were impaired. We overcame this limitation of LucR.T2A reporter viruses and achieved physiological Nef expression and function by engineering novel LucR reporter HIV-1 comprising 11 different internal ribosome entry site (IRES) elements chosen for size and relative activity. A range of Nef expression was observed in 293T cells transfected with the different LucR.IRES reporter virus constructs. Iteratively, we identified IRES reporter genomes that expressed Nef closest to physiological levels and produced virus with infectivity, titers, and replication kinetics similar to nonreporter viruses. Our results demonstrated that LucR reporter activity was stable over multiple replication cycles in peripheral blood mononuclear cells (PBMCs). Furthermore, we analyzed Nef functionality, i.e., down-modulation of MHC-I and CD4, following infection of T cell lines and PBMCs. Unlike LucR.T2A reporter virus, one of the redesigned LucR.IRES reporter viruses [containing the modified encephalomyocarditis virus (EMCV) 6ATR IRES element, "6ATRi"] demonstrated Nef expression and function similar to parental "nonreporter" virus. In a previously validated (nef-independent) T cell-based NAb neutralization assay, LucR.6ATRi reporter virus performed indistinguishably from LucR.T2A reporter virus. In summary, reporter viruses comprising the "6ATRi" element promise to augment HIV-1 vaccine and transmission research approaches requiring a sensitive reporter readout combined with wild-type Nef function.
Collapse
Affiliation(s)
- Michael O. Alberti
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer J. Jones
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Riccardo Miglietta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rakesh K. Bakshi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tara G. Edmonds
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama
| |
Collapse
|
54
|
Kumar S, Parameswaran S, Sharma RK. Novel myristoylation of the sperm-specific hexokinase 1 isoform regulates its atypical localization. Biol Open 2015; 4:1679-87. [PMID: 26581589 PMCID: PMC4736023 DOI: 10.1242/bio.012831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hexokinase 1 variant in mammalian spermatozoa (HK1S) has a unique N-terminus and this isoform atypically localizes to the plasma membrane. However, the mechanism of this process currently remains ambiguous. In this report, we show that fatty acylation underlies the specific sorting of HK1S. Employing chimeric reporter constructs, we first established that compartmentalization of HK1S does not function exclusively in sperm cells and that this feature is swappable to somatic HEK293 cells. Although the N-terminus lacks the classical consensus signature for myristoylation and the sequence-based predictions fail to predict myristoylation of HK1S, complementary experimental approaches confirmed that HK1S is myristoylated. Using live-cell confocal microscopy, we show that the mutation of a single amino acid, the myristoyl recipient Gly(2), impedes the prominent feature of plasma membrane association and relocates the enzyme to the cytosol but not the nucleus. Additionally, substitutions of the putatively palmitoylated Cys(5) is also reflected in a similar loss of compartmentalization of the protein. Taken together, our findings conclusively demonstrate that the N-terminal 'MGQICQ' motif in the unique GCS domain of HK1S acquires hydrophobicity by dual lipidic modifications, N-myristoylation and palmitoylation, to serve the requirements for membranous associations and thus its compartmentalization.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Sreejit Parameswaran
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Rajendra K Sharma
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
55
|
Sherman WA, Kuchibhatla DB, Limviphuvadh V, Maurer-Stroh S, Eisenhaber B, Eisenhaber F. HPMV: human protein mutation viewer - relating sequence mutations to protein sequence architecture and function changes. J Bioinform Comput Biol 2015; 13:1550028. [PMID: 26503432 DOI: 10.1142/s0219720015500286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Next-generation sequencing advances are rapidly expanding the number of human mutations to be analyzed for causative roles in genetic disorders. Our Human Protein Mutation Viewer (HPMV) is intended to explore the biomolecular mechanistic significance of non-synonymous human mutations in protein-coding genomic regions. The tool helps to assess whether protein mutations affect the occurrence of sequence-architectural features (globular domains, targeting signals, post-translational modification sites, etc.). As input, HPMV accepts protein mutations - as UniProt accessions with mutations (e.g. HGVS nomenclature), genome coordinates, or FASTA sequences. As output, HPMV provides an interactive cartoon showing the mutations in relation to elements of the sequence architecture. A large variety of protein sequence architectural features were selected for their particular relevance to mutation interpretation. Clicking a sequence feature in the cartoon expands a tree view of additional information including multiple sequence alignments of conserved domains and a simple 3D viewer mapping the mutation to known PDB structures, if available. The cartoon is also correlated with a multiple sequence alignment of similar sequences from other organisms. In cases where a mutation is likely to have a straightforward interpretation (e.g. a point mutation disrupting a well-understood targeting signal), this interpretation is suggested. The interactive cartoon can be downloaded as standalone viewer in Java jar format to be saved and viewed later with only a standard Java runtime environment. The HPMV website is: http://hpmv.bii.a-star.edu.sg/ .
Collapse
Affiliation(s)
- Westley Arthur Sherman
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, Singapore 138671, Singapore
| | - Durga Bhavani Kuchibhatla
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, Singapore 138671, Singapore
| | - Vachiranee Limviphuvadh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, Singapore 138671, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, Singapore 138671, Singapore
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, Singapore 138671, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, Singapore 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive 4, Singapore 117597, Singapore
- School of Computer Engineering (SCE), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Singapore
| |
Collapse
|
56
|
Albisetti A, Wiese S, Schneider A, Niemann M. A component of the mitochondrial outer membrane proteome of T. brucei probably contains covalent bound fatty acids. Exp Parasitol 2015; 155:49-57. [PMID: 25982029 DOI: 10.1016/j.exppara.2015.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/30/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022]
Abstract
A subclass of eukaryotic proteins is subject to modification with fatty acids, the most common of which are palmitic and myristic acid. Protein acylation allows association with cellular membranes in the absence of transmembrane domains. Here we examine POMP39, a protein previously described to be present in the outer mitochondrial membrane proteome (POMP) of the protozoan parasite Trypanosoma brucei. POMP39 lacks canonical transmembrane domains, but is likely both myristoylated and palmitoylated on its N-terminus. Interestingly, the protein is also dually localized on the surface of the mitochondrion as well as in the flagellum of both insect-stage and the bloodstream form of the parasites. Upon abolishing of global protein acylation or mutation of the myristoylation site, POMP39 relocates to the cytosol. RNAi-mediated ablation of the protein neither causes a growth phenotype in insect-stage nor bloodstream form trypanosomes.
Collapse
Affiliation(s)
- Anna Albisetti
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland.
| |
Collapse
|
57
|
Giglione C, Fieulaine S, Meinnel T. N-terminal protein modifications: Bringing back into play the ribosome. Biochimie 2015; 114:134-46. [PMID: 25450248 DOI: 10.1016/j.biochi.2014.11.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
N-terminal protein modifications correspond to the first modifications which in principle any protein may undergo, before translation is completed by the ribosome. This class of essential modifications can have different nature or function and be catalyzed by a variety of dedicated enzymes. Here, we review the current state of the major N-terminal co-translational modifications, with a particular emphasis to their catalysts, which belong to metalloprotease and acyltransferase clans. The earliest of these modifications corresponds to the N-terminal methionine excision, an ubiquitous and essential process leading to the removal of the first methionine. N-alpha acetylation occurs also in all Kingdoms although its extent appears to be significantly increased in higher eukaryotes. Finally, N-myristoylation is a crucial pathway existing only in eukaryotes. Recent studies dealing on how some of these co-translational modifiers might work in close vicinity of the ribosome is starting to provide new information on when these modifications exactly take place on the elongating nascent chain and the interplay with other ribosome biogenesis factors taking in charge the nascent chains. Here a comprehensive overview of the recent advances in the field of N-terminal protein modifications is given.
Collapse
Affiliation(s)
- Carmela Giglione
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| | - Sonia Fieulaine
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
58
|
Varland S, Osberg C, Arnesen T. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects. Proteomics 2015; 15:2385-401. [PMID: 25914051 PMCID: PMC4692089 DOI: 10.1002/pmic.201400619] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/04/2015] [Accepted: 04/21/2015] [Indexed: 01/18/2023]
Abstract
The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Camilla Osberg
- Department of Molecular Biology, University of Bergen, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
59
|
Maguire JE, Silva M, Nguyen KCQ, Hellen E, Kern AD, Hall DH, Barr MM. Myristoylated CIL-7 regulates ciliary extracellular vesicle biogenesis. Mol Biol Cell 2015; 26:2823-32. [PMID: 26041936 PMCID: PMC4571341 DOI: 10.1091/mbc.e15-01-0009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/27/2015] [Indexed: 12/19/2022] Open
Abstract
The cilium both releases and binds to extracellular vesicles (EVs). EVs may be used by cells as a form of intercellular communication and mediate a broad range of physiological and pathological processes. The mammalian polycystins (PCs) localize to cilia, as well as to urinary EVs released from renal epithelial cells. PC ciliary trafficking defects may be an underlying cause of autosomal dominant polycystic kidney disease (PKD), and ciliary-EV interactions have been proposed to play a central role in the biology of PKD. In Caenorhabditis elegans and mammals, PC1 and PC2 act in the same genetic pathway, act in a sensory capacity, localize to cilia, and are contained in secreted EVs, suggesting ancient conservation. However, the relationship between cilia and EVs and the mechanisms generating PC-containing EVs remain an enigma. In a forward genetic screen for regulators of C. elegans PKD-2 ciliary localization, we identified CIL-7, a myristoylated protein that regulates EV biogenesis. Loss of CIL-7 results in male mating behavioral defects, excessive accumulation of EVs in the lumen of the cephalic sensory organ, and failure to release PKD-2::GFP-containing EVs to the environment. Fatty acylation, such as myristoylation and palmitoylation, targets proteins to cilia and flagella. The CIL-7 myristoylation motif is essential for CIL-7 function and for targeting CIL-7 to EVs. C. elegans is a powerful model with which to study ciliary EV biogenesis in vivo and identify cis-targeting motifs such as myristoylation that are necessary for EV-cargo association and function.
Collapse
Affiliation(s)
- Julie E Maguire
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854
| | - Malan Silva
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854
| | - Ken C Q Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Elizabeth Hellen
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854
| | - Andrew D Kern
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
60
|
Takamitsu E, Fukunaga K, Iio Y, Moriya K, Utsumi T. Cell-free identification of novel N-myristoylated proteins from complementary DNA resources using bioorthogonal myristic acid analogues. Anal Biochem 2014; 464:83-93. [PMID: 25043870 DOI: 10.1016/j.ab.2014.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 12/17/2022]
Abstract
To establish a non-radioactive, cell-free detection system for protein N-myristoylation, metabolic labeling in a cell-free protein synthesis system using bioorthogonal myristic acid analogues was performed. After Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) with a biotin tag, the tagged proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and blotted on a polyvinylidene fluoride (PVDF) membrane, and then protein N-myristoylation was detected by enhanced chemiluminescence (ECL) using horseradish peroxidase (HRP)-conjugated streptavidin. The results showed that metabolic labeling in an insect cell-free protein synthesis system using an azide analogue of myristic acid followed by CuAAC with alkynyl biotin was the most effective strategy for cell-free detection of protein N-myristoylation. To determine whether the newly developed detection method can be applied for the detection of novel N-myristoylated proteins from complementary DNA (cDNA) resources, four candidate cDNA clones were selected from a human cDNA resource and their susceptibility to protein N-myristoylation was evaluated using the newly developed strategy. As a result, the products of three cDNA clones were found to be novel N-myristoylated protein, and myristoylation-dependent specific intracellular localization was observed for two novel N-myristoylated proteins. Thus, the metabolic labeling in an insect cell-free protein synthesis system using bioorthogonal azide analogue of myristic acid was an effective strategy to identify novel N-myristoylated proteins from cDNA resources.
Collapse
Affiliation(s)
- Emi Takamitsu
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kazuki Fukunaga
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Yusuke Iio
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Koko Moriya
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Toshihiko Utsumi
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan; Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan.
| |
Collapse
|
61
|
Hutton JA, Goncalves V, Brannigan JA, Paape D, Wright MH, Waugh TM, Roberts SM, Bell AS, Wilkinson AJ, Smith DF, Leatherbarrow RJ, Tate EW. Structure-based design of potent and selective Leishmania N-myristoyltransferase inhibitors. J Med Chem 2014; 57:8664-70. [PMID: 25238611 PMCID: PMC4211304 DOI: 10.1021/jm5011397] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Inhibitors
of LeishmaniaN-myristoyltransferase
(NMT), a potential target for the
treatment of leishmaniasis, obtained from a high-throughput screen,
were resynthesized to validate activity. Crystal structures bound
to Leishmania major NMT were obtained,
and the active diastereoisomer of one of the inhibitors was identified.
On the basis of structural insights, enzyme inhibition was increased
40-fold through hybridization of two distinct binding modes, resulting
in novel, highly potent Leishmania donovani NMT inhibitors with good selectivity over the human enzyme.
Collapse
Affiliation(s)
- Jennie A Hutton
- Department of Chemistry, Imperial College London , London SW7 2AZ, U.K
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Specific interaction to PIP2 increases the kinetic rate of membrane binding of VILIPs, a subfamily of Neuronal Calcium Sensors (NCS) proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2698-707. [DOI: 10.1016/j.bbamem.2014.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022]
|
63
|
Tang Y, Ye Z, Wei Y, Lin C, Wang Y, Qin C. Vertebrate Paralogous CRMPs in Nervous System: Evolutionary, Structural, and Functional Interplay. J Mol Neurosci 2014; 55:324-34. [DOI: 10.1007/s12031-014-0327-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 05/07/2014] [Indexed: 12/22/2022]
|
64
|
The guanine nucleotide exchange factor Tiam1: A Janus-faced molecule in cellular signaling. Cell Signal 2014; 26:483-91. [DOI: 10.1016/j.cellsig.2013.11.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 11/22/2022]
|
65
|
Frénal K, Kemp LE, Soldati-Favre D. Emerging roles for protein S-palmitoylation in Toxoplasma biology. Int J Parasitol 2014; 44:121-31. [PMID: 24184909 DOI: 10.1016/j.ijpara.2013.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/25/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022]
Abstract
Post-translational modifications are refined, rapidly responsive and powerful ways to modulate protein function. Among post-translational modifications, acylation is now emerging as a widespread modification exploited by eukaryotes, bacteria and viruses to control biological processes. Protein palmitoylation involves the attachment of palmitic acid, also known as hexadecanoic acid, to cysteine residues of integral and peripheral membrane proteins and increases their affinity for membranes. Importantly, similar to phosphorylation, palmitoylation is reversible and is becoming recognised as instrumental for the regulation of protein function by modulating protein interactions, stability, folding, trafficking and signalling. Palmitoylation appears to play a central role in the biology of the Apicomplexa, regulating critical processes such as host cell invasion which is vital for parasite survival and dissemination. The recent identification of over 400 palmitoylated proteins in Plasmodium falciparum erythrocytic stages illustrates the broad spread and impact of this modification on parasite biology. The main enzymes responsible for protein palmitoylation are multi-membrane protein S-acyl transferases harbouring a catalytic Asp-His-His-Cys (DHHC) motif. A global functional analysis of the repertoire of protein S-acyl transferases in Toxoplasma gondii and Plasmodium berghei has recently been performed. The essential nature of some of these enzymes illustrates the key roles played by this post-translational modification in the corresponding substrates implicated in fundamental processes such as parasite motility and organelle biogenesis. Toward a better understanding of the depalmitoylation event, a protein with palmitoyl protein thioesterase activity has been identified in T. gondii. TgPPT1/TgASH1 is the main target of specific acyl protein thioesterase inhibitors but is dispensable for parasite survival, suggesting the implication of other genes in depalmitoylation. Palmitoylation/depalmitoylation cycles are now emerging as potential novel regulatory networks and T. gondii represents a superb model organism in which to explore their significance.
Collapse
Affiliation(s)
- Karine Frénal
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | - Louise E Kemp
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|
66
|
Running MP. The role of lipid post-translational modification in plant developmental processes. FRONTIERS IN PLANT SCIENCE 2014; 5:50. [PMID: 24600462 PMCID: PMC3927097 DOI: 10.3389/fpls.2014.00050] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/01/2014] [Indexed: 05/06/2023]
Abstract
Most eukaryotic proteins are post-translationally modified, and modification has profound effects on protein function. One key modification is the attachment of a lipid group to certain amino acids; this typically facilitates subcellular targeting (association with a membrane) and protein-protein interactions (by virtue of the large hydrophobic moiety). Most widely recognized are lipid modifications of proteins involved in developmental signaling, but proteins with structural roles are also lipid-modified. The three known types of intracellular protein lipid modifications are S-acylation, N-myristoylation, and prenylation. In plants, genetic analysis of the enzymes involved, along with molecular analysis of select target proteins, has recently shed light on the roles of lipid modification in key developmental processes, such as meristem function, flower development, polar cell elongation, cell differentiation, and hormone responses. In addition, while lipid post-translational mechanisms are generally conserved among eukaryotes, plants differ in the nature and function of target proteins, the effects of lipid modification on target proteins, and the roles of lipid modification in developmental processes.
Collapse
Affiliation(s)
- Mark P. Running
- *Correspondence: Mark P. Running, Department of Biology, University of Louisville, Louisville, KY 40292, USA e-mail:
| |
Collapse
|
67
|
Tate EW, Bell AS, Rackham MD, Wright MH. N-Myristoyltransferase as a potential drug target in malaria and leishmaniasis. Parasitology 2014; 141:37-49. [PMID: 23611109 DOI: 10.1017/s0031182013000450] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infections caused by protozoan parasites are among the most widespread and intractable transmissible diseases affecting the developing world, with malaria and leishmaniasis being the most costly in terms of morbidity and mortality. Although new drugs are urgently required against both diseases in the face of ever-rising resistance to frontline therapies, very few candidates passing through development pipelines possess a known and novel mode of action. Set in the context of drugs currently in use and under development, we present the evidence for N-myristoyltransferase (NMT), an enzyme that N-terminally lipidates a wide range of specific target proteins through post-translational modification, as a potential drug target in malaria and the leishmaniases. We discuss the limitations of current knowledge regarding the downstream targets of this enzyme in protozoa, and our recent progress towards potent cell-active NMT inhibitors against the most clinically-relevant species of parasite. Finally, we outline the next steps required in terms of both tools to understand N-myristoylation in protozoan parasites, and the generation of potential development candidates based on the output of our recently-reported high-throughput screens.
Collapse
Affiliation(s)
- Edward W Tate
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Andrew S Bell
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Mark D Rackham
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Megan H Wright
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
68
|
A novel ICK peptide from the Loxosceles intermedia (brown spider) venom gland: Cloning, heterologous expression and immunological cross-reactivity approaches. Toxicon 2013; 71:147-58. [DOI: 10.1016/j.toxicon.2013.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 12/28/2022]
|
69
|
Najumudeen AK, Köhnke M, Šolman M, Alexandrov K, Abankwa D. Cellular FRET-Biosensors to Detect Membrane Targeting Inhibitors of N-Myristoylated Proteins. PLoS One 2013; 8:e66425. [PMID: 23824448 PMCID: PMC3688908 DOI: 10.1371/journal.pone.0066425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Hundreds of eukaryotic signaling proteins require myristoylation to functionally associate with intracellular membranes. N-myristoyl transferases (NMT) responsible for this modification are established drug targets in cancer and infectious diseases. Here we describe NANOMS (NANOclustering and Myristoylation Sensors), biosensors that exploit the FRET resulting from plasma membrane nanoclustering of myristoylated membrane targeting sequences of Gαi2, Yes- or Src-kinases fused to fluorescent proteins. When expressed in mammalian cells, NANOMS report on loss of membrane anchorage due to chemical or genetic inhibition of myristoylation e.g. by blocking NMT and methionine-aminopeptidase (Met-AP). We used Yes-NANOMS to assess inhibitors of NMT and a cherry-picked compound library of putative Met-AP inhibitors. Thus we successfully confirmed the activity of DDD85646 and fumagillin in our cellular assay. The developed assay is unique in its ability to identify modulators of signaling protein nanoclustering, and is amenable to high throughput screening for chemical or genetic inhibitors of functional membrane anchorage of myristoylated proteins in mammalian cells.
Collapse
Affiliation(s)
| | - Monika Köhnke
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Maja Šolman
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - Kirill Alexandrov
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
- * E-mail: (DA); (KA)
| | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
- * E-mail: (DA); (KA)
| |
Collapse
|
70
|
Lu SX, Hrabak EM. The myristoylated amino-terminus of an Arabidopsis calcium-dependent protein kinase mediates plasma membrane localization. PLANT MOLECULAR BIOLOGY 2013; 82:267-78. [PMID: 23609608 PMCID: PMC3668125 DOI: 10.1007/s11103-013-0061-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 04/15/2013] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CDPK) are a major group of calcium-stimulated kinases found in plants and some protists. Many CDPKs are membrane-associated, presumably because of lipid modifications at their amino termini. We investigated the subcellular location and myristoylation of AtCPK5, a member of the Arabidopsis CDPK family. Most AtCPK5 was associated with the plasma membrane as demonstrated by two-phase fractionation of plant microsomes and by in vivo detection of AtCPK5-GFP fusion proteins. AtCPK5 was a substrate for plant N-myristoyltransferase and myristoylation was prevented by converting the glycine at the proposed site of myristate attachment to alanine (G2A). In transgenic plants, a G2A mutation completely abolished AtCPK5 membrane association, indicating that myristoylation was essential for membrane binding. The first sixteen amino acids of AtCPK5 were sufficient to direct plasma membrane localization. In addition, differentially phosphorylated forms of AtCPK5 were detected both in planta and after expression of AtCPK5 in a cell-free plant extract. Our results demonstrate that AtCPK5 is myristoylated at its amino terminus and that myristoylation is required for membrane binding.
Collapse
Affiliation(s)
- Sheen X. Lu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
- Present Address: Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA 09905 USA
| | - Estelle M. Hrabak
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
71
|
Cheng SF, Tsai MS, Huang CL, Huang YP, Chen IH, Lin NS, Hsu YH, Tsai CH, Cheng CP. Ser/Thr kinase-like protein of Nicotiana benthamiana is involved in the cell-to-cell movement of Bamboo mosaic virus. PLoS One 2013; 8:e62907. [PMID: 23646157 PMCID: PMC3639906 DOI: 10.1371/journal.pone.0062907] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/28/2013] [Indexed: 01/08/2023] Open
Abstract
To investigate the plant genes affected by Bamboo mosaic virus (BaMV) infection, we applied a cDNA-amplified fragment length polymorphism technique to screen genes with differential expression. A serine/threonine kinase-like (NbSTKL) gene of Nicotiana benthamiana is upregulated after BaMV infection. NbSTKL contains the homologous domain of Ser/Thr kinase. Knocking down the expression of NbSTKL by virus-induced gene silencing reduced the accumulation of BaMV in the inoculated leaves but not in the protoplasts. The spread of GFP-expressing BaMV in the inoculated leaves is also impeded by a reduced expression of NbSTKL. These data imply that NbSTKL facilitates the cell-to-cell movement of BaMV. The subcellular localization of NbSTKL is mainly on the cell membrane, which has been confirmed by mutagenesis and fractionation experiments. Combined with the results showing that active site mutation of NbSTKL does not change its subcellular localization but significantly affects BaMV accumulation, we conclude that NbSTKL may regulate BaMV movement on the cell membrane by its kinase-like activity. Moreover, the transient expression of NbSTKL does not significantly affect the accumulation of Cucumber mosaic virus (CMV) and Potato virus X (PVX); thus, NbSTKL might be a specific protein facilitating BaMV movement.
Collapse
Affiliation(s)
- Shun-Fang Cheng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Shan Tsai
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Chia-Lin Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang Taipei, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Ping Cheng
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
72
|
Sedzik J, Jastrzebski JP, Ikenaka K. Sequence motifs of myelin membrane proteins: towards the molecular basis of diseases. J Neurosci Res 2013; 91:479-93. [PMID: 23339078 DOI: 10.1002/jnr.23177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/09/2012] [Accepted: 10/18/2012] [Indexed: 12/30/2022]
Abstract
The shortest sequence of amino acids in protein containing functional and structural information is a "motif." To understand myelin protein functions, we intensively searched for motifs that can be found in myelin proteins. Some myelin proteins had several different motifs or repetition of the same motif. The most abundant motif found among myelin proteins was a myristoylation motif. Bovine MAG held 11 myristoylation motifs and human myelin basic protein held as many as eight such motifs. PMP22 had the fewest myristoylation motifs, which was only one; rat PMP22 contained no such motifs. Cholesterol recognition/interaction amino-acid consensus (CRAC) motif was not found in myelin basic protein. P2 protein of different species contained only one CRAC motif, except for P2 of horse, which had no such motifs. MAG, MOG, and P0 were very rich in CRAC, three to eight motifs per protein. The analysis of motifs in myelin proteins is expected to provide structural insight and refinement of predicted 3D models for which structures are as yet unknown. Analysis of motifs in mutant proteins associated with neurological diseases uncovered that some motifs disappeared in P0 with mutation found in neurological diseases. There are 2,500 motifs deposited in a databank, but 21 were found in myelin proteins, which is only 1% of the total known motifs. There was great variability in the number of motifs among proteins from different species. The appearance or disappearance of protein motifs after gaining point mutation in the protein related to neurological diseases was very interesting.
Collapse
Affiliation(s)
- Jan Sedzik
- Protein Crystallization Facility, Department of Chemical Engineering, Royal Institute of Technology, Stockholm, Sweden.
| | | | | |
Collapse
|
73
|
Traverso JA, Micalella C, Martinez A, Brown SC, Satiat-Jeunemaître B, Meinnel T, Giglione C. Roles of N-terminal fatty acid acylations in membrane compartment partitioning: Arabidopsis h-type thioredoxins as a case study. THE PLANT CELL 2013; 25:1056-77. [PMID: 23543785 PMCID: PMC3634677 DOI: 10.1105/tpc.112.106849] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/22/2013] [Accepted: 03/04/2013] [Indexed: 05/18/2023]
Abstract
N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants. However, little is known about how N-terminal lipidation governs membrane compartmentalization of proteins in plants. We show here that h-type thioredoxins (h-TRXs) cluster in four evolutionary subgroups displaying strictly conserved N-terminal modifications. It was predicted that one subgroup undergoes only MYR and another undergoes both MYR and PAL. We used plant TRXs as a model protein family to explore the effect of MYR alone or MYR and PAL in the same family of proteins. We used a high-throughput biochemical strategy to assess MYR of specific TRXs. Moreover, various TRX-green fluorescent protein fusions revealed that MYR localized protein to the endomembrane system and that partitioning between this membrane compartment and the cytosol correlated with the catalytic efficiency of the N-myristoyltransferase acting at the N terminus of the TRXs. Generalization of these results was obtained using several randomly selected Arabidopsis proteins displaying a MYR site only. Finally, we demonstrated that a palmitoylatable Cys residue flanking the MYR site is crucial to localize proteins to micropatching zones of the plasma membrane.
Collapse
Affiliation(s)
- José A. Traverso
- Centre National de la Recherche Scientifique, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, C/ Profesor Albareda 1, Granada, Spain
| | - Chiara Micalella
- Centre National de la Recherche Scientifique, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Aude Martinez
- Centre National de la Recherche Scientifique, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Spencer C. Brown
- Centre National de la Recherche Scientifique, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Béatrice Satiat-Jeunemaître
- Centre National de la Recherche Scientifique, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Centre National de la Recherche Scientifique, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Centre National de la Recherche Scientifique, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
- Address correspondence to
| |
Collapse
|
74
|
Cebula M, Moolla N, Capovilla A, Arnér ESJ. The rare TXNRD1_v3 ("v3") splice variant of human thioredoxin reductase 1 protein is targeted to membrane rafts by N-acylation and induces filopodia independently of its redox active site integrity. J Biol Chem 2013; 288:10002-10011. [PMID: 23413027 DOI: 10.1074/jbc.m112.445932] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The human selenoprotein thioredoxin reductase 1 (TrxR1), encoded by the TXNRD1 gene, is a key player in redox regulation. Alternative splicing generates several TrxR1 variants, one of which is v3 that carries an atypical N-terminal glutaredoxin domain. When overexpressed, v3 associates with membranes and triggers formation of filopodia. Here we found that membrane targeting of v3 is mediated by myristoylation and palmitoylation of its N-terminal MGC motif, through which v3 specifically targets membrane rafts. This was suggested by its localization in cholera toxin subunit B-stained membrane areas and also shown using lipid fractionation experiments. Utilizing site-directed mutant variants, we also found that v3-mediated generation of filopodia is independent of the Cys residues in its redox active site, but dependent upon its membrane raft targeting. These results identify v3 as an intricately regulated protein that expands TXNRD1-derived protein functions to the membrane raft compartment.
Collapse
Affiliation(s)
- Marcus Cebula
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Naazneen Moolla
- Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, 2193 Johannesburg, South Africa
| | - Alexio Capovilla
- Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, 2193 Johannesburg, South Africa
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
75
|
Hemsworth GR, Price HP, Smith DF, Wilson KS. Crystal structure of the small GTPase Arl6/BBS3 from Trypanosoma brucei. Protein Sci 2013. [PMID: 23184293 DOI: 10.1002/pro.2198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Arl6/BBS3 is a small GTPase, mutations in which are implicated in the human ciliopathy Bardet-Biedl Syndrome (BBS). Arl6 is proposed to facilitate the recruitment of a large protein complex known as the BBSome to the base of the primary cilium, mediating specific trafficking of molecules to this important sensory organelle. Orthologues of Arl6 and the BBSome core subunits have been identified in the genomes of trypanosomes. Flagellum function and motility are crucial to the survival of Trypanosoma brucei, the causative agent of human African sleeping sickness, in the human bloodstream stage of its lifecycle and so the function of the BBSome proteins in trypanosomes warrants further study. RNAi knockdown of T. brucei Arl6 (TbArl6) has recently been shown to result in shortening of the trypanosome flagellum. Here we present the crystal structure of TbArl6 with the bound non-hydrolysable GTP analog GppNp at 2.0 Å resolution and highlight important differences between the trypanosomal and human proteins. Analysis of the TbArl6 active site confirms that it lacks the key glutamine that activates the nucleophile during GTP hydrolysis in other small GTPases. Furthermore, the trypanosomal proteins are significantly shorter at their N-termini suggesting a different method of membrane insertion compared to humans. Finally, analysis of sequence conservation suggests two surface patches that may be important for protein-protein interactions. Our structural analysis thus provides the basis for future biochemical characterisation of this important family of small GTPases.
Collapse
Affiliation(s)
- Glyn R Hemsworth
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, United Kingdom
| | | | | | | |
Collapse
|
76
|
Hardy RY, Resh MD. Identification of N-terminal residues of Sonic Hedgehog important for palmitoylation by Hedgehog acyltransferase. J Biol Chem 2012; 287:42881-9. [PMID: 23112049 DOI: 10.1074/jbc.m112.426833] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sonic Hedgehog (Shh) is a secreted morphogen that regulates embryonic development. After removal of the signal peptide, Shh is processed to the mature, active form through autocleavage and a series of lipid modifications, including the attachment of palmitate. Covalent attachment of palmitate to the N-terminal cysteine of Shh is catalyzed by Hedgehog acyltransferase (Hhat) and is critical for proper signaling. The sequences within Shh that are responsible for palmitoylation by Hhat are not known. Here we show that the first six amino acids of mature Shh (CGPGRG) are sufficient for Hhat-mediated palmitoylation. Alanine scanning mutagenesis was used to determine the role of each amino acid and the positional sequence requirement in a cell-based Shh palmitoylation assay. Mutation of residues in the GPGR sequence to Ala had no effect on palmitoylation, provided that a positively charged residue was present within the first seven residues. The N-terminal position exhibited a strong but not exclusive requirement for Cys. Constructs with an N-terminal Ala were not palmitoylated. However, an N-terminal Ser served as a substrate for Hhat, but not the Drosophila melanogaster ortholog Rasp, highlighting a critical difference between the mammalian and fly enzymes. These findings define residues and regions within Shh that are necessary for its recognition as a substrate for Hhat-mediated palmitoylation. Finally, we report the results of a bioinformatics screen to identify other potential Hhat substrates encoded in the human genome.
Collapse
Affiliation(s)
- Rayshonda Y Hardy
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | |
Collapse
|
77
|
Paramanik V, Thakur MK. Estrogen receptor β and its domains interact with casein kinase 2, phosphokinase C, and N-myristoylation sites of mitochondrial and nuclear proteins in mouse brain. J Biol Chem 2012; 287:22305-16. [PMID: 22566700 DOI: 10.1074/jbc.m112.351262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The localization of estrogen receptor (ER)β in mitochondria suggests ERβ-dependent regulation of genes, which is poorly understood. Here, we analyzed the ERβ interacting mitochondrial as well as nuclear proteins in mouse brain using pull-down assay and matrix-assisted laser desorption ionization mass spectroscopy (MALDI-MS). In the case of mitochondria, ERβ interacted with six proteins of 35-152 kDa, its transactivation domain (TAD) interacted with four proteins of 37-172 kDa, and ligand binding domain (LBD) interacted with six proteins of 37-161 kDa. On the other hand, in nuclei, ERβ interacted with seven proteins of 30-203 kDa, TAD with ten proteins of 31-160 kDa, and LBD with fourteen proteins of 42-179 kDa. For further identification, these proteins were cleaved by trypsin into peptides and analyzed by MALDI-MS using mascot search engine, immunoprecipitation, immunoblotting, and far-Western blotting. To find the consensus binding motifs in interacting proteins, their unique tryptic peptides were analyzed by the motif scan software. All the interacting proteins were found to contain casein kinase (CK) 2, phosphokinase (PK)C phosphorylation, and N-myristoylation sites. These were further confirmed by peptide pull-down assays using specific mutations in the interacting sites. Thus, the present findings provide evidence for the interaction of ERβ with specific mitochondrial and nuclear proteins through consensus CK2, PKC phosphorylation, and N-myristoylation sites, and may represent an essential step toward designing selective ER modulators for regulating estrogen-mediated signaling.
Collapse
Affiliation(s)
- Vijay Paramanik
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Banaras Hindu University, Varanasi-221 005, India
| | | |
Collapse
|
78
|
Identification and characterization of a novel Neospora caninum immune mapped protein 1. Parasitology 2012; 139:998-1004. [DOI: 10.1017/s0031182012000285] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SUMMARYImmune mapped protein 1 (IMP1) is a newly discovered protein in Eimeria maxima. It is recognized as a potential vaccine candidate against E. maxima and a highly conserved protein in apicomplexan parasites. Although the Neospora caninum IMP1 (NcIMP1) orthologue of E. maxima IMP1 was predicted in the N. caninum genome, it was still not identified and characterized. In this study, cDNA sequence encoding NcIMP1 was cloned by RT-PCR from RNA isolated from Nc1 tachyzoites. NcIMP1 was encoded by an open reading frame of 1182 bp, which encoded a protein of 393 amino acids with a predicted molecular weight of 42·9 kDa. Sequence analysis showed that there was neither a signal peptide nor a transmembrane region present in the NcIMP1 amino acid sequence. However, several kinds of functional protein motifs, including an N-myristoylation site and a palmitoylation site were predicted. Recombinant NcIMP1 (rNcIMP1) was expressed in Escherichia coli and then purified rNcIMP1 was used to prepare specific antisera in mice. Mouse polyclonal antibodies raised against the rNcIMP1 recognized an approximate 43 kDa native IMP1 protein. Immunofluorescence analysis showed that NcIMP1 was localized on the membrane of N. caninum tachyzoites. The N-myristoylation site and the palmitoylation site were found to contribute to the localization of NcIMP1. Furthermore, the rNcIMP1-specific antibodies could inhibit cell invasion by N. caninum tachyzoites in vitro. All the results indicate that NcIMP1 is likely to be a membrane protein of N. caninum and may be involved in parasite invasion.
Collapse
|
79
|
Maclean LM, O'Toole PJ, Stark M, Marrison J, Seelenmeyer C, Nickel W, Smith DF. Trafficking and release of Leishmania metacyclic HASPB on macrophage invasion. Cell Microbiol 2012; 14:740-61. [PMID: 22256896 PMCID: PMC3491706 DOI: 10.1111/j.1462-5822.2012.01756.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins of the Leishmania hydrophilic acylated surface protein B (HASPB) family are only expressed in infective parasites (both extra- and intracellular stages) and, together with the peripheral membrane protein SHERP (small hydrophilic endoplasmic reticulum-associated protein), are essential for parasite differentiation (metacyclogenesis) in the sand fly vector. HASPB is a ‘non-classically’ secreted protein, requiring N-terminal acylation for trafficking to and exposure on the plasma membrane. Here, we use live cell imaging methods to further explore this pathway to the membrane and flagellum. Unlike HASPB trafficking in transfected mammalian cells, we find no evidence for a phosphorylation-regulated recycling pathway in metacyclic parasites. Once at the plasma membrane, HASPB18–GFP (green fluorescent protein) can undergo bidirectional movement within the inner leaflet of the membrane and on the flagellum. Transfer of fluorescent protein between the flagellum and the plasma membrane is compromised, however, suggesting the presence of a diffusion barrier at the base of the Leishmania flagellum. Full-length HASPB is released from the metacyclic parasite surface on to macrophages during phagocytosis but while expression is maintained in intracellular amastigotes, HASPB cannot be detected on the external surface in these cells. Thus HASPB may be a dual function protein that is shed by the infective metacyclic but retained internally once Leishmania are taken up by macrophages.
Collapse
Affiliation(s)
- Lorna M Maclean
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York YO10 5DD, UK
| | | | | | | | | | | | | |
Collapse
|
80
|
Banday AR, Azim S, Tabish M. Identification and expression analysis of three novel splice variants of protein kinase A catalytic β subunit gene in the mouse using combinatorial in silico and molecular biology approaches. FEBS J 2012; 279:572-85. [DOI: 10.1111/j.1742-4658.2011.08446.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
81
|
Brand S, Cleghorn LAT, McElroy SP, Robinson DA, Smith VC, Hallyburton I, Harrison JR, Norcross NR, Spinks D, Bayliss T, Norval S, Stojanovski L, Torrie LS, Frearson JA, Brenk R, Fairlamb AH, Ferguson MAJ, Read KD, Wyatt PG, Gilbert IH. Discovery of a novel class of orally active trypanocidal N-myristoyltransferase inhibitors. J Med Chem 2011; 55:140-52. [PMID: 22148754 PMCID: PMC3256935 DOI: 10.1021/jm201091t] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-Myristoyltransferase (NMT) represents a promising drug target for human African trypanosomiasis (HAT), which is caused by the parasitic protozoa Trypanosoma brucei. We report the optimization of a high throughput screening hit (1) to give a lead molecule DDD85646 (63), which has potent activity against the enzyme (IC(50) = 2 nM) and T. brucei (EC(50) = 2 nM) in culture. The compound has good oral pharmacokinetics and cures rodent models of peripheral HAT infection. This compound provides an excellent tool for validation of T. brucei NMT as a drug target for HAT as well as a valuable lead for further optimization.
Collapse
Affiliation(s)
- Stephen Brand
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Protein palmitoylation and subcellular trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2981-94. [DOI: 10.1016/j.bbamem.2011.07.009] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
|
83
|
Abstract
AbstractThioredoxins (Trxs), as small ubiquitous proteins, participate in dithiol-disulfide exchange reactions. In contrast to other organisms, plants have a complex family of Trxs, which contains seven different Trx types: f, h, m, o, x, y, and z. The h-type Trx consists of multiple forms that are involved in different processes. A full-length cDNA coding for a Trx h, designated VvTrx h2, was isolated and cloned from grape (Vitis vinifera L. cv. White Seedless) berry tissue by RT-PCR technique. Nucleotide sequence analysis revealed 561 nucleotides in length encoded for a protein of 114 amino acid residues. The deduced polypeptide sequence harbors a typical catalytic site, WCGPC and its calculated molecular mass and its predicted isoelectric point are 12.79 and 5.06 kDa, respectively. The threedimensional modeling and docking studies allow for the proposal that VvTrx h2 could be reduced by a NADP-thioredoxin reductase rather than glutaredoxin, as shown for its ortholog from Arabidopsis. The deduced amino acid sequence showed a high degree of similarity to Trx h isoforms from other sources. Phylogenetic studies indicated that VvTrx h2 gene is related to h-type Trx subgroup I. Semi-quantitative RT-PCR analysis revealed that the VvTrx h2 gene was expressed in all plant tissues at different developmental stages.
Collapse
|
84
|
Eisenhaber B, Sammer M, Lua WH, Benetka W, Liew LL, Yu W, Lee HK, Koranda M, Eisenhaber F, Adhikari S. Nuclear import of a lipid-modified transcription factor: mobilization of NFAT5 isoform a by osmotic stress. Cell Cycle 2011; 10:3897-911. [PMID: 22071693 DOI: 10.4161/cc.10.22.18043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lipid-modified transcription factors (TFs) are biomolecular oddities since their reduced mobility and membrane attachment appear to contradict nuclear import required for their gene-regulatory function. NFAT5 isoform a (selected from an in silico screen for predicted lipid-modified TFs) is shown to contribute about half of all endogenous expression of human NFAT5 isoforms in the isotonic state. Wild-type NFAT5a protein is indeed myristoylated and palmitoylated on its transport to the plasmalemma via the endoplasmic reticulum and the Golgi. In contrast, its lipid anchor-deficient mutants as well as isoforms NFAT5b/c are diffusely localized in the cytoplasm without preference to vesicular structures. Quantitative/live microscopy shows the plasmamembrane-bound fraction of NFAT5a moving into the nucleus upon osmotic stress despite the lipid anchoring. The mobilization mechanism is not based on proteolytic processing of the lipid-anchored N-terminus but appears to involve reversible palmitoylation. Thus, NFAT5a is an example of TFs immobilized with lipid anchors at cyotoplasmic membranes in the resting state and that, nevertheless, can translocate into the nucleus upon signal induction.
Collapse
|
85
|
Maric D, McGwire BS, Buchanan KT, Olson CL, Emmer BT, Epting CL, Engman DM. Molecular determinants of ciliary membrane localization of Trypanosoma cruzi flagellar calcium-binding protein. J Biol Chem 2011; 286:33109-17. [PMID: 21784841 DOI: 10.1074/jbc.m111.240895] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flagellar calcium-binding protein (FCaBP) of Trypanosoma cruzi is localized to the flagellar membrane in all life cycle stages of the parasite. Myristoylation and palmitoylation of the N terminus of FCaBP are necessary for flagellar membrane targeting. Not all dually acylated proteins in T. cruzi are flagellar, however. Other determinants of FCaBP therefore likely contribute to flagellar specificity. We generated T. cruzi transfectants expressing the N-terminal 24 or 12 amino acids of FCaBP fused to GFP. Analysis of these mutants revealed that although amino acids 1-12 are sufficient for dual acylation and membrane binding, amino acids 13-24 are required for flagellar specificity and lipid raft association. Mutagenesis of several conserved lysine residues in the latter peptide demonstrated that these residues are essential for flagellar targeting and lipid raft association. Finally, FCaBP was expressed in the protozoan Leishmania amazonensis, which lacks FCaBP. The flagellar localization and membrane association of FCaBP in L. amazonensis suggest that the mechanisms for flagellar targeting, including a specific palmitoyl acyltransferase, are conserved in this organism.
Collapse
Affiliation(s)
- Danijela Maric
- Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Unconventional myristoylation of large-conductance Ca²⁺-activated K⁺ channel (Slo1) via serine/threonine residues regulates channel surface expression. Proc Natl Acad Sci U S A 2011; 108:10744-9. [PMID: 21670298 DOI: 10.1073/pnas.1008863108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Protein myristoylation is a means by which cells anchor proteins into membranes. The most common type of myristoylation occurs at an N-terminal glycine. However, myristoylation rarely occurs at an internal amino acid residue. Here we tested whether the α-subunit of the human large-conductance voltage- and Ca(2+)-activated K(+) channel (hSlo1) might undergo internal myristoylation. hSlo1 expressed in HEK293T cells incorporated [(3)H]myristic acid via a posttranslational mechanism, which is insensitive to cycloheximide, an inhibitor of protein biosynthesis. In-gel hydrolysis of [(3)H]myristoyl-hSlo1 with alkaline NH(2)OH (which cleaves hydroxyesters) but not neutral NH(2)OH (which cleaves thioesters) completely removed [(3)H]myristate from hSlo1, suggesting the involvement of a hydroxyester bond between hSlo1's hydroxyl-bearing serine, threonine, and/or tyrosine residues and myristic acid; this type of esterification was further confirmed by its resistance to alkaline Tris·HCl. Treatment of cells expressing hSlo1 with 100 μM myristic acid caused alteration of hSlo1 activation kinetics and a 40% decrease in hSlo1 current density from 20 to 12 nA*MΩ. Immunocytochemistry confirmed a decrease in hSlo1 plasmalemma localization by myristic acid. Replacement of the six serines or the seven threonines (but not of the single tyrosine) of hSlo1 intracellular loops 1 and 3 with alanines decreased hSlo1 direct myristoylation by 40-44%, whereas in combination decreased myristoylation by nearly 90% and abolished the myristic acid-induced change in current density. Our data demonstrate that an ion channel, hSlo1, is internally and posttranslationally myristoylated. Myristoylation occurs mainly at hSlo1 intracellular loop 1 or 3, and is an additional mechanism for channel surface expression regulation.
Collapse
|
87
|
Cao W, Sumikoshi K, Nakamura S, Terada T, Shimizu K. Prediction of N-myristoylation modification of proteins by SVM. Bioinformation 2011; 6:204-6. [PMID: 21738315 PMCID: PMC3124801 DOI: 10.6026/97320630006204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 05/12/2011] [Indexed: 11/29/2022] Open
Abstract
Attachment of a myristoyl group to NH(2)-terminus of a nascent protein among protein post-translational modification (PTM) is called myristoylation. The myristate moiety of proteins plays an important role for their biological functions, such as regulation of membrane binding (HIV-1 Gag) and enzyme activity (AMPK). Several predictors based on protein sequences alone are hitherto proposed. However, they produce a great number of false positive and false negative predictions; or they cannot be used for general purpose (i.e., taxon-specific); or threshold values of the decision rule of predictors need to be selected with cautiousness. Here, we present novel and taxon-free predictors based on protein primary structure. To identify myristoylated proteins accurately, we employ a widely used machinelearning algorithm, support vector machine (SVM). A series of SVM predictors are developed in the present study where various scales representing physicochemical and biological properties of amino acids (from the AAindex database) are used for numerical transformation of protein sequences. Of the predictors, the top ten achieve accuracies of >98% (the average value is 98.34%), and also the area under the ROC curve (AUC) values of >0.98. Compared with those of previous studies, the prediction accuracies are improved by about 3 to 4%.
Collapse
Affiliation(s)
- Wei Cao
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuya Sumikoshi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shugo Nakamura
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tohru Terada
- Agricultural Bioinformatics Research Unit, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
88
|
Martin DDO, Beauchamp E, Berthiaume LG. Post-translational myristoylation: Fat matters in cellular life and death. Biochimie 2011; 93:18-31. [PMID: 21056615 DOI: 10.1016/j.biochi.2010.10.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/23/2010] [Indexed: 01/15/2023]
Abstract
Myristoylation corresponds to the irreversible covalent linkage of the 14-carbon saturated fatty acid, myristic acid, to the N-terminal glycine of many eukaryotic and viral proteins. It is catalyzed by N-myristoyltransferase. Typically, the myristate moiety participates in protein subcellular localization by facilitating protein-membrane interactions as well as protein-protein interactions. Myristoylated proteins are crucial components of a wide variety of functions, which include many signalling pathways, oncogenesis or viral replication. Initially, myristoylation was described as a co-translational reaction that occurs after the removal of the initiator methionine residue. However, it is now well established that myristoylation can also occur post-translationally in apoptotic cells. Indeed, during apoptosis hundreds of proteins are cleaved by caspases and in many cases this cleavage exposes an N-terminal glycine within a cryptic myristoylation consensus sequence, which can be myristoylated. The principal objective of this review is to provide an overview on the implication of myristoylation in health and disease with a special emphasis on post-translational myristoylation. In addition, new advancements in the detection and identification of myristoylated proteins are also briefly reviewed.
Collapse
Affiliation(s)
- Dale D O Martin
- Department of Cell Biology, School of Molecular and Systems Medicine, MSB-5-55, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
89
|
Posttranslational Modifications of Plasma Membrane Proteins and Their Implications for Plant Growth and Development. THE PLANT PLASMA MEMBRANE 2011. [DOI: 10.1007/978-3-642-13431-9_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
90
|
Whitley DS, Yu K, Sample RC, Sinning A, Henegar J, Norcross E, Chinchar VG. Frog virus 3 ORF 53R, a putative myristoylated membrane protein, is essential for virus replication in vitro. Virology 2010; 405:448-56. [PMID: 20633916 DOI: 10.1016/j.virol.2010.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/26/2010] [Accepted: 06/17/2010] [Indexed: 11/18/2022]
Abstract
Although previous work identified 12 complementation groups with possible roles in virus assembly, currently only one frog virus 3 protein, the major capsid protein (MCP), has been linked with virion formation. To identify other proteins required for assembly, we used an antisense morpholino oligonucleotide to target 53R, a putative myristoylated membrane protein, and showed that treatment resulted in marked reductions in 53R levels and a 60% drop in virus titers. Immunofluorescence assays confirmed knock down and showed that 53R was found primarily within viral assembly sites, whereas transmission electron microscopy detected fewer mature virions and, in some cells, dense granular bodies that may represent unencapsidated DNA-protein complexes. Treatment with a myristoylation inhibitor (2-hydroxymyristic acid) resulted in an 80% reduction in viral titers. Collectively, these data indicate that 53R is an essential viral protein that is required for replication in vitro and suggest it plays a critical role in virion formation.
Collapse
Affiliation(s)
- Dexter S Whitley
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Rask TS, Hansen DA, Theander TG, Gorm Pedersen A, Lavstsen T. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes--divide and conquer. PLoS Comput Biol 2010; 6. [PMID: 20862303 PMCID: PMC2940729 DOI: 10.1371/journal.pcbi.1000933] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022] Open
Abstract
The var gene encoded hyper-variable Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates cytoadhesion of infected erythrocytes to human endothelium. Antibodies blocking cytoadhesion are important mediators of malaria immunity acquired by endemic populations. The development of a PfEMP1 based vaccine mimicking natural acquired immunity depends on a thorough understanding of the evolved PfEMP1 diversity, balancing antigenic variation against conserved receptor binding affinities. This study redefines and reclassifies the domains of PfEMP1 from seven genomes. Analysis of domains in 399 different PfEMP1 sequences allowed identification of several novel domain classes, and a high degree of PfEMP1 domain compositional order, including conserved domain cassettes not always associated with the established group A–E division of PfEMP1. A novel iterative homology block (HB) detection method was applied, allowing identification of 628 conserved minimal PfEMP1 building blocks, describing on average 83% of a PfEMP1 sequence. Using the HBs, similarities between domain classes were determined, and Duffy binding-like (DBL) domain subclasses were found in many cases to be hybrids of major domain classes. Related to this, a recombination hotspot was uncovered between DBL subdomains S2 and S3. The VarDom server is introduced, from which information on domain classes and homology blocks can be retrieved, and new sequences can be classified. Several conserved sequence elements were found, including: (1) residues conserved in all DBL domains predicted to interact and hold together the three DBL subdomains, (2) potential integrin binding sites in DBLα domains, (3) an acylation motif conserved in group A var genes suggesting N-terminal N-myristoylation, (4) PfEMP1 inter-domain regions proposed to be elastic disordered structures, and (5) several conserved predicted phosphorylation sites. Ideally, this comprehensive categorization of PfEMP1 will provide a platform for future studies on var/PfEMP1 expression and function. About one million African children die from malaria every year. The severity of malaria infections in part depends on which type of the parasitic protein PfEMP1 is expressed on the surface of the infected red blood cells. Natural immunity to malaria is mediated through antibodies to PfEMP1. Therefore hopes for a malaria vaccine based on PfEMP1 proteins have been raised. However, the large sequence variation among PfEMP1 molecules has caused great difficulties in executing and interpreting studies on PfEMP1. Here, we present an extensive sequence analysis of all currently available PfEMP1 sequences and show that PfEMP1 variation is ordered and can be categorized at different levels. In this way, PfEMP1 belong to group A–E and are composed of up to four components, each component containing specific DBL or CIDR domain subclasses, which in some cases form entire conserved domain combinations. Finally, each PfEMP1 can be described in high detail as a combination of 628 homology blocks. This dissection of PfEMP1 diversity also enables predictions of several functional sequence motifs relevant to the fold of PfEMP1 proteins and their ability to bind human receptors. We therefore believe that this description of PfEMP1 diversity is necessary and helpful for the design and interpretation of future PfEMP1 studies.
Collapse
Affiliation(s)
- Thomas S. Rask
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- Centre for Medical Parasitology, Department of Medical Microbiology and Immunology, University of Copenhagen, Copehagen, Denmark
- * E-mail: (TSR); (TL)
| | - Daniel A. Hansen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Thor G. Theander
- Centre for Medical Parasitology, Department of Medical Microbiology and Immunology, University of Copenhagen, Copehagen, Denmark
| | - Anders Gorm Pedersen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Medical Microbiology and Immunology, University of Copenhagen, Copehagen, Denmark
- * E-mail: (TSR); (TL)
| |
Collapse
|
92
|
Suzuki T, Moriya K, Nagatoshi K, Ota Y, Ezure T, Ando E, Tsunasawa S, Utsumi T. Strategy for comprehensive identification of human N-myristoylated proteins using an insect cell-free protein synthesis system. Proteomics 2010; 10:1780-93. [PMID: 20213681 DOI: 10.1002/pmic.200900783] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To establish a strategy for the comprehensive identification of human N-myristoylated proteins, the susceptibility of human cDNA clones to protein N-myristoylation was evaluated by metabolic labeling and MS analyses of proteins expressed in an insect cell-free protein synthesis system. One-hundred-and-forty-one cDNA clones with N-terminal Met-Gly motifs were selected as potential candidates from approximately 2000 Kazusa ORFeome project human cDNA clones, and their susceptibility to protein N-myristoylation was evaluated using fusion proteins, in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. As a result, the products of 29 out of 141 cDNA clones were found to be effectively N-myristoylated. The metabolic labeling experiments both in an insect cell-free protein synthesis system and in the transfected COS-1 cells using full-length cDNA revealed that 27 out of 29 proteins were in fact N-myristoylated. Database searches with these 27 cDNA clones revealed that 18 out of 27 proteins are novel N-myristoylated proteins that have not been reported previously to be N-myristoylated, indicating that this strategy is useful for the comprehensive identification of human N-myristoylated proteins from human cDNA resources.
Collapse
Affiliation(s)
- Takashi Suzuki
- Clinical and Biotechnology Business Unit, Shimadzu Corporation, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Yamauchi S, Fusada N, Hayashi H, Utsumi T, Uozumi N, Endo Y, Tozawa Y. The consensus motif for N-myristoylation of plant proteins in a wheat germ cell-free translation system. FEBS J 2010; 277:3596-607. [DOI: 10.1111/j.1742-4658.2010.07768.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
94
|
Wright MH, Heal WP, Mann DJ, Tate EW. Protein myristoylation in health and disease. J Chem Biol 2010; 3:19-35. [PMID: 19898886 PMCID: PMC2816741 DOI: 10.1007/s12154-009-0032-8] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/05/2009] [Accepted: 10/19/2009] [Indexed: 02/07/2023] Open
Abstract
N-myristoylation is the attachment of a 14-carbon fatty acid, myristate, onto the N-terminal glycine residue of target proteins, catalysed by N-myristoyltransferase (NMT), a ubiquitous and essential enzyme in eukaryotes. Many of the target proteins of NMT are crucial components of signalling pathways, and myristoylation typically promotes membrane binding that is essential for proper protein localisation or biological function. NMT is a validated therapeutic target in opportunistic infections of humans by fungi or parasitic protozoa. Additionally, NMT is implicated in carcinogenesis, particularly colon cancer, where there is evidence for its upregulation in the early stages of tumour formation. However, the study of myristoylation in all organisms has until recently been hindered by a lack of techniques for detection and identification of myristoylated proteins. Here we introduce the chemistry and biology of N-myristoylation and NMT, and discuss new developments in chemical proteomic technologies that are meeting the challenge of studying this important co-translational modification in living systems.
Collapse
Affiliation(s)
- Megan H. Wright
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - William P. Heal
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - David J. Mann
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - Edward W. Tate
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
| |
Collapse
|
95
|
A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc Natl Acad Sci U S A 2010; 107:3900-5. [PMID: 20133584 DOI: 10.1073/pnas.0913759107] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Thioredoxins (Trxs) are small ubiquitous regulatory disulfide proteins. Plants have an unusually complex complement of Trxs composed of six well-defined types (Trxs f, m, x, y, h, and o) that reside in different cell compartments and function in an array of processes. The extraplastidic h type consists of multiple members that in general have resisted isolation of a specific phenotype. In analyzing mutant lines in Arabidopsis thaliana, we identified a phenotype of dwarf plants with short roots and small yellowish leaves for AtTrx h9 (henceforth, Trx h9), a member of the Arabidopsis Trx h family. Trx h9 was found to be associated with the plasma membrane and to move from cell to cell. Controls conducted in conjunction with the localization of Trx h9 uncovered another h-type Trx in mitochondria (Trx h2) and a Trx in plastids earlier described as a cytosolic form in tomato. Analysis of Trx h9 revealed a 17-amino acid N-terminal extension in which the second Gly (Gly(2)) and fourth cysteine (Cys(4)) were highly conserved. Mutagenesis experiments demonstrated that Gly(2) was required for membrane binding, possibly via myristoylation. Both Gly(2) and Cys(4) were needed for movement, the latter seemingly for protein structure and palmitoylation. A three-dimensional model was consistent with these predictions as well as with earlier evidence showing that a poplar ortholog is reduced by a glutaredoxin rather than NADP-thioredoxin reductase. In demonstrating the membrane location and intercellular mobility of Trx h9, the present results extend the known boundaries of Trx and suggest a role in cell-to-cell communication.
Collapse
|
96
|
Eisenhaber B, Eisenhaber F. Prediction of posttranslational modification of proteins from their amino acid sequence. Methods Mol Biol 2010; 609:365-84. [PMID: 20221930 DOI: 10.1007/978-1-60327-241-4_21] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
If posttranslational modifications (PTMs) are chemical alterations of the protein primary structure during the protein's life cycle as a result of an enzymatic reaction, then the motif in the substrate protein sequence that is recognized by the enzyme can serve as basis for predictor construction that recognizes PTM sites in database sequences. The recognition motif consists generally of two regions: first, a small, central segment that enters the catalytic cleft of the enzyme and that is specific for this type of PTM and, second, a sequence environment of about 10 or more residues with linker characteristics (a trend for small and polar residues with flexible backbone) on either side of the central part that are needed to provide accessibility of the central segment to the enzyme's catalytic site. In this review, we consider predictors for cleavage of targeting signals, lipid PTMs, phosphorylation, and glycosylation.
Collapse
Affiliation(s)
- Birgit Eisenhaber
- Experimental Therapeutic Centre, Bioinformatics Institute, Agency for science, Technology, and Research, Singapore
| | | |
Collapse
|
97
|
Takamune N, Kuroe T, Tanada N, Shoji S, Misumi S. Suppression of Human Immunodeficiency Virus Type-1 Production by Coexpression of Catalytic-Region-Deleted N-Myristoyltransferase Mutants. Biol Pharm Bull 2010; 33:2018-23. [DOI: 10.1248/bpb.33.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nobutoki Takamune
- Department of Pharmaceutical Biochemistry, Faculty of Life Sciences, Kumamoto University
| | - Tetsuya Kuroe
- Department of Pharmaceutical Biochemistry, Faculty of Life Sciences, Kumamoto University
| | - Noriaki Tanada
- Department of Pharmaceutical Biochemistry, Faculty of Life Sciences, Kumamoto University
| | - Shozo Shoji
- Department of Pharmaceutical Biochemistry, Faculty of Life Sciences, Kumamoto University
- Kumamoto Health Science University
| | - Shogo Misumi
- Department of Pharmaceutical Biochemistry, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
98
|
Schneider G, Wildpaner M, Sirota FL, Maurer-Stroh S, Eisenhaber B, Eisenhaber F. Integrated tools for biomolecular sequence-based function prediction as exemplified by the ANNOTATOR software environment. Methods Mol Biol 2010; 609:257-267. [PMID: 20221924 DOI: 10.1007/978-1-60327-241-4_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Given the amount of sequence data available today, in silico function prediction, which often includes detecting distant evolutionary relationships, requires sophisticated bioinformatic workflows. The algorithms behind these workflows exhibit complex data structures; they need the ability to spawn subtasks and tend to demand large amounts of resources. Performing sequence analytic tasks by manually invoking individual function prediction algorithms having to transform between differing input and output formats has become increasingly obsolete. After a period of linking individual predictors using ad hoc scripts, a number of integrated platforms are finally emerging. We present the ANNOTATOR software environment as an advanced example of such a platform.
Collapse
Affiliation(s)
- Georg Schneider
- Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore
| | | | | | | | | | | |
Collapse
|
99
|
Lupo V, Galindo MI, Martínez-Rubio D, Sevilla T, Vílchez JJ, Palau F, Espinós C. Missense mutations in the SH3TC2 protein causing Charcot-Marie-Tooth disease type 4C affect its localization in the plasma membrane and endocytic pathway. Hum Mol Genet 2009; 18:4603-14. [PMID: 19744956 DOI: 10.1093/hmg/ddp427] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in SH3TC2 (KIAA1985) cause Charcot-Marie-Tooth disease (CMT) type 4C, a demyelinating inherited neuropathy characterized by early-onset and scoliosis. Here we demonstrate that the SH3TC2 protein is present in several components of the endocytic pathway including early endosomes, late endosomes and clathrin-coated vesicles close to the trans-Golgi network and in the plasma membrane. Myristoylation of SH3TC2 in glycine 2 is necessary but not sufficient for the proper location of the protein in the cell membranes. In addition to myristoylation, correct anchoring also needs the presence of SH3 and TPR domains. Mutations that cause a stop codon and produce premature truncations that remove most of the TPR domains are expressed as the wild-type protein. In contrast, missense mutations in or around the region of the first-TPR domain are absent from early endosomes, reduced in plasma membrane and late endosomes and are variably present in clathrin-coated vesicles. Our findings suggest that the endocytic and membrane trafficking pathway is involved in the pathogenesis of CMT4C disease. We postulate that missense mutations of SH3TC2 could impair communication between the Schwann cell and the axon causing an abnormal myelin formation.
Collapse
Affiliation(s)
- Vincenzo Lupo
- Genetics and Molecular Medicine Unit, Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia 46010, Spain
| | | | | | | | | | | | | |
Collapse
|
100
|
Tao B, Bu S, Yang Z, Siroky B, Kappes JC, Kispert A, Guay-Woodford LM. Cystin localizes to primary cilia via membrane microdomains and a targeting motif. J Am Soc Nephrol 2009; 20:2570-80. [PMID: 19850956 DOI: 10.1681/asn.2009020188] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Primary cilia are dynamic, complex structures that contain >500 proteins, including several related to polycystic kidney disease. How these proteins target to cilia and assemble is unknown. We previously identified Cys1 as the gene responsible for disease in Cys1(cpk) mice, a mouse model of autosomal recessive polycystic kidney disease; this gene encodes cystin, a 145-amino acid cilium-associated protein. Here, we characterized the localization of cystin in the embryonic kidney and liver, in isolated renal collecting ducts, and in an inner medullary collecting duct mouse cell line. Because endogenous levels of cystin expression are low, we generated inner medullary collecting duct cell lines that stably express enhanced green fluorescence protein-tagged constructs of wild-type cystin or various truncation mutants. We determined that cystin is myristoylated at its G2 residue and that N-myristoylated cystin fractionates with membrane microdomains. Furthermore, the N-myristoylation signal is necessary but not sufficient to target cystin to the primary cilium. Analysis of deletion and chimeric constructs identified an AxEGG motif that is necessary to target and retain cystin in the cilium. Derangement of these localization motifs may lead to cystic kidney disease.
Collapse
Affiliation(s)
- Binli Tao
- Departments of Medicine and Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|