51
|
Portal C, Wang Z, Scott DK, Wolosin JM, Iomini C. The c-Myc Oncogene Maintains Corneal Epithelial Architecture at Homeostasis, Modulates p63 Expression, and Enhances Proliferation During Tissue Repair. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35103750 PMCID: PMC8822362 DOI: 10.1167/iovs.63.2.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The transcription factor c-Myc (Myc) plays central regulatory roles in both self-renewal and differentiation of progenitors of multiple cell lineages. Here, we address its function in corneal epithelium (CE) maintenance and repair. Methods Myc ablation in the limbal–corneal epithelium was achieved by crossing a floxed Myc mouse allele (Mycfl/fl) with a mouse line expressing the Cre recombinase gene under the keratin (Krt) 14 promoter. CE stratification and protein localization were assessed by histology of paraffin and plastic sections and by immunohistochemistry of frozen sections, respectively. Protein levels and gene expression were determined by western blot and real-time quantitative PCR, respectively. CE wound closure was tracked by fluorescein staining. Results At birth, mutant mice appeared indistinguishable from control littermates; however, their rates of postnatal weight gain were 67% lower than those of controls. After weaning, mutants also exhibited spontaneous skin ulcerations, predominantly in the tail and lower lip, and died 45 to 60 days after birth. The mutant CE displayed an increase in stratal thickness, increased levels of Krt12 in superficial cells, and decreased exfoliation rates. Accordingly, the absence of Myc perturbed protein and mRNA levels of genes modulating differentiation and proliferation processes, including ΔNp63β, Ets1, and two Notch target genes, Hey1 and Maml1. Furthermore, Myc promoted CE wound closure and wound-induced hyperproliferation. Conclusions Myc regulates the balance among CE stratification, differentiation, and surface exfoliation and promotes the transition to the hyperproliferative state during wound healing. Its effect on this balance may be exerted through the control of multiple regulators of cell fate, including isoforms of tumor protein p63.
Collapse
Affiliation(s)
- Céline Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Zheng Wang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Donald K Scott
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J Mario Wolosin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
52
|
Tedesco M, Giannese F, Lazarević D, Giansanti V, Rosano D, Monzani S, Catalano I, Grassi E, Zanella ER, Botrugno OA, Morelli L, Panina Bordignon P, Caravagna G, Bertotti A, Martino G, Aldrighetti L, Pasqualato S, Trusolino L, Cittaro D, Tonon G. Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin. Nat Biotechnol 2022; 40:235-244. [PMID: 34635836 DOI: 10.1038/s41587-021-01031-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/22/2021] [Indexed: 02/08/2023]
Abstract
Recent efforts have succeeded in surveying open chromatin at the single-cell level, but high-throughput, single-cell assessment of heterochromatin and its underlying genomic determinants remains challenging. We engineered a hybrid transposase including the chromodomain (CD) of the heterochromatin protein-1α (HP-1α), which is involved in heterochromatin assembly and maintenance through its binding to trimethylation of the lysine 9 on histone 3 (H3K9me3), and developed a single-cell method, single-cell genome and epigenome by transposases sequencing (scGET-seq), that, unlike single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), comprehensively probes both open and closed chromatin and concomitantly records the underlying genomic sequences. We tested scGET-seq in cancer-derived organoids and human-derived xenograft (PDX) models and identified genetic events and plasticity-driven mechanisms contributing to cancer drug resistance. Next, building upon the differential enrichment of closed and open chromatin, we devised a method, Chromatin Velocity, that identifies the trajectories of epigenetic modifications at the single-cell level. Chromatin Velocity uncovered paths of epigenetic reorganization during stem cell reprogramming and identified key transcription factors driving these developmental processes. scGET-seq reveals the dynamics of genomic and epigenetic landscapes underlying any cellular processes.
Collapse
Affiliation(s)
- Martina Tedesco
- Università Vita-Salute San Raffaele, Milano, Italy
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | | - Dejan Lazarević
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy
| | - Valentina Giansanti
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, Italy
| | - Dalia Rosano
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Silvia Monzani
- Biochemistry and Structural Biology Unit, Department of Experimental Oncology, IEO, IRCCS European Institute of Oncology, Milano, Italy
| | - Irene Catalano
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino, Italy
- Candiolo Cancer Institute FPO- IRCCS, Candiolo, Torino, Italy
| | - Elena Grassi
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino, Italy
- Candiolo Cancer Institute FPO- IRCCS, Candiolo, Torino, Italy
| | | | - Oronza A Botrugno
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Leonardo Morelli
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy
| | - Paola Panina Bordignon
- Università Vita-Salute San Raffaele, Milano, Italy
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital, Milano, Italy
| | - Giulio Caravagna
- Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
| | - Andrea Bertotti
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino, Italy
- Candiolo Cancer Institute FPO- IRCCS, Candiolo, Torino, Italy
| | - Gianvito Martino
- Università Vita-Salute San Raffaele, Milano, Italy
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital, Milano, Italy
| | - Luca Aldrighetti
- Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, Milano, Italy
| | - Sebastiano Pasqualato
- Biochemistry and Structural Biology Unit, Department of Experimental Oncology, IEO, IRCCS European Institute of Oncology, Milano, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino, Italy
- Candiolo Cancer Institute FPO- IRCCS, Candiolo, Torino, Italy
| | - Davide Cittaro
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy.
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy.
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy.
| |
Collapse
|
53
|
Harazono Y, Morita KI, Tonouchi E, Anzai E, Takahara N, Kohmoto T, Imoto I, Yoda T. TP63 mutation mapping information in TP63 mutation-associated syndromes. ADVANCES IN ORAL AND MAXILLOFACIAL SURGERY 2022. [DOI: 10.1016/j.adoms.2022.100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
54
|
Egolf S, Zou J, Anderson A, Simpson CL, Aubert Y, Prouty S, Ge K, Seykora JT, Capell BC. MLL4 mediates differentiation and tumor suppression through ferroptosis. SCIENCE ADVANCES 2021; 7:eabj9141. [PMID: 34890228 PMCID: PMC8664260 DOI: 10.1126/sciadv.abj9141] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The epigenetic regulator, MLL4 (KMT2D), has been described as an essential gene in both humans and mice. In addition, it is one of the most commonly mutated genes in all of cancer biology. Here, we identify a critical role for Mll4 in the promotion of epidermal differentiation and ferroptosis, a key mechanism of tumor suppression. Mice lacking epidermal Mll4, but not the related enzyme Mll3 (Kmt2c), display features of impaired differentiation and human precancerous neoplasms, all of which progress with age. Mll4 deficiency profoundly alters epidermal gene expression and uniquely rewires the expression of key genes and markers of ferroptosis (Alox12, Alox12b, and Aloxe3). Beyond revealing a new mechanistic basis for Mll4-mediated tumor suppression, our data uncover a potentially much broader and general role for ferroptosis in the process of differentiation and skin homeostasis.
Collapse
Affiliation(s)
- Shaun Egolf
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan Zou
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Amy Anderson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Cory L. Simpson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine Philadelphia, PA 19104, USA
| | - Yann Aubert
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen Prouty
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine Philadelphia, PA 19104, USA
| | - Kai Ge
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John T. Seykora
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine Philadelphia, PA 19104, USA
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brian C. Capell
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Corresponding author.
| |
Collapse
|
55
|
Warburton A, Markowitz TE, Katz JP, Pipas JM, McBride AA. Recurrent integration of human papillomavirus genomes at transcriptional regulatory hubs. NPJ Genom Med 2021; 6:101. [PMID: 34848725 PMCID: PMC8632991 DOI: 10.1038/s41525-021-00264-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
Oncogenic human papillomavirus (HPV) genomes are often integrated into host chromosomes in HPV-associated cancers. HPV genomes are integrated either as a single copy or as tandem repeats of viral DNA interspersed with, or without, host DNA. Integration occurs frequently in common fragile sites susceptible to tandem repeat formation and the flanking or interspersed host DNA often contains transcriptional enhancer elements. When co-amplified with the viral genome, these enhancers can form super-enhancer-like elements that drive high viral oncogene expression. Here we compiled highly curated datasets of HPV integration sites in cervical (CESC) and head and neck squamous cell carcinoma (HNSCC) cancers, and assessed the number of breakpoints, viral transcriptional activity, and host genome copy number at each insertion site. Tumors frequently contained multiple distinct HPV integration sites but often only one “driver” site that expressed viral RNA. As common fragile sites and active enhancer elements are cell-type-specific, we mapped these regions in cervical cell lines using FANCD2 and Brd4/H3K27ac ChIP-seq, respectively. Large enhancer clusters, or super-enhancers, were also defined using the Brd4/H3K27ac ChIP-seq dataset. HPV integration breakpoints were enriched at both FANCD2-associated fragile sites and enhancer-rich regions, and frequently showed adjacent focal DNA amplification in CESC samples. We identified recurrent integration “hotspots” that were enriched for super-enhancers, some of which function as regulatory hubs for cell-identity genes. We propose that during persistent infection, extrachromosomal HPV minichromosomes associate with these transcriptional epicenters and accidental integration could promote viral oncogene expression and carcinogenesis.
Collapse
Affiliation(s)
- Alix Warburton
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD, 20892, USA
| | - Tovah E Markowitz
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joshua P Katz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD, 20892, USA.
| |
Collapse
|
56
|
Chen V, Issa N, Bellodi Schmidt F. Mosaic TP63 variant and associated ectodermal dysplasia features. JAAD Case Rep 2021; 17:52-54. [PMID: 34703865 PMCID: PMC8526912 DOI: 10.1016/j.jdcr.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Vivien Chen
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Naiem Issa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Fernanda Bellodi Schmidt
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
57
|
Liu L, Chen R, Jia Z, Li X, Tang Y, Zhao X, Zhang S, Luo L, Fang Z, Zhang Y, Chen M. Downregulation of hsa-miR-203 in peripheral blood and wound margin tissue by negative pressure wound therapy contributes to wound healing of diabetic foot ulcers. Microvasc Res 2021; 139:104275. [PMID: 34717969 DOI: 10.1016/j.mvr.2021.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/17/2021] [Accepted: 10/26/2021] [Indexed: 12/09/2022]
Abstract
Negative pressure wound therapy (NPWT) has been widely used in the treatment of chronic wounds, including diabetic foot ulcers (DFU) as the severe manifestation of diabetic foot. Hsa-miR-203 is proven to be correlated with the severity of DFU. To investigate whether NPWT influences hsa-miR-203 levels in persons with DFU, we detected hsa-miR-203 levels in peripheral plasma and wound margin tissue from the following patients: type 2 diabetic (T2D) patients with DFU (DFU group), T2D patients without DFU (NDFU group), patients with chronic skin ulcer and normal glucose tolerance (SUC group), and healthy volunteers with normal glucose tolerance (NC group). All patients in SUC group received NPWT. As contrast, some of patients in DFU group received NPWT (NPWT group) while others chose routine dressing therapy (non-NPWT group). In vitro experiments were also performed to determine influences of negative pressure on cell proliferation and migration of HaCaT cells (human keratinocytes). Results showed that before NPWT, levels of hsa-miR-203 in peripheral plasma (P-miR-203) and wound margin tissue (T-miR-203) of DFU group were obviously increased compared to SUC group while expression of P-miR-203 decreased in NDFU group compared with NC group. After NPWT, levels of P-miR-203 and T-miR-203 in DFU and SUC group were significantly lower than before. Changes of P-miR-203 and T-miR-203 after NPWT were positively correlated with 4-week ulcer healing rate in NPWT and SUC group. In vitro, negative pressure lowered the expression of hsa-miR-203, enhancing cell proliferation and migration in HaCaT cells via up-regulation of p63 protein. Meanwhile, the effects of negative pressure on cells were remarkable reduced by high-glucose intervention. Our study suggests that NPWT promotes DFU healing by reducing the expression of hsa-miR-203 in peripheral blood and wound tissue. The changes of hsa-miR-203 in peripheral blood and wound tissue may be related to the therapeutic effect of NPWT.
Collapse
Affiliation(s)
- Lei Liu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Ruofei Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Zeguo Jia
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Xueting Li
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Ying Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Shiqi Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Li Luo
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Zhaohui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, People's Republic of China
| | - Yuanzhi Zhang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, People's Republic of China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China; Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, People's Republic of China.
| |
Collapse
|
58
|
The Balance between Differentiation and Terminal Differentiation Maintains Oral Epithelial Homeostasis. Cancers (Basel) 2021; 13:cancers13205123. [PMID: 34680271 PMCID: PMC8534139 DOI: 10.3390/cancers13205123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Oral cancer affecting the oral cavity represents the most common cancer of the head and neck region. Oral cancer develops in a multistep process in which normal cells gradually accumulate genetic and epigenetic modifications to evolve into a malignant disease. Mortality for oral cancer patients is high and morbidity has a significant long-term impact on the health and wellbeing of affected individuals, typically resulting in facial disfigurement and a loss of the ability to speak, chew, taste, and swallow. The limited scope to which current treatments are able to control oral cancer underlines the need for novel therapeutic strategies. This review highlights the molecular differences between oral cell proliferation, differentiation and terminal differentiation, defines terminal differentiation as an important tumour suppressive mechanism and establishes a rationale for clinical investigation of differentiation-paired therapies that may improve outcomes in oral cancer. Abstract The oral epithelium is one of the fastest repairing and continuously renewing tissues. Stem cell activation within the basal layer of the oral epithelium fuels the rapid proliferation of multipotent progenitors. Stem cells first undergo asymmetric cell division that requires tightly controlled and orchestrated differentiation networks to maintain the pool of stem cells while producing progenitors fated for differentiation. Rapidly expanding progenitors subsequently commit to advanced differentiation programs towards terminal differentiation, a process that regulates the structural integrity and homeostasis of the oral epithelium. Therefore, the balance between differentiation and terminal differentiation of stem cells and their progeny ensures progenitors commitment to terminal differentiation and prevents epithelial transformation and oral squamous cell carcinoma (OSCC). A recent comprehensive molecular characterization of OSCC revealed that a disruption of terminal differentiation factors is indeed a common OSCC event and is superior to oncogenic activation. Here, we discuss the role of differentiation and terminal differentiation in maintaining oral epithelial homeostasis and define terminal differentiation as a critical tumour suppressive mechanism. We further highlight factors with crucial terminal differentiation functions and detail the underlying consequences of their loss. Switching on terminal differentiation in differentiated progenitors is likely to represent an extremely promising novel avenue that may improve therapeutic interventions against OSCC.
Collapse
|
59
|
Schmidt J, Schreiber G, Altmüller J, Thiele H, Nürnberg P, Li Y, Kaulfuß S, Funke R, Wilken B, Yigit G, Wollnik B. Familial cleft tongue caused by a unique translation initiation codon variant in TP63. Eur J Hum Genet 2021; 30:211-218. [PMID: 34629465 PMCID: PMC8821562 DOI: 10.1038/s41431-021-00967-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
Variants in transcription factor p63 have been linked to several autosomal dominantly inherited malformation syndromes. These disorders show overlapping phenotypic characteristics with various combinations of the following features: ectodermal dysplasia, split-hand/foot malformation/syndactyly, lacrimal duct obstruction, hypoplastic breasts and/or nipples, ankyloblepharon filiforme adnatum, hypospadias and cleft lip/palate. We describe a family with six individuals presenting with a striking novel phenotype characterized by a furrowed or cleft tongue, a narrow face, reddish hair, freckles and various foot deformities. Whole-exome sequencing (WES) identified a novel heterozygous variant, c.3G>T, in TP63 affecting the translation initiation codon (p.1Met?). Sanger sequencing confirmed dominant inheritance of this unique variant in all six affected family members. In summary, our findings indicate that heterozygous variants in TP63 affecting the first translation initiation codon result in a novel phenotype dominated by a cleft tongue, expanding the complex genotypic and phenotypic spectrum of TP63-associated disorders.
Collapse
Affiliation(s)
- Julia Schmidt
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.
| | - Gudrun Schreiber
- Department of Pediatric Neurology, Klinikum Kassel, Kassel, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,Berlin Institute of Health at Charité, Core Facility Genomics, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Rudolf Funke
- Department of Pediatric Neurology, Klinikum Kassel, Kassel, Germany
| | - Bernd Wilken
- Department of Pediatric Neurology, Klinikum Kassel, Kassel, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
60
|
Kuonen F, Li NY, Haensel D, Patel T, Gaddam S, Yerly L, Rieger K, Aasi S, Oro AE. c-FOS drives reversible basal to squamous cell carcinoma transition. Cell Rep 2021; 37:109774. [PMID: 34610301 PMCID: PMC8515919 DOI: 10.1016/j.celrep.2021.109774] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/28/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
While squamous transdifferentiation within subpopulations of adenocarcinomas represents an important drug resistance problem, its underlying mechanism remains poorly understood. Here, using surface markers of resistant basal cell carcinomas (BCCs) and patient single-cell and bulk transcriptomic data, we uncover the dynamic roadmap of basal to squamous cell carcinoma transition (BST). Experimentally induced BST identifies activator protein 1 (AP-1) family members in regulating tumor plasticity, and we show that c-FOS plays a central role in BST by regulating the accessibility of distinct AP-1 regulatory elements. Remarkably, despite prominent changes in cell morphology and BST marker expression, we show using inducible model systems that c-FOS-mediated BST demonstrates reversibility. Blocking EGFR pathway activation after c-FOS induction partially reverts BST in vitro and prevents BST features in both mouse models and human tumors. Thus, by identifying the molecular basis of BST, our work reveals a therapeutic opportunity targeting plasticity as a mechanism of tumor resistance.
Collapse
MESH Headings
- Animals
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Carcinoma, Basal Cell/veterinary
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/veterinary
- Cell Transdifferentiation/drug effects
- Chromatin Assembly and Disassembly
- Drug Resistance, Neoplasm/genetics
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mucin-1/metabolism
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-fos/antagonists & inhibitors
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
- Signal Transduction/drug effects
- Transcription Factor AP-1/metabolism
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- François Kuonen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, 1011 Lausanne, Switzerland.
| | - Nancy Yanzhe Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Haensel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tiffany Patel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Yerly
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, 1011 Lausanne, Switzerland
| | - Kerri Rieger
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sumaira Aasi
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
61
|
Inhibition of USP28 overcomes Cisplatin-resistance of squamous tumors by suppression of the Fanconi anemia pathway. Cell Death Differ 2021; 29:568-584. [PMID: 34611298 PMCID: PMC8901929 DOI: 10.1038/s41418-021-00875-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinomas (SCC) frequently have an exceptionally high mutational burden. As consequence, they rapidly develop resistance to platinum-based chemotherapy and overall survival is limited. Novel therapeutic strategies are therefore urgently required. SCC express ∆Np63, which regulates the Fanconi Anemia (FA) DNA-damage response in cancer cells, thereby contributing to chemotherapy-resistance. Here we report that the deubiquitylase USP28 is recruited to sites of DNA damage in cisplatin-treated cells. ATR phosphorylates USP28 and increases its enzymatic activity. This phosphorylation event is required to positively regulate the DNA damage repair in SCC by stabilizing ∆Np63. Knock-down or inhibition of USP28 by a specific inhibitor weakens the ability of SCC to cope with DNA damage during platin-based chemotherapy. Hence, our study presents a novel mechanism by which ∆Np63 expressing SCC can be targeted to overcome chemotherapy resistance. Limited treatment options and low response rates to chemotherapy are particularly common in patients with squamous cancer. The SCC specific transcription factor ∆Np63 enhances the expression of Fanconi Anemia genes, thereby contributing to recombinational DNA repair and Cisplatin resistance. Targeting the USP28-∆Np63 axis in SCC tones down this DNA damage response pathways, thereby sensitizing SCC cells to cisplatin treatment.
Collapse
|
62
|
Botchkarev VA, Sharov AA. Histone Deacetylases in the Control of Epidermal Homeostasis: From Chromatin Biology toward Therapy. J Invest Dermatol 2021; 142:12-14. [PMID: 34565558 DOI: 10.1016/j.jid.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
Histone deacetylases (HDACs) induce gene repression and modify the activity of nonhistone proteins. In a new article in the Journal of Investigative Dermatology, Zhu et al. (2021) demonstrate essential roles for HDAC1/2 in maintaining keratinocyte proliferation and survival in adult epidermis and basal cell carcinoma, thus providing a rationale for using HDAC inhibitors for the treatment of hyperproliferative and neoplastic skin disorders.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Andrey A Sharov
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
63
|
Droll S, Bao X. Oh, the Mutations You'll Acquire! A Systematic Overview of Cutaneous Squamous Cell Carcinoma. Cell Physiol Biochem 2021; 55:89-119. [PMID: 34553848 PMCID: PMC8579759 DOI: 10.33594/000000433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Nearly two million cases of cutaneous squamous cell carcinoma (cSCC) are diagnosed every year in the United States alone. cSCC is notable for both its prevalence and its propensity for invasion and metastasis. For many patients, surgery is curative. However, patients experiencing immunosuppression or recurrent, advanced, and metastatic disease still face limited therapeutic options and significant mortality. cSCC forms after decades of sun exposure and possesses the highest known mutation rate of all cancers. This mutational burden complicates efforts to identify the primary factors driving cSCC initiation and progression, which in turn hinders the development of targeted therapeutics. In this review, we summarize the mutations and alterations that have been observed in patients’ cSCC tumors, affecting signaling pathways, transcriptional regulators, and the microenvironment. We also highlight novel therapeutic opportunities in development and clinical trials.
Collapse
Affiliation(s)
- Stephenie Droll
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA, .,Department of Dermatology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
64
|
Sadgrove NJ, Simmonds MSJ. Pharmacodynamics of Aloe vera and acemannan in therapeutic applications for skin, digestion, and immunomodulation. Phytother Res 2021; 35:6572-6584. [PMID: 34427371 DOI: 10.1002/ptr.7242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Scientific studies of Aloe vera have tentatively explained therapeutic claims from a mechanistic perspective. Furthermore, in vitro outcomes demonstrate that the breakage of acemannan chains into smaller fragments enhances biological effects. These fragments can intravenously boost vaccine efficacy or entrain the immune system to attack cancer cells by mannose receptor agonism of macrophage or dendritic cells. With oral consumption, epithelialisation also occurs at injured sites in the small intestine or colon. The main advantage of dietary acemannan is the attenuation of the digestive process, increasing satiety, and slowing the release of sugars from starches. In the colon, acemannan is digested by microbes into short-chain fatty acids that are absorbed and augment the sensation of satiety and confer a host of other health benefits. In topical applications, an acemannan/chitosan combination accelerates the closure of wounds by promoting granular tissue formation, which creates a barrier between macrophages or neutrophils and the wound dressing. This causes M2 polarisation, reversal of inflammation, and acceleration of the re-epithelialisation process. This review summarises and explains the current pharmacodynamic paradigm in the context of acemannan in topical, oral, and intravenous applications. However, due to contradictory results in the literature, further research is required to provide scientific evidence to confirm or nullify these claims.
Collapse
|
65
|
Pacella G, Capell BC. Epigenetic and metabolic interplay in cutaneous squamous cell carcinoma. Exp Dermatol 2021; 30:1115-1125. [PMID: 33844325 PMCID: PMC8324523 DOI: 10.1111/exd.14354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
With the ageing of the population and increased levels of recreational sun exposure and immunosuppression, cutaneous squamous cell carcinoma (cSCC), is both an enormous and expanding clinical and economic issue. Despite advances in therapy, up to 5000-8000 people are estimated to die every year from cSCC in the U.S., highlighting the need for both better prevention and treatments. Two emerging areas of scientific discovery that may offer new therapeutic approaches for cSCC are epigenetics and metabolism. Importantly, these disciplines display extensive crosstalk, with metabolic inputs contributing to the chromatin landscape, while the dynamic epigenome shapes transcriptional and cellular responses that feedback into cellular metabolism. Recent evidence suggests that indeed, epigenetic and metabolic dysregulation may be critical contributors to cSCC pathogenesis. Here, we synthesize the latest findings from these fast-moving fields, including how they may drive cSCC, yet also be harnessed for therapy.
Collapse
Affiliation(s)
- Gina Pacella
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Brian C. Capell
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
66
|
Ko EK, Capell BC. Methyltransferases in the Pathogenesis of Keratinocyte Cancers. Cancers (Basel) 2021; 13:cancers13143402. [PMID: 34298617 PMCID: PMC8304454 DOI: 10.3390/cancers13143402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/13/2022] Open
Abstract
Recent evidence suggests that the disruption of gene expression by alterations in DNA, RNA, and histone methylation may be critical contributors to the pathogenesis of keratinocyte cancers (KCs), made up of basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), which collectively outnumber all other human cancers combined. While it is clear that methylation modifiers are frequently dysregulated in KCs, the underlying molecular and mechanistic changes are only beginning to be understood. Intriguingly, it has recently emerged that there is extensive cross-talk amongst these distinct methylation processes. Here, we summarize and synthesize the latest findings in this space and highlight how these discoveries may uncover novel therapeutic approaches for these ubiquitous cancers.
Collapse
Affiliation(s)
- Eun Kyung Ko
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Brian C. Capell
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
67
|
The METTL3-m 6A Epitranscriptome: Dynamic Regulator of Epithelial Development, Differentiation, and Cancer. Genes (Basel) 2021; 12:genes12071019. [PMID: 34209046 PMCID: PMC8303600 DOI: 10.3390/genes12071019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Dynamic modifications on RNA, frequently termed both, “RNA epigenetics” and “epitranscriptomics”, offer one of the most exciting emerging areas of gene regulation and biomedicine. Similar to chromatin-based epigenetic mechanisms, writers, readers, and erasers regulate both the presence and interpretation of these modifications, thereby adding further nuance to the control of gene expression. In particular, the most abundant modification on mRNAs, N6-methyladenosine (m6A), catalyzed by methyltransferase-like 3 (METTL3) has been shown to play a critical role in self-renewing somatic epithelia, fine-tuning the balance between development, differentiation, and cancer, particularly in the case of squamous cell carcinomas (SCCs), which in aggregate, outnumber all other human cancers. Along with the development of targeted inhibitors of epitranscriptomic modulators (e.g., METTL3) now entering clinical trials, the field holds significant promise for treating these abundant cancers. Here, we present the most current summary of this work, while also highlighting the therapeutic potential of these discoveries.
Collapse
|
68
|
Timmerman DM, Remmers TL, Hillenius S, Looijenga LHJ. Mechanisms of TP53 Pathway Inactivation in Embryonic and Somatic Cells-Relevance for Understanding (Germ Cell) Tumorigenesis. Int J Mol Sci 2021; 22:ijms22105377. [PMID: 34065345 PMCID: PMC8161298 DOI: 10.3390/ijms22105377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/10/2023] Open
Abstract
The P53 pathway is the most important cellular pathway to maintain genomic and cellular integrity, both in embryonic and non-embryonic cells. Stress signals induce its activation, initiating autophagy or cell cycle arrest to enable DNA repair. The persistence of these signals causes either senescence or apoptosis. Over 50% of all solid tumors harbor mutations in TP53 that inactivate the pathway. The remaining cancers are suggested to harbor mutations in genes that regulate the P53 pathway such as its inhibitors Mouse Double Minute 2 and 4 (MDM2 and MDM4, respectively). Many reviews have already been dedicated to P53, MDM2, and MDM4, while this review additionally focuses on the other factors that can deregulate P53 signaling. We discuss that P14ARF (ARF) functions as a negative regulator of MDM2, explaining the frequent loss of ARF detected in cancers. The long non-coding RNA Antisense Non-coding RNA in the INK4 Locus (ANRIL) is encoded on the same locus as ARF, inhibiting ARF expression, thus contributing to the process of tumorigenesis. Mutations in tripartite motif (TRIM) proteins deregulate P53 signaling through their ubiquitin ligase activity. Several microRNAs (miRNAs) inactivate the P53 pathway through inhibition of translation. CCCTC-binding factor (CTCF) maintains an open chromatin structure at the TP53 locus, explaining its inactivation of CTCF during tumorigenesis. P21, a downstream effector of P53, has been found to be deregulated in different tumor types. This review provides a comprehensive overview of these factors that are known to deregulate the P53 pathway in both somatic and embryonic cells, as well as their malignant counterparts (i.e., somatic and germ cell tumors). It provides insights into which aspects still need to be unraveled to grasp their contribution to tumorigenesis, putatively leading to novel targets for effective cancer therapies.
Collapse
|
69
|
Yu X, Singh PK, Tabrejee S, Sinha S, Buck MJ. ΔNp63 is a pioneer factor that binds inaccessible chromatin and elicits chromatin remodeling. Epigenetics Chromatin 2021; 14:20. [PMID: 33865440 PMCID: PMC8053304 DOI: 10.1186/s13072-021-00394-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND ΔNp63 is a master transcriptional regulator playing critical roles in epidermal development and other cellular processes. Recent studies suggest that ΔNp63 functions as a pioneer factor that can target its binding sites within inaccessible chromatin and induce chromatin remodeling. METHODS In order to examine if ΔNp63 can bind to inaccessible chromatin and to determine if specific histone modifications are required for binding, we induced ΔNp63 expression in two p63-naïve cell lines. ΔNp63 binding was then examined by ChIP-seq and the chromatin at ΔNp63 targets sites was examined before and after binding. Further analysis with competitive nucleosome binding assays was used to determine how ΔNp63 directly interacts with nucleosomes. RESULTS Our results show that before ΔNp63 binding, targeted sites lack histone modifications, indicating ΔNp63's capability to bind at unmodified chromatin. Moreover, the majority of the sites that are bound by ectopic ΔNp63 expression exist in an inaccessible state. Once bound, ΔNp63 induces acetylation of the histone and the repositioning of nucleosomes at its binding sites. Further analysis with competitive nucleosome binding assays reveal that ΔNp63 can bind directly to nucleosome edges with significant binding inhibition occurring within 50 bp of the nucleosome dyad. CONCLUSION Overall, our results demonstrate that ΔNp63 is a pioneer factor that binds nucleosome edges at inaccessible and unmodified chromatin sites and induces histone acetylation and nucleosome repositioning.
Collapse
Affiliation(s)
- Xinyang Yu
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA.,Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Prashant K Singh
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Shamira Tabrejee
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| | - Michael J Buck
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA. .,Department of Biomedical Informatics, Jacobs School of Medicine & Biomedical Sciences, Buffalo, USA.
| |
Collapse
|
70
|
Peng W, Chang M, Wu Y, Zhu W, Tong L, Zhang G, Wang Q, Liu J, Zhu X, Cheng T, Li Y, Chen X, Weng D, Liu S, Zhang H, Su Y, Zhou J, Li H, Song Y. Lyophilized powder of mesenchymal stem cell supernatant attenuates acute lung injury through the IL-6-p-STAT3-p63-JAG2 pathway. Stem Cell Res Ther 2021; 12:216. [PMID: 33781349 PMCID: PMC8008635 DOI: 10.1186/s13287-021-02276-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are syndromes of acute respiratory failure with extremely high mortality and few effective treatments. Mesenchymal stem cells (MSCs) may reportedly contribute to tissue repair in ALI and ARDS. However, applications of MSCs have been restricted due to safety considerations and limitations in terms of large-scale production and industrial delivery. Alternatively, the MSC secretome has been considered promising for use in therapeutic approaches and has been advanced in pre-clinical and clinical trials. Furthermore, the MSC secretome can be freeze-dried into a stable and ready-to-use supernatant lyophilized powder (SLP) form. Currently, there are no studies on the role of MSC SLP in ALI. METHODS Intratracheal bleomycin was used to induce ALI in mice, and intratracheal MSC SLP was administered as a treatment. Histopathological assessment was performed by hematoxylin and eosin, immunohistochemistry, and immunofluorescence staining. Apoptosis, inflammatory infiltration, immunological cell counts, cytokine levels, and mRNA- and protein-expression levels of relevant targets were measured by performing terminal deoxynucleotidyl transferase dUTP nick-end labeling assays, determining total cell and protein levels in bronchoalveolar lavage fluids, flow cytometry, multiple cytokine-detection techniques, and reverse transcriptase-quantitative polymerase chain reaction and western blot analysis, respectively. RESULTS We found that intratracheal MSC SLP considerably promoted cell survival, inhibited epithelial cell apoptosis, attenuated inflammatory cell recruitment, and reversed immunological imbalances induced by bleomycin. MSC SLP inhibited the interleukin 6-phosphorylated signal transducer and activator of transcription signaling pathway to activate tumor protein 63-jagged 2 signaling in basal cells, suppress T helper 17 cell differentiation, promote p63+ cell proliferation and lung damage repair, and attenuate inflammatory responses. CONCLUSIONS MSC SLP ameliorated ALI by activating p63 and promoting p63+ cell proliferation and the repair of damaged epithelial cells. The findings of this study also shed insight into ALI pathogenesis and imply that MSC SLP shows considerable therapeutic promise for treating ALI and ARDS.
Collapse
Affiliation(s)
- Wenjun Peng
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Meijia Chang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Wu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lin Tong
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ge Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qin Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoping Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Tingting Cheng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yijia Li
- Public Translational Platform for Cell Therapy, Yangtze Delta Region Institute of Tsinghua University, Hangzhou, 311200, Zhejiang, China
| | - Xi Chen
- Yunnan Province Stem cell Bank, Kunming, 650101, Yunnan, China
| | - Dong Weng
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Sanhong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongwei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yao Su
- Public Translational Platform for Cell Therapy, Yangtze Delta Region Institute of Tsinghua University, Hangzhou, 311200, Zhejiang, China
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, 200540, China.
| | - Huayin Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, 200540, China.
| |
Collapse
|
71
|
Jung YJ, Tweedie D, Scerba MT, Kim DS, Palmas MF, Pisanu A, Carta AR, Greig NH. Repurposing Immunomodulatory Imide Drugs (IMiDs) in Neuropsychiatric and Neurodegenerative Disorders. Front Neurosci 2021; 15:656921. [PMID: 33854417 PMCID: PMC8039148 DOI: 10.3389/fnins.2021.656921] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation represents a common trait in the pathology and progression of the major psychiatric and neurodegenerative disorders. Neuropsychiatric disorders have emerged as a global crisis, affecting 1 in 4 people, while neurological disorders are the second leading cause of death in the elderly population worldwide (WHO, 2001; GBD 2016 Neurology Collaborators, 2019). However, there remains an immense deficit in availability of effective drug treatments for most neurological disorders. In fact, for disorders such as depression, placebos and behavioral therapies have equal effectiveness as antidepressants. For neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, drugs that can prevent, slow, or cure the disease have yet to be found. Several non-traditional avenues of drug target identification have emerged with ongoing neurological disease research to meet the need for novel and efficacious treatments. Of these novel avenues is that of neuroinflammation, which has been found to be involved in the progression and pathology of many of the leading neurological disorders. Neuroinflammation is characterized by glial inflammatory factors in certain stages of neurological disorders. Although the meta-analyses have provided evidence of genetic/proteomic upregulation of inflammatory factors in certain stages of neurological disorders. Although the mechanisms underpinning the connections between neuroinflammation and neurological disorders are unclear, and meta-analysis results have shown high sensitivity to factors such as disorder severity and sample type, there is significant evidence of neuroinflammation associations across neurological disorders. In this review, we summarize the role of neuroinflammation in psychiatric disorders such as major depressive disorder, generalized anxiety disorder, post-traumatic stress disorder, and bipolar disorder, as well as in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and introduce current research on the potential of immunomodulatory imide drugs (IMiDs) as a new treatment strategy for these disorders.
Collapse
Affiliation(s)
- Yoo Jin Jung
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, United States
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD, United States
- Aevis Bio, Inc., Daejeon, South Korea
| | | | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
72
|
Dinçer T, Gümüş E, Toraman B, Er İ, Yildiz G, Yüksel Z, Kalay E. A novel homozygous RIPK4 variant in a family with severe Bartsocas-Papas syndrome. Am J Med Genet A 2021; 185:1691-1699. [PMID: 33713555 DOI: 10.1002/ajmg.a.62154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 01/04/2023]
Abstract
Bartsocas-Papas syndrome (BPS) is a rare autosomal recessive disorder characterized by popliteal pterygia, syndactyly, ankyloblepharon, filiform bands between the jaws, cleft lip and palate, and genital malformations. Most of the BPS cases reported to date are fatal either in the prenatal or neonatal period. Causative genetic defects of BPS were mapped on the RIPK4 gene encoding receptor-interacting serine/threonine kinase 4, which is critical for epidermal differentiation and development. RIPK4 variants are associated with a wide range of clinical features ranging from milder ectodermal dysplasia to severe BPS. Here, we evaluated a consanguineous Turkish family, who had two pregnancies with severe multiple malformations compatible with BPS phenotype. In order to identify the underlying genetic defect, direct sequencing of the coding region and exon-intron boundaries of RIPK4 was carried out. A homozygous transversion (c.481G>C) that leads to the substitution of a conserved aspartic acid to histidine (p.Asp161His) in the kinase domain of the protein was detected. Pathogenicity predictions, molecular modeling, and cell-based functional assays showed that Asp161 residue is required for the kinase activity of the protein, which indicates that the identified variant is responsible for the severe BPS phenotype in the family.
Collapse
Affiliation(s)
- Tuba Dinçer
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Evren Gümüş
- Department of Medical Genetics, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Bayram Toraman
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - İdris Er
- Department of Medical Biology, Institute of Health Science, Karadeniz Technical University, Trabzon, Turkey
| | - Gokhan Yildiz
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Zafer Yüksel
- Department of Human Genetics, Bioscientia GmbH, Ingelheim, Germany
| | - Ersan Kalay
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
73
|
Goh KJ, Tan EK, Lu H, Roy S, Dunn NR. An NKX2-1 GFP and TP63 tdTomato dual fluorescent reporter for the investigation of human lung basal cell biology. Sci Rep 2021; 11:4712. [PMID: 33633173 PMCID: PMC7907081 DOI: 10.1038/s41598-021-83825-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
Basal cells are multipotent stem cells responsible for the repair and regeneration of all the epithelial cell types present in the proximal lung. In mice, the elusive origins of basal cells and their contribution to lung development were recently revealed by high-resolution, lineage tracing studies. It however remains unclear if human basal cells originate and participate in lung development in a similar fashion, particularly with mounting evidence for significant species-specific differences in this process. To address this outstanding question, in the last several years differentiation protocols incorporating human pluripotent stem cells (hPSC) have been developed to produce human basal cells in vitro with varying efficiencies. To facilitate this endeavour, we introduced tdTomato into the human TP63 gene, whose expression specifically labels basal cells, in the background of a previously described hPSC line harbouring an NKX2-1GFP reporter allele. The functionality and specificity of the NKX2-1GFP;TP63tdTomato hPSC line was validated by directed differentiation into lung progenitors as well as more specialised lung epithelial subtypes using an organoid platform. This dual fluorescent reporter hPSC line will be useful for tracking, isolating and expanding basal cells from heterogenous differentiation cultures for further study.
Collapse
Affiliation(s)
- Kim Jee Goh
- Institute of Medical Biology, Agency for Science Technology and Research (A∗STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
- Skin Research Institute of Singapore, 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore, 308232, Singapore
| | - Ee Kim Tan
- Institute of Medical Biology, Agency for Science Technology and Research (A∗STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119288, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - N Ray Dunn
- Institute of Medical Biology, Agency for Science Technology and Research (A∗STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore.
- Skin Research Institute of Singapore, 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore, 308232, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
74
|
Balmer P, Hariton WVJ, Sayar BS, Jagannathan V, Galichet A, Leeb T, Roosje P, Müller EJ. SUV39H2 epigenetic silencing controls fate conversion of epidermal stem and progenitor cells. J Cell Biol 2021; 220:211810. [PMID: 33604655 PMCID: PMC7898489 DOI: 10.1083/jcb.201908178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/04/2020] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
Epigenetic histone trimethylation on lysine 9 (H3K9me3) represents a major molecular signal for genome stability and gene silencing conserved from worms to man. However, the functional role of the H3K9 trimethylases SUV39H1/2 in mammalian tissue homeostasis remains largely unknown. Here, we use a spontaneous dog model with monogenic inheritance of a recessive SUV39H2 loss-of-function variant and impaired differentiation in the epidermis, a self-renewing tissue fueled by stem and progenitor cell proliferation and differentiation. Our results demonstrate that SUV39H2 maintains the stem and progenitor cell pool by restricting fate conversion through H3K9me3 repressive marks on gene promoters encoding components of the Wnt/p63/adhesion axis. When SUV39H2 function is lost, repression is relieved, and enhanced Wnt activity causes progenitor cells to prematurely exit the cell cycle, a process mimicked by pharmacological Wnt activation in primary canine, human, and mouse keratinocytes. As a consequence, the stem cell growth potential of cultured SUV39H2-deficient canine keratinocytes is exhausted while epidermal differentiation and genome stability are compromised. Collectively, our data identify SUV39H2 and potentially also SUV39H1 as major gatekeepers in the delicate balance of progenitor fate conversion through H3K9me3 rate-limiting road blocks in basal layer keratinocytes.
Collapse
Affiliation(s)
- Pierre Balmer
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - William V J Hariton
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Beyza S Sayar
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Arnaud Galichet
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Petra Roosje
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane J Müller
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
75
|
Alshammari ES, Aljagthmi AA, Stacy AJ, Bottomley M, Shamma HN, Kadakia MP, Long W. ERK3 is transcriptionally upregulated by ∆Np63α and mediates the role of ∆Np63α in suppressing cell migration in non-melanoma skin cancers. BMC Cancer 2021; 21:155. [PMID: 33579235 PMCID: PMC7881562 DOI: 10.1186/s12885-021-07866-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND p63, a member of the p53 gene family, is an important regulator for epithelial tissue growth and development. ∆Np63α is the main isoform of p63 and highly expressed in Non-melanoma skin cancer (NMSC). Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose biochemical features and cellular regulation are distinct from those of conventional MAPKs such as ERK1/2. While ERK3 has been shown to be upregulated in lung cancers and head and neck cancers, in which it promotes cancer cell migration and invasion, little is known about the implication of ERK3 in NMSCs. METHODS Fluorescent immunohistochemistry was performed to evaluate the expression levels of ΔNp63α and ERK3 in normal and NMSC specimens. Dunnett's test was performed to compare mean fluorescence intensity (MFI, indicator of expression levels) of p63 or ERK3 between normal cutaneous samples and NMSC samples. A mixed effects (ANOVA) test was used to determine the correlation between ΔNp63α and ERK3 expression levels (MFI). The regulation of ERK3 by ΔNp63α was studied by qRT-PCR, Western blot and luciferase assay. The effect of ERK3 regulation by ΔNp63α on cell migration was measured by performing trans-well migration assay. RESULTS The expression level of ∆Np63α is upregulated in NMSCs compared to normal tissue. ERK3 level is significantly upregulated in AK and SCC in comparison to normal tissue and there is a strong positive correlation between ∆Np63α and ERK3 expression in normal skin and skin specimens of patients with AK, SCC or BCC. Further, we found that ∆Np63α positively regulates ERK3 transcript and protein levels in A431 and HaCaT skin cells, underlying the upregulation of ERK3 expression and its positive correlation with ∆Np63α in NMSCs. Moreover, similar to the effect of ∆Np63α depletion, silencing ERK3 greatly enhanced A431 cell migration. Restoration of ERK3 expression under the condition of silencing ∆Np63α counteracted the increase in cell migration induced by the depletion of ∆Np63α. Mechanistically, ERK3 inhibits the phosphorylation of Rac1 G-protein and the formation of filopodia of A431 skin SCC cells. CONCLUSIONS ERK3 is positively regulated by ∆Np63α and mediates the role of ∆Np63α in suppressing cell migration in NMSC.
Collapse
Affiliation(s)
- Eid S Alshammari
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah, 72388, Saudi Arabia
| | - Amjad A Aljagthmi
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Andrew J Stacy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Mike Bottomley
- Department of Math and Microbiology, College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - H Nicholas Shamma
- Department of Dermatology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Madhavi P Kadakia
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
76
|
Isoform-Specific Roles of Mutant p63 in Human Diseases. Cancers (Basel) 2021; 13:cancers13030536. [PMID: 33572532 PMCID: PMC7866788 DOI: 10.3390/cancers13030536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The protein p63 belongs to the family of the p53 tumor suppressor. Mouse models have, however, shown that it is not a classical tumor suppressor but instead involved in developmental processes. Mutations in the p63 gene cause several developmental defects in human patients characterized by limb deformation, cleft lip/palate, and ectodermal dysplasia due to p63’s role as a master regulator of epidermal development. In addition, p63 plays a key role as a quality control factor in oocytes and p63 mutations can result either in compromised genetic quality control or premature cell death of all oocytes. Abstract The p63 gene encodes a master regulator of epidermal commitment, development, and differentiation. Heterozygous mutations in the DNA binding domain cause Ectrodactyly, Ectodermal Dysplasia, characterized by limb deformation, cleft lip/palate, and ectodermal dysplasia while mutations in in the C-terminal domain of the α-isoform cause Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) syndrome, a life-threatening disorder characterized by skin fragility, severe, long-lasting skin erosions, and cleft lip/palate. The molecular disease mechanisms of these syndromes have recently become elucidated and have enhanced our understanding of the role of p63 in epidermal development. Here we review the molecular cause and functional consequences of these p63-mutations for skin development and discuss the consequences of p63 mutations for female fertility.
Collapse
|
77
|
Leśniak W. Epigenetic Regulation of Epidermal Differentiation. EPIGENOMES 2021; 5:1. [PMID: 34968254 PMCID: PMC8594726 DOI: 10.3390/epigenomes5010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 01/22/2023] Open
Abstract
The epidermis is the outer part of the skin that protects the organism from dehydration and shields from external insults. Epidermal cells, called keratinocytes, undergo a series of morphological and metabolic changes that allow them to establish the biochemical and structural elements of an effective epidermal barrier. This process, known as epidermal differentiation, is critical for the maintenance of the epidermis under physiological conditions and also under stress or in various skin pathologies. Epidermal differentiation relies on a highly coordinated program of gene expression. Epigenetic mechanisms, which commonly include DNA methylation, covalent histone modifications, and microRNA (miRNA) activity, modulate various stages of gene expression by altering chromatin accessibility and mRNA stability. Their involvement in epidermal differentiation is a matter of intensive studies, and the results obtained thus far show a complex network of epigenetic factors, acting together with transcriptional regulators, to maintain epidermal homeostasis and counteract adverse effects of environmental stressors.
Collapse
Affiliation(s)
- Wiesława Leśniak
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
78
|
Guazzarotti L, Sani I, Giglio S, Brunello F, Perilongo G, Bocciardi R. A novel stop codon variant affecting ΔNp63 isoforms associated with non-syndromic limb-mammary phenotype and uterine cervix dysplasia. Clin Genet 2020; 99:486-487. [PMID: 33258108 DOI: 10.1111/cge.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Laura Guazzarotti
- Department of Woman's and Child 's Health - Pediatric Endocrinology and Adolescence Unit, University Hospital of Padova, Padova, Italy
| | - Ilaria Sani
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Sabrina Giglio
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesco Brunello
- Department of Woman's and Child's Health, University Hospital of Padova, Padova, Italy
| | - Giorgio Perilongo
- Department of Woman's and Child's Health, University Hospital of Padova, Padova, Italy
| | - Renata Bocciardi
- DINOGMI, University of Genova - UOC Genetica Medica IRCCS Giannina Gaslini, Genoa, Italy
| |
Collapse
|
79
|
Human papilloma virus (HPV) integration signature in Cervical Cancer: identification of MACROD2 gene as HPV hot spot integration site. Br J Cancer 2020; 124:777-785. [PMID: 33191407 PMCID: PMC7884736 DOI: 10.1038/s41416-020-01153-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/02/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Background Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality with infection by human papilloma virus (HPV) being the most important risk factor. We analysed the association between different viral integration signatures, clinical parameters and outcome in pre-treated CCs. Methods Different integration signatures were identified using HPV double capture followed by next-generation sequencing (NGS) in 272 CC patients from the BioRAIDs study [NCT02428842]. Correlations between HPV integration signatures and clinical, biological and molecular features were assessed. Results Episomal HPV was much less frequent in CC as compared to anal carcinoma (p < 0.0001). We identified >300 different HPV-chromosomal junctions (inter- or intra-genic). The most frequent integration site in CC was in MACROD2 gene followed by MIPOL1/TTC6 and TP63. HPV integration signatures were not associated with histological subtype, FIGO staging, treatment or PFS. HPVs were more frequently episomal in PIK3CA mutated tumours (p = 0.023). Viral integration type was dependent on HPV genotype (p < 0.0001); HPV18 and HPV45 being always integrated. High HPV copy number was associated with longer PFS (p = 0.011). Conclusions This is to our knowledge the first study assessing the prognostic value of HPV integration in a prospectively annotated CC cohort, which detects a hotspot of HPV integration at MACROD2; involved in impaired PARP1 activity and chromosome instability.
Collapse
|
80
|
Flora P, Ezhkova E. Regulatory mechanisms governing epidermal stem cell function during development and homeostasis. Development 2020; 147:147/22/dev194100. [PMID: 33191273 DOI: 10.1242/dev.194100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell divisions and cell-fate decisions require stringent regulation for proper tissue development and homeostasis. The mammalian epidermis is a highly organized tissue structure that is sustained by epidermal stem cells (ESCs) that balance self-renewal and cell-fate decisions to establish a protective barrier, while replacing dying cells during homeostasis and in response to injury. Extensive work over past decades has provided insights into the regulatory mechanisms that control ESC specification, self-renewal and maintenance during different stages of the lifetime of an organism. In this Review, we discuss recent findings that have furthered our understanding of key regulatory features that allow ESCs to establish a functional barrier during development and to maintain tissue homeostasis in adults.
Collapse
Affiliation(s)
- Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
81
|
A new standardized immunofluorescence method for potency quantification (SMPQ) of human conjunctival cell cultures. Cell Tissue Bank 2020; 22:145-159. [PMID: 33051810 DOI: 10.1007/s10561-020-09874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
The aim of this study is to set up a standardized and reproducible method to determine the potency (= stem cell content) of human conjunctival cell cultures by means of immunofluorescence-based analyses. This will help the development of new Advanced Therapy Medicinal Products (ATMPs) to use in future cell therapy clinical studies when fewer cells are available to perform the quality controls. To achieve this purpose, a reference standard was investigated and the expression levels of ΔNp63α (considered as a marker of conjunctival stem cells) was correlated to cell size. The limbal hTERT cells were used as reference standard to define the expression value of ΔNp63α. The mean intensity value of limbal hTERT cells ranging between 15 and 20 µm in diameter was used to distinguish between ΔNp63α bright and not bright cells. As ΔNp63α bright expression was mainly seen in the smaller cell size group (10-15 µm), we defined as conjunctival stem cells (= potency) those cells which were bright and with sizes between 10 and 15 µm. Assays on cells from clonal analyses were used to validate the method, as they do allow to observe a decrease in potency (Holoclones > Meroclones > Paraclones). The stem cell content of conjunctival grafts was found to be 11.3% ± 5.0 compared to 21.9% ± 0.6, 9.0% ± 8.1 and 0% from Holoclones, Meroclones and Paraclones, respectively. This new method, here named as Standardized Method for Potency Quantification, will allow to detect the potency in conjunctival cell cultures, thus obtaining a quality control assay responding to the GMP standards required for ATMP release.
Collapse
|
82
|
Cai W, Zhou W, Han Z, Lei J, Zhuang J, Zhu P, Wu X, Yuan W. Master regulator genes and their impact on major diseases. PeerJ 2020; 8:e9952. [PMID: 33083114 PMCID: PMC7546222 DOI: 10.7717/peerj.9952] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023] Open
Abstract
Master regulator genes (MRGs) have become a hot topic in recent decades. They not only affect the development of tissue and organ systems but also play a role in other signal pathways by regulating additional MRGs. Because a MRG can regulate the concurrent expression of several genes, its mutation often leads to major diseases. Moreover, the occurrence of many tumors and cardiovascular and nervous system diseases are closely related to MRG changes. With the development in omics technology, an increasing amount of investigations will be directed toward MRGs because their regulation involves all aspects of an organism’s development. This review focuses on the definition and classification of MRGs as well as their influence on disease regulation.
Collapse
Affiliation(s)
- Wanwan Cai
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wanbang Zhou
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Zhe Han
- University of Maryland School of Medicine, Center for Precision Disease Modeling, Baltimore, MD, USA
| | - Junrong Lei
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wuzhou Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
83
|
Rangel-Huerta E, Guzman A, Maldonado E. The dynamics of epidermal stratification during post-larval development in zebrafish. Dev Dyn 2020; 250:175-190. [PMID: 32877571 DOI: 10.1002/dvdy.249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/08/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The epidermis, as a defensive barrier, is a consistent trait throughout animal evolution. During post-larval development, the zebrafish epidermis thickens by stratification or addition of new cell layers. Epidermal basal stem cells, expressing the transcription factor p63, are known to be involved in this process. Zebrafish post-larval epidermal stratification is a tractable system to study how stem cells participate in organ growth. METHODS We used immunohistochemistry, in combination with EdU cell proliferation detection, to study zebrafish epidermal stratification. For this procedure, we selected a window of post-larval stages (5-8 mm of standard length or SL, which normalizes age by size). Simultaneously, we used markers for asymmetric cell division and the Notch signaling pathway. RESULTS We found that epidermal stratification is the consequence of several events, including changes in cell shape, active cell proliferation and asymmetrical cell divisions. We identified a subset of highly proliferative epidermal cells with reduced levels of p63, which differed from the basal stem cells with high levels of p63. Additionally, we described different mechanisms that participate in the stratification process, including the phosphorylation of p63, asymmetric cell division regulated by the Par3 and LGN proteins, and expression of Notch genes.
Collapse
Affiliation(s)
- Emma Rangel-Huerta
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Puerto Morelos, Quintana Roo, Mexico.,Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, UNAM, Puerto Morelos, Quintana Roo, Mexico
| | - Aida Guzman
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Puerto Morelos, Quintana Roo, Mexico.,Estudio Técnico Especializado en Histopatología, Escuela Nacional Preparatoria, ENP, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, Mexico
| | - Ernesto Maldonado
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Puerto Morelos, Quintana Roo, Mexico
| |
Collapse
|
84
|
Zhang Q, Wen J, Liu C, Ma C, Bai F, Leng X, Chen Z, Xie Z, Mi J, Wu X. Early-stage bilayer tissue-engineered skin substitute formed by adult skin progenitor cells produces an improved skin structure in vivo. Stem Cell Res Ther 2020; 11:407. [PMID: 32948249 PMCID: PMC7501683 DOI: 10.1186/s13287-020-01924-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In recent years, significant progress has been made in developing highly complex tissue-engineered skin substitutes (TESSs) for wound healing. However, the lack of skin appendages, such as hair follicles and sweat glands, and the time required, are two major limitations that hinder its broad application in the clinic. Therefore, it is necessary to develop a competent TESS in a short time to meet the needs for clinical applications. METHODS Adult scalp dermal progenitor cells and epidermal stem cells together with type I collagen as a scaffold material were used to reconstitute bilayer TESSs in vitro. TESSs at 4 different culture times (5, 9, 14, and 21 days) were collected and then grafted onto full-thickness wounds created in the dorsal skin of athymic nude/nude mice. The skin specimens formed from grafted TESSs were collected 4 and 8 weeks later and then evaluated for their structure, cell organization, differentiation status, vascularization, and formation of appendages by histological analysis, immunohistochemistry, and immunofluorescent staining. RESULTS Early-stage bilayer TESSs after transplantation had a better efficiency of grafting. A normal structure of stratified epidermis containing multiple differentiated layers of keratinocytes was formed in all grafts from both early-stage and late-stage TESSs, but higher levels of the proliferation marker Ki-67 and the epidermal progenitor marker p63 were found in the epidermis formed from early-stage TESSs. Interestingly, the transplantation of early-stage TESSs produced a thicker dermis that contained more vimentin- and CD31-positive cells, and importantly, hair follicle formation was only observed in the skin grafted from early-stage TESSs. Finally, early-stage TESSs expressed high levels of p63 but had low expression levels of genes involved in the activation of the apoptotic pathway compared to the late-stage TESSs in vitro. CONCLUSIONS Early-stage bilayer TESSs reconstituted from skin progenitor cells contained more competent cells with less activation of the apoptotic pathway and produced a better skin structure, including hair follicles associated with sebaceous glands, after transplantation, which should potentially provide better wound healing when applied in the clinic in the future.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Chuan Ma
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Fuxiang Bai
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Xue Leng
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Zhihong Chen
- Qilu Children's Hospital of Shandong University, Jinan, China
| | - Zhiwei Xie
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
- Department of Stomatology, Shengli Oilfield Center Hospital, Dongying, Shandong, China
| | - Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China.
| |
Collapse
|
85
|
Sammons MA, Nguyen TAT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 2020; 48:8848-8869. [PMID: 32797160 PMCID: PMC7498329 DOI: 10.1093/nar/gkaa666] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The p53 transcription factor confers its potent tumor suppressor functions primarily through the regulation of a large network of target genes. The recent explosion of next generation sequencing protocols has enabled the study of the p53 gene regulatory network (GRN) and underlying mechanisms at an unprecedented depth and scale, helping us to understand precisely how p53 controls gene regulation. Here, we discuss our current understanding of where and how p53 binds to DNA and chromatin, its pioneer-like role, and how this affects gene regulation. We provide an overview of the p53 GRN and the direct and indirect mechanisms through which p53 affects gene regulation. In particular, we focus on delineating the ubiquitous and cell type-specific network of regulatory elements that p53 engages; reviewing our understanding of how, where, and when p53 binds to DNA and the mechanisms through which these events regulate transcription. Finally, we discuss the evolution of the p53 GRN and how recent work has revealed remarkable differences between vertebrates, which are of particular importance to cancer researchers using mouse models.
Collapse
Affiliation(s)
- Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory and Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
86
|
Abstract
p63 (also known as TP63) is a transcription factor of the p53 family, along with p73. Multiple isoforms of p63 have been discovered and these have diverse functions encompassing a wide array of cell biology. p63 isoforms are implicated in lineage specification, proliferative potential, differentiation, cell death and survival, DNA damage response and metabolism. Furthermore, p63 is linked to human disease states including cancer. p63 is critical to many aspects of cell signaling, and in this Cell science at a glance article and the accompanying poster, we focus on the signaling cascades regulating TAp63 and ΔNp63 isoforms and those that are regulated by TAp63 and ΔNp63, as well the role of p63 in disease.
Collapse
Affiliation(s)
- Matthew L Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.,Stony Brook University, Department of Molecular and Cell Biology, Stony Brook, NY, 11794, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
87
|
Lee AY. The Role of MicroRNAs in Epidermal Barrier. Int J Mol Sci 2020; 21:ijms21165781. [PMID: 32806619 PMCID: PMC7460865 DOI: 10.3390/ijms21165781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs), which mostly cause target gene silencing via transcriptional repression and degradation of target mRNAs, regulate a plethora of cellular activities, such as cell growth, differentiation, development, and apoptosis. In the case of skin keratinocytes, the role of miRNA in epidermal barrier integrity has been identified. Based on the impact of key genetic and environmental factors on the integrity and maintenance of skin barrier, the association of miRNAs within epidermal cell differentiation and proliferation, cell-cell adhesion, and skin lipids is reviewed. The critical role of miRNAs in the epidermal barrier extends the use of miRNAs for control of relevant skin diseases such as atopic dermatitis, ichthyoses, and psoriasis via miRNA-based technologies. Most of the relevant miRNAs have been associated with keratinocyte differentiation and proliferation. Few studies have investigated the association of miRNAs with structural proteins of corneocytes and cornified envelopes, cell-cell adhesion, and skin lipids. Further studies investigating the association between regulatory and structural components of epidermal barrier and miRNAs are needed to elucidate the role of miRNAs in epidermal barrier integrity and their clinical implications.
Collapse
Affiliation(s)
- Ai-Young Lee
- Department of Dermatology, College of Medicine, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-773, Korea
| |
Collapse
|
88
|
Selver OB, Gurdal M, Yagci A, Egrilmez S, Palamar M, Cavusoglu T, Veral A, Guven C, Ates U, Wang Z, Wolosin JM. Multi-parametric evaluation of autologous cultivated Limbal epithelial cell transplantation outcomes of Limbal stem cell deficiency due to chemical burn. BMC Ophthalmol 2020; 20:325. [PMID: 32762738 PMCID: PMC7409701 DOI: 10.1186/s12886-020-01588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background The sparsity of established tools for the grading of limbal stem cell deficiency hinder objective assessments of the clinical outcome of cultivated limbal epithelial cell transplantation. To advance towards the development of standards for the comparison of the outcomes of these bio-surgical protocols we have now applied a battery of recognized objective and patient-declared subjective outcome criteria to the autologous modality of cultivated limbal epithelial cell transplantation. Methods The prospective study involved ten patients (M/F = 9/1; mean age = 42.1 years) displaying overt unilateral limbal stem cell deficiency complying with the inclusion criteria described in Methods. Limbal biopsies were obtained from the contralateral eye and their outgrowths after 2-week cultures were transplanted on the affected eye after pannus resection. Outcomes were followed up for 12 months. The objective tests were scores for best-corrected visual acuity (BCVA); using the LogMAR scale, a multiparametric ocular surface score (OSS), and the Schirmer’s test. Subjective scores were based on patient answers to a) perception of visual improvement/pain; b) the 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ 25); and c) the 12-item Ocular Surface Disease Index Questionnaire (OSDI). All procedures were performed under good manufacture practices using solely xeno-free reagents. In all cases, a single biopsy was divided into two pieces and they were expanded in order to prevent outgrowth failure. In 5 patients, both biopsies generated healthy culture sheet. In those cases the lesser outgrowth were used for immune-histological characterization. Results The experimental parallel outgrowth samples showed a similar percent of p63α+ cells. PreOp and 12-month PostOp BCVAs and OSSs were, respectively, 1.15 ± 0.70; 0.21 ± 0.13 and 7.40 ± 2.01; 2,30 ± 1.30, (p < 0.05). Patient’s responses to all three question sets except ocular pain were consistent with significant improvement (p < 0.05). Conclusion Objective clinical metrics demonstrate that in patients with limbal stem cell deficiency, cultivated limbal epithelial cell transplantation improves vision and ocular surface health and subjective visual perceptions.
Collapse
Affiliation(s)
- Ozlem Barut Selver
- Departments of Ophthalmology, Ege University Faculty Of Medicine, 35100 Bornova-, Izmir, Turkey.
| | - Mehmet Gurdal
- Departments of Medical Biochemistry, Ege University Faculty Of Medicine, Izmir, Turkey
| | - Ayse Yagci
- Departments of Ophthalmology, Ege University Faculty Of Medicine, 35100 Bornova-, Izmir, Turkey
| | - Sait Egrilmez
- Departments of Ophthalmology, Ege University Faculty Of Medicine, 35100 Bornova-, Izmir, Turkey
| | - Melis Palamar
- Departments of Ophthalmology, Ege University Faculty Of Medicine, 35100 Bornova-, Izmir, Turkey
| | - Turker Cavusoglu
- Departments of Histology and Embryology, Ege University Faculty Of Medicine, Izmir, Turkey
| | - Ali Veral
- Departments of Pathology, Ege University Faculty Of Medicine, Izmir, Turkey
| | - Cagri Guven
- Departments of Gynecology and Obstetric, Ege University Faculty Of Medicine, Izmir, Turkey
| | - Utku Ates
- Department of Histology and Embryology, Bilim University, Istanbul, Turkey
| | - Zheng Wang
- Department of Ophthalmology and Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Box 1183, One Gustave Levy Pl., New York, NY, 10029, USA
| | - J Mario Wolosin
- Department of Ophthalmology and Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Box 1183, One Gustave Levy Pl., New York, NY, 10029, USA.
| |
Collapse
|
89
|
Duffy MJ, Synnott NC, O'Grady S, Crown J. Targeting p53 for the treatment of cancer. Semin Cancer Biol 2020; 79:58-67. [PMID: 32741700 DOI: 10.1016/j.semcancer.2020.07.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/26/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
Dysfunction of the TP53 (p53) gene occurs in most if not all human malignancies. Two principal mechanisms are responsible for this dysfunction; mutation and downregulation of wild-type p53 mediated by MDM2/MDM4. Because of its almost universal inactivation in malignancy, p53 is a highly attractive target for the development of new anticancer drugs. Although multiple strategies have been investigated for targeting dysfunctional p53 for cancer treatment, only 2 of these have so far yielded compounds for testing in clinical trials. These strategies include the identification of compounds for reactivating the mutant form of p53 back to its wild-type form and compounds for inhibiting the interaction between wild-type p53 and MDM2/MDM4. Currently, multiple p53-MDM2/MDM4 antagonists are undergoing clinical trials, the most advanced being idasanutlin which is currently undergoing testing in a phase III clinical trial in patients with relapsed or refractory acute myeloid leukemia. Two mutant p53-reactivating compounds have progressed to clinical trials, i.e., APR-246 and COTI-2. Although promising data has emerged from the testing of both MDM2/MDM4 inhibitors and mutant p53 reactivating compounds in preclinical models, it is still unclear if these agents have clinical efficacy. However, should any of the compounds currently being evaluated in clinical trials be shown to have efficacy, it is likely to usher in a new era in cancer treatment, especially as p53 dysfunction is so prevalent in human cancers.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland.
| | - Naoise C Synnott
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; Division of Cancer Epidemiology and Genetics, and Division of Cancer Prevention, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - Shane O'Grady
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
90
|
Abstract
Identifying the molecular mechanisms that control differential gene expression (DE) is a major goal of basic and disease biology. We develop a systems biology model to predict DE, and mine the biological basis of the factors that influence predicted gene expression, in order to understand how it may be generated. This model, called DEcode, utilizes deep learning to predict DE based on genome-wide binding sites on RNAs and promoters. Ranking predictive factors from the DEcode indicates that clinically relevant expression changes between thousands of individuals can be predicted mainly through the joint action of post-transcriptional RNA-binding factors. We also show the broad potential applications of DEcode to generate biological insights, by predicting DE between tissues, differential transcript-usage, and drivers of aging throughout the human lifespan, of gene coexpression relationships on a genome-wide scale, and of frequently DE genes across diverse conditions. Researchers can freely utilize DEcode to identify influential molecular mechanisms for any human expression data - www.differentialexpression.org.
Collapse
|
91
|
Kobayashi Y, Hayashi R, Shibata S, Quantock AJ, Nishida K. Ocular surface ectoderm instigated by WNT inhibition and BMP4. Stem Cell Res 2020; 46:101868. [PMID: 32603880 PMCID: PMC7347012 DOI: 10.1016/j.scr.2020.101868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/27/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
We sought to elucidate how and when the ocular surface ectoderm commits to its differentiation into the corneal epithelium in eye development from human induced pluripotent stem cells (hiPSCs) under the influence of WNT signaling and the actions of BMP4. These signals are key drivers ocular surface ectodermal cell fate determination. It was discovered that secreted frizzled related protein-2 (SFRP2) and Dickkopf1 (DKK1), which are expressed in neural ectoderm, are both influential in the differentiation of hiPSCs, where they act as canonical WNT antagonists. BMP4, moreover, was found to simultaneously initiate non-neural ectodermal differentiation into a corneal epithelial lineage. Combined treatment of hiPSCs with exogenous BMP4 aligned to WNT inhibition for the initial four days of differentiation increased the ocular surface ectodermal cell population and induced a corneal epithelial phenotype. Specification of a surface ectodermal lineage and its fate is thus determined by a fine balance of BMP4 exposure and WNT inhibition in the very earliest stages of human eye development.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shun Shibata
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Research and Development Division, ROHTO Pharmaceutical Co Ltd, Osaka, Osaka 544-8666, Japan
| | - Andrew J Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF24 4HQ Wales, UK
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
92
|
Guo CC, Majewski T, Zhang L, Yao H, Bondaruk J, Wang Y, Zhang S, Wang Z, Lee JG, Lee S, Cogdell D, Zhang M, Wei P, Grossman HB, Kamat A, Duplisea JJ, Ferguson JE, Huang H, Dadhania V, Gao J, Dinney C, Weinstein JN, Baggerly K, McConkey D, Czerniak B. Dysregulation of EMT Drives the Progression to Clinically Aggressive Sarcomatoid Bladder Cancer. Cell Rep 2020; 27:1781-1793.e4. [PMID: 31067463 DOI: 10.1016/j.celrep.2019.04.048] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/28/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Sarcomatoid urothelial bladder cancer (SARC) displays a high propensity for distant metastasis and is associated with short survival. We report a comprehensive genomic analysis of 28 cases of SARC and 84 cases of conventional urothelial carcinoma (UC), with the TCGA cohort of 408 muscle-invasive bladder cancers serving as the reference. SARCs show a distinct mutational landscape, with enrichment of TP53, RB1, and PIK3CA mutations. They are related to the basal molecular subtype of conventional UCs and could be divided into epithelial-basal and more clinically aggressive mesenchymal subsets on the basis of TP63 and its target gene expression levels. Other analyses reveal that SARCs are driven by downregulation of homotypic adherence genes and dysregulation of the EMT network, and nearly half exhibit a heavily infiltrated immune phenotype. Our observations have important implications for prognostication and the development of more effective therapies for this highly lethal variant of bladder cancer.
Collapse
Affiliation(s)
- Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Hui Yao
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jolanta Bondaruk
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shizhen Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - June Goo Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miao Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Barton Grossman
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashish Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - James Edward Ferguson
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - He Huang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vipulkumar Dadhania
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John N Weinstein
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith Baggerly
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
93
|
Guo Y, Redmond CJ, Leacock KA, Brovkina MV, Ji S, Jaskula-Ranga V, Coulombe PA. Keratin 14-dependent disulfides regulate epidermal homeostasis and barrier function via 14-3-3σ and YAP1. eLife 2020; 9:53165. [PMID: 32369015 PMCID: PMC7250575 DOI: 10.7554/elife.53165] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
The intermediate filament protein keratin 14 (K14) provides vital structural support in basal keratinocytes of epidermis. Recent studies evidenced a role for K14-dependent disulfide bonding in the organization and dynamics of keratin IFs in skin keratinocytes. Here we report that knock-in mice harboring a cysteine-to-alanine substitution at Krt14's codon 373 (C373A) exhibit alterations in disulfide-bonded K14 species and a barrier defect secondary to enhanced proliferation, faster transit time and altered differentiation in epidermis. A proteomics screen identified 14-3-3 as K14 interacting proteins. Follow-up studies showed that YAP1, a transcriptional effector of Hippo signaling regulated by 14-3-3sigma in skin keratinocytes, shows aberrant subcellular partitioning and function in differentiating Krt14 C373A keratinocytes. Residue C373 in K14, which is conserved in a subset of keratins, is revealed as a novel regulator of keratin organization and YAP function in early differentiating keratinocytes, with an impact on cell mechanics, homeostasis and barrier function in epidermis.
Collapse
Affiliation(s)
- Yajuan Guo
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Catherine J Redmond
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Krystynne A Leacock
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Margarita V Brovkina
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Suyun Ji
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Vinod Jaskula-Ranga
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, United States
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, United States.,Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, United States
| |
Collapse
|
94
|
Gallardo-Fuentes L, Santos-Pereira JM, Tena JJ. Functional Conservation of Divergent p63-Bound cis-Regulatory Elements. Front Genet 2020; 11:339. [PMID: 32411176 PMCID: PMC7200997 DOI: 10.3389/fgene.2020.00339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/20/2020] [Indexed: 11/26/2022] Open
Abstract
The transcription factor p63 is an essential regulator of vertebrate ectoderm development, including epidermis, limbs, and craniofacial tissues. Here, we have investigated the evolutionary conservation of p63 binding sites (BSs) between zebrafish and human. First, we have analyzed sequence conservation of p63 BSs by comparing ChIP-seq data from human keratinocytes and zebrafish embryos, observing a very poor conservation. Next, we compared the gene regulatory network orchestrated by p63 in both species and found a high overlap between them, suggesting a high degree of functional conservation during evolution despite sequence divergence and the large evolutionary distance. Finally, we used transgenic reporter assays in zebrafish embryos to functionally validate a set of equivalent p63 BSs from zebrafish and human located close to genes involved in epidermal development. Reporter expression was driven by human and zebrafish BSs to many common tissues related to p63 expression domains. Therefore, we conclude that the gene regulatory network controlled by p63 is highly conserved across vertebrates despite the fact that p63-bound regulatory elements show high divergence.
Collapse
Affiliation(s)
- Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - José M Santos-Pereira
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
95
|
Lasham A, Tsai P, Fitzgerald SJ, Mehta SY, Knowlton NS, Braithwaite AW, Print CG. Accessing a New Dimension in TP53 Biology: Multiplex Long Amplicon Digital PCR to Specifically Detect and Quantitate Individual TP53 Transcripts. Cancers (Basel) 2020; 12:cancers12030769. [PMID: 32213968 PMCID: PMC7140069 DOI: 10.3390/cancers12030769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022] Open
Abstract
TP53, the most commonly-mutated gene in cancer, undergoes complex alternative splicing. Different TP53 transcripts play different biological roles, both in normal function and in the progression of diseases such as cancer. The study of TP53’s alternative RNA splice forms and their use as clinical biomarkers has been hampered by limited specificity and quantitative accuracy of current methods. TP53 RNA splice variants differ at both 5’ and 3’ ends, but because they have a common central region of 618 bp, the individual TP53 transcripts are impossible to specifically detect and precisely quantitate using standard PCR-based methods or short-read RNA sequencing. Therefore, we devised multiplex probe-based long amplicon droplet digital PCR (ddPCR) assays, which for the first time allow precise end-to-end quantitation of the seven major TP53 transcripts, with amplicons ranging from 0.85 to 1.85 kb. Multiple modifications to standard ddPCR assay procedures were required to enable specific co-amplification of these long transcripts and to overcome issues with secondary structure. Using these assays, we show that several TP53 transcripts are co-expressed in breast cancers, and illustrate the potential for this method to identify novel TP53 transcripts in tumour cells. This capability will facilitate a new level of biological and clinical understanding of the alternatively-spliced TP53 isoforms.
Collapse
Affiliation(s)
- Annette Lasham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Correspondence:
| | - Peter Tsai
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| | - Sandra J. Fitzgerald
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| | - Sunali Y. Mehta
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Nicholas S. Knowlton
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| | - Antony W. Braithwaite
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Cristin G. Print
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| |
Collapse
|
96
|
Mathorne SW, Ravn P, Hansen D, Beck-Nielsen SS, Gjørup H, Sørensen KP, Fagerberg CR. Novel phenotype of syndromic premature ovarian insufficiency associated with TP63 molecular defect. Clin Genet 2020; 97:779-784. [PMID: 32067224 DOI: 10.1111/cge.13725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 11/27/2022]
Abstract
There is growing evidence that TP63 is associated with isolated as well as syndromic premature ovarian insufficiency (POI). We report two adolescent sisters diagnosed with undetectable ovaries, uterine hypoplasia, and mammary gland hypoplasia. A novel paternally inherited nonsense variant in TP63 [NM_003722.4 c.1927C > T,p.(Arg643*)] in exon 14 was identified by exome sequencing. One of the syndromes linked to TP63 is limb mammary syndrome (LMS), an autosomal dominant inherited disorder characterized by ectrodactyly, hypoplasia of mammary-gland and nipple, lacrimal duct stenosis, nail dysplasia, dental anomalies, cleft palate and/or cleft lip and absence of skin and hair defects. The TP63 variant segregated with symptoms of LMS in the family, however, no affected individual had limb defects. The phenotype reported here represents a novel syndromic phenotype associated with TP63. Reported cases with TP63 associated POI are reviewed.
Collapse
Affiliation(s)
- Stine W Mathorne
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Pernille Ravn
- Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | - Dorte Hansen
- H C Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | | | - Hans Gjørup
- Center for Oral Health in Rare Diseases, Department of Maxillofacial Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Kristina P Sørensen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
97
|
Patel N, Alkeraye S, Alobeid E, Alshidi T, Helaby R, Abdulwahab F, Shamseldin HE, Alkuraya FS. Confirming the recessive inheritance of PERP-related erythrokeratoderma. Clin Genet 2020; 97:661-665. [PMID: 31898316 DOI: 10.1111/cge.13699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/26/2019] [Indexed: 11/29/2022]
Abstract
Erythrokeratoderma (EK) is heterogeneous clinical entity characterized by excessive scaling with resulting erythrokeratotic plaques. Several genes have been linked to EK and they encode a number of proteins that are important for the integrity of the keratinocyte layer of the epidermis. PERP is a transcription factor that is activated by both p53 and p63. However, its deficiency in a mouse model appears to only recapitulate p63-mediated role in skin development and organization. We report an extended multiplex consanguineous family in which an EK phenotype with a striking similarity to that observed in Perp-/- mice, is mapped to an autozygous region on chromosome 6 that spans PERP. Whole-exome sequencing revealed a novel variant in PERP that fully segregated with the phenotype. Functional analysis of patient- and control-derived keratinocytes revealed a deleterious effect of the identified variant on the intracellular localization of PERP. A previous report showed that PERP mutation causes a dominant form of keratoderma but a single patient in that report with a homozygous variant in PERP suggests that recessive inheritance is also possible. Our results, therefore, support the establishment of an autosomal recessive PERP-related EK phenotype in humans.
Collapse
Affiliation(s)
- Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Salim Alkeraye
- Dermatology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eman Alobeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Alshidi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rana Helaby
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
98
|
The interplay between Epstein-Bar virus (EBV) with the p53 and its homologs during EBV associated malignancies. Heliyon 2019; 5:e02624. [PMID: 31840114 PMCID: PMC6893087 DOI: 10.1016/j.heliyon.2019.e02624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
p53, p63, and p73, the members of the p53 family of proteins, are structurally similar proteins that play central roles regulating cell cycle and apoptotic cell death. Alternative splicing at the carboxyl terminus and the utilization of different promoters further categorizes these proteins as having different isoforms for each. Among such isoforms, TA and ΔN versions of each protein serve as the pro and the anti-apoptotic proteins, respectively. Changes in the expression patterns of these isoforms are noted in many human cancers. Proteins of certain human herpesviruses, like Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), interact with p53 family members and alter their expressions in many malignancies. Upon infections in the B cells and epithelial cells, EBV expresses different lytic or latent proteins during viral replication and latency respectively to preserve viral copy number, chromosomal integrity and viral persistence inside the host. In this review, we have surveyed and summarised the interactions of EBV gene products, known so far, with the p53 family proteins. The interactions between P53 and EBV oncoproteins are observed in stomach cancer, non-Hodgkin's lymphoma (NHL) of the head and neck, Nasopharyngeal Cancer (NPC), Gastric carcinoma (GC) and Burkitt's lymphoma (BL). EBV latent protein EBNA1, EBNA3C, LMP-1, and lytic proteins BZLF-1 can alter p53 expressions in many cancer cell lines. Interactions of p63 with EBNA-1, 2, 5, LMP-2A and BARF-1 have also been investigated in several cancers. Similarly, associations of p73 isoform with EBV latent proteins EBNA3C and LMP-1 have been reported. Methylation and single nucleotide polymorphisms in p53 have also been found to be correlated with EBV infection. Therefore, interactions and altered expression strategies of the isoforms of p53 family proteins in EBV associated cancers propose an important field for further molecular research.
Collapse
|
99
|
Maillard A, Alby C, Gabison E, Doan S, Caux F, Bodemer C, Hadj‐Rabia S. P63‐related disorders: Dermatological characteristics in 22 patients. Exp Dermatol 2019; 28:1190-1195. [DOI: 10.1111/exd.14045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Alexia Maillard
- Department of Dermatology Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC) Paris France
| | - Caroline Alby
- Institut Imagine UMR1163 Fédération de Génétique médicale Hôpital universitaire Necker‐Enfants Malades AP‐HP5 Université Paris Descartes‐Sorbonne Paris Cite Paris France
| | - Eric Gabison
- Cornea, External Disorders and Refractive Surgery Fondation Ophtalmologique Adolphe de Rothschild Paris France
| | - Serge Doan
- Cornea, External Disorders and Refractive Surgery Fondation Ophtalmologique Adolphe de Rothschild Paris France
- Ophthalmology Hopital Bichat‐Claude‐Bernard Assistance Publique‐Hôpitaux de Paris Université, Paris VII Paris France
| | - Frédéric Caux
- Dermatology Hopital Avicennes Assistance Publique‐Hôpitaux de Paris Université Paris XIII Bobigny France
| | - Christine Bodemer
- Department of Dermatology Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC) Paris France
- INSERM U1163&Institut Imagine Hôpital Universitaire Necker‐Enfants Malades APHP5 Université de Paris Paris France
| | - Smail Hadj‐Rabia
- Department of Dermatology Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC) Paris France
- INSERM U1163&Institut Imagine Hôpital Universitaire Necker‐Enfants Malades APHP5 Université de Paris Paris France
| |
Collapse
|
100
|
Stacy AJ, Zhang J, Craig MP, Hira A, Dole N, Kadakia MP. TIP60 up-regulates ΔNp63α to promote cellular proliferation. J Biol Chem 2019; 294:17007-17016. [PMID: 31601649 DOI: 10.1074/jbc.ra119.010388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/03/2019] [Indexed: 01/08/2023] Open
Abstract
An estimated 5.4 million cases of nonmelanoma skin cancer are reported in the United States at an associated cost of $4.8 billion. ΔNp63α, a proto-oncogene in the p53 family of transcription factors, is overexpressed in squamous cell carcinoma (SCC) and associated with poor prognosis and survival. ΔNp63α elicits its tumorigenic effects in part by promoting cellular proliferation and cell survival. Despite its importance in SCC, the upstream regulation of ΔNp63α is poorly understood. In this study, we identify TIP60 as a novel upstream regulator of ΔNp63α. Using a combination of overexpression, silencing, stable expression, and pharmacological approaches in multiple cell lines, we showed that TIP60 up-regulates ΔNp63α expression. Utilizing cycloheximide treatment, we showed that TIP60 catalytic activity is required for stabilization of ΔNp63α protein levels. We further showed that TIP60 coexpression inhibits ΔNp63α ubiquitination and proteasomal degradation. Stabilization of ΔNp63α protein was further associated with TIP60-mediated acetylation. Finally, we demonstrated that TIP60-mediated regulation of ΔNp63α increases cellular proliferation by promoting G2/M progression through MTS assays and flow cytometry. Taken together, our findings provide evidence that TIP60 may contribute to SCC progression by increasing ΔNp63α protein levels, thereby promoting cellular proliferation.
Collapse
Affiliation(s)
- Andrew J Stacy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Jin Zhang
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Michael P Craig
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Akshay Hira
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Nikhil Dole
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Madhavi P Kadakia
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| |
Collapse
|