51
|
Affiliation(s)
- Ulrich Blank
- INSERM E 0225, Bichat Medical School, 16 rue Henri Huchard, BP 416, 75870 Cedex 18, France
| | | |
Collapse
|
52
|
Yamasaki S, Ishikawa E, Kohno M, Saito T. The quantity and duration of FcRγ signals determine mast cell degranulation and survival. Blood 2004; 103:3093-101. [PMID: 15070690 DOI: 10.1182/blood-2003-08-2944] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AbstractImmunoglobulin E (IgE) bound to multivalent antigen (Ag) elicits mast cell degranulation but not survival; on the contrary, IgE in the absence of Ag (IgE(-Ag)) induces survival only but not degranulation. Although these distinct responses are mediated through the same receptor, FcϵRI, the molecular mechanism generating the divergence is largely unknown. We recently showed that the signals through FcRγ chain are essential for IgE(-Ag)–induced mast cell survival as well as IgE(+Ag)–induced degranulation. To determine whether the cellular output is regulated by the quantity of FcRγ signal, we expressed CD8/FcRγ chimeras (CD8/γ) in bone marrow–derived mast cells (BMMCs) from FcRγ-/- mice to manipulate the strength of FcRγ signals by anti-CD8 cross-linking. Cross-linking of CD8/γ induced mast cell survival and degranulation. Survival was induced by weaker stimulation than needed for degranulation in terms of anti-CD8 concentration and the valency of chimera. However, sustained extracellular signal-regulated kinase (Erk) activation seems to regulate survival even when the activation signal was strong enough to elicit degranulation. Generation of sustained Erk activation by active mitogen-activated protein kinase kinase (MEK) induced BMMC survival. These results suggest that the duration and the magnitude of FcRγ signals may determine mast cell survival and degranulation, respectively. (Blood. 2004;103:3093-3101)
Collapse
Affiliation(s)
- Sho Yamasaki
- Department of Molecular Genetics (H1), Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | |
Collapse
|
53
|
Woof JM, Burton DR. Human antibody–Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol 2004; 4:89-99. [PMID: 15040582 DOI: 10.1038/nri1266] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunoglobulins couple the recognition of invading pathogens with the triggering of potent effector mechanisms for pathogen elimination. Different immunoglobulin classes trigger different effector mechanisms through interaction of immunoglobulin Fc regions with specific Fc receptors (FcRs) on immune cells. Here, we review the structural information that is emerging on three human immunoglobulin classes and their FcRs. New insights are provided, including an understanding of the antibody conformational adjustments that are required to bring effector cell and target cell membranes sufficiently close for efficient killing and signal transduction to occur. The results might also open up new possibilities for the design of therapeutic antibodies.
Collapse
Affiliation(s)
- Jenny M Woof
- Division of Pathology and Neuroscience, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 9SY, UK.
| | | |
Collapse
|
54
|
Pyenta PS, Schwille P, Webb WW, Holowka D, Baird B. Lateral Diffusion of Membrane Lipid-Anchored Probes before and after Aggregation of Cell Surface IgE-Receptors. J Phys Chem A 2003. [DOI: 10.1021/jp030005t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paul S. Pyenta
- Department of Chemistry and Chemical Biology, Baker Laboratory and Department of Applied and Engineering Physics, Clark Hall, Cornell University, Ithaca, New York 14853
| | - Petra Schwille
- Department of Chemistry and Chemical Biology, Baker Laboratory and Department of Applied and Engineering Physics, Clark Hall, Cornell University, Ithaca, New York 14853
| | - Watt W. Webb
- Department of Chemistry and Chemical Biology, Baker Laboratory and Department of Applied and Engineering Physics, Clark Hall, Cornell University, Ithaca, New York 14853
| | - David Holowka
- Department of Chemistry and Chemical Biology, Baker Laboratory and Department of Applied and Engineering Physics, Clark Hall, Cornell University, Ithaca, New York 14853
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Baker Laboratory and Department of Applied and Engineering Physics, Clark Hall, Cornell University, Ithaca, New York 14853
| |
Collapse
|
55
|
Ge M, Gidwani A, Brown HA, Holowka D, Baird B, Freed JH. Ordered and disordered phases coexist in plasma membrane vesicles of RBL-2H3 mast cells. An ESR study. Biophys J 2003; 85:1278-88. [PMID: 12885671 PMCID: PMC1303245 DOI: 10.1016/s0006-3495(03)74563-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Accepted: 04/01/2003] [Indexed: 11/16/2022] Open
Abstract
Four chain spin labels and a spin-labeled cholestane were used to study the dynamic structure of plasma membrane vesicles (PMV) prepared from RBL-2H3 mast cells at temperatures ranging from 22 degrees C to 45 degrees C. Analysis shows that the spectra from most labels consist of two components. The abundant spectral components exhibit substantial ordering that is intermediate between that of a liquid-ordered (Lo) phase, and that of a liquid-crystalline (Lc) phase as represented by model membranes. Also, rotational diffusion rates of the spin labels are comparable to those in the Lo phase. In contrast, the ordering for the less abundant components is much lower. These results indicate that a Lo-like region or phase (the abundant component) and an Lc-like region or phase (the less abundant component) coexist in the PMV. In contrast, membranes reconstituted from extracted lipids exhibit the more ordered phase only. This suggests that membrane-associated proteins are important for the coexistence of Lo-like and Lc-like regions in the plasma membrane. In addition, binding of the myristoylated protein, ARF6 to PMV, leads to a new spectral component for a headgroup lipid spin label that indicates the formation of plasma membrane defects by this low molecular weight GTPase.
Collapse
Affiliation(s)
- Mingtao Ge
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
56
|
Gidwani A, Brown HA, Holowka D, Baird B. Disruption of lipid order by short-chain ceramides correlates with inhibition of phospholipase D and downstream signaling by FcepsilonRI. J Cell Sci 2003; 116:3177-87. [PMID: 12829737 DOI: 10.1242/jcs.00621] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Specialized plasma membrane domains known as lipid rafts participate in signal transduction and other cellular processes, and their liquid-ordered properties appear to be important for their function. We investigated the possibility of using amphiphiles to disrupt lipid rafts and thereby inhibit IgE-FcepsilonRI signaling. We find that short-chain ceramides - C2-ceramide and C6-ceramide - decrease plasma membrane lipid order and reduce the extent of fluorescence resonance energy transfer between lipid-raft-associated molecules on intact cells; by contrast, biologically inactive C2-dihydroceramide does neither. Structural perturbations by these ceramides parallel their inhibitory effects on antigen-stimulated Ca2+ mobilization in RBL mast cells in the presence and absence of extracellular Ca2+. Similar inhibition of Ca2+ mobilization is caused by n-butanol, which prevents phosphatidic acid production by phospholipase D, but not by t-butanol, which does not prevent phosphatidic acid production. These results and previously reported effects of short-chain ceramides on phospholipase D activity prompted us to compare the effects of C2-ceramide, C2-dihydroceramide and C16-ceramide on phospholipase D1 and phospholipase D2 activities in vitro. We find that the effects of these ceramides on phospholipase D1 activity strongly correlate with their effects on antigen-stimulated Ca2+ mobilization and with their disruption of lipid order. Our results indicate that phospholipase D activity is upstream of antigen-stimulated Ca2+ mobilization in these cells, and they demonstrate that ceramides can serve as useful probes for investigating roles of plasma membrane structure and phospholipase D activity in cellular signaling.
Collapse
Affiliation(s)
- Arun Gidwani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
57
|
Young RM, Holowka D, Baird B. A lipid raft environment enhances Lyn kinase activity by protecting the active site tyrosine from dephosphorylation. J Biol Chem 2003; 278:20746-52. [PMID: 12670955 DOI: 10.1074/jbc.m211402200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasma membrane contains ordered lipid domains, commonly called lipid rafts, enriched in cholesterol, sphingolipids, and certain signaling proteins. Lipid rafts play a structural role in signal initiation by the high affinity receptor for IgE. Cross-linking of IgE-receptor complexes by antigen causes their coalescence with lipid rafts, where they are phosphorylated by the Src family tyrosine kinase, Lyn. To understand how lipid rafts participate in functional coupling between Lyn and FcepsilonRI, we investigated whether the lipid raft environment influences the specific activity of Lyn. We used differential detergent solubility and sucrose gradient fractionation to isolate Lyn from raft and nonraft regions of the plasma membrane in the presence or absence of tyrosine phosphatase inhibitors. We show that Lyn recovered from lipid rafts has a substantially higher specific activity than Lyn from nonraft environments. Furthermore, this higher specific activity correlates with increased tyrosine phosphorylation at the active site loop of the kinase domain. Based on these results, we propose that lipid rafts exclude a phosphatase that negatively regulates Lyn kinase activity by constitutive dephosphorylation of the kinase domain tyrosine residue of Lyn. In this model, cross-linking of FcepsilonRI promotes its proximity to active Lyn in a lipid raft environment.
Collapse
Affiliation(s)
- Ryan M Young
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
58
|
Locke D, Liu C, Peng X, Chen H, Kahn ML. Fc Rgamma -independent signaling by the platelet collagen receptor glycoprotein VI. J Biol Chem 2003; 278:15441-8. [PMID: 12594225 DOI: 10.1074/jbc.m212338200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The platelet collagen receptor glycoprotein VI (GPVI) is structurally homologous to multisubunit immune receptors and signals through the immune receptor adaptor Fc Rgamma. Multisubunit receptors are composed of specialized subunits thought to be dedicated exclusively to ligand binding or signal transduction. However, recent studies of the intracellular region of GPVI, a ligand-binding subunit, have suggested the existence of protein-protein interactions that could regulate receptor signaling. In the present study we have investigated the signaling role of the GPVI intracellular domain by stably expressing GPVI mutants in RBL-2H3 cells, a model system that accurately reproduces the GPVI signaling events observed in platelets. Studies of mutant GPVI receptor protein-protein interaction and calcium signaling reveal the existence of discrete domains within the receptor's intracellular tail that mediate interaction with Fc Rgamma, calmodulin, and Src family tyrosine kinases. These receptor interactions are modular and mediated by non-overlapping regions of the receptor transmembrane and intracellular domains. GPVI signaling requires all three of these domains as receptor mutants able to couple to only two interacting proteins exhibited severe signaling defects despite normal surface expression. Our results demonstrate that the ligand-binding subunit of the GPVI-Fc Rgamma receptor participates directly in receptor signaling by interacting with downstream signaling molecules other than Fc Rgamma through an adaptor-like mechanism.
Collapse
Affiliation(s)
- Darren Locke
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, USA
| | | | | | | | | |
Collapse
|
59
|
Faeder JR, Hlavacek WS, Reischl I, Blinov ML, Metzger H, Redondo A, Wofsy C, Goldstein B. Investigation of early events in Fc epsilon RI-mediated signaling using a detailed mathematical model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3769-81. [PMID: 12646643 DOI: 10.4049/jimmunol.170.7.3769] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aggregation of Fc epsilon RI on mast cells and basophils leads to autophosphorylation and increased activity of the cytosolic protein tyrosine kinase Syk. We investigated the roles of the Src kinase Lyn, the immunoreceptor tyrosine-based activation motifs (ITAMs) on the beta and gamma subunits of Fc epsilon RI, and Syk itself in the activation of Syk. Our approach was to build a detailed mathematical model of reactions involving Fc epsilon RI, Lyn, Syk, and a bivalent ligand that aggregates Fc(epsilon)RI. We applied the model to experiments in which covalently cross-linked IgE dimers stimulate rat basophilic leukemia cells. The model makes it possible to test the consistency of mechanistic assumptions with data that alone provide limited mechanistic insight. For example, the model helps sort out mechanisms that jointly control dephosphorylation of receptor subunits. In addition, interpreted in the context of the model, experimentally observed differences between the beta- and gamma-chains with respect to levels of phosphorylation and rates of dephosphorylation indicate that most cellular Syk, but only a small fraction of Lyn, is available to interact with receptors. We also show that although the beta ITAM acts to amplify signaling in experimental systems where its role has been investigated, there are conditions under which the beta ITAM will act as an inhibitor.
Collapse
Affiliation(s)
- James R Faeder
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Pierini LM, Eddy RJ, Fuortes M, Seveau S, Casulo C, Maxfield FR. Membrane lipid organization is critical for human neutrophil polarization. J Biol Chem 2003; 278:10831-41. [PMID: 12522144 DOI: 10.1074/jbc.m212386200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to chemoattractants neutrophils extend an actin-rich pseudopod, which imparts morphological polarity and is required for migration. Even when stimulated by an isotropic bath of chemoattractant, neutrophils exhibit persistent polarization and continued lamellipod formation at the front, suggesting that the cells establish an internal polarity. In this report, we show that perturbing lipid organization by depleting plasma membrane cholesterol levels reversibly inhibits cell polarization and migration. Among other receptor-mediated responses, beta(2) integrin up-regulation was unaffected, and initial calcium mobilization was only partially reduced by cholesterol depletion, indicating that this treatment did not abrogate initial receptor-mediated signal transduction. Interestingly, cholesterol depletion did not prevent initial activation of the GTPase Rac or an initial burst of actin polymerization, but rather it inhibited prolonged activation of Rac and sustained actin polymerization. Collectively, these findings support a model in which the plasma membrane is organized into domains that aid in amplifying the chemoattractant gradient and maintaining cell polarization.
Collapse
Affiliation(s)
- Lynda M Pierini
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
61
|
Subczynski WK, Kusumi A. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:231-43. [PMID: 12648777 DOI: 10.1016/s0005-2736(03)00021-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lipid rafts in the plasma membrane, domains rich in cholesterol and sphingolipids, have been implicated in a number of important membrane functions. Detergent insolubility has been used to define membrane "rafts" biochemically. However, such an approach does not directly contribute to the understanding of the size and the lifetime of rafts, dynamics of the raft-constituent molecules, and the function of rafts in the membrane in situ. To address these issues, we have developed pulse EPR spin labeling and single molecule tracking optical techniques for studies of rafts in both artificial and cell membranes. In this review, we summarize our results and perspectives obtained by using these methods. We emphasize the importance of clearly distinguishing small/unstable rafts (lifetime shorter than a millisecond) in unstimulated cells and stabilized rafts induced by liganded and oligomerized (GPI-anchored) receptor molecules (core receptor rafts, lifetime over a few minutes). We propose that these stabilized rafts further induce temporal, greater rafts (signaling rafts, lifetime on the order of a second) for signaling by coalescing other small/unstable rafts, including those in the inner leaflet of the membrane, each containing perhaps one molecule of the downstream effector molecules. At variance with the general view, we emphasize the importance of cholesterol segregation from the liquid-crystalline unsaturated bulk-phase membrane for formation of the rafts, rather than the affinity of cholesterol and saturated alkyl chains. In the binary mixture of cholesterol and an unsaturated phospholipid, cholesterol is segregated out from the bulk unsaturated liquid-crystalline phase, forming cholesterol-enriched domains or clustered cholesterol domains, probably due to the lateral nonconformability between the rigid planar transfused ring structure of cholesterol and the rigid bend of the unsaturated alkyl chain at C9-C10. However, such cholesterol-rich domains are small, perhaps consisting of only several cholesterol molecules, and are short-lived, on the order of 1-100 ns. We speculate that these cholesterol-enriched domains may be stabilized by the presence of saturated alkyl chains of sphingomyelin or glycosphingolipids, and also by clustered raft proteins. In the influenza viral membrane, one of the simplest forms of a biological membrane, the lifetime of a protein and cholesterol-rich domain was evaluated to be on the order of 100 micro, again showing the short lifetime of rafts in an unstimulated state. Finally, we propose a thermal Lego model for rafts as the basic building blocks for signaling pathways in the plasma membrane.
Collapse
Affiliation(s)
- Witold K Subczynski
- National Biomedical EPR Center, Biophysics Research Institute, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
62
|
Abstract
Detergent-resistant membrane microdomains enriched in sphingolipids, cholesterol and glycosylphosphatidylinositol-anchored proteins play essential roles in T cell receptor (TCR) signaling. These 'membrane rafts' accumulate several cytoplasmic lipid-modified molecules, including Src-family kinases, coreceptors CD4 and CD8 and transmembrane adapters LAT and PAG/Cbp, essential for either initiation or amplification of the signaling process, while most other abundant transmembrane proteins are excluded from these structures. TCRs in various T cell subpopulations may differ in their use of membrane rafts. Membrane rafts also seem to be involved in many other aspects of T cell biology, such as functioning of cytokine and chemokine receptors, adhesion molecules, antigen presentation, establishing cell polarity or interaction with important pathogens. Although the concept of membrane rafts explains several diverse biological phenomena, many basic issues, such as composition, size and heterogeneity, under native conditions, as well as the dynamics of their interactions with TCRs and other immunoreceptors, remain unclear, partially because of technical problems.
Collapse
Affiliation(s)
- Václav Horejsí
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha, Czech Republic.
| |
Collapse
|
63
|
Gupta N, DeFranco AL. Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol Biol Cell 2003; 14:432-44. [PMID: 12589045 PMCID: PMC149983 DOI: 10.1091/mbc.02-05-0078] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent biochemical evidence indicates that an early event in signal transduction by the B-cell antigen receptor (BCR) is its translocation to specialized membrane subdomains known as lipid rafts. We have taken a microscopic approach to image lipid rafts and early events associated with BCR signal transduction. Lipid rafts were visualized on primary splenic B lymphocytes from wild-type or anti-hen egg lysozyme BCR transgenic mice, and on a mature mouse B-cell line Bal 17 by using fluorescent conjugates of cholera toxin B subunit or a Lyn-based chimeric protein, which targets green fluorescent protein to the lipid raft compartment. Time-lapse imaging of B cells stimulated via the BCR with the antigen hen egg lysozyme, or surrogate for antigen anti-IgM, demonstrated that lipid rafts are highly dynamic entities, which move laterally on the surface of these cells and coalesce into large regions. These regions of aggregated lipid rafts colocalized with the BCR and tyrosine-phosphorylated proteins. Microscopic imaging of live B cells also revealed an inducible colocalization of lipid rafts with the tyrosine kinase Syk and the receptor tyrosine phosphatase CD45. These two proteins play indispensable roles in BCR-mediated signaling but are not detectable in biochemically purified lipid raft fractions. Strikingly, BCR stimulation also induced the formation of long, thread-like filopodial projections, similar to previously described structures called cytonemes. These B-cell cytonemes are rich in lipid rafts and actin filaments, suggesting that they might play a role in long-range communication and/or transportation of signaling molecules during an immune response. These results provide a window into the morphological and molecular organization of the B-cell membrane during the early phase of BCR signaling.
Collapse
Affiliation(s)
- Neetu Gupta
- Department of Microbiology and Immunology, G. W. Hooper Foundation, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
64
|
Nebl T, Pestonjamasp KN, Leszyk JD, Crowley JL, Oh SW, Luna EJ. Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. J Biol Chem 2002; 277:43399-409. [PMID: 12202484 DOI: 10.1074/jbc.m205386200] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Plasma membranes are organized into functional domains both by liquid-ordered packing into "lipid rafts," structures that resist Triton extraction, and by attachments to underlying cytoskeletal proteins in assemblies called "membrane skeletons." Although the actin cytoskeleton is implicated in many lipid raft-mediated signaling processes, little is known about the biochemical basis for actin involvement. We show here that a subset of plasma membrane skeleton proteins from bovine neutrophils co-isolates with cholesterol-rich, detergent-resistant membrane fragments (DRMs) that exhibit a relatively high buoyant density in sucrose (DRM-H; d approximately 1.16 g/ml). By using matrix-assisted laser desorption/ionization time of flight and tandem mass spectrometry, we identified 19 major DRM-H proteins. Membrane skeleton proteins include fodrin (nonerythroid spectrin), myosin-IIA, myosin-IG, alpha-actinin 1, alpha-actinin 4, vimentin, and the F-actin-binding protein, supervillin. Other DRM-H components include lipid raft-associated integral membrane proteins (stomatin, flotillin 1, and flotillin 2), extracellular surface-bound and glycophosphatidylinositol-anchored proteins (IgM, membrane-type 6 matrix metalloproteinase), and intracellular dually acylated signaling proteins (Lyn kinase, Galpha(i-2)). Consistent with cytoskeletal association, most DRM-H-associated flotillin 2, Lyn, and Galpha(i-2) also resist extraction with 0.1 m octyl glucoside. Supervillin, myosin-IG, and myosin-IIA resist extraction with 0.1 m sodium carbonate, a treatment that removes all detectable actin, suggesting that these cytoskeletal proteins are proximal to the DRM-H bilayer. Binding of supervillin to the DRM-H fragments is confirmed by co-immunoaffinity purification. In spreading neutrophils, supervillin localizes with F-actin in cell extensions and in discrete basal puncta that partially overlap with Galpha(i) staining. We suggest that the DRM-H fraction represents a membrane skeleton-associated subset of leukocyte signaling domains.
Collapse
Affiliation(s)
- Thomas Nebl
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | |
Collapse
|
65
|
Abstract
PURPOSE OF REVIEW Lipid rafts on monocytes/macrophages provide a dynamic microenvironment for an integrated lipopolysaccharide receptor (CD14)-dependent clustering of a set of receptors involved in innate immunity and clearance of atherogenic lipoproteins. The purpose of this review is to summarize the recent advances in our understanding of CD14-dependent receptor clustering and its relevance in atherogenesis. RECENT FINDINGS Upon binding of various ligands, CD14 as a multiligand pattern recognition receptor induces specific coassembly of additional receptors present on circulating monocytes. SUMMARY The composition of the receptor cluster and thus the associated signalling pathways defines a ligand specific cellular response, linking endogenous and exogenous host defense to a common recognition platform in rafts.
Collapse
Affiliation(s)
- Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany.
| | | |
Collapse
|
66
|
Kawakami T, Galli SJ. Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2002; 2:773-86. [PMID: 12360215 DOI: 10.1038/nri914] [Citation(s) in RCA: 434] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mast cells and basophils are important effector cells in T helper 2 (T(H)2)-cell-dependent, immunoglobulin-E-associated allergic disorders and immune responses to parasites. The crosslinking of IgE that is bound to the high-affinity receptor Fc epsilon RI with multivalent antigen results in the aggregation of Fc epsilon RI and the secretion of products that can have effector, immunoregulatory or autocrine effects. This response can be enhanced markedly in cells that have been exposed to high levels of IgE, which results in the increased surface expression of Fc epsilon RI. Moreover, recent work indicates that monomeric IgE (in the absence of crosslinking) can render mast cells resistant to apoptosis induced by growth-factor deprivation in vitro and, under certain circumstances, can induce the release of cytokines. So, the binding of IgE to Fc epsilon RI might influence mast-cell and basophil survival directly or indirectly, and can also regulate cellular function.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Division of Allergy, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121, USA
| | | |
Collapse
|
67
|
|
68
|
Metzger H, Eglite S, Haleem-Smith H, Reischl I, Torigoe C. Quantitative aspects of signal transduction by the receptor with high affinity for IgE. Mol Immunol 2002; 38:1207-11. [PMID: 12217385 DOI: 10.1016/s0161-5890(02)00065-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Identification of the major components, how these interact with each other, and the modifications that follow in the sequence of events triggered by the receptor with high affinity for IgE, is progressing rapidly. A new challenge is to understand these interactions quantitatively. We present the fundamentals of the mechanistic model we are testing through mathematical modeling. The object is to see if the predictions of the model fit with the experimental results.
Collapse
Affiliation(s)
- Henry Metzger
- Section on Chemical Immunology, Arthritis and Rheumatism Branch, Rm. 9N-228, 10 Center Drive, MSC 1820, NIAMS, NIH, Bethesda, MD 20892-1820, USA.
| | | | | | | | | |
Collapse
|
69
|
Craig AWB, Greer PA. Fer kinase is required for sustained p38 kinase activation and maximal chemotaxis of activated mast cells. Mol Cell Biol 2002; 22:6363-74. [PMID: 12192036 PMCID: PMC135645 DOI: 10.1128/mcb.22.18.6363-6374.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Revised: 06/04/2002] [Accepted: 06/12/2002] [Indexed: 01/26/2023] Open
Abstract
Mast cells play important roles in inflammation and immunity and express the high-affinity immunoglobulin E receptor (Fc epsilon RI) and the receptor protein-tyrosine kinase Kit. Aggregation of Fc epsilon RI via antigen binding elicits signals leading to the release of preformed inflammatory mediators as well as de novo-synthesized lipid mediators and cytokines and to elevated cell adhesion and migration. Here, we report that in mouse bone marrow-derived mast cells, Fer kinase is activated downstream of activated Fc epsilon RI and activated Kit receptor, and this activation is abolished in cells homozygous for a kinase-inactivating mutation in Fer (fer(DR/DR)). Interestingly, the highly related Fps/Fes kinase is also activated upon Fc epsilon RI aggregation. This report represents the first description of a common signaling pathway activating Fer and Fps/Fes. While Fer-deficient cells showed similar activation of the Erk mitogen-activated protein (MAP) kinases, p38 MAP kinase activation was less sustained than that in wild-type cells. Although no major defects were observed in degranulation, leukotriene biosynthesis, and cytokine secretion, Fer-deficient cells displayed increased adhesion and decreased motility upon activation of Fc epsilon RI and the Kit receptor. The restoration of Fer kinase activity in fer(DR/DR) mast cells resulted in prolonged p38 kinase activation and increased antigen-mediated cell migration of sensitized mast cells. Thus, Fer is required for maximal p38 kinase activation to promote the chemotaxis of activated mast cells. Further studies with mast cells derived from fps/fes-deficient mice will be required to provide insight into the role of Fps/Fes in mast cell activation.
Collapse
Affiliation(s)
- Andrew W B Craig
- Department of Biochemistry, Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
70
|
Affiliation(s)
- Kai Simons
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | | |
Collapse
|
71
|
Abstract
The tyrosine kinase Syk is essential for signaling from FcrepsilonRI in mast cells. The Src homology domain mediated binding of Syk to the phosphorylated immunoreceptor tyrosine-based motif (ITAM) of the receptor subunits results in a conformational change and activation. Studies in Syk deficient mast cells have defined the pathways that are activated upstream and downstream of Syk and have demonstrated the functional importance of the linker region of Syk in signaling in mast cells.
Collapse
Affiliation(s)
- Reuben P Siraganian
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 10, Room 1N106, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
72
|
Paar JM, Harris NT, Holowka D, Baird B. Bivalent ligands with rigid double-stranded DNA spacers reveal structural constraints on signaling by Fc epsilon RI. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:856-64. [PMID: 12097389 DOI: 10.4049/jimmunol.169.2.856] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Degranulation of mast cells and basophils during the allergic response is initiated by Ag-induced cross-linking of cell surface IgE-Fc epsilon RI receptor complexes. To investigate how separation distances between cross-linked receptors affect the competency of signal transduction, we synthesized and characterized bivalent dinitrophenyl (DNP)-modified dsDNA oligomers with rigid spacing lengths of approximately 40-100 A. All of these bivalent ligands effectively bind and cross-link anti-DNP IgE with similar affinities in the nanomolar range. The 13-mer (dsDNA length of 44 A), 15-mer (51 A), and flexible 30-mer ligands stimulate similar amounts of cellular degranulation, about one-third of that with multivalent Ag, whereas the 20-mer (68 A) ligand is less effective and the rigid 30-mer (102 A) ligand is ineffective. Surprisingly, all stimulate tyrosine phosphorylation of Fc epsilon RI beta, Syk, and linker for activation of T cells to similar extents as multivalent Ag at optimal ligand concentrations. The magnitudes of Ca(2+) responses stimulated by these bivalent DNP-dsDNA ligands are small, implicating activation of Ca(2+) mobilization by stimulated tyrosine phosphorylation as a limiting process. The results indicate that structural constraints on cross-linked IgE-Fc epsilon RI complexes imposed by these rigid DNP-dsDNA ligands prevent robust activation of signaling immediately downstream of early tyrosine phosphorylation events. To account for these results, we propose that activation of a key downstream target is limited by the spacing between cross-linked, phosphorylated receptors and their associated components.
Collapse
MESH Headings
- 2,4-Dinitrophenol/chemistry
- 2,4-Dinitrophenol/immunology
- 2,4-Dinitrophenol/metabolism
- Animals
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/metabolism
- Antibodies, Bispecific/pharmacology
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Binding Sites/immunology
- Cell Degranulation/immunology
- Cross-Linking Reagents/chemistry
- Cross-Linking Reagents/metabolism
- DNA/chemical synthesis
- DNA/metabolism
- DNA/physiology
- DNA, Intergenic/chemical synthesis
- DNA, Intergenic/metabolism
- DNA, Intergenic/physiology
- Down-Regulation/immunology
- Haptens/chemistry
- Haptens/metabolism
- Haptens/physiology
- Immunoglobulin E/chemistry
- Immunoglobulin E/metabolism
- Immunoglobulin E/physiology
- Ligands
- Mast Cells/immunology
- Mast Cells/metabolism
- Rats
- Receptors, IgE/antagonists & inhibitors
- Receptors, IgE/physiology
- Signal Transduction/immunology
- Solutions
- Structure-Activity Relationship
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jodi M Paar
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
73
|
Abstract
As immunology developed into a discrete discipline, the principal experimental efforts were directed towards uncovering the molecular basis of the specificity exhibited by antibodies and the mechanism by which antigens induced their production. Less attention was given to how antibodies carry out some of their effector functions, although this subject presents an interesting protein-chemical and evolutionary problem; that is, how does a family of proteins that can bind a virtually infinite variety of ligands, many of which the species producing that protein has never encountered, reproducibly initiate an appropriate response? The experimental data persuasively suggested that aggregation of the antibody was a necessary and likely sufficient initiating event, but this only begged the question: how does aggregation induce a response? I used the IgE:mast cell system as a paradigm to investigate this subject. Data from our own group and from many others led to a molecular model that appears to explain how a cell 'senses' that antigen has reacted with the IgE. The model is directly applicable to one of the fundamental questions cited above, i.e. the mechanism by which antigens induce the production of antibodies. Although the model is conceptually simple, incorporating the actual molecular events into a quantitatively accurate scheme represents an enormous challenge.
Collapse
Affiliation(s)
- Henry Metzger
- Section on Chemical Immunology, Arthritis and Rheumatism Branch, NIAMS, NIH, Bethesda, MD 20892-1820, USA.
| |
Collapse
|
74
|
Nguyen DH, Taub D. Cholesterol is essential for macrophage inflammatory protein 1 beta binding and conformational integrity of CC chemokine receptor 5. Blood 2002; 99:4298-306. [PMID: 12036855 DOI: 10.1182/blood-2001-11-0087] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chemokine receptor, CCR5, is used as a human immunodeficiency virus coreceptor in combination with CD4 during transmission and early infection. CCR5 has been shown to be palmitoylated and targeted to cholesterol- and sphingolipid-rich membrane microdomains termed "lipid rafts." However, the role of cholesterol and lipid rafts on chemokine binding and signaling through CCR5 remains unknown. We found that cholesterol extraction by hydroxypropyl-beta-cyclodextrin (BCD) significantly reduced the binding and signaling of macrophage inflammatory protein 1 beta (MIP-1 beta) using CCR5-expressing CEM-NKR T cells. Reloading treated cells with cholesterol but not 4-cholesten-3-one, an oxidized form of cholesterol, restored MIP-1 beta binding to BCD-treated cells. Antibodies specific for distinct CCR5 epitopes lost their ability to bind to the cell surface after cholesterol extraction to varying degrees. Moreover, cells stained with fluorescently labeled MIP-1 beta extensively colocalized with the GM1 lipid raft marker while using anti-CCR5 antibodies; most of CCR5 on these cells only partially colocalized with GM1, suggesting that active ligand binding facilitates receptor association with lipid rafts or that raft association promotes a higher affinity conformation of CCR5. Together, these data demonstrate that cholesterol and lipid rafts are important for the maintenance of the CCR5 conformation and are necessary for both the binding and function of this chemokine receptor.
Collapse
Affiliation(s)
- Dzung H Nguyen
- Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
75
|
Huber M, Kalesnikoff J, Reth M, Krystal G. The role of SHIP in mast cell degranulation and IgE-induced mast cell survival. Immunol Lett 2002; 82:17-21. [PMID: 12008029 DOI: 10.1016/s0165-2478(02)00012-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Atopic disorders are on the increase in the Western world and are due, at least in part, to an overactive mast cell response. A better understanding of the intracellular signalling pathways that regulate both mast cell degranulation and the secretion of arachidonic acid metabolites and inflammatory cytokines could help in the treatment of these disorders. The src homology 2-containing inositol-polyphosphate 5'-phosphatase, SHIP, has been shown to be a key 'gatekeeper' of mast cell degranulation. SHIP prevents degranulation from occuring when IgE alone binds to the high-affinity receptor for IgE (FcvarepsilonR1), SHIP restrains it when IgE-bound FcvarepsilonR1 are engaged by multivalent allergens, and SHIP inhibits it when an IgG against the same allergen co-clusters the inhibitory low-affinity receptor for IgG (FcgammaRIIB) with the IgE receptor. SHIP acts as a negative regulator of degranulation by hydrolyzing phosphatidylinositol-3,4,5-trisphosphate, a second messenger generated in activated cells by phosphatidylinositol 3-kinase. Our finding that binding of only IgE to the FcvarepsilonR1 of SHIP-deficient mast cells results in massive degranulation, led us to investigate the signalling pathways that are triggered in normal murine bone marrow-derived mast cells by monomeric IgE. We report here that monomeric IgE activates signalling pathways resulting in mast cell survival, without stimulating degranulation or proliferation. These studies demonstrate that mast cell sensitization by IgE is an active rather than a passive process.
Collapse
Affiliation(s)
- Michael Huber
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck-Institute for Immunobiology, Freiburg, Germany.
| | | | | | | |
Collapse
|
76
|
Locke D, Chen H, Liu Y, Liu C, Kahn ML. Lipid rafts orchestrate signaling by the platelet receptor glycoprotein VI. J Biol Chem 2002; 277:18801-9. [PMID: 11844795 DOI: 10.1074/jbc.m111520200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The platelet collagen receptor glycoprotein VI (GPVI) couples to the immune receptor adaptor Fc receptor gamma-chain (FcRgamma) and signals using many of the same intracellular signaling molecules as immune receptors. Studies of immune receptor signaling have revealed a critical role for specialized areas of the cell membrane known as lipid rafts, which are enriched in essential signaling molecules. However, the role of lipid rafts in signaling in nonimmune cells such as platelets remains poorly defined. This study shows that GPVI-FcRgamma does not constitutively associate with rafts, but is recruited to lipid rafts following receptor stimulation in both GPVI-expressing RBL-2H3 cells and human platelets. FcRgamma is required for GPVI association with lipid rafts, as mutant GPVI receptors that do not couple to FcRgamma were unable to associate with lipid rafts after receptor clustering. Following GPVI stimulation in platelets, virtually all phosphorylated FcRgamma was found in lipid rafts, but inhibition of FcRgamma phosphorylation did not block receptor association with lipid rafts. This work demonstrates that lipid rafts orchestrate GPVI receptor signaling in platelets in a manner analogous to immune cell receptors and supports a model of GPVI signaling in which FcRgamma phosphorylation is controlled by ligand-dependent association with lipid rafts.
Collapse
Affiliation(s)
- Darren Locke
- Division of Cardiology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, USA
| | | | | | | | | |
Collapse
|
77
|
Abstract
IgE receptors are implicated as important components of the immunological pathway in allergic and inflammatory diseases. Recent investigations have begun to unravel the structure, signal transduction and function of IgE receptors from different cell types in rodent and human systems. Studies of the mechanisms involved might provide opportunities for therapeutic intervention strategies in the treatment of allergic and hypersensitivity reactions.
Collapse
Affiliation(s)
- N Novak
- Department of Dermatology, Friedrich-Wilhelms-University of Bonn, D-53105, Bonn, Germany
| | | | | |
Collapse
|
78
|
Dunphy JT, Greentree WK, Linder ME. Enrichment of G-protein palmitoyltransferase activity in low density membranes: in vitro reconstitution of Galphai to these domains requires palmitoyltransferase activity. J Biol Chem 2001; 276:43300-4. [PMID: 11557754 DOI: 10.1074/jbc.m104275200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many signaling proteins are targeted to low density, sphingomyelin- and cholesterol-enriched membranes, also called lipid rafts. These domains organize receptor-mediated signaling events at the plasma membrane. Fatty acylation is one mechanism for targeting proteins to rafts. It was therefore of interest to determine if protein palmitoyltransferase activity is also present in these domains. In this study, protein palmitoyltransferase activity, assayed using G-protein alpha subunits as a substrate, was found to be highly enriched in low density membranes derived from cells that express caveolin as well as those that do not. Depletion of cellular cholesterol with the drug methyl-beta-cyclodextrin resulted in inhibition of palmitoyltransferase activity and a redistribution of the remaining activity to membranes of higher density. This effect was reversed by adding cholesterol to cyclodextrin-treated cells. When reconstituted into cell membranes, the population of purified recombinant G(alphai) that was palmitoylated was highly enriched in the low density membrane fractions, whereas the bulk unmodified G(alphai)-protein was largely excluded. This effect required palmitoyltransferase activity and was abolished if the palmitoylated cysteine was mutated. Thus, palmitoyltransferase facilitates the enrichment of fatty acylated signaling molecules in plasma membrane subdomains.
Collapse
Affiliation(s)
- J T Dunphy
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
79
|
Gidwani A, Holowka D, Baird B. Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells. Biochemistry 2001; 40:12422-9. [PMID: 11591163 DOI: 10.1021/bi010496c] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Specialized plasma membrane domains known as lipid rafts participate in signal transduction and other cellular processes, and their liquid ordered (L(o)) phase appears to be important for their function. To quantify ordered lipids in biological membranes, we investigated steady-state fluorescence anisotropy of two lipid probes, 2-[3-(diphenylhexatrienyl)propanoyl]-1-hexadecanoyl-sn-glycero-3-phosphocholine (DPH-PC) and N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-PE). We show using model membranes with varying amounts of cholesterol that steady-state fluorescence anisotropy is a sensitive measure of cholesterol-dependent ordering. The results suggest that DPH-PC is a more sensitive probe than NBD-PE. In the presence of cholesterol, ordering also depends on the degree of saturation of the phospholipid acyl chains. Using DPH-PC, we find that the plasma membrane of RBL-2H3 mast cells is substantially ordered, roughly 40%, as determined by comparison with anisotropy values for model membranes entirely in a liquid ordered (L(o)) phase and in a liquid disordered (L(alpha)) phase. This result is consistent with the finding that approximately 30% of plasma membrane phospholipids are insoluble in 0.5% Triton X-100. Furthermore, detergent-resistant membranes isolated by sucrose gradient fractionation of Triton X-100 cell lysates are more ordered than plasma membrane vesicles, suggesting that they represent a more ordered subset of the plasma membrane. Treatment of plasma membrane vesicles with methyl-beta-cyclodextrin resulting in 75% cholesterol depletion leads to commensurate decreases in lipid order as measured by anisotropy of DPH-PC and NBD-PE. These results demonstrate that steady-state fluorescence anisotropy of DPH-PC is a useful way to measure the amount of lipid order in biological membranes.
Collapse
Affiliation(s)
- A Gidwani
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | |
Collapse
|