51
|
Richards M, Coppée F, Thomas N, Belayew A, Upadhyaya M. Facioscapulohumeral muscular dystrophy (FSHD): an enigma unravelled? Hum Genet 2011; 131:325-40. [PMID: 21984394 DOI: 10.1007/s00439-011-1100-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/26/2011] [Indexed: 01/02/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is the third most common muscular dystrophy after the dystrophinopathies and myotonic dystrophy and is associated with a typical pattern of muscle weakness. Most patients with FSHD carry a large deletion in the polymorphic D4Z4 macrosatellite repeat array at 4q35 and present with 1-10 repeats whereas non-affected individuals possess 11-150 repeats. An almost identical repeat array is present at 10q26 and the high sequence identity between these two arrays can cause difficulties in molecular diagnosis. Each 3.3-kb D4Z4 unit contains a DUX4 (double homeobox 4) gene that, among others, is activated upon contraction of the 4q35 repeat array due to the induction of chromatin remodelling of the 4qter region. A number of 4q subtelomeric sequence variants are now recognised, although FSHD only occurs in association with three 'permissive' haplotypes, each of which is associated with a polyadenylation signal located immediately distal of the last D4Z4 unit. The resulting poly-A tail appears to stabilise DUX4 mRNAs transcribed from this most distal D4Z4 unit in FSHD muscle cells. Synthesis of both the DUX4 transcripts and protein in FSHD muscle cells induces significant cell toxicity. DUX4 is a transcription factor that may target several genes which results in a deregulation cascade which inhibits myogenesis, sensitises cells to oxidative stress and induces muscle atrophy, thus recapitulating many of the key molecular features of FSHD.
Collapse
Affiliation(s)
- Mark Richards
- School of Medicine, Institute of Medical Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| | | | | | | | | |
Collapse
|
52
|
Tsumagari K, Chang SC, Lacey M, Baribault C, Chittur SV, Sowden J, Tawil R, Crawford GE, Ehrlich M. Gene expression during normal and FSHD myogenesis. BMC Med Genomics 2011; 4:67. [PMID: 21951698 PMCID: PMC3204225 DOI: 10.1186/1755-8794-4-67] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/27/2011] [Indexed: 01/31/2023] Open
Abstract
Background Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p < 0.01) in control myoblasts or myotubes vs. non-muscle cells (2185 and 3006, respectively) or in FSHD vs. control myoblasts or myotubes (295 and 797, respectively). Surprisingly, despite the morphologically normal differentiation of FSHD myoblasts to myotubes, most of the disease-related dysregulation was seen as dampening of normal myogenesis-specific expression changes, including in genes for muscle structure, mitochondrial function, stress responses, and signal transduction. Other classes of genes, including those encoding extracellular matrix or pro-inflammatory proteins, were upregulated in FSHD myogenic cells independent of an inverse myogenesis association. Importantly, the disease-linked DUX4 RNA isoform was detected by RT-PCR in FSHD myoblast and myotube preparations only at extremely low levels. Unique insights into myogenesis-specific gene expression were also obtained. For example, all four Argonaute genes involved in RNA-silencing were significantly upregulated during normal (but not FSHD) myogenesis relative to non-muscle cell types. Conclusions DUX4's pathogenic effect in FSHD may occur transiently at or before the stage of myoblast formation to establish a cascade of gene dysregulation. This contrasts with the current emphasis on toxic effects of experimentally upregulated DUX4 expression at the myoblast or myotube stages. Our model could explain why DUX4's inappropriate expression was barely detectable in myoblasts and myotubes but nonetheless linked to FSHD.
Collapse
Affiliation(s)
- Koji Tsumagari
- Human Genetics Program, Tulane Medical School, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Dmitriev P, Petrov A, Ansseau E, Stankevicins L, Charron S, Kim E, Bos TJ, Robert T, Turki A, Coppée F, Belayew A, Lazar V, Carnac G, Laoudj D, Lipinski M, Vassetzky YS. The Krüppel-like factor 15 as a molecular link between myogenic factors and a chromosome 4q transcriptional enhancer implicated in facioscapulohumeral dystrophy. J Biol Chem 2011; 286:44620-31. [PMID: 21937448 DOI: 10.1074/jbc.m111.254052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a dominant hereditary disease with a prevalence of 7 per 100,000 individuals, is associated with a partial deletion in the subtelomeric D4Z4 repeat array on chromosome 4q. The D4Z4 repeat contains a strong transcriptional enhancer that activates promoters of several FSHD-related genes. We report here that the enhancer within the D4Z4 repeat binds the Krüppel-like factor KLF15. KLF15 was found to be up-regulated during myogenic differentiation induced by serum starvation or by overexpression of the myogenic differentiation factor MYOD. When overexpressed, KLF15 activated the D4Z4 enhancer and led to overexpression of DUX4c (Double homeobox 4, centromeric) and FRG2 (FSHD region gene 2) genes, whereas its silencing caused inactivation of the D4Z4 enhancer. In immortalized human myoblasts, the D4Z4 enhancer was activated by the myogenic factor MYOD, an effect that was abolished upon KLF15 silencing or when the KLF15-binding sites within the D4Z4 enhancer were mutated, indicating that the myogenesis-related activation of the D4Z4 enhancer was mediated by KLF15. KLF15 and several myogenesis-related factors were found to be expressed at higher levels in myoblasts, myotubes, and muscle biopsies from FSHD patients than in healthy controls. We propose that KLF15 serves as a molecular link between myogenic factors and the activity of the D4Z4 enhancer, and it thus contributes to the overexpression of the DUX4c and FRG2 genes during normal myogenic differentiation and in FSHD.
Collapse
Affiliation(s)
- Petr Dmitriev
- CNRS UMR8126, Université Paris-Sud 11, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Distrofia muscolare facio-scapolo-omerale. Neurologia 2011. [DOI: 10.1016/s1634-7072(11)70626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
55
|
Cabianca DS, Gabellini D. The cell biology of disease: FSHD: copy number variations on the theme of muscular dystrophy. J Cell Biol 2010; 191:1049-60. [PMID: 21149563 PMCID: PMC3002039 DOI: 10.1083/jcb.201007028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/08/2010] [Indexed: 01/17/2023] Open
Abstract
In humans, copy number variations (CNVs) are a common source of phenotypic diversity and disease susceptibility. Facioscapulohumeral muscular dystrophy (FSHD) is an important genetic disease caused by CNVs. It is an autosomal-dominant myopathy caused by a reduction in the copy number of the D4Z4 macrosatellite repeat located at chromosome 4q35. Interestingly, the reduction of D4Z4 copy number is not sufficient by itself to cause FSHD. A number of epigenetic events appear to affect the severity of the disease, its rate of progression, and the distribution of muscle weakness. Indeed, recent findings suggest that virtually all levels of epigenetic regulation, from DNA methylation to higher order chromosomal architecture, are altered at the disease locus, causing the de-regulation of 4q35 gene expression and ultimately FSHD.
Collapse
Affiliation(s)
- Daphne Selvaggia Cabianca
- International PhD Program in Cellular and Molecular Biology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Regenerative Medicine, San Raffaele Scientific Institute, DIBIT 1, 2A3-49, 20132 Milan, Italy
| | - Davide Gabellini
- Division of Regenerative Medicine, San Raffaele Scientific Institute, DIBIT 1, 2A3-49, 20132 Milan, Italy
- Dulbecco Telethon Institute, 20132 Milan, Italy
| |
Collapse
|
56
|
Wallace LM, Garwick SE, Mei W, Belayew A, Coppee F, Ladner KJ, Guttridge D, Yang J, Harper SQ. DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Ann Neurol 2010; 69:540-52. [PMID: 21446026 DOI: 10.1002/ana.22275] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/31/2010] [Accepted: 09/17/2010] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Facioscapulohumeral muscular dystrophy (FSHD) is associated with D4Z4 repeat contraction on human chromosome 4q35. This genetic lesion does not result in complete loss or mutation of any gene. Consequently, the pathogenic mechanisms underlying FSHD have been difficult to discern. In leading FSHD pathogenesis models, D4Z4 contractions are proposed to cause epigenetic changes, which ultimately increase expression of genes with myopathic potential. Although no gene has been conclusively linked to FSHD development, recent evidence supports a role for the D4Z4-encoded DUX4 gene in FSHD. In this study, our objective was to test the in vivo myopathic potential of DUX4. METHODS We delivered DUX4 to zebrafish and mouse muscle by transposon-mediated transgenesis and adeno-associated viral vectors, respectively. RESULTS Overexpression of DUX4, which encodes a transcription factor, caused abnormalities associated with muscular dystrophy in zebrafish and mice. This toxicity required DNA binding, because a DUX4 DNA binding domain mutant produced no abnormalities. Importantly, we found the myopathic effects of DUX4 were p53 dependent, as p53 inhibition mitigated DUX4 toxicity in vitro, and muscles from p53 null mice were resistant to DUX4-induced damage. INTERPRETATION Our work demonstrates the myopathic potential of DUX4 in animal muscle. Considering previous studies showed DUX4 was elevated in FSHD patient muscles, our data support the hypothesis that DUX4 overexpression contributes to FSHD development. Moreover, we provide a p53-dependent mechanism for DUX4 toxicity that is consistent with previous studies showing p53 pathway activation in FSHD muscles. Our work justifies further investigation of DUX4 and the p53 pathway in FSHD pathogenesis.
Collapse
Affiliation(s)
- Lindsay M Wallace
- Molecular, Cellular, and Developmental Biology Graduate Program, Ohio State University, Columbus, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Alternative splicing of pre-mRNAs is a major contributor to proteomic diversity and to the control of gene expression in higher eukaryotic cells. For this reasons, alternative splicing is tightly regulated in different tissues and developmental stages and its disruption can lead to a wide range of human disorders. The aim of this review is to focus on the relevance of alternative splicing for muscle function and muscle disease. We begin by giving a brief overview of alternative splicing, muscle-specific gene expression and muscular dystrophy. Next, to illustrate these concepts we focus on two muscular dystrophy, myotonic muscular dystrophy and facioscapulohumeral muscular dystrophy, both associated to disruption of splicing regulation in muscle.
Collapse
Affiliation(s)
- Mariaelena Pistoni
- Division of Regenerative Medicine, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
58
|
Xu X, Tsumagari K, Sowden J, Tawil R, Boyle AP, Song L, Furey TS, Crawford GE, Ehrlich M. DNaseI hypersensitivity at gene-poor, FSH dystrophy-linked 4q35.2. Nucleic Acids Res 2010; 37:7381-93. [PMID: 19820107 PMCID: PMC2794184 DOI: 10.1093/nar/gkp833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A subtelomeric region, 4q35.2, is implicated in facioscapulohumeral muscular dystrophy (FSHD), a dominant disease thought to involve local pathogenic changes in chromatin. FSHD patients have too few copies of a tandem 3.3-kb repeat (D4Z4) at 4q35.2. No phenotype is associated with having few copies of an almost identical repeat at 10q26.3. Standard expression analyses have not given definitive answers as to the genes involved. To investigate the pathogenic effects of short D4Z4 arrays on gene expression in the very gene-poor 4q35.2 and to find chromatin landmarks there for transcription control, unannotated genes and chromatin structure, we mapped DNaseI-hypersensitive (DH) sites in FSHD and control myoblasts. Using custom tiling arrays (DNase-chip), we found unexpectedly many DH sites in the two large gene deserts in this 4-Mb region. One site was seen preferentially in FSHD myoblasts. Several others were mapped >0.7 Mb from genes known to be active in the muscle lineage and were also observed in cultured fibroblasts, but not in lymphoid, myeloid or hepatic cells. Their selective occurrence in cells derived from mesoderm suggests functionality. Our findings indicate that the gene desert regions of 4q35.2 may have functional significance, possibly also to FSHD, despite their paucity of known genes.
Collapse
Affiliation(s)
- Xueqing Xu
- Human Genetics Program and Department of Biochemistry and Tulane Cancer Center, Tulane Medical School, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Barro M, Carnac G, Flavier S, Mercier J, Vassetzky Y, Laoudj-Chenivesse D. Myoblasts from affected and non-affected FSHD muscles exhibit morphological differentiation defects. J Cell Mol Med 2010; 14:275-89. [PMID: 18505476 PMCID: PMC2910739 DOI: 10.1111/j.1582-4934.2008.00368.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is a muscular hereditary disease with a prevalence of 1 in 20,000 caused by a partial deletion of a subtelomeric repeat array on chromosome 4q. However, very little is known about the pathogenesis as well as the molecular and biochemical changes linked to the progressive muscle degeneration observed in these patients. Several studies have investigated possible pathophysiological pathways in FSHD myoblasts and mature muscle cells but some of these reports were apparently in contradiction. The discrepancy between these studies may be explained by differences between the sources of myoblasts. Therefore, we decided to thoroughly analyze affected and unaffected muscles from patients with FSHD in terms of vulnerability to oxidative stress, differentiation capacity and morphological abnormalities. We have established a panel of primary myoblast cell cultures from patients affected with FSHD and matched healthy individuals. Our results show that primary myoblasts are more susceptible to an induced oxidative stress than control myoblasts. Moreover, we demonstrate that both types of FSHD primary myoblasts differentiate into multi-nucleated myotubes, which present morphological abnormalities. Whereas control myoblasts fuse to form branched myotubes with aligned nuclei, FSHD myoblasts fuse to form either thin and branched myotubes with aligned nuclei or large myotubes with random nuclei distribution. In conclusion, we postulate that these abnormalities could be responsible for muscle weakness in patients with FSHD and provide an important marker for FSHD myoblasts.
Collapse
|
60
|
de Greef JC, Lemmers RJLF, van Engelen BGM, Sacconi S, Venance SL, Frants RR, Tawil R, van der Maarel SM. Common epigenetic changes of D4Z4 in contraction-dependent and contraction-independent FSHD. Hum Mutat 2009; 30:1449-59. [PMID: 19728363 DOI: 10.1002/humu.21091] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), caused by partial deletion of the D4Z4 macrosatellite repeat on chromosome 4q, has a complex genetic and epigenetic etiology. To develop FSHD, D4Z4 contraction needs to occur on a specific genetic background. Only contractions associated with the 4qA161 haplotype cause FSHD. In addition, contraction of the D4Z4 repeat in FSHD patients is associated with significant D4Z4 hypomethylation. To date, however, the methylation status of contracted repeats on nonpathogenic haplotypes has not been studied. We have performed a detailed methylation study of the D4Z4 repeat on chromosome 4q and on a highly homologous repeat on chromosome 10q. We show that patients with a D4Z4 deletion (FSHD1) have D4Z4-restricted hypomethylation. Importantly, controls with a D4Z4 contraction on a nonpathogenic chromosome 4q haplotype or on chromosome 10q also demonstrate hypomethylation. In 15 FSHD families without D4Z4 contractions but with at least one 4qA161 haplotype (FSHD2), we observed D4Z4-restricted hypomethylation on chromosomes 4q and 10q. This finding implies that a genetic defect resulting in D4Z4 hypomethylation underlies FSHD2. In conclusion, we describe two ways to develop FSHD: (1) contraction-dependent or (2) contraction-independent D4Z4 hypomethylation on the 4qA161 subtelomere.
Collapse
Affiliation(s)
- Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Ansseau E, Laoudj-Chenivesse D, Marcowycz A, Tassin A, Vanderplanck C, Sauvage S, Barro M, Mahieu I, Leroy A, Leclercq I, Mainfroid V, Figlewicz D, Mouly V, Butler-Browne G, Belayew A, Coppée F. DUX4c is up-regulated in FSHD. It induces the MYF5 protein and human myoblast proliferation. PLoS One 2009; 4:e7482. [PMID: 19829708 PMCID: PMC2759506 DOI: 10.1371/journal.pone.0007482] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 09/17/2009] [Indexed: 12/21/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contractions of the D4Z4 repeat array in 4q35. We have previously identified a double homeobox gene (DUX4) within each D4Z4 unit that encodes a transcription factor expressed in FSHD but not control myoblasts. DUX4 and its target genes contribute to the global dysregulation of gene expression observed in FSHD. We have now characterized the homologous DUX4c gene mapped 42 kb centromeric of the D4Z4 repeat array. It encodes a 47-kDa protein with a double homeodomain identical to DUX4 but divergent in the carboxyl-terminal region. DUX4c was detected in primary myoblast extracts by Western blot with a specific antiserum, and was induced upon differentiation. The protein was increased about 2-fold in FSHD versus control myotubes but reached 2-10-fold induction in FSHD muscle biopsies. We have shown by Western blot and by a DNA-binding assay that DUX4c over-expression induced the MYF5 myogenic regulator and its DNA-binding activity. DUX4c might stabilize the MYF5 protein as we detected their interaction by co-immunoprecipitation. In keeping with the known role of Myf5 in myoblast accumulation during mouse muscle regeneration DUX4c over-expression activated proliferation of human primary myoblasts and inhibited their differentiation. Altogether, these results suggested that DUX4c could be involved in muscle regeneration and that changes in its expression could contribute to the FSHD pathology.
Collapse
Affiliation(s)
- Eugénie Ansseau
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | | | - Aline Marcowycz
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Céline Vanderplanck
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Sébastien Sauvage
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Marietta Barro
- INSERM ERI 25 Muscle et Pathologies, CHU A. de Villeneuve, Montpellier, France
| | - Isabelle Mahieu
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Axelle Leroy
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - India Leclercq
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | | | - Denise Figlewicz
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vincent Mouly
- Institute of Myology, Platform for human cell culture, Paris, France
| | | | - Alexandra Belayew
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Frédérique Coppée
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
- * E-mail:
| |
Collapse
|
62
|
Bosnakovski D, Daughters RS, Xu Z, Slack JMW, Kyba M. Biphasic myopathic phenotype of mouse DUX, an ORF within conserved FSHD-related repeats. PLoS One 2009; 4:e7003. [PMID: 19756142 PMCID: PMC2737622 DOI: 10.1371/journal.pone.0007003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 08/19/2009] [Indexed: 12/30/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by contractions of D4Z4 repeats at 4q35.2 thought to induce misregulation of nearby genes, one of which, DUX4, is actually localized within each repeat. A conserved ORF (mDUX), embedded within D4Z4-like repeats, encoding a double-homeodomain protein, was recently identified on mouse chromosome 10. We show here that high level mDUX expression induces myoblast death, while low non-toxic levels block myogenic differentiation by down-regulating MyoD and Myf5. Toxicity and MyoD/Myf5 expression changes were competitively reversed by overexpression of Pax3 or Pax7, implying mechanistic similarities with the anti-myogenic activity of human DUX4. We tested the effect of mDUX expression on Xenopus development, and found that global overexpression led to abnormalities in gastrulation. When targeted unilaterally into blastomeres fated to become tail muscle in 16-cell embryos, mDUX caused markedly reduced tail myogenesis on the injected side. These novel cell and animal models highlight the myopathic nature of sequences within the FSHD-related repeat array.
Collapse
Affiliation(s)
- Darko Bosnakovski
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Faculty of Technology and Technical Science, University St. Kliment Ohridski, Veles, Republic of Macedonia
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Randy S. Daughters
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Zhaohui Xu
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jonathan M. W. Slack
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
63
|
Bodega B, Ramirez GDC, Grasser F, Cheli S, Brunelli S, Mora M, Meneveri R, Marozzi A, Mueller S, Battaglioli E, Ginelli E. Remodeling of the chromatin structure of the facioscapulohumeral muscular dystrophy (FSHD) locus and upregulation of FSHD-related gene 1 (FRG1) expression during human myogenic differentiation. BMC Biol 2009; 7:41. [PMID: 19607661 PMCID: PMC2719609 DOI: 10.1186/1741-7007-7-41] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 07/16/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder associated with the partial deletion of integral numbers of 3.3 kb D4Z4 DNA repeats within the subtelomere of chromosome 4q. A number of candidate FSHD genes, adenine nucleotide translocator 1 gene (ANT1), FSHD-related gene 1 (FRG1), FRG2 and DUX4c, upstream of the D4Z4 array (FSHD locus), and double homeobox chromosome 4 (DUX4) within the repeat itself, are upregulated in some patients, thus suggesting an underlying perturbation of the chromatin structure. Furthermore, a mouse model overexpressing FRG1 has been generated, displaying skeletal muscle defects. RESULTS In the context of myogenic differentiation, we compared the chromatin structure and tridimensional interaction of the D4Z4 array and FRG1 gene promoter, and FRG1 expression, in control and FSHD cells. The FRG1 gene was prematurely expressed during FSHD myoblast differentiation, thus suggesting that the number of D4Z4 repeats in the array may affect the correct timing of FRG1 expression. Using chromosome conformation capture (3C) technology, we revealed that the FRG1 promoter and D4Z4 array physically interacted. Furthermore, this chromatin structure underwent dynamic changes during myogenic differentiation that led to the loosening of the FRG1/4q-D4Z4 array loop in myotubes. The FRG1 promoter in both normal and FSHD myoblasts was characterized by H3K27 trimethylation and Polycomb repressor complex binding, but these repression signs were replaced by H3K4 trimethylation during differentiation. The D4Z4 sequences behaved similarly, with H3K27 trimethylation and Polycomb binding being lost upon myogenic differentiation. CONCLUSION We propose a model in which the D4Z4 array may play a critical chromatin function as an orchestrator of in cis chromatin loops, thus suggesting that this repeat may play a role in coordinating gene expression.
Collapse
Affiliation(s)
- Beatrice Bodega
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Katargin AN, Pavlova LS, Kisseljov FL, Kisseljova NP. Hypermethylation of genomic 3.3-kb repeats is frequent event in HPV-positive cervical cancer. BMC Med Genomics 2009; 2:30. [PMID: 19473516 PMCID: PMC2695481 DOI: 10.1186/1755-8794-2-30] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 05/27/2009] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Large-scale screening methods are widely used to reveal cancer-specific DNA methylation markers. We previously identified non-satellite 3.3-kb repeats associated with facioscapulohumeral muscular dystrophy (FSHD) as hypermethylated in cervical cancer in genome-wide screening. To determine whether hypermethylation of 3.3-kb repeats is a tumor-specific event and to evaluate frequency of this event in tumors, we investigated the 3.3-kb repeat methylation status in human papilloma virus (HPV)-positive cervical tumors, cancer cell lines, and normal cervical tissues. Open reading frames encoding DUX family proteins are contained within some 3.3-kb repeat units. The DUX mRNA expression profile was also studied in these tissues. METHODS The methylation status of 3.3-kb repeats was evaluated by Southern blot hybridization and bisulfite genomic sequencing. The expression of DUX mRNA was analyzed by RT-PCR and specificity of PCR products was confirmed by sequencing analysis. RESULTS Hypermethylation of 3.3-kb repeats relative to normal tissues was revealed for the first time in more than 50% (18/34) of cervical tumors and in 4 HPV-positive cervical cancer cell lines. Hypermethylation of 3.3-kb repeats was observed in tumors concurrently with or independently of hypomethylation of classical satellite 2 sequences (Sat2) that were hypomethylated in 75% (15/20) of cervical tumors. We have revealed the presence of transcripts highly homologous to DUX4 and DUX10 genes in normal tissues and down-regulation of transcripts in 68% of tumors with and without 3.3-kb repeats hypermethylation. CONCLUSION Our results demonstrate that hypermethylation rather than hypomethylation of 3.3-kb repeats is the predominant event in HPV-associated cervical cancer and provide new insight into the epigenetic changes of repetitive DNA elements in carcinogenesis.
Collapse
Affiliation(s)
- Alexey N Katargin
- Laboratory of Molecular Biology of Viruses, Institute of Carcinogenesis, NN Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
65
|
De la Torre C, Illa I, Faulkner G, Soria L, Robles-Cedeño R, Dominguez-Perles R, De Luna N, Gallardo E. Proteomics identification of differentially expressed proteins in the muscle of dysferlin myopathy patients. Proteomics Clin Appl 2009; 3:486-97. [PMID: 21136973 DOI: 10.1002/prca.200800087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Indexed: 01/16/2023]
Abstract
The muscular dystrophies are a large and heterogeneous group of neuromuscular disorders that can be classified according to the mode of inheritance, the clinical phenotype and the molecular defect. To better understand the pathological mechanisms of dysferlin myopathy we compared the protein-expression pattern in the muscle biopsies of six patients with this disease with six patients with limb girdle muscular dystrophy 2A, five with facioscapulohumeral dystrophy and six normal control subjects. To investigate differences in the expression levels of skeletal muscle proteins we used 2-DE and MS. Western blot or immunohistochemistry confirmed relevant results. The study showed specific increase expression of proteins involved in fast-to-slow fiber type conversion (ankyrin repeat protein 2), type I predominance (phosphorylated forms of slow troponin T), sarcomere stabilization (actinin-associated LIM protein), protein ubiquitination (TRIM 72) and skeletal muscle differentiation (Rho-GDP-dissociation inhibitor ly-GDI) in dysferlin myopathy. As anticipated, we also found differential expression of proteins common to all the muscular dystrophies studied. This comparative proteomic analysis suggests that in dysferlin myopathy (i) the type I fiber predominance is an active process of fiber type conversion rather than a selective loss of type II fibers and (ii) the dysregulation of proteins involved in muscle differentiation further confirms the role of dysferlin in this process.
Collapse
Affiliation(s)
- Carolina De la Torre
- Laboratory of Experimental Neurology, Institut de Recerca HSCSP, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Dmitriev P, Lipinski M, Vassetzky YS. Pearls in the junk: Dissecting the molecular pathogenesis of facioscapulohumeral muscular dystrophy. Neuromuscul Disord 2009; 19:17-20. [DOI: 10.1016/j.nmd.2008.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 11/16/2022]
|
67
|
de Greef JC, Frants RR, van der Maarel SM. Epigenetic mechanisms of facioscapulohumeral muscular dystrophy. Mutat Res 2008; 647:94-102. [PMID: 18723032 PMCID: PMC2650037 DOI: 10.1016/j.mrfmmm.2008.07.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/18/2008] [Accepted: 07/23/2008] [Indexed: 04/08/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) seems to be caused by a complex epigenetic disease mechanism as a result of contraction of the polymorphic macrosatellite repeat D4Z4 on chromosome 4qter. Currently, the exact mechanism causing the FSHD phenotype is still not elucidated. In this review, we discuss the genetic and epigenetic changes observed in patients with FSHD and the possible disease mechanisms that may be associated with FSHD pathogenesis.
Collapse
Affiliation(s)
- Jessica C. de Greef
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Rune R. Frants
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Silvère M. van der Maarel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Address correspondence and reprint requests to: Dr. S.M. van der Maarel, Department of Human Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, Bldg. 2, room S-03-042, Postal zone S-4-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
68
|
Pirozhkova I, Petrov A, Dmitriev P, Laoudj D, Lipinski M, Vassetzky Y. A functional role for 4qA/B in the structural rearrangement of the 4q35 region and in the regulation of FRG1 and ANT1 in facioscapulohumeral dystrophy. PLoS One 2008; 3:e3389. [PMID: 18852887 PMCID: PMC2561064 DOI: 10.1371/journal.pone.0003389] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 09/17/2008] [Indexed: 01/11/2023] Open
Abstract
The number of D4Z4 repeats in the subtelomeric region of chromosome 4q is strongly reduced in patients with Facio-Scapulo-Humeral Dystrophy (FSHD). We performed chromosome conformation capture (3C) analysis to document the interactions taking place among different 4q35 markers. We found that the reduced number of D4Z4 repeats in FSHD myoblasts was associated with a global alteration of the three-dimensional structure of the 4q35 region. Indeed, differently from normal myoblasts, the 4qA/B marker interacted directly with the promoters of the FRG1 and ANT1 genes in FSHD cells. Along with the presence of a newly identified transcriptional enhancer within the 4qA allele, our demonstration of an interaction occurring between chromosomal segments located megabases away on the same chromosome 4q allows to revisit the possible mechanisms leading to FSHD.
Collapse
Affiliation(s)
- Iryna Pirozhkova
- Université Paris-Sud 11, CNRS UMR 8126, Interactions moléculaires et cancer, Institut de Cancérologie Gustave-Roussy, Villejuif, France
| | - Andrei Petrov
- Université Paris-Sud 11, CNRS UMR 8126, Interactions moléculaires et cancer, Institut de Cancérologie Gustave-Roussy, Villejuif, France
| | - Petr Dmitriev
- Université Paris-Sud 11, CNRS UMR 8126, Interactions moléculaires et cancer, Institut de Cancérologie Gustave-Roussy, Villejuif, France
| | - Dalila Laoudj
- INSERM, ERI25, F-34000, Montpellier, France, Université Montpellier 1, Montpellier, France
| | - Marc Lipinski
- Université Paris-Sud 11, CNRS UMR 8126, Interactions moléculaires et cancer, Institut de Cancérologie Gustave-Roussy, Villejuif, France
| | - Yegor Vassetzky
- Université Paris-Sud 11, CNRS UMR 8126, Interactions moléculaires et cancer, Institut de Cancérologie Gustave-Roussy, Villejuif, France
- * E-mail:
| |
Collapse
|
69
|
An isogenetic myoblast expression screen identifies DUX4-mediated FSHD-associated molecular pathologies. EMBO J 2008; 27:2766-79. [PMID: 18833193 DOI: 10.1038/emboj.2008.201] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 09/10/2008] [Indexed: 12/18/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by an unusual deletion with neomorphic activity. This deletion derepresses genes in cis; however which candidate gene causes the FSHD phenotype, and through what mechanism, is unknown. We describe a novel genetic tool, inducible cassette exchange, enabling rapid generation of isogenetically modified cells with conditional and variable transgene expression. We compare the effects of expressing variable levels of each FSHD candidate gene on myoblasts. This screen identified only one gene with overt toxicity: DUX4 (double homeobox, chromosome 4), a protein with two homeodomains, each similar in sequence to Pax3 and Pax7. DUX4 expression recapitulates key features of the FSHD molecular phenotype, including repression of MyoD and its target genes, diminished myogenic differentiation, repression of glutathione redox pathway components, and sensitivity to oxidative stress. We further demonstrate competition between DUX4 and Pax3/Pax7: when either Pax3 or Pax7 is expressed at high levels, DUX4 is no longer toxic. We propose a hypothesis for FSHD in which DUX4 expression interferes with Pax7 in satellite cells, and inappropriately regulates Pax targets, including myogenic regulatory factors, during regeneration.
Collapse
|
70
|
Filosto M, Tonin P, Scarpelli M, Savio C, Greco F, Mancuso M, Vattemi G, Govoni V, Rizzuto N, Tupler R, Tomelleri G. Novel mitochondrial tRNA Leu(CUN) transition and D4Z4 partial deletion in a patient with a facioscapulohumeral phenotype. Neuromuscul Disord 2008; 18:204-9. [PMID: 18343111 DOI: 10.1016/j.nmd.2007.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 11/22/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
Abstract
Point mutations in mtDNA-encoded tRNA genes frequently cause isolated myopathies but rarely cause the facioscapulohumeral phenotype. We report on a patient affected with chronic progressive weakness of facioscapulohumeral/peroneal muscles whose muscle biopsy showed a mitochondrial myopathy. mtDNA direct sequencing and RFLP analysis revealed a heteroplasmic transition T12313C which disrupts a conserved site in the T Psi C stem of the tRNA(Leu(CUN)) gene and fulfills the accepted criteria of pathogenicity. A partial deletion of the nuclear DNA D4Z4 region with residual repeat sizes of 25 kb was also found in the patient and in her mother. This is the first reported case of mitochondrial myopathy/facioscapulohumeral muscular dystrophy (FSHD) "double trouble".
Collapse
Affiliation(s)
- Massimiliano Filosto
- Department of Neurological Sciences and Vision, Section of Clinical Neurology, University of Verona, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Petrov A, Allinne J, Pirozhkova I, Laoudj D, Lipinski M, Vassetzky YS. A nuclear matrix attachment site in the 4q35 locus has an enhancer-blocking activity in vivo: implications for the facio-scapulo-humeral dystrophy. Genes Dev 2008; 18:39-45. [PMID: 18032730 PMCID: PMC2134777 DOI: 10.1101/gr.6620908] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 10/16/2007] [Indexed: 12/30/2022]
Abstract
Facio-scapulo-humeral dystrophy (FSHD), a muscular hereditary disease with a prevalence of 1 in 20,000, is caused by a partial deletion of a subtelomeric repeat array on chromosome 4q. Earlier, we demonstrated the existence in the vicinity of the D4Z4 repeat of a nuclear matrix attachment site, FR-MAR, efficient in normal human myoblasts and nonmuscular human cells but much weaker in muscle cells from FSHD patients. We now report that the D4Z4 repeat contains an exceptionally strong transcriptional enhancer at its 5'-end. This enhancer up-regulates transcription from the promoter of the neighboring FRG1 gene. However, an enhancer blocking activity was found present in FR-MAR that in vitro could protect transcription from the enhancer activity of the D4Z4 array. In vivo, transcription from the FRG1 and FRG2 genes could be down- or up-regulated depending on whether or not FR-MAR is associated with the nuclear matrix. We propose a model for an etiological role of the delocalization of FR-MAR in the genesis of FSHD.
Collapse
Affiliation(s)
- Andrei Petrov
- UMR 8126, Centre National de la Recherche Scientifique–Université Paris-Sud 11, Institut de Cancérologie Gustave-Roussy, F-94804 Villejuif, France
| | - Jeanne Allinne
- UMR 8126, Centre National de la Recherche Scientifique–Université Paris-Sud 11, Institut de Cancérologie Gustave-Roussy, F-94804 Villejuif, France
| | - Iryna Pirozhkova
- UMR 8126, Centre National de la Recherche Scientifique–Université Paris-Sud 11, Institut de Cancérologie Gustave-Roussy, F-94804 Villejuif, France
| | - Dalila Laoudj
- Institut National de la Santé et de la Recherche Médical ER125, F-34295 Montpellier, France
| | - Marc Lipinski
- UMR 8126, Centre National de la Recherche Scientifique–Université Paris-Sud 11, Institut de Cancérologie Gustave-Roussy, F-94804 Villejuif, France
| | - Yegor S. Vassetzky
- UMR 8126, Centre National de la Recherche Scientifique–Université Paris-Sud 11, Institut de Cancérologie Gustave-Roussy, F-94804 Villejuif, France
| |
Collapse
|
72
|
DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proc Natl Acad Sci U S A 2007; 104:18157-62. [PMID: 17984056 DOI: 10.1073/pnas.0708659104] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder linked to contractions of the D4Z4 repeat array in the subtelomeric region of chromosome 4q. By comparing genome-wide gene expression data from muscle biopsies of patients with FSHD to those of 11 other neuromuscular disorders, paired-like homeodomain transcription factor 1 (PITX1) was found specifically up-regulated in patients with FSHD. In addition, we showed that the double homeobox 4 gene (DUX4) that maps within the D4Z4 repeat unit was up-regulated in patient myoblasts at both mRNA and protein level. We further showed that the DUX4 protein could activate transient expression of a luciferase reporter gene fused to the Pitx1 promoter as well as the endogenous Pitx1 gene in transfected C2C12 cells. In EMSAs, DUX4 specifically interacted with a 30-bp sequence 5'-CGGATGCTGTCTTCTAATTAGTTTGGACCC-3' in the Pitx1 promoter. Mutations of the TAAT core affected Pitx1-LUC activation in C2C12 cells and DUX4 binding in vitro. Our results suggest that up-regulation of both DUX4 and PITX1 in FSHD muscles may play critical roles in the molecular mechanisms of the disease.
Collapse
|
73
|
Kowaljow V, Marcowycz A, Ansseau E, Conde CB, Sauvage S, Mattéotti C, Arias C, Corona ED, Nuñez NG, Leo O, Wattiez R, Figlewicz D, Laoudj-Chenivesse D, Belayew A, Coppée F, Rosa AL. The DUX4 gene at the FSHD1A locus encodes a pro-apoptotic protein. Neuromuscul Disord 2007; 17:611-23. [PMID: 17588759 DOI: 10.1016/j.nmd.2007.04.002] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 03/28/2007] [Accepted: 04/05/2007] [Indexed: 12/19/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) patients carry contractions of the D4Z4-tandem repeat array on chromosome 4q35. Decrease in D4Z4 copy number is thought to alter a chromatin structure and activate expression of neighboring genes. D4Z4 contains a putative double-homeobox gene called DUX4. We identified DUX4 mRNAs in cells transfected with genomic fragments containing the DUX4 gene. Using RT-PCR we also recognized expressed DUX4 mRNAs in primary FSHD myoblasts. Polyclonal antibodies raised against specific DUX4 peptides detected the DUX4 protein in cells transfected with D4Z4 elements. DUX4 localizes in the nucleus of cells transfected with CMV-DUX4 expression vectors. A DUX4-related protein is endogenously expressed in nuclei of adult and fetal human rhabdomyosarcoma cell lines. Overexpression of DUX4 induces cell death, induces caspase 3/7 activity and alters emerin distribution at the nuclear envelope. We propose that DUX4-mediated cell death contributes to the pathogenic pathway in FSHD.
Collapse
Affiliation(s)
- Valeria Kowaljow
- Laboratorio de Neurogenética, Instituto de Investigación, Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Córdoba, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Reed PW, Corse AM, Porter NC, Flanigan KM, Bloch RJ. Abnormal expression of mu-crystallin in facioscapulohumeral muscular dystrophy. Exp Neurol 2007; 205:583-6. [PMID: 17451686 DOI: 10.1016/j.expneurol.2007.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 03/09/2007] [Accepted: 03/14/2007] [Indexed: 01/06/2023]
Abstract
To identify proteins expressed abnormally in facioscapulohumeral muscular dystrophy (FSHD), we extracted soluble proteins from deltoid muscle biopsies from unaffected control and FSHD patients and analyzed them using two-dimensional electrophoresis, mass spectrometry and immunoblotting. Muscles from patients with FSHD showed large increases over controls in a single soluble, 34 kDa protein (pI=5.08) identified by mass spectrometry and immunoblotting as mu-crystallin (CRYM). Soluble fractions of biopsies of several other myopathies and muscular dystrophies showed no appreciable increases in mu-crystallin. Mu-crystallin has thyroid hormone and NADPH binding activity and so may influence differentiation and oxidative stress responses, reported to be altered in FSHD. It is also linked to retinal and inner ear defects, common in FSHD, suggesting that its up-regulation may play a specific and important role in pathogenesis of FSHD.
Collapse
Affiliation(s)
- Patrick W Reed
- Department of Physiology, University of Maryland School of Medicine, 660 W. Redwood Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
75
|
Macaione V, Aguennouz M, Rodolico C, Mazzeo A, Patti A, Cannistraci E, Colantone L, Di Giorgio RM, De Luca G, Vita G. RAGE-NF-kappaB pathway activation in response to oxidative stress in facioscapulohumeral muscular dystrophy. Acta Neurol Scand 2007; 115:115-21. [PMID: 17212615 DOI: 10.1111/j.1600-0404.2006.00724.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES An increased expression of adenine nucleotide translocator (ANT1), found in facioscapulohumeral muscular dystrophy (FSHD), is known to lead to a decrease in nuclear factor-kappaB (NF-kappaB) DNA binding and to sensitize muscle cells to oxidative stress and apoptosis. Receptor for advanced glycation end products (RAGE) mediated by NF-kappaB activation is involved in proinflammatory pathomechanism and in muscle fiber regeneration in inflammatory myopathies and in limb girdle muscular dystrophy. Oxidative stress can stimulate RAGE- NF-kappaB pathway. Our purpose was to verify if oxidative stress may induce RAGE- NF-kappaB pathway activation in FSHD, contributing to the pathogenesis of such a disease. MATERIALS AND METHODS On muscle samples of eight patients with FSHD, eight patients with Duchenne muscular dystrophy and eight normal controls the following studies were carried out: immunocytochemistry for activated NF-kappaB; electrophoretic mobility shift assay of NF-kappaB DNA binding activity; Western blot studies of RAGE and ANT1; hydrogen peroxide (HP), peroxidase and glutathione peroxidase (GPx) assays. RESULTS An increased RAGE and ANT1 expression in FSHD with moderate increase of NF-kappaB DNA binding activity was found together with an increased production of HP and a reduced activity of peroxidase and GPx. CONCLUSIONS Our data confirm that response to oxidative stress and ANT1 increased activity are early events in FSHD muscle. The study also reveals that the RAGE- NF-kappaB pathway, induced by oxidative stress, is activated independently of the presence of a clear histochemical evidence of muscle damage in FSHD.
Collapse
Affiliation(s)
- V Macaione
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Messina, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Celegato B, Capitanio D, Pescatori M, Romualdi C, Pacchioni B, Cagnin S, Viganò A, Colantoni L, Begum S, Ricci E, Wait R, Lanfranchi G, Gelfi C. Parallel protein and transcript profiles of FSHD patient muscles correlate to the D4Z4 arrangement and reveal a common impairment of slow to fast fibre differentiation and a general deregulation of MyoD-dependent genes. Proteomics 2006; 6:5303-21. [PMID: 17013991 DOI: 10.1002/pmic.200600056] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Here, we present the first study of a human neuromuscular disorder at transcriptional and proteomic level. Autosomal dominant facio-scapulo-humeral muscular dystrophy (FSHD) is caused by a deletion of an integral number of 3.3-kb KpnI repeats inside the telomeric region D4Z4 at the 4q35 locus. We combined a muscle-specific cDNA microarray platform with a proteomic investigation to analyse muscle biopsies of patients carrying a variable number of KpnI repeats. Unsupervised cluster analysis divides patients into three classes, according to their KpnI repeat number. Expression data reveal a transition from fast-glycolytic to slow-oxidative phenotype in FSHD muscle, which is accompanied by a deficit of proteins involved in response to oxidative stress. Besides, FSHD individuals show a disruption in the MyoD-dependent gene network suggesting a coregulation at transcriptional level during myogenesis. We also discuss the hypothesis that D4Z4 contraction may affect in trans the expression of a set of genes involved in myogenesis, as well as in the regeneration pathway of satellite cells in adult tissue. Muscular wasting could result from the inability of satellite cells to successfully differentiate into mature fibres and from the accumulation of structural damages caused by a reactive oxygen species (ROS) imbalance induced by an increased oxidative metabolism in fibres.
Collapse
Affiliation(s)
- Barbara Celegato
- CRIBI Biotechnology Centre and Department of Biology, Università degli Studi di Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
van der Maarel SM, Frants RR, Padberg GW. Facioscapulohumeral muscular dystrophy. Biochim Biophys Acta Mol Basis Dis 2006; 1772:186-94. [PMID: 16837171 DOI: 10.1016/j.bbadis.2006.05.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 05/30/2006] [Accepted: 05/30/2006] [Indexed: 01/01/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by a cascade of epigenetic events following contraction of the polymorphic macrosatellite repeat D4Z4 in the subtelomere of chromosome 4q. Currently, the central issue is whether immediate downstream effects are local (i.e., at chromosome 4q) or global (genome-wide) and there is evidence for both scenarios. Currently, there is no therapy for FSHD, mostly because of our lack of understanding of the primary pathogenic process in FSHD muscle. Clinical trials based on suppression of inflammatory reactions or increasing muscle mass by drugs or training have been disappointing. A recent, probably the first evidence-based pilot trial to revert epigenetic changes did also not provide grounds for a larger clinical study. Clearly, better disease models need to be developed to identify and test novel intervention strategies to eventually improve the quality of life for patients with FSHD.
Collapse
Affiliation(s)
- Silvère M van der Maarel
- Leiden University Medical Center (LUMC), Department of Human Genetics, Postal zone S-3-P, PO box 9600, 2300 RC Leiden, The Netherlands.
| | | | | |
Collapse
|
78
|
Petrov A, Pirozhkova I, Carnac G, Laoudj D, Lipinski M, Vassetzky YS. Chromatin loop domain organization within the 4q35 locus in facioscapulohumeral dystrophy patients versus normal human myoblasts. Proc Natl Acad Sci U S A 2006; 103:6982-7. [PMID: 16632607 PMCID: PMC1459005 DOI: 10.1073/pnas.0511235103] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Indexed: 02/06/2023] Open
Abstract
Fascioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder linked to partial deletion of integral numbers of a 3.3 kb polymorphic repeat, D4Z4, within the subtelomeric region of chromosome 4q. Although the relationship between deletions of D4Z4 and FSHD is well established, how this triggers the disease remains unclear. We have mapped the DNA loop domain containing the D4Z4 repeat cluster in human primary myoblasts and in murine-human hybrids. A nuclear matrix attachment site was found located in the vicinity of the repeat. Prominent in normal human myoblasts and nonmuscular human cells, this site is much weaker in muscle cells derived from FSHD patients, suggesting that the D4Z4 repeat array and upstream genes reside in two loops in nonmuscular cells and normal human myoblasts but in only one loop in FSHD myoblasts. We propose a model whereby the nuclear scaffold/matrix attached region regulates chromatin accessibility and expression of genes implicated in the genesis of FSHD.
Collapse
Affiliation(s)
- Andrei Petrov
- *Interactions Moléculaires et Cancer, Unité Mixte de Recherche 8126, Centre National de la Recherche Scientifique–Université Paris-Sud 11–Institut Gustave-Roussy, F-94805 Villejuif, France; and
| | - Iryna Pirozhkova
- *Interactions Moléculaires et Cancer, Unité Mixte de Recherche 8126, Centre National de la Recherche Scientifique–Université Paris-Sud 11–Institut Gustave-Roussy, F-94805 Villejuif, France; and
| | - Gilles Carnac
- Centre de Recherches de Biochimie Macromoléculaire, 34293 Montpellier, France
| | - Dalila Laoudj
- Centre de Recherches de Biochimie Macromoléculaire, 34293 Montpellier, France
| | - Marc Lipinski
- *Interactions Moléculaires et Cancer, Unité Mixte de Recherche 8126, Centre National de la Recherche Scientifique–Université Paris-Sud 11–Institut Gustave-Roussy, F-94805 Villejuif, France; and
| | - Yegor S. Vassetzky
- *Interactions Moléculaires et Cancer, Unité Mixte de Recherche 8126, Centre National de la Recherche Scientifique–Université Paris-Sud 11–Institut Gustave-Roussy, F-94805 Villejuif, France; and
| |
Collapse
|
79
|
Reed P, Porter NC, Strong J, Pumplin DW, Corse AM, Luther PW, Flanigan KM, Bloch RJ. Sarcolemmal reorganization in facioscapulohumeral muscular dystrophy. Ann Neurol 2006; 59:289-97. [PMID: 16437580 DOI: 10.1002/ana.20750] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE We examined the sarcolemma of skeletal muscle from patients with facioscapulohumeral muscular dystrophy (FSHD1A) to learn if, as in other murine and human muscular dystrophies, its organization and relationship to nearby contractile structures are altered. METHODS Unfixed biopsies of control and FSHD deltoid and biceps muscles, snap-frozen at resting length, were cryosectioned, indirectly immunolabeled with fluorescent antibodies to sarcolemmal and myofibrillar markers, and examined with confocal microscopy to localize the immunolabeled proteins. Glutaraldehyde-fixed samples were stained with heavy metals, embedded, thin-sectioned, and examined with electron microscopy to determine the relationship between the sarcolemma and the underlying myofibrils. RESULTS Confocal microscopy showed that some of the structures at the sarcolemma in FSHD samples were misaligned with respect to the underlying contractile apparatus. Electron microscopy showed a significant increase in the distance between the sarcolemma and the nearest myofibrils, from less than 100 nm in controls to values as high as 550 nm in FSHD. INTERPRETATION Our results show that the pathophysiology of FSHD includes novel changes in the organization of the sarcolemma and its association with nearby contractile structures and suggest that, as in other muscular dystrophies, the integrity of the sarcolemma may be compromised in FSHD.
Collapse
Affiliation(s)
- Patrick Reed
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a dominantly inherited disorder with an initially restricted pattern of weakness. Early involvement of the facial and scapular stabilizer muscles results in a distinctive clinical presentation. Progression is descending, with subsequent involvement of either the distal anterior leg or hip-girdle muscles. There is wide variability in age at onset, disease severity, and side-to-side symmetry, which is evident even within affected members of the same family. Although FSHD is considered a relatively benign dystrophy by some, as many as 20% of patients eventually become wheelchair-bound. Associated nonskeletal muscle manifestations include high-frequency hearing loss as well as retinal telangiectasias, both of which are rarely symptomatic. The causal genetic lesion in FSHD was described over a decade ago, raising hope that knowledge about its molecular and cellular pathophysiology was soon to follow. In the vast majority of cases, FSHD results from a heterozygous partial deletion of a critical number of repetitive elements (D4Z4) on chromosome 4q35; yet, to date, no causal gene has been identified. The accumulating evidence points to a complex, perhaps unique, molecular genetic mechanism. The absence of detectable expressed sequences from D4Z4, the association of FSHD-causing 4q35 deletions with a specific distal genomic sequence (4qA allele), altered DNA methylation patterns on 4q35, as well as other direct and indirect evidence point to epigenetic mechanisms. As a consequence, partial deletion of D4Z4 results in a (local) chromatin change and ultimately results in the loss of appropriate control of gene expression. There is at present no effective treatment for FSHD. A better understanding of the underlying pathophysiology is needed to design targeted interventions. Despite these limitations, however, two randomized controlled clinical trials have been conducted on FSHD. These trials, along with a previous natural history study, have helped to better define outcome measures for future trials in FSHD as well as other dystrophies.
Collapse
Affiliation(s)
- Rabi Tawil
- University of Rochester Medical Center, Neuromuscular Disease Center, P.O. Box 673, 601 Elmwood Avenue, Rochester, New York 14642, USA.
| | | |
Collapse
|
81
|
Abstract
Mitochondrial disorders of oxidative phosphorylation (OXPHOS) comprise a growing list of potentially lethal diseases caused by mutations in either mitochondrial (mtDNA) or nuclear DNA (nDNA). Two such conditions, autosomal dominant progressive external ophthalmoplegia (adPEO) and Senger's Syndrome, are associated with dysfunction of the heart and muscle-specific isoform of the adenine nucleotide translocase (ANT1), a nDNA gene product that facilitates transport of ATP and ADP across the inner mitochondrial membrane. AdPEO is a mtDNA deletion disorder broadly characterized by pathology involving the eyes, skeletal muscle, and central nervous system. In addition to ANT1, mutations in at least two other nuclear genes, twinkle and POLG, have been shown to cause mtDNA destabilization associated with adPEO. Senger's syndrome is an autosomal recessive condition characterized by congenital heart defects, abnormalities of skeletal muscle mitochondria, cataracts, and elevated circulatory levels of lactic acid. This syndrome is associated with severe depletion of ANT1, which may be the result of an as yet unidentified ANT1-specific transcriptional or translational processing error. ANT1 has also been associated with a third condition, autosomal dominant facioscapulohumeral muscular dystrophy (FSHD), an adult onset disorder characterized by variable muscle weakness in the face, feet, shoulders, and hips. FSHD patients possess specific DNA deletions on chromosome 4, which appear to cause derepression of several nearby genes, including ANT1. Early development of FSHD may involve mitochondrial dysfunction and increased oxidative stress, possibly associated with overexpression of ANT1.
Collapse
Affiliation(s)
- J Daniel Sharer
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| |
Collapse
|