51
|
Khairallah A, Ross CJ, Tastan Bishop Ö. Probing the Structural Dynamics of the Plasmodium falciparum Tunneling-Fold Enzyme 6-Pyruvoyl Tetrahydropterin Synthase to Reveal Allosteric Drug Targeting Sites. Front Mol Biosci 2020; 7:575196. [PMID: 33102524 PMCID: PMC7546909 DOI: 10.3389/fmolb.2020.575196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
The de novo folate synthesis pathway is a well-established drug target in the treatment of many infectious diseases. Antimalarial antifolate drugs have proven to be effective against malaria, however, rapid drug resistance has emerged on the two primary targeted enzymes: dihydrofolate reductase and dihydroptoreate synthase. The need to identify alternative antifolate drugs and novel metabolic targets is of imminent importance. The 6-pyruvol tetrahydropterin synthase (PTPS) enzyme belongs to the tunneling fold protein superfamily which is characterized by a distinct central tunnel/cavity. The enzyme catalyzes the second reaction step of the parasite’s de novo folate synthesis pathway and is responsible for the conversion of 7,8-dihydroneopterin to 6-pyruvoyl-tetrahydropterin. In this study, we examine the structural dynamics of Plasmodium falciparum PTPS using the anisotropic network model, to elucidate the collective motions that drive the function of the enzyme and identify potential sites for allosteric modulation of its binding properties. Based on our modal analysis, we identified key sites in the N-terminal domains and central helices which control the accessibility to the active site. Notably, the N-terminal domains were shown to regulate the open-to-closed transition of the tunnel, via a distinctive wringing motion that deformed the core of the protein. We, further, combined the dynamic analysis with motif discovery which revealed highly conserved motifs that are unique to the Plasmodium species and are located in the N-terminal domains and central helices. This provides essential structural information for the efficient design of drugs such as allosteric modulators that would have high specificity and low toxicity as they do not target the PTPS active site that is highly conserved in humans.
Collapse
Affiliation(s)
- Afrah Khairallah
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Caroline J Ross
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
52
|
Disorder in a two-domain neuronal Ca 2+-binding protein regulates domain stability and dynamics using ligand mimicry. Cell Mol Life Sci 2020; 78:2263-2278. [PMID: 32936312 PMCID: PMC7966663 DOI: 10.1007/s00018-020-03639-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/08/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
Understanding the interplay between sequence, structure and function of proteins has been complicated in recent years by the discovery of intrinsically disordered proteins (IDPs), which perform biological functions in the absence of a well-defined three-dimensional fold. Disordered protein sequences account for roughly 30% of the human proteome and in many proteins, disordered and ordered domains coexist. However, few studies have assessed how either feature affects the properties of the other. In this study, we examine the role of a disordered tail in the overall properties of the two-domain, calcium-sensing protein neuronal calcium sensor 1 (NCS-1). We show that loss of just six of the 190 residues at the flexible C-terminus is sufficient to severely affect stability, dynamics, and folding behavior of both ordered domains. We identify specific hydrophobic contacts mediated by the disordered tail that may be responsible for stabilizing the distal N-terminal domain. Moreover, sequence analyses indicate the presence of an LSL-motif in the tail that acts as a mimic of native ligands critical to the observed order-disorder communication. Removing the disordered tail leads to a shorter life-time of the ligand-bound complex likely originating from the observed destabilization. This close relationship between order and disorder may have important implications for how investigations into mixed systems are designed and opens up a novel avenue of drug targeting exploiting this type of behavior.
Collapse
|
53
|
Zhao J, Zhai X, Zhou J. Snapshot of the evolution and mutation patterns of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32637950 DOI: 10.1101/2020.07.04.187435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is the most important public health threat in recent history. Here we study how its causal agent, SARS-CoV-2, has diversified genetically since its first emergence in December 2019. We have created a pipeline combining both phylogenetic and structural analysis to identify possible human-adaptation related mutations in a data set consisting of 4,894 SARS-CoV-2 complete genome sequences. Although the phylogenetic diversity of SARS-CoV-2 is low, the whole genome phylogenetic tree can be divided into five clusters/clades based on the tree topology and clustering of specific mutations, but its branches exhibit low genetic distance and bootstrap support values. We also identified 11 residues that are high-frequency substitutions, with four of them currently showing some signal for potential positive selection. These fast-evolving sites are in the non-structural proteins nsp2, nsp5 (3CL-protease), nsp6, nsp12 (polymerase) and nsp13 (helicase), in accessory proteins (ORF3a, ORF8) and in the structural proteins N and S. Temporal and spatial analysis of these potentially adaptive mutations revealed that the incidence of some of these sites was declining after having reached an (often local) peak, whereas the frequency of other sites is continually increasing and now exhibit a worldwide distribution. Structural analysis revealed that the mutations are located on the surface of the proteins that modulate biochemical properties. We speculate that this improves binding to cellular proteins and hence represents fine-tuning of adaptation to human cells. Our study has implications for the design of biochemical and clinical experiments to assess whether important properties of SARS-CoV-2 have changed during the epidemic.
Collapse
|
54
|
Silva MA, Kiametis AS, Treptow W. Donepezil Inhibits Acetylcholinesterase via Multiple Binding Modes at Room Temperature. J Chem Inf Model 2020; 60:3463-3471. [PMID: 32096991 DOI: 10.1021/acs.jcim.9b01073] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Donepezil is a second generation acetylcholinesterase (AChE) inhibitor for treatment of Alzheimer's disease (AD). AChE is important for neurotransmission at neuromuscular junctions and cholinergic brain synapses by hydrolyzing acetylcholine into acetate and choline. In vitro data support that donepezil is a reversible, mixed competitive and noncompetitive inhibitor of AChE. The experimental fact then suggests a more complex binding mechanism beyond the molecular view in X-ray models resolved at cryogenic temperatures that show a unique binding mode of donepezil in the active site of the enzyme. Aiming at clarifying the mechanism behind that mixed competitive and noncompetitive nature of the inhibitor, we have applied molecular dynamics (MD) simulations and docking and free-energy calculations to investigate microscopic details and energetics of donepezil association for conditions of substrate-free and -bound states of the enzyme. Liquid-phase MD simulation at room temperature shows AChE transits between "open" and "closed" conformations to control accessibility to the active site and ligand binding. As shown by docking and free-energy calculations, association of donepezil involves its reversible axial displacement and reorientation in the active site of the enzyme, assisted by water molecules. Donepezil binds equally well the main-door anionic binding site PAS, the acyl pocket, and the catalytic site CAS by respectively adopting outward-inward-inward orientations regardless of substrate occupancy-the overall stability of that reaction process depends however on co-occupancy of the enzyme being preferential for its substrate-free state. All together, our findings support a physiologically relevant mechanism of AChE inhibition by donepezil involving multistable interactions modes at the molecular origin of the inhibitor's activity.
Collapse
Affiliation(s)
- Monica A Silva
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brası́lia DF, Brasília 70910-900, Brasil
| | - Alessandra S Kiametis
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brası́lia DF, Brasília 70910-900, Brasil
| | - Werner Treptow
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brası́lia DF, Brasília 70910-900, Brasil
| |
Collapse
|
55
|
Structural dynamics of P-type ATPase ion pumps. Biochem Soc Trans 2020; 47:1247-1257. [PMID: 31671180 DOI: 10.1042/bst20190124] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 02/04/2023]
Abstract
P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.
Collapse
|
56
|
Maenpuen S, Pongsupasa V, Pensook W, Anuwan P, Kraivisitkul N, Pinthong C, Phonbuppha J, Luanloet T, Wijma HJ, Fraaije MW, Lawan N, Chaiyen P, Wongnate T. Creating Flavin Reductase Variants with Thermostable and Solvent-Tolerant Properties by Rational-Design Engineering. Chembiochem 2020; 21:1481-1491. [PMID: 31886941 DOI: 10.1002/cbic.201900737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 02/06/2023]
Abstract
We have employed computational approaches-FireProt and FRESCO-to predict thermostable variants of the reductase component (C1 ) of (4-hydroxyphenyl)acetate 3-hydroxylase. With the additional aid of experimental results, two C1 variants, A166L and A58P, were identified as thermotolerant enzymes, with thermostability improvements of 2.6-5.6 °C and increased catalytic efficiency of 2- to 3.5-fold. After heat treatment at 45 °C, both of the thermostable C1 variants remain active and generate reduced flavin mononucleotide (FMNH- ) for reactions catalyzed by bacterial luciferase and by the monooxygenase C2 more efficiently than the wild type (WT). In addition to thermotolerance, the A166L and A58P variants also exhibited solvent tolerance. Molecular dynamics (MD) simulations (6 ns) at 300-500 K indicated that mutation of A166 to L and of A58 to P resulted in structural changes with increased stabilization of hydrophobic interactions, and thus in improved thermostability. Our findings demonstrated that improvements in the thermostability of C1 enzyme can lead to broad-spectrum uses of C1 as a redox biocatalyst for future industrial applications.
Collapse
Affiliation(s)
- Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, 169 Long-Hard Bangsaen Road, Chonburi, 20131, Thailand
| | - Vinutsada Pongsupasa
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Wiranee Pensook
- Department of Biochemistry, Faculty of Science, Burapha University, 169 Long-Hard Bangsaen Road, Chonburi, 20131, Thailand
| | - Piyanuch Anuwan
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| | | | - Chatchadaporn Pinthong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23 Road, Bangkok, 10110, Thailand
| | - Jittima Phonbuppha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Thikumporn Luanloet
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Hein J Wijma
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Narin Lawan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huaykaew Road, Suthep, Chiang Mai, 50200, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| |
Collapse
|
57
|
Han JY, Choi TS, Heo CE, Son MK, Kim HI. Gas-phase conformations of intrinsically disordered proteins and their complexes with ligands: Kinetically trapped states during transfer from solution to the gas phase. MASS SPECTROMETRY REVIEWS 2019; 38:483-500. [PMID: 31021441 DOI: 10.1002/mas.21596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Flexible structures of intrinsically disordered proteins (IDPs) are crucial for versatile functions in living organisms, which involve interaction with diverse partners. Electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) has been widely applied for structural characterization of apo-state and ligand-associated IDPs via two-dimensional separation in the gas phase. Gas-phase IDP structures have been regarded as kinetically trapped states originated from conformational features in solution. However, an implication of the states remains elusive in the structural characterization of IDPs, because it is unclear what structural property of IDPs is preserved. Recent studies have indicated that the conformational features of IDPs in solution are not fully reproduced in the gas phase. Nevertheless, the molecular interactions captured in the gas phase amplify the structural differences between IDP conformers. Therefore, an IDP conformational change that is not observed in solution is observable in the gas-phase structures obtained by ESI-IM-MS. Herein, we have presented up-to-date researches on the key implications of kinetically trapped states in the gas phase with a brief summary of the structural dynamics of IDPs in ESI-IM-MS.
Collapse
Affiliation(s)
- Jong Yoon Han
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Tae Su Choi
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093
| | - Chae Eun Heo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Myung Kook Son
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
58
|
Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform 2019; 20:1878-1912. [PMID: 30084866 PMCID: PMC6917215 DOI: 10.1093/bib/bby061] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/25/2018] [Indexed: 01/16/2023] Open
Abstract
The identification of interactions between drugs/compounds and their targets is crucial for the development of new drugs. In vitro screening experiments (i.e. bioassays) are frequently used for this purpose; however, experimental approaches are insufficient to explore novel drug-target interactions, mainly because of feasibility problems, as they are labour intensive, costly and time consuming. A computational field known as 'virtual screening' (VS) has emerged in the past decades to aid experimental drug discovery studies by statistically estimating unknown bio-interactions between compounds and biological targets. These methods use the physico-chemical and structural properties of compounds and/or target proteins along with the experimentally verified bio-interaction information to generate predictive models. Lately, sophisticated machine learning techniques are applied in VS to elevate the predictive performance. The objective of this study is to examine and discuss the recent applications of machine learning techniques in VS, including deep learning, which became highly popular after giving rise to epochal developments in the fields of computer vision and natural language processing. The past 3 years have witnessed an unprecedented amount of research studies considering the application of deep learning in biomedicine, including computational drug discovery. In this review, we first describe the main instruments of VS methods, including compound and protein features (i.e. representations and descriptors), frequently used libraries and toolkits for VS, bioactivity databases and gold-standard data sets for system training and benchmarking. We subsequently review recent VS studies with a strong emphasis on deep learning applications. Finally, we discuss the present state of the field, including the current challenges and suggest future directions. We believe that this survey will provide insight to the researchers working in the field of computational drug discovery in terms of comprehending and developing novel bio-prediction methods.
Collapse
Affiliation(s)
- Ahmet Sureyya Rifaioglu
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
- Department of Computer Engineering, İskenderun Technical University, Hatay, Turkey
| | - Heval Atas
- Cancer System Biology Laboratory (CanSyL), Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Maria Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Cambridge, Hinxton, UK
| | - Rengul Cetin-Atalay
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
| | - Volkan Atalay
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
| | - Tunca Doğan
- Cancer System Biology Laboratory (CanSyL), Graduate School of Informatics, Middle East Technical University, Ankara, Turkey and European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Cambridge, Hinxton, UK
| |
Collapse
|
59
|
Bala S, Shinya S, Srivastava A, Ishikawa M, Shimada A, Kobayashi N, Kojima C, Tama F, Miyashita O, Kohda D. Crystal contact-free conformation of an intrinsically flexible loop in protein crystal: Tim21 as the case study. Biochim Biophys Acta Gen Subj 2019; 1864:129418. [PMID: 31449839 DOI: 10.1016/j.bbagen.2019.129418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/02/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND In protein crystals, flexible loops are frequently deformed by crystal contacts, whereas in solution, the large motions result in the poor convergence of such flexible loops in NMR structure determinations. We need an experimental technique to characterize the structural and dynamic properties of intrinsically flexible loops of protein molecules. METHODS We designed an intended crystal contact-free space (CCFS) in protein crystals, and arranged the flexible loop of interest in the CCFS. The yeast Tim 21 protein was chosen as the model protein, because one of the loops (loop 2) is distorted by crystal contacts in the conventional crystal. RESULTS Yeast Tim21 was fused to the MBP protein by a rigid α-helical linker. The space created between the two proteins was used as the CCFS. The linker length provides adjustable freedom to arrange loop 2 in the CCFS. We re-determined the NMR structure of yeast Tim21, and conducted MD simulations for comparison. Multidimensional scaling was used to visualize the conformational similarity of loop 2. We found that the crystal contact-free conformation of loop 2 is located close to the center of the ensembles of the loop 2 conformations in the NMR and MD structures. CONCLUSIONS Loop 2 of yeast Tim21 in the CCFS adopts a representative, dominant conformation in solution. GENERAL SIGNIFICANCE No single powerful technique is available for the characterization of flexible structures in protein molecules. NMR analyses and MD simulations provide useful, but incomplete information. CCFS crystallography offers a third route to this goal.
Collapse
Affiliation(s)
- Siqin Bala
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shoko Shinya
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Arpita Srivastava
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Marie Ishikawa
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naohiro Kobayashi
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan; Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Florence Tama
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Center for Computational Science, RIKEN, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Osamu Miyashita
- Center for Computational Science, RIKEN, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
60
|
Liu X, Chen J. Residual Structures and Transient Long-Range Interactions of p53 Transactivation Domain: Assessment of Explicit Solvent Protein Force Fields. J Chem Theory Comput 2019; 15:4708-4720. [PMID: 31241933 DOI: 10.1021/acs.jctc.9b00397] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Molecular dynamics simulations using physics-based atomistic force fields have been increasingly used to characterize the heterogeneous structural ensembles of intrinsically disordered proteins (IDPs). To evaluate the accuracy of the latest atomistic explicit-solvent force fields in modeling larger IDPs with nontrivial structural features, we focus on the 61-residue N-terminal transactivation domain (TAD) of tumor suppressor p53, an important protein in cancer biology that has been extensively studied, and abundant experimental data is available for evaluation of simulated ensembles. We performed extensive replica exchange with solute tempering simulations, in excess of 1.0 μs/replica, to generate disordered structural ensembles of p53-TAD using six latest explicit solvent protein force fields. Multiple local and long-range structural properties, including chain dimension, residual secondary structures, and transient long-range contacts, were analyzed and compared against available experimental data. The results show that IDPs such as p53-TAD remain highly challenging for atomistic simulations due to conformational complexity and difficulty in achieving adequate convergence. Structural ensembles of p53-TAD generated using various force fields differ significantly from each other. The a99SB-disp force field demonstrates the best agreement with experimental data at all levels and proves to be suitable for simulating unbound p53-TAD and how its conformational properties may be modulated by phosphorylation and other cellular signals or cancer-associated mutations. Feasibility of such detailed structural characterization is a key step toward establishing the sequence-disordered ensemble-function-disease relationship of p53 and other biologically important IDPs.
Collapse
|
61
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
62
|
Is the cell really a machine? J Theor Biol 2019; 477:108-126. [PMID: 31173758 DOI: 10.1016/j.jtbi.2019.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 05/06/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
Abstract
It has become customary to conceptualize the living cell as an intricate piece of machinery, different to a man-made machine only in terms of its superior complexity. This familiar understanding grounds the conviction that a cell's organization can be explained reductionistically, as well as the idea that its molecular pathways can be construed as deterministic circuits. The machine conception of the cell owes a great deal of its success to the methods traditionally used in molecular biology. However, the recent introduction of novel experimental techniques capable of tracking individual molecules within cells in real time is leading to the rapid accumulation of data that are inconsistent with an engineering view of the cell. This paper examines four major domains of current research in which the challenges to the machine conception of the cell are particularly pronounced: cellular architecture, protein complexes, intracellular transport, and cellular behaviour. It argues that a new theoretical understanding of the cell is emerging from the study of these phenomena which emphasizes the dynamic, self-organizing nature of its constitution, the fluidity and plasticity of its components, and the stochasticity and non-linearity of its underlying processes.
Collapse
|
63
|
Pal A, Levy Y. Structure, stability and specificity of the binding of ssDNA and ssRNA with proteins. PLoS Comput Biol 2019; 15:e1006768. [PMID: 30933978 PMCID: PMC6467422 DOI: 10.1371/journal.pcbi.1006768] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/16/2019] [Accepted: 01/01/2019] [Indexed: 02/06/2023] Open
Abstract
Recognition of single-stranded DNA (ssDNA) or single-stranded RNA (ssRNA) is important for many fundamental cellular functions. A variety of single-stranded DNA-binding proteins (ssDBPs) and single-stranded RNA-binding proteins (ssRBPs) have evolved that bind ssDNA and ssRNA, respectively, with varying degree of affinities and specificities to form complexes. Structural studies of these complexes provide key insights into their recognition mechanism. However, computational modeling of the specific recognition process and to predict the structure of the complex is challenging, primarily due to the heterogeneity of their binding energy landscape and the greater flexibility of ssDNA or ssRNA compared with double-stranded nucleic acids. Consequently, considerably fewer computational studies have explored interactions between proteins and single-stranded nucleic acids compared with protein interactions with double-stranded nucleic acids. Here, we report a newly developed energy-based coarse-grained model to predict the structure of ssDNA–ssDBP and ssRNA–ssRBP complexes and to assess their sequence-specific interactions and stabilities. We tuned two factors that can modulate specific recognition: base–aromatic stacking strength and the flexibility of the single-stranded nucleic acid. The model was successfully applied to predict the binding conformations of 12 distinct ssDBP and ssRBP structures with their cognate ssDNA and ssRNA partners having various sequences. Estimated binding energies agreed well with the corresponding experimental binding affinities. Bound conformations from the simulation showed a funnel-shaped binding energy distribution where the native-like conformations corresponded to the energy minima. The various ssDNA–protein and ssRNA–protein complexes differed in the balance of electrostatic and aromatic energies. The lower affinity of the ssRNA–ssRBP complexes compared with the ssDNA–ssDBP complexes stems from lower flexibility of ssRNA compared to ssDNA, which results in higher rate constants for the dissociation of the complex (koff) for complexes involving the former. Quantifying bimolecular self-assembly is pivotal to understanding cellular function. In recent years, a large progress has been made in understanding the structure and biophysics of protein-protein interactions. Particularly, various computational tools are available for predicting these structures and to estimate their stability and the driving forces of their formation. The understating of the interactions between proteins and nucleic acids, however, is still limited, presumably due to the involvement of non-specific interactions as well as the high conformational plasticity that may demand an induced-fit mechanism. In particular, the interactions between proteins and single-stranded nucleic acids (i.e., single-stranded DNA and RNA) is very challenging due to their high flexibility. Furthermore, the interface between proteins and single-stranded nucleic acids is often chemically more heterogeneous than the interface between proteins and double-stranded DNA. In this study, we developed a coarse-grained computational model to predict the structure of complexes between proteins and single-stranded nucleic acids. The model was applied to estimate binding affinities and the estimated binding energies agreed well with the corresponding experimental binding affinities. The kinetics of association as well as the specificity of the complexes between proteins and ssDNA are different than those with ssRNA, mostly due to differences in their conformational flexibility.
Collapse
Affiliation(s)
- Arumay Pal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
64
|
Cao J, Liu JY, Zhang YM, Wang ZY, Xu PF. Synergistic promotion by intramolecular hydrogen bonding: a bi-functionally catalyzed cascade reaction for the synthesis of enantiopure chromenopyrrolidines. Org Chem Front 2019. [DOI: 10.1039/c8qo01208c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An effective organocatalytic asymmetric cascade reaction of o-hydroxy aromatic aldimines and β,γ-unsaturated-α-ketoesters was developed.
Collapse
Affiliation(s)
- Jian Cao
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P.R. China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources & School of Mineral Processing and Bioengineering
| | - Jin-Yu Liu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P.R. China
| | - Yi-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P.R. China
| | - Zhu-Yin Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P.R. China
| |
Collapse
|
65
|
Mistarz UH, Chandler SA, Brown JM, Benesch JLP, Rand KD. Probing the Dissociation of Protein Complexes by Means of Gas-Phase H/D Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:45-57. [PMID: 30460642 DOI: 10.1007/s13361-018-2064-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 05/16/2023]
Abstract
Gas-phase hydrogen/deuterium exchange measured by mass spectrometry (gas-phase HDX-MS) is a fast method to probe the conformation of protein ions. The use of gas-phase HDX-MS to investigate the structure and interactions of protein complexes is however mostly unharnessed. Ionizing proteins under conditions that maximize preservation of their native structure (native MS) enables the study of solution-like conformation for milliseconds after electrospray ionization (ESI), which enables the use of ND3-gas inside the mass spectrometer to rapidly deuterate heteroatom-bound non-amide hydrogens. Here, we explored the utility of gas-phase HDX-MS to examine protein-protein complexes and inform on their binding surface and the structural consequences of gas-phase dissociation. Protein complexes ranging from 24 kDa dimers to 395 kDa 24mers were analyzed by gas-phase HDX-MS with subsequent collision-induced dissociation (CID). The number of exchangeable sites involved in complex formation could, therefore, be estimated. For instance, dimers of cytochrome c or α-lactalbumin incorporated less deuterium/subunit than their unbound monomer counterparts, providing a measure of the number of heteroatom-bound side-chain hydrogens involved in complex formation. We furthermore studied if asymmetric charge-partitioning upon dissociation of protein complexes caused intermolecular H/D migration. In larger multimeric protein complexes, the dissociated monomer showed a significant increase in deuterium. This indicates that intermolecular H/D migration occurs as part of the asymmetric partitioning of charge during CID. We discuss several models that may explain this increase deuterium content and find that a model where only deuterium involved in migrating charge can account for most of the deuterium enrichment observed on the ejected monomer. In summary, the deuterium content of the ejected subunit can be used to estimate that of the intact complex with deviations observed for large complexes accounted for by charge migration. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Ulrik H Mistarz
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Shane A Chandler
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Jeffery M Brown
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| | - Justin L P Benesch
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Kasper D Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
66
|
Le Breton N, Longhi S, Rockenbauer A, Guigliarelli B, Marque SRA, Belle V, Martinho M. Probing the dynamic properties of two sites simultaneously in a protein–protein interaction process: a SDSL-EPR study. Phys Chem Chem Phys 2019; 21:22584-22588. [DOI: 10.1039/c9cp04660g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Probing two sites simultaneously in a protein–protein interaction process combining spin labels of different EPR signatures.
Collapse
Affiliation(s)
| | - S. Longhi
- Aix Marseille Univ
- CNRS
- AFMB
- Marseille
- France
| | - A. Rockenbauer
- Research Center of Natural Sciences
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | | | | | - V. Belle
- Aix Marseille Univ., CNRS, BIP
- Marseille
- France
| | - M. Martinho
- Aix Marseille Univ., CNRS, BIP
- Marseille
- France
| |
Collapse
|
67
|
Sartori GR, Leitão A, Montanari CA, Laughton CA. Ligand-induced conformational selection predicts the selectivity of cysteine protease inhibitors. PLoS One 2019; 14:e0222055. [PMID: 31856175 PMCID: PMC6922342 DOI: 10.1371/journal.pone.0222055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/19/2019] [Indexed: 11/25/2022] Open
Abstract
Cruzain, a cysteine protease of Trypanosoma cruzi, is a validated target for the treatment of Chagas disease. Due to its high similarity in three-dimensional structure with human cathepsins and their sequence identity above 70% in the active site regions, identifying potent but selective cruzain inhibitors with low side effects on the host organism represents a significant challenge. Here a panel of nitrile ligands with varying potencies against cathepsin K, cathepsin L and cruzain, are studied by molecular dynamics simulations as both non-covalent and covalent complexes. Principal component analysis (PCA), identifies and quantifies patterns of ligand-induced conformational selection that enable the construction of a decision tree which can predict with high confidence a low-nanomolar inhibitor of each of three proteins, and determine the selectivity for one against others.
Collapse
Affiliation(s)
- Geraldo Rodrigues Sartori
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Andrei Leitão
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Carlos A. Montanari
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Charles A. Laughton
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham, England, United Kingdom
- * E-mail:
| |
Collapse
|
68
|
Feltes BC, Pedebos C, Bonatto D, Verli H. Dynamics of DDB2-DDB1 complex under different naturally-occurring mutants in Xeroderma Pigmentosum disease. Biochim Biophys Acta Gen Subj 2018; 1862:2579-2589. [DOI: 10.1016/j.bbagen.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022]
|
69
|
Nava M. Implementing dimer metadynamics using gromacs. J Comput Chem 2018; 39:2126-2132. [PMID: 30306568 DOI: 10.1002/jcc.25386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 11/07/2022]
Abstract
We develop a Gromacs implementation of dimer metadynamics (DM) (JCTC 13, 425 [2017]) for enhanced sampling through artificial delocalization effects. This implementation is based entirely on a Plumed collective variable developed for this purpose, the fine tuning of Gromacs input parameters, modified forcefields and custom nonbonded interactions. We demonstrate this implementation on alanine dipeptide in vacuum and in water, and on the 12-residue alanine polypeptide in water and compare the results with a standard multiple-replica technique such as parallel tempering. In all the considered cases, this comparison is consistent and the results with DM are smoother and require shorter simulations, thus proving the consistency and effectiveness of this Gromacs implementation. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M Nava
- Department of Chemistry and Applied Biosciences, ETH Zurich, and Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, Via G. Buffi 13, 6900, Lugano, Switzerland
| |
Collapse
|
70
|
Olloqui-Sariego JL, Márquez I, Frutos-Beltrán E, Díaz-Moreno I, De la Rosa MA, Calvente JJ, Andreu R, Díaz-Quintana A. Key Role of the Local Hydrophobicity in the East Patch of Plastocyanins on Their Thermal Stability and Redox Properties. ACS OMEGA 2018; 3:11447-11454. [PMID: 31459248 PMCID: PMC6645426 DOI: 10.1021/acsomega.8b01612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/06/2018] [Indexed: 06/10/2023]
Abstract
Understanding the molecular basis of the thermal stability and functionality of redox proteins has important practical applications. Here, we show a distinct thermal dependence of the spectroscopic and electrochemical properties of two plastocyanins from the thermophilic cyanobacterium Phormidium laminosum and their mesophilic counterpart from Synechocystis sp. PCC 6803, despite the similarity of their molecular structures. To explore the origin of these differences, we have mimicked the local hydrophobicity in the east patch of the thermophilic protein by replacing a valine of the mesophilic plastocyanin by isoleucine. Interestingly, the resulting mutant approaches the thermal stability, redox thermodynamics, and dynamic coupling of the flexible site motions of the thermophilic protein, indicating the existence of a close connection between the hydrophobic packing of the east patch region of plastocyanin and the functional control and stability of the oxidized and reduced forms of the protein.
Collapse
Affiliation(s)
- José Luis Olloqui-Sariego
- Departamento
de Química Física, Universidad
de Sevilla, c/ Profesor García González, 1, 41012 Sevilla, Spain
| | - Inmaculada Márquez
- Departamento
de Química Física, Universidad
de Sevilla, c/ Profesor García González, 1, 41012 Sevilla, Spain
| | - Estrella Frutos-Beltrán
- Instituto
de Investigaciones Químicas, cicCartuja, Universidad de Sevilla y CSIC, Avd. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Irene Díaz-Moreno
- Instituto
de Investigaciones Químicas, cicCartuja, Universidad de Sevilla y CSIC, Avd. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Miguel A. De la Rosa
- Instituto
de Investigaciones Químicas, cicCartuja, Universidad de Sevilla y CSIC, Avd. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Juan José Calvente
- Departamento
de Química Física, Universidad
de Sevilla, c/ Profesor García González, 1, 41012 Sevilla, Spain
| | - Rafael Andreu
- Departamento
de Química Física, Universidad
de Sevilla, c/ Profesor García González, 1, 41012 Sevilla, Spain
| | - Antonio Díaz-Quintana
- Instituto
de Investigaciones Químicas, cicCartuja, Universidad de Sevilla y CSIC, Avd. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
71
|
Midya US, Bandyopadhyay S. Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study. J Phys Chem B 2018; 122:9389-9398. [DOI: 10.1021/acs.jpcb.8b08506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
72
|
Mechanical variations in proteins with large-scale motions highlight the formation of structural locks. J Struct Biol 2018; 203:195-204. [DOI: 10.1016/j.jsb.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
|
73
|
Poosapati A, Gregory E, Borcherds WM, Chemes LB, Daughdrill GW. Uncoupling the Folding and Binding of an Intrinsically Disordered Protein. J Mol Biol 2018; 430:2389-2402. [PMID: 29890118 DOI: 10.1016/j.jmb.2018.05.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 01/29/2023]
Abstract
The relationship between helical stability and binding affinity was examined for the intrinsically disordered transactivation domain of the myeloblastosis oncoprotein, c-Myb, and its ordered binding partner, KIX. A series of c-Myb mutants was designed to either increase or decrease helical stability without changing the binding interface with KIX. This included a complimentary series of A, G, P, and V mutants at three non-interacting sites. We were able to use the glycine mutants as a reference state and show a strong correlation between binding affinity and helical stability. The intrinsic helicity of c-Myb is 21%, and helicity values of the mutants ranged from 8% to 28%. The c-Myb helix is divided into two conformationally distinct segments. The N-terminal segment, from K291-L301, has an average helicity greater than 60% and the C-terminal segment, from S304-L315, has an average helicity less than 10%. We observed different effects on binding when these two segments were mutated. Mutants in the N-terminal segment that increased helicity had no effect on the binding affinity to KIX, while helix destabilizing glycine and proline mutants reduced binding affinity by more than 1 kcal/mol. Mutants that either increased or decreased helical stability in the C-terminal segment had almost no effect on binding. However, several of the mutants reveal the presence of multiple conformations accessible in the bound state based on changes in enthalpy and linkage analysis of binding free energies. These results may explain the high level of sequence identity (>90%), even at non-interacting sites, for c-Myb homologues.
Collapse
Affiliation(s)
- Anusha Poosapati
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| | - Emily Gregory
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| | - Wade M Borcherds
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| | - Lucia B Chemes
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, Universidad Nacional de San Martín, Buenos Aires, CP1650, Argentina.
| | - Gary W Daughdrill
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
74
|
Frotscher E, Krainer G, Schlierf M, Keller S. Dissecting Nanosecond Dynamics in Membrane Proteins with Dipolar Relaxation upon Tryptophan Photoexcitation. J Phys Chem Lett 2018; 9:2241-2245. [PMID: 29652505 DOI: 10.1021/acs.jpclett.8b00834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The structural dynamics of proteins on the nanosecond time scale can be probed with dipolar relaxation in response to photoexcitation of intrinsic tryptophan (Trp) residues. For membrane proteins, however, the complexity due to overlapping contributions from the protein itself, the membrane mimic, and the aqueous solvent impairs detailed analysis and interpretation. To disentangle these contributions, we measured time-resolved emission spectra of Trp in the protein Mistic in detergent micelles of various polarities. By comparison with Trp analogues in water and micelles, we could dissect the contributions from hydration, micelle, and protein matrix to dipolar relaxation on the nanosecond time scale. Our results demonstrate that ultrafast, subnanosecond relaxation reports on the extent of Trp shielding from water, with micelle and protein moieties making additive contributions. By contrast, relaxation in the low nanosecond regime is due to dipolar rearrangement of micelle and protein moieties upon photoexcitation, thereby probing conformational dynamics around the intrinsic fluorophore.
Collapse
Affiliation(s)
- Erik Frotscher
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
| | - Georg Krainer
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
- B CUBE - Center for Molecular Bioengineering , Technische Universität Dresden , Arnoldstr. 18 , 01307 Dresden , Germany
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering , Technische Universität Dresden , Arnoldstr. 18 , 01307 Dresden , Germany
| | - Sandro Keller
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
| |
Collapse
|
75
|
Establishment of Aromatic Pairs at the Surface of Chondroitinase ABC I: the Effect on Activity and Stability. Appl Biochem Biotechnol 2018; 186:358-370. [DOI: 10.1007/s12010-018-2741-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/18/2018] [Indexed: 10/17/2022]
|
76
|
Brown KL, Banerjee S, Feigley A, Abe H, Blackwell TS, Pozzi A, Hudson BG, Zent R. Salt-bridge modulates differential calcium-mediated ligand binding to integrin α1- and α2-I domains. Sci Rep 2018; 8:2916. [PMID: 29440721 PMCID: PMC5811549 DOI: 10.1038/s41598-018-21231-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/31/2018] [Indexed: 11/11/2022] Open
Abstract
Integrins are transmembrane cell-extracellular matrix adhesion receptors that impact many cellular functions. A subgroup of integrins contain an inserted (I) domain within the α–subunits (αI) that mediate ligand recognition where function is contingent on binding a divalent cation at the metal ion dependent adhesion site (MIDAS). Ca2+ is reported to promote α1I but inhibit α2I ligand binding. We co-crystallized individual I-domains with MIDAS-bound Ca2+ and report structures at 1.4 and 2.15 Å resolution, respectively. Both structures are in the “closed” ligand binding conformation where Ca2+ induces minimal global structural changes. Comparisons with Mg2+-bound structures reveal Mg2+ and Ca2+ bind α1I in a manner sufficient to promote ligand binding. In contrast, Ca2+ is displaced in the α2I domain MIDAS by 1.4 Å relative to Mg2+ and unable to directly coordinate all MIDAS residues. We identified an E152-R192 salt bridge hypothesized to limit the flexibility of the α2I MIDAS, thus, reducing Ca2+ binding. A α2I E152A construct resulted in a 10,000-fold increase in Mg2+ and Ca2+ binding affinity while increasing binding to collagen ligands 20%. These data indicate the E152-R192 salt bridge is a key distinction in the molecular mechanism of differential ion binding of these two I domains.
Collapse
Affiliation(s)
- Kyle L Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA. .,Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA. .,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Northeastern Collaborative Access Team, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Andrew Feigley
- Leadership Alliance, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA
| | - Hanna Abe
- Aspirnaut Summer research program, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA
| | - Timothy S Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Veterans Affairs Hospital, Nashville, TN, 37232, USA
| | - Ambra Pozzi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Veterans Affairs Hospital, Nashville, TN, 37232, USA
| | - Billy G Hudson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Aspirnaut Summer research program, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232-2372, USA
| | - Roy Zent
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Veterans Affairs Hospital, Nashville, TN, 37232, USA
| |
Collapse
|
77
|
Matsuo T, Kono T, Shobu I, Ishida M, Gonda K, Hirota S. Global Structural Flexibility of Metalloproteins Regulates Reactivity of Transition Metal Ion in the Protein Core: An Experimental Study Using Thiol-subtilisin as a Model Protein. Chemistry 2018; 24:2767-2775. [DOI: 10.1002/chem.201705920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Takashi Matsuo
- Graduate School of Materials Science; Nara Institute of Science and Technology (NAIST); 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Takamasa Kono
- Graduate School of Materials Science; Nara Institute of Science and Technology (NAIST); 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Isamu Shobu
- Graduate School of Materials Science; Nara Institute of Science and Technology (NAIST); 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Masaya Ishida
- Graduate School of Materials Science; Nara Institute of Science and Technology (NAIST); 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Katsuya Gonda
- Graduate School of Materials Science; Nara Institute of Science and Technology (NAIST); 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Shun Hirota
- Graduate School of Materials Science; Nara Institute of Science and Technology (NAIST); 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| |
Collapse
|
78
|
IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Curr Opin Struct Biol 2018; 49:36-43. [PMID: 29306779 DOI: 10.1016/j.sbi.2017.12.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/21/2023]
Abstract
Intrinsically disordered proteins (IDPs) have critical roles in a diverse array of cellular functions. Of relevance here is that they are components of macromolecular complexes, where their conformational flexibility helps mediate interactions with binding partners. IDPs often interact with their binding partners through short sequence motifs, commonly repeated within the disordered regions. As such, multivalent interactions are common for IDPs and their binding partners within macromolecular complexes. Here we discuss the importance of IDP multivalency in three very different macromolecular assemblies: biomolecular condensates, the nuclear pore, and the cytoskeleton.
Collapse
|
79
|
Mistarz UH, Bellina B, Jensen PF, Brown JM, Barran PE, Rand KD. UV Photodissociation Mass Spectrometry Accurately Localize Sites of Backbone Deuteration in Peptides. Anal Chem 2017; 90:1077-1080. [DOI: 10.1021/acs.analchem.7b04683] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ulrik H. Mistarz
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Bruno Bellina
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, and Photon Science Institute, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Pernille F. Jensen
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jeffery M. Brown
- Waters Corporation, Stamford
Avenue, Altrincham Road, Wilmslow, SK9 4AX, United Kingdom
| | - Perdita E. Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, and Photon Science Institute, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Kasper D. Rand
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
80
|
Patterns of coevolving amino acids unveil structural and dynamical domains. Proc Natl Acad Sci U S A 2017; 114:E10612-E10621. [PMID: 29183970 DOI: 10.1073/pnas.1712021114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Patterns of interacting amino acids are so preserved within protein families that the sole analysis of evolutionary comutations can identify pairs of contacting residues. It is also known that evolution conserves functional dynamics, i.e., the concerted motion or displacement of large protein regions or domains. Is it, therefore, possible to use a pure sequence-based analysis to identify these dynamical domains? To address this question, we introduce here a general coevolutionary coupling analysis strategy and apply it to a curated sequence database of hundreds of protein families. For most families, the sequence-based method partitions amino acids into a few clusters. When viewed in the context of the native structure, these clusters have the signature characteristics of viable protein domains: They are spatially separated but individually compact. They have a direct functional bearing too, as shown for various reference cases. We conclude that even large-scale structural and functionally related properties can be recovered from inference methods applied to evolutionary-related sequences. The method introduced here is available as a software package and web server (spectrus.sissa.it/spectrus-evo_webserver).
Collapse
|
81
|
Liu X, Jia Z, Chen J. Enhanced Sampling of Intrinsic Structural Heterogeneity of the BH3-Only Protein Binding Interface of Bcl-xL. J Phys Chem B 2017; 121:9160-9168. [PMID: 28903561 DOI: 10.1021/acs.jpcb.7b06768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antiapoptotic Bcl-xL plays central roles in regulating programed cell death. Partial unfolding of Bcl-xL has been observed at the interface upon specific binding to the pro-apoptotic BH3-only protein PUMA, which in turn disrupts the interaction of Bcl-xL with tumor suppressor p53 and promotes apoptosis. Previous analysis of existing Bcl-xL structures and atomistic molecular dynamics (MD) simulations have suggested that substantial intrinsic structure heterogeneity exists at the BH3-only protein binding interface of Bcl-xL to facilitate its conformational transitions upon binding. In this study, enhanced sampling is applied to further characterize the interfacial conformations of unbound Bcl-xL in explicit solvent. Extensive replica exchange with solute tempering (REST) simulations, with a total accumulated time of 16 μs, were able to cover much wider conformational spaces for the interfacial region of Bcl-xL. The resulting structural ensembles are much better converged, with local and long-range structural features that are highly consistent with existing NMR data. These simulations further demonstrate that the BH3-only protein binding interface of Bcl-xL is intrinsically disordered and samples many rapidly interconverting conformations. Intriguingly, all previously observed conformers are well represented in the unbound structure ensemble. Such intrinsic structural heterogeneity and flexibility may be critical for Bcl-xL to undergo partial unfolding induced by PUMA binding, and likely provide a robust basis that allows Bcl-xL to respond sensitively to binding of various ligands in cellular signaling and regulation.
Collapse
Affiliation(s)
- Xiaorong Liu
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Zhiguang Jia
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Jianhan Chen
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
82
|
Kjaergaard M, Kragelund BB. Functions of intrinsic disorder in transmembrane proteins. Cell Mol Life Sci 2017; 74:3205-3224. [PMID: 28601983 PMCID: PMC11107515 DOI: 10.1007/s00018-017-2562-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
Intrinsic disorder is common in integral membrane proteins, particularly in the intracellular domains. Despite this observation, these domains are not always recognized as being disordered. In this review, we will discuss the biological functions of intrinsically disordered regions of membrane proteins, and address why the flexibility afforded by disorder is mechanistically important. Intrinsically disordered regions are present in many common classes of membrane proteins including ion channels and transporters; G-protein coupled receptors (GPCRs), receptor tyrosine kinases and cytokine receptors. The functions of the disordered regions are many and varied. We will discuss selected examples including: (1) Organization of receptors, kinases, phosphatases and second messenger sources into signaling complexes. (2) Modulation of the membrane-embedded domain function by ball-and-chain like mechanisms. (3) Trafficking of membrane proteins. (4) Transient membrane associations. (5) Post-translational modifications most notably phosphorylation and (6) disorder-linked isoform dependent function. We finish the review by discussing the future challenges facing the membrane protein community regarding protein disorder.
Collapse
Affiliation(s)
- Magnus Kjaergaard
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
- The Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
83
|
Balliu A, Baltzer L. Exploring Non-obvious Hydrophobic Binding Pockets on Protein Surfaces: Increasing Affinities in Peptide-Protein Interactions. Chembiochem 2017; 18:1396-1407. [PMID: 28432776 DOI: 10.1002/cbic.201700048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 11/06/2022]
Abstract
A 42-residue polypeptide conjugated to a small-molecule organic ligand capable of targeting the phosphorylated side chain of Ser15 was shown to bind glycogen phosphorylase a (GPa) with a KD value of 280 nm. The replacement of hydrophobic amino acids by Ala reduced affinities, whereas the incorporation of l-2-aminooctanoic acid (Aoc) increased them. Replacing Nle5, Ile9 and Leu12 by Aoc reduced the KD value from 280 to 27 nm. "Downsizing" the 42-mer to an undecamer gave rise to an affinity for GPa an order of magnitude lower, but the undecamer in which Nle5, Ile9 and Leu12 were replaced by Aoc showed a KD value of 550 nm, comparable with that of the parent 42-mer. The use of Aoc residues offers a convenient route to increased affinity in protein recognition as well as a strategy for the "downsizing" of peptides essentially without loss of affinity. The results show that hydrophobic binding sites can be found on protein surfaces by comparing the affinities of polypeptide conjugates in which Aoc residues replace Nle, Ile, Leu or Phe with those of their unmodified counterparts. Polypeptide conjugates thus provide valuable opportunities for the optimization of peptides and small organic compounds in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Aleksandra Balliu
- Department of Chemistry, BMC, Uppsala University, P. O. Box 576, 751 23, Uppsala, Sweden
| | - Lars Baltzer
- Department of Chemistry, BMC, Uppsala University, P. O. Box 576, 751 23, Uppsala, Sweden
| |
Collapse
|
84
|
Jariwala S, Skjærven L, Yao XQ, Grant BJ. Investigating Protein Sequence-structure-dynamics Relationships with Bio3D-web. J Vis Exp 2017. [PMID: 28745621 PMCID: PMC5612356 DOI: 10.3791/55640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We demonstrate the usage of Bio3D-web for the interactive analysis of biomolecular structure data. The Bio3D-web application provides online functionality for: (1) The identification of related protein structure sets to user specified thresholds of similarity; (2) Their multiple alignment and structure superposition; (3) Sequence and structure conservation analysis; (4) Inter-conformer relationship mapping with principal component analysis, and (5) comparison of predicted internal dynamics via ensemble normal mode analysis. This integrated functionality provides a complete online workflow for investigating sequence-structure-dynamic relationships within protein families and superfamilies.
Collapse
Affiliation(s)
- Shashank Jariwala
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School
| | | | - Xin-Qiu Yao
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School
| | - Barry J Grant
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School;
| |
Collapse
|
85
|
Jazayeri FS, Amininasab M, Hosseinkhani S. Structural and dynamical insight into thermally induced functional inactivation of firefly luciferase. PLoS One 2017; 12:e0180667. [PMID: 28672033 PMCID: PMC5495494 DOI: 10.1371/journal.pone.0180667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022] Open
Abstract
Luciferase is the key component of light production in bioluminescence process. Extensive and advantageous application of this enzyme in biotechnology is restricted due to its low thermal stability. Here we report the effect of heating up above Tm on the structure and dynamical properties of luciferase enzyme compared to temperature at 298 K. In this way we demonstrate that the number of hydrogen bonds between N- and C-domain is increased for the free enzyme at 325 K. Increased inter domain hydrogen bonds by three at 325 K suggests that inter domain contact is strengthened. The appearance of simultaneous strong salt bridge and hydrogen bond between K529 and D422 and increased existence probability between R533 and E389 could mechanistically explain stronger contact between N- and C-domain. Mutagenesis studies demonstrated the importance of K529 and D422 experimentally. Also the significant reduction in SASA for experimentally important residues K529, D422 and T343 which are involved in active site region was observed. Principle component analysis (PCA) in our study shows that the dynamical behavior of the enzyme is changed upon heating up which mainly originated from the change of motion modes and associated extent of those motions with respect to 298 K. These findings could explain why heating up of the enzyme or thermal fluctuation of protein conformation reduces luciferase activity in course of time as a possible mechanism of thermal functional inactivation. According to these results we proposed two strategies to improve thermal stability of functional luciferase.
Collapse
Affiliation(s)
- Fatemeh S. Jazayeri
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, IRAN
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, IRAN
- * E-mail: (MA); (SH)
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IRAN
- * E-mail: (MA); (SH)
| |
Collapse
|
86
|
Wang T, Yuan XS, Wu MB, Lin JP, Yang LR. The advancement of multidimensional QSAR for novel drug discovery - where are we headed? Expert Opin Drug Discov 2017; 12:769-784. [PMID: 28562095 DOI: 10.1080/17460441.2017.1336157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The Multidimensional quantitative structure-activity relationship (multidimensional-QSAR) method is one of the most popular computational methods employed to predict interesting biochemical properties of existing or hypothetical molecules. With continuous progress, the QSAR method has made remarkable success in various fields, such as medicinal chemistry, material science and predictive toxicology. Areas covered: In this review, the authors cover the basic elements of multidimensional -QSAR including model construction, validation and application. It includes and emphasizes the very recent developments of multidimensional -QSAR such as: HQSAR, G-QSAR, MIA-QSAR, multi-target QSAR. The advantages and disadvantages of each method are also discussed and typical examples of their application are detailed. Expert opinion: Although there are defects in multidimensional-QSAR modeling, it is still of enormous help to chemists, biologists and other researchers in various fields. In the authors' opinion, the latest more precise and feasible QSAR models should be further developed by integrating new descriptors, algorithms and other relevant computational techniques. Apart from being applied in traditional fields (e.g. lead optimization and predictive risk assessment), QSAR should be used more widely as a routine method in other emerging research fields including the modeling of nanoparticles(NPs), mixture toxicity and peptides.
Collapse
Affiliation(s)
- Tao Wang
- a School of biological science , Jining Medical University , Jining , China.,b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Xin-Song Yuan
- b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Mian-Bin Wu
- b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Jian-Ping Lin
- b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Li-Rong Yang
- b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| |
Collapse
|
87
|
Kheirollahi A, Khajeh K, Golestani A. Rigidifying flexible sites: An approach to improve stability of chondroitinase ABC I. Int J Biol Macromol 2017; 97:270-278. [DOI: 10.1016/j.ijbiomac.2017.01.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/24/2022]
|
88
|
Shlyk O, Samish I, Matěnová M, Dulebo A, Poláková H, Kaftan D, Scherz A. A single residue controls electron transfer gating in photosynthetic reaction centers. Sci Rep 2017; 7:44580. [PMID: 28300167 PMCID: PMC5353731 DOI: 10.1038/srep44580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/10/2017] [Indexed: 12/31/2022] Open
Abstract
Interquinone QA− → QB electron-transfer (ET) in isolated photosystem II reaction centers (PSII-RC) is protein-gated. The temperature-dependent gating frequency “k” is described by the Eyring equation till levelling off at T ≥ 240 °K. Although central to photosynthesis, the gating mechanism has not been resolved and due to experimental limitations, could not be explored in vivo. Here we mimic the temperature dependency of “k” by enlarging VD1-208, the volume of a single residue at the crossing point of the D1 and D2 PSII-RC subunits in Synechocystis 6803 whole cells. By controlling the interactions of the D1/D2 subunits, VD1-208 (or 1/T) determines the frequency of attaining an ET-active conformation. Decelerated ET, impaired photosynthesis, D1 repair rate and overall cell physiology upon increasing VD1-208 to above 130 Å3, rationalize the >99% conservation of small residues at D1-208 and its homologous motif in non-oxygenic bacteria. The experimental means and resolved mechanism are relevant for numerous transmembrane protein-gated reactions.
Collapse
Affiliation(s)
- Oksana Shlyk
- The Weizmann Institute of Science, Department of Plant and Environmental Sciences, 76100 Rehovot, Israel
| | - Ilan Samish
- The Weizmann Institute of Science, Department of Plant and Environmental Sciences, 76100 Rehovot, Israel
| | - Martina Matěnová
- University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic
| | - Alexander Dulebo
- University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic
| | - Helena Poláková
- University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic
| | - David Kaftan
- University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic.,Institute of Microbiology CAS, Department of Phototrophic Microorganisms, 37981 Trebon, Czech Republic
| | - Avigdor Scherz
- The Weizmann Institute of Science, Department of Plant and Environmental Sciences, 76100 Rehovot, Israel
| |
Collapse
|
89
|
Teilum K, Kunze MBA, Erlendsson S, Kragelund BB. (S)Pinning down protein interactions by NMR. Protein Sci 2017; 26:436-451. [PMID: 28019676 PMCID: PMC5326574 DOI: 10.1002/pro.3105] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 11/29/2022]
Abstract
Protein molecules are highly diverse communication platforms and their interaction repertoire stretches from atoms over small molecules such as sugars and lipids to macromolecules. An important route to understanding molecular communication is to quantitatively describe their interactions. These types of analyses determine the amounts and proportions of individual constituents that participate in a reaction as well as their rates of reactions and their thermodynamics. Although many different methods are available, there is currently no single method able to quantitatively capture and describe all types of protein reactions, which can span orders of magnitudes in affinities, reaction rates, and lifetimes of states. As the more versatile technique, solution NMR spectroscopy offers a remarkable catalogue of methods that can be successfully applied to the quantitative as well as qualitative descriptions of protein interactions. In this review we provide an easy-access approach to NMR for the non-NMR specialist and describe how and when solution state NMR spectroscopy is the method of choice for addressing protein ligand interaction. We describe very briefly the theoretical background and illustrate simple protein-ligand interactions as well as typical strategies for measuring binding constants using NMR spectroscopy. Finally, this review provides examples of caveats of the method as well as the options to improve the outcome of an NMR analysis of a protein interaction reaction.
Collapse
Affiliation(s)
- Kaare Teilum
- Structural Biology and NMR LaboratoryThe Linderstrøm‐Lang Centre for Protein Science, Department of Biology, University of CopenhagenOle Maaløes Vej 5, DK‐2200Copenhagen NDenmark
| | - Micha Ben Achim Kunze
- Structural Biology and NMR LaboratoryThe Linderstrøm‐Lang Centre for Protein Science, Department of Biology, University of CopenhagenOle Maaløes Vej 5, DK‐2200Copenhagen NDenmark
| | - Simon Erlendsson
- Structural Biology and NMR LaboratoryThe Linderstrøm‐Lang Centre for Protein Science, Department of Biology, University of CopenhagenOle Maaløes Vej 5, DK‐2200Copenhagen NDenmark
| | - Birthe B. Kragelund
- Structural Biology and NMR LaboratoryThe Linderstrøm‐Lang Centre for Protein Science, Department of Biology, University of CopenhagenOle Maaløes Vej 5, DK‐2200Copenhagen NDenmark
| |
Collapse
|
90
|
Wirz LN, Allison JR. Block-restraining of residual dipolar couplings to allow fluctuating relative alignments of molecular subdomains. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:133-141. [PMID: 28223155 DOI: 10.1016/j.pbiomolbio.2017.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 02/07/2017] [Indexed: 11/19/2022]
Abstract
Residual dipolar couplings (RDCs), unlike most other types of NMR observables, provide orientational information, reporting on the alignment of inter-spin vectors (ISVs) relative to the magnetic field. A great challenge in using experimental RDCs to restrain molecular dynamics (MD) simulations is how to represent this alignment. An alignment tensor is often used to parameterise the contribution of molecular alignment to the angular dependence of RDCs. All ISVs that share the same tensor have fixed relative alignment, i.e. if just one tensor is used, the molecule is internally rigid. Here we propose and illustrate a method for subdividing molecules into individually aligned blocks during MD simulations restrained to fit RDCs. This allows the relative orientation of each block to vary during the simulation, which in turn ensures that the internal structure of each block is more realistically reproduced.
Collapse
Affiliation(s)
- Lukas N Wirz
- Centre for Theoretical Chemistry and Physics, Massey University Auckland, Private Bag 102904, 0632 Auckland, New Zealand; Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.Box 1033, Blindern, 0315 Oslo, Norway
| | - Jane R Allison
- Centre for Theoretical Chemistry and Physics, Massey University Auckland, Private Bag 102904, 0632 Auckland, New Zealand; Institute for Natural and Mathematical Sciences, Massey University Auckland, Private Bag 102904, 0632 Auckland, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
91
|
Kuffel A. How water mediates the long-range interactions between remote protein molecules. Phys Chem Chem Phys 2017; 19:5441-5448. [DOI: 10.1039/c6cp05788h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mechanism of the influence of the presence of one protein molecule on the internal dynamics of another is proposed.
Collapse
Affiliation(s)
- Anna Kuffel
- Faculty of Chemistry
- Department of Physical Chemistry
- Gdansk University of Technology
- 80-233 Gdansk
- Poland
| |
Collapse
|
92
|
Peterson L, Jamroz M, Kolinski A, Kihara D. Predicting Real-Valued Protein Residue Fluctuation Using FlexPred. Methods Mol Biol 2017; 1484:175-186. [PMID: 27787827 DOI: 10.1007/978-1-4939-6406-2_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The conventional view of a protein structure as static provides only a limited picture. There is increasing evidence that protein dynamics are often vital to protein function including interaction with partners such as other proteins, nucleic acids, and small molecules. Considering flexibility is also important in applications such as computational protein docking and protein design. While residue flexibility is partially indicated by experimental measures such as the B-factor from X-ray crystallography and ensemble fluctuation from nuclear magnetic resonance (NMR) spectroscopy as well as computational molecular dynamics (MD) simulation, these techniques are resource-intensive. In this chapter, we describe the web server and stand-alone version of FlexPred, which rapidly predicts absolute per-residue fluctuation from a three-dimensional protein structure. On a set of 592 nonredundant structures, comparing the fluctuations predicted by FlexPred to the observed fluctuations in MD simulations showed an average correlation coefficient of 0.669 and an average root mean square error of 1.07 Å. FlexPred is available at http://kiharalab.org/flexPred/ .
Collapse
Affiliation(s)
- Lenna Peterson
- Department of Biological Sciences, College of Science, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA
| | - Michal Jamroz
- Laboratory of Theory of Biopolymers, Faculty of Chemistry, University of Warsaw, Pasteura 1, Warszawa, 02-093, Poland
| | - Andrzej Kolinski
- Laboratory of Theory of Biopolymers, Faculty of Chemistry, University of Warsaw, Pasteura 1, Warszawa, 02-093, Poland
| | - Daisuke Kihara
- Department of Biological Sciences, College of Science, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA. .,Department of Computer Science, College of Science, Purdue University, 305 N. University Street, West Lafayette, IN, 47907-2107, USA.
| |
Collapse
|
93
|
Alawieh H, Wicker N, Al Ayoubi B, Moulinier L. Penalized multidimensional fitting for protein movement detection. J Appl Stat 2016. [DOI: 10.1080/02664763.2016.1261811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hiba Alawieh
- Paul Painlevé Laboratory, UFR Mathematics, University of Lille 1, Lille, France
| | - Nicolas Wicker
- Paul Painlevé Laboratory, UFR Mathematics, University of Lille 1, Lille, France
| | - Baydaa Al Ayoubi
- Department of Applied Mathematics, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Luc Moulinier
- ICube/LBGI, Faculty of Medecine, University of Strasbourg, Strasbourg, France
| |
Collapse
|
94
|
Kheirabadi M, Taghdir M. Is unphosphorylated Rex, as multifunctional protein of HTLV-1, a fully intrinsically disordered protein? An in silico study. Biochem Biophys Rep 2016; 8:14-22. [PMID: 28955936 PMCID: PMC5613702 DOI: 10.1016/j.bbrep.2016.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 02/01/2023] Open
Abstract
Intracellularlocation of a viral unspliced mRNA in host cell is a crucial factor for normal life of the virus. Rex is a neucleo-cytoplasmic shuffling protein of Human T-cell Leukemia Virus-1(HTLV-1)which has important role in active transport of cargo-containing RNA from nucleus to cytoplasm. Therefore, it plays a crucial role in the disease development by the virus. In spite of its importance, the 3d-structurephosphorylated and unphosphorylated of this protein has not been determined. In this study, first we predicted whether Rex protein is an ordered or disordered protein. In second step protein 3Dstructure of Rex was obtained. The content of disorder-promoting amino acids, flexibility, hydrophobicity, short linear motifs (SLiMs) and protein binding regions and probability of Rex crystallization were calculated by various In Silico methods. The3D models of Rex protein were obtained by various In Silico methods, such as homology modeling, threading and ab initio, including; I-TASSER, LOMETS, SPARSKS, ROBBETA and QUARK servers. By comparing and analyzing Qmean, z-scores and energy levels of selected models, the best structures with highest favored region in Ramachandran plot (higher than 90%) was refined with MODREFINER software. In silico analysis of Rex physicochemical properties and also predicted SLiMs and binding regions sites confirms that unphosphorylated Rex protein in HTLV-1 as Rev protin in HIV is wholly disordered protein belongs to the class of intrinsically disordered proteins with extended disorder (native coils, native pre-molten globules). Physico-chemical properties of Rex protein were confirmed unphosphorilated Rex protein is a wholly intrinsically disordered protein. The 3d-structure model of Rex protein was determined.
Collapse
Affiliation(s)
- Mitra Kheirabadi
- Department of Biology, Faculty of Basic Science, Hakim Sabzevari University, 9617976487 Sabzevar, Iran
| | - Majid Taghdir
- Departmentof Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
95
|
Modulating Mobility: a Paradigm for Protein Engineering? Appl Biochem Biotechnol 2016; 181:83-90. [PMID: 27449223 DOI: 10.1007/s12010-016-2200-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/17/2016] [Indexed: 12/30/2022]
Abstract
Proteins are highly mobile structures. In addition to gross conformational changes occurring on, for example, ligand binding, they are also subject to constant thermal motion. The mobility of a protein varies through its structure and can be modulated by ligand binding and other events. It is becoming increasingly clear that this mobility plays an important role in key functions of proteins including catalysis, allostery, cooperativity, and regulation. Thus, in addition to an optimum structure, proteins most likely also require an optimal dynamic state. Alteration of this dynamic state through protein engineering will affect protein function. A dramatic example of this is seen in some inherited metabolic diseases where alternation of residues distant from the active site affects the mobility of the protein and impairs function. We postulate that using molecular dynamics simulations, experimental data or a combination of the two, it should be possible to engineer the mobility of active sites. This may be useful in, for example, increasing the promiscuity of enzymes. Thus, a paradigm for protein engineering is suggested in which the mobility of the active site is rationally modified. This might be combined with more "traditional" approaches such as altering functional groups in the active site.
Collapse
|
96
|
Sacquin-Mora S. Bridging Enzymatic Structure Function via Mechanics: A Coarse-Grain Approach. Methods Enzymol 2016; 578:227-48. [PMID: 27497169 DOI: 10.1016/bs.mie.2016.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Flexibility is a central aspect of protein function, and ligand binding in enzymes involves a wide range of structural changes, ranging from large-scale domain movements to small loop or side-chain rearrangements. In order to understand how the mechanical properties of enzymes, and the mechanical variations that are induced by ligand binding, relate to enzymatic activity, we carried out coarse-grain Brownian dynamics simulations on a set of enzymes whose structures in the unbound and ligand-bound forms are available in the Protein Data Bank. Our results show that enzymes are remarkably heterogeneous objects from a mechanical point of view and that the local rigidity of individual residues is tightly connected to their part in the protein's overall structure and function. The systematic comparison of the rigidity of enzymes in their unbound and bound forms highlights the fact that small conformational changes can induce large mechanical effects, leading to either more or less flexibility depending on the enzyme's architecture and the location of its ligand-biding site. These mechanical variations target a limited number of specific residues that occupy key locations for enzymatic activity, and our approach thus offers a mean to detect perturbation-sensitive sites in enzymes, where the addition or removal of a few interactions will lead to important changes in the proteins internal dynamics.
Collapse
Affiliation(s)
- S Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, Paris, France.
| |
Collapse
|
97
|
Abstract
Interest in the application of molecular dynamics (MD) simulations has increased in the field of protein kinase (PK) drug discovery. PKs belong to an important drug target class because they are directly involved in a number of diseases, including cancer. MD methods simulate dynamic biological and chemical events at an atomic level. This information can be combined with other in silico and experimental methods to efficiently target selected receptors. In this review, we present common and advanced methods of MD simulations and we focus on the recent applications of MD-based methodologies that provided significant insights into the elucidation of biological mechanisms involving PKs and into the discovery of novel kinase inhibitors.
Collapse
|
98
|
Shi X, Rienstra CM. Site-Specific Internal Motions in GB1 Protein Microcrystals Revealed by 3D ²H-¹³C-¹³C Solid-State NMR Spectroscopy. J Am Chem Soc 2016; 138:4105-19. [PMID: 26849428 PMCID: PMC4819898 DOI: 10.1021/jacs.5b12974] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 02/04/2023]
Abstract
(2)H quadrupolar line shapes deliver rich information about protein dynamics. A newly designed 3D (2)H-(13)C-(13)C solid-state NMR magic angle spinning (MAS) experiment is presented and demonstrated on the microcrystalline β1 immunoglobulin binding domain of protein G (GB1). The implementation of (2)H-(13)C adiabatic rotor-echo-short-pulse-irradiation cross-polarization (RESPIRATION CP) ensures the accuracy of the extracted line shapes and provides enhanced sensitivity relative to conventional CP methods. The 3D (2)H-(13)C-(13)C spectrum reveals (2)H line shapes for 140 resolved aliphatic deuterium sites. Motional-averaged (2)H quadrupolar parameters obtained from the line-shape fitting identify side-chain motions. Restricted side-chain dynamics are observed for a number of polar residues including K13, D22, E27, K31, D36, N37, D46, D47, K50, and E56, which we attribute to the effects of salt bridges and hydrogen bonds. In contrast, we observe significantly enhanced side-chain flexibility for Q2, K4, K10, E15, E19, N35, N40, and E42, due to solvent exposure and low packing density. T11, T16, and T17 side chains exhibit motions with larger amplitudes than other Thr residues due to solvent interactions. The side chains of L5, V54, and V29 are highly rigid because they are packed in the core of the protein. High correlations were demonstrated between GB1 side-chain dynamics and its biological function. Large-amplitude side-chain motions are observed for regions contacting and interacting with immunoglobulin G (IgG). In contrast, rigid side chains are primarily found for residues in the structural core of the protein that are absent from protein binding and interactions.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
99
|
Muthukumaran R, Sangeetha B, Amutha R. Conformational analysis on the wild type and mutated forms of human ORF1p: a molecular dynamics study. MOLECULAR BIOSYSTEMS 2016; 11:1987-99. [PMID: 25953691 DOI: 10.1039/c5mb00194c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The protein ORF1p, encoded by the LINE-1 retrotransposon, is responsible for the packaging and transposition of its RNA transcript and is reported to be involved in various genetic disorders. The three domains of ORF1p co-ordinate together to facilitate the transposition, and the mechanism of nucleic acid binding is not yet clear. The C-terminal domain of ORF1p adopts a lifted, twisted or rested state, which is regulated by several inter- and intra-domain interactions that are explored in this study. The residues, Glu147, Asp151, Lys154, Arg261 and Tyr282, are majorly involved in mediating the functional dynamics of ORF1p by forming H-bonds and π-interactions. The importance of these residues was elucidated by performing molecular dynamics simulations on both native as well as mutated ORF1p. The Q147A-D151A-K154A mutant expressed unique dynamics featuring the lifting motion of the CTD core alone, while the R261A mutant resulted in the oscillatory motion of CTD. In both cases, the CTDs were held in place by Tyr282 and in its absence, the structural stability of CTDs in the trimeric unit was significantly affected. Additional interactions responsible for stabilizing the trimeric ORF1p to express its native dynamics were extracted in this study. The central role of Tyr282 in maintaining the functional state of ORF1p to facilitate nucleic acid binding and formation of ribonucleoprotein complex is well highlighted. The knowledge gained from this study forms the basis for understanding the nucleic acid binding mechanism of ORF1p, which could further provide additional support in exploring various genetic disorders.
Collapse
Affiliation(s)
- Rajagopalan Muthukumaran
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry-605014, India. /
| | | | | |
Collapse
|
100
|
Abstract
Using structure and sequence based analysis we can engineer proteins to increase their thermal stability.
Collapse
Affiliation(s)
- H. Pezeshgi Modarres
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - M. R. Mofrad
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - A. Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory
- Department of Mechanical and Manufacturing Engineering
- University of Calgary
- Calgary
- Canada
| |
Collapse
|