51
|
Kreiner FF, Kraaijenhof JM, von Herrath M, Hovingh GKK, von Scholten BJ. Interleukin 6 in diabetes, chronic kidney disease and cardiovascular disease: mechanisms and therapeutic perspectives. Expert Rev Clin Immunol 2022; 18:377-389. [PMID: 35212585 DOI: 10.1080/1744666x.2022.2045952] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes, chronic kidney disease (CKD) and cardiovascular disease (CVD) are cardiometabolic diseases that remain amongst the leading causes of morbidity and premature mortality. Here, we review the current understanding of how anti-inflammatory intervention via inhibition of the pro-inflammatory but pleiotropic cytokine interleukin (IL) 6 may benefit patients with these or related diseases or complications. AREAS COVERED Based on a PubMed literature search, this review integrates and contextualizes evidence regarding the clinical utility of anti-IL-6 intervention in the treatment of cardiometabolic diseases, as well as of the associated condition non-alcoholic hepatosteatosis. EXPERT OPINION Evidence implicates the pro-inflammatory effects of IL-6 in the pathophysiology of diabetes, CKD and CVD. Thus, targeting the IL-6 pathway holds a therapeutic potential in these cardiometabolic disorders. However, because IL-6 has multiple homeostatic roles, antagonizing this cytokine may be associated with side effects such as increased risk of infection as seen with other anti-inflammatory drugs. Additional studies are required to establish the benefit-risk profile of anti-IL-6 intervention in the cardiometabolic diseases, whilst also considering alternative interventions such as lifestyle changes. IL-6 is also elevated in NASH, but the clinical usefulness of targeting IL-6 in this hepatic disorder remains largely unexplored.
Collapse
Affiliation(s)
| | - Jordan M Kraaijenhof
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark.,Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Matthias von Herrath
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark.,La Jolla Institute for Immunology, La Jolla, California, United States
| | - G Kees Kornelis Hovingh
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark.,Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
52
|
Zhang M, Zhou Y, Xie Z, Luo S, Zhou Z, Huang J, Zhao B. New Developments in T Cell Immunometabolism and Therapeutic Implications for Type 1 Diabetes. Front Endocrinol (Lausanne) 2022; 13:914136. [PMID: 35757405 PMCID: PMC9226440 DOI: 10.3389/fendo.2022.914136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease mediated by T cells and is becoming a serious public health threat. Despite the increasing incidence rate of T1D worldwide, our understanding of why T1D develops and how T cells lose their self-tolerance in this process remain limited. Recent advances in immunometabolism have shown that cellular metabolism plays a fundamental role in shaping T cell responses. T cell activation and proliferation are supported by metabolic reprogramming to meet the increased energy and biomass demand, and deregulation in immune metabolism can lead to autoimmune disorders. Specific metabolic pathways and factors have been investigated to rectify known deficiencies in several autoimmune diseases, including T1D. Most therapeutic strategies have concentrated on aerobic glycolysis to limit T cell responses, whereas glycolysis is the main metabolic pathway for T cell activation and proliferation. The use of metabolic inhibitors, especially glycolysis inhibitors may largely leave T cell function intact but primarily target those autoreactive T cells with hyperactivated metabolism. In this review, we provide an overview of metabolic reprogramming used by T cells, summarize the recent findings of key metabolic pathways and regulators modulating T cell homeostasis, differentiation, and function in the context of T1D, and discuss the opportunities for metabolic intervention to be employed to suppress autoreactive T cells and limit the progression of β-cell destruction.
Collapse
Affiliation(s)
- Mengdi Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanyan Zhou
- Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Jiaqi Huang, ;
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Jiaqi Huang, ;
| |
Collapse
|
53
|
Sarkar S, Melchior JT, Henry HR, Syed F, Mirmira RG, Nakayasu ES, Metz TO. GDF15: a potential therapeutic target for type 1 diabetes. Expert Opin Ther Targets 2022; 26:57-67. [PMID: 35138971 PMCID: PMC8885880 DOI: 10.1080/14728222.2022.2029410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Current treatment for type 1 diabetes (T1D) is centered around insulin supplementation to manage the effects of pancreatic β cell loss. GDF15 is a potential preventative therapy against T1D progression that could work to curb increasing disease incidence. AREAS COVERED This paper discusses the known actions of GDF15, a pleiotropic protein with metabolic, feeding, and immunomodulatory effects, connecting them to highlight the open opportunities for future research. The role of GDF15 in the prevention of insulitis and protection of pancreatic β cells against pro-inflammatory cytokine-mediated cellular stress are examined and the pharmacological promise of GDF15 and critical areas of future research are discussed. EXPERT OPINION GDF15 shows promise as a potential intervention but requires further development. Preclinical studies have shown poor efficacy, but this result may be confounded by the measurement of gross GDF15 instead of the active form. Additionally, the effect of GDF15 in the induction of anorexia and nausea-like behavior and short-half-life present significant challenges to its deployment, but a systems pharmacology approach paired with chronotherapy may provide a possible solution to therapy for this currently unpreventable disease.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John T. Melchior
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA,Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Hayden R. Henry
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Farooq Syed
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and the Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA,Correspondence: ; ;
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA,Correspondence: ; ;
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA,Correspondence: ; ;
| |
Collapse
|
54
|
Cimbek EA, Bozkır A, Usta D, Beyhun NE, Ökten A, Karagüzel G. Partial remission in children and adolescents with type 1 diabetes: an analysis based on the insulin dose-adjusted hemoglobin A1c. J Pediatr Endocrinol Metab 2021; 34:1311-1317. [PMID: 34271601 DOI: 10.1515/jpem-2021-0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/20/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Most patients with type 1 diabetes (T1D) experience a transient phase of partial remission (PR). This study aimed to identify the demographic and clinical factors associated with PR. METHODS This was a longitudinal retrospective cohort study of 133 children and adolescents with T1D. PR was defined by the gold standard insulin dose-adjusted hemoglobin A1c (HbA1c) (IDAA1c) of ≤9. RESULTS Remission was observed in 77 (57.9%) patients. At diagnosis, remitters had significantly higher pH (7.3 ± 0.12 vs. 7.23 ± 0.15, p=0.003), higher C-peptide levels (0.45 ± 0.31 ng/mL vs. 0.3 ± 0.22, p=0.003), and they were significantly older (9.3 ± 3.6 years vs. 7.3 ± 4.2, p=0.008) compared with non-remitters. PR developed more frequently in patients without diabetic ketoacidosis (DKA) (p=0.026) and with disease onset after age 5 (p=0.001). Patients using multiple daily insulin regimen were more likely to experience PR than those treated with a twice daily regimen (63.9 vs. 32%, p=0.004). Only age at onset was an independent predictor of PR (OR: 1.12, 95% CI: 1-1.25; p=0.044). Remitters had lower HbA1c levels and daily insulin requirement from diagnosis until one year after diagnosis (p<0.001). PR recurred in 7 (9%) patients. The daily insulin requirement at three months was lower in remitters with PR recurrence compared to those without (0.23 ± 0.14 vs. 0.4 ± 0.17 U/kg/day, p=0.014). CONCLUSIONS Addressing factors associated with the occurrence of PR could provide a better comprehension of metabolic control in T1D. The lack of DKA and higher C-peptide levels may influence PR, but the main factor associated with PR presence was older age at onset. PR may recur in a small proportion of patients.
Collapse
Affiliation(s)
- Emine Ayça Cimbek
- Department of Pediatric Endocrinology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Aydın Bozkır
- Department of Pediatrics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Deniz Usta
- Department of Pediatrics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Nazım Ercüment Beyhun
- Department of Public Health, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ayşenur Ökten
- Department of Pediatric Endocrinology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Gülay Karagüzel
- Department of Pediatric Endocrinology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
55
|
Hanna SJ, Tatovic D, Thayer TC, Dayan CM. Insights From Single Cell RNA Sequencing Into the Immunology of Type 1 Diabetes- Cell Phenotypes and Antigen Specificity. Front Immunol 2021; 12:751701. [PMID: 34659258 PMCID: PMC8519581 DOI: 10.3389/fimmu.2021.751701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023] Open
Abstract
In the past few years, huge advances have been made in techniques to analyse cells at an individual level using RNA sequencing, and many of these have precipitated exciting discoveries in the immunology of type 1 diabetes (T1D). This review will cover the first papers to use scRNAseq to characterise human lymphocyte phenotypes in T1D in the peripheral blood, pancreatic lymph nodes and islets. These have revealed specific genes such as IL-32 that are differentially expressed in islet -specific T cells in T1D. scRNAseq has also revealed wider gene expression patterns that are involved in T1D and can predict its development even predating autoantibody production. Single cell sequencing of TCRs has revealed V genes and CDR3 motifs that are commonly used to target islet autoantigens, although truly public TCRs remain elusive. Little is known about BCR repertoires in T1D, but scRNAseq approaches have revealed that insulin binding BCRs commonly use specific J genes, share motifs between donors and frequently demonstrate poly-reactivity. This review will also summarise new developments in scRNAseq technology, the insights they have given into other diseases and how they could be leveraged to advance research in the type 1 diabetes field to identify novel biomarkers and targets for immunotherapy.
Collapse
Affiliation(s)
- Stephanie J. Hanna
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Danijela Tatovic
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Terri C. Thayer
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Department of Biological and Chemical Sciences, School of Natural and Social Sciences, Roberts Wesleyan College, Rochester, NY, United States
| | - Colin M. Dayan
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
56
|
Waters MF, Delghingaro-Augusto V, Javed K, Dahlstrom JE, Burgio G, Bröer S, Nolan CJ. Knockout of the Amino Acid Transporter SLC6A19 and Autoimmune Diabetes Incidence in Female Non-Obese Diabetic (NOD) Mice. Metabolites 2021; 11:metabo11100665. [PMID: 34677380 PMCID: PMC8540324 DOI: 10.3390/metabo11100665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
High protein feeding has been shown to accelerate the development of type 1 diabetes in female non-obese diabetic (NOD) mice. Here, we investigated whether reducing systemic amino acid availability via knockout of the Slc6a19 gene encoding the system B(0) neutral amino acid transporter AT1 would reduce the incidence or delay the onset of type 1 diabetes in female NOD mice. Slc6a19 gene deficient NOD mice were generated using the CRISPR-Cas9 system which resulted in marked aminoaciduria. The incidence of diabetes by week 30 was 59.5% (22/37) and 69.0% (20/29) in NOD.Slc6a19+/+ and NOD.Slc6a19-/- mice, respectively (hazard ratio 0.77, 95% confidence interval 0.41-1.42; Mantel-Cox log rank test: p = 0.37). The median survival time without diabetes was 28 and 25 weeks for NOD.Slc6a19+/+ and NOD.Slc6a19-/- mice, respectively (ratio 1.1, 95% confidence interval 0.6-2.0). Histological analysis did not show differences in islet number or the degree of insulitis between wild type and Slc6a19 deficient NOD mice. We conclude that Slc6a19 deficiency does not prevent or delay the development of type 1 diabetes in female NOD mice.
Collapse
Affiliation(s)
- Matthew F. Waters
- Australian National University Medical School, Australian National University, Acton, ACT 2601, Australia; (M.F.W.); (V.D.-A.); (J.E.D.)
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| | - Viviane Delghingaro-Augusto
- Australian National University Medical School, Australian National University, Acton, ACT 2601, Australia; (M.F.W.); (V.D.-A.); (J.E.D.)
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| | - Kiran Javed
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia; (K.J.); (S.B.)
| | - Jane E. Dahlstrom
- Australian National University Medical School, Australian National University, Acton, ACT 2601, Australia; (M.F.W.); (V.D.-A.); (J.E.D.)
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
- ACT Pathology, The Canberra Hospital, Canberra Health Services, Garran, ACT 2605, Australia
| | - Gaetan Burgio
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| | - Stefan Bröer
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia; (K.J.); (S.B.)
| | - Christopher J. Nolan
- Australian National University Medical School, Australian National University, Acton, ACT 2601, Australia; (M.F.W.); (V.D.-A.); (J.E.D.)
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
- Department of Endocrinology, The Canberra Hospital, Garran, ACT 2505, Australia
- Correspondence: ; Tel.: +61-2-5124-4224
| |
Collapse
|
57
|
Glycaemic variabilities: Key questions in pursuit of clarity. DIABETES & METABOLISM 2021; 47:101283. [PMID: 34547451 DOI: 10.1016/j.diabet.2021.101283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
After years of intensive investigation, the definition of glycaemic variability remains unclear and the term variability in glucose homoeostasis might be more appropriate covering both short and long-term glycaemic variability. For the latter, we remain in the search of an accurate definition and related targets. Recent work leads us to consider that the within-subject variability of HbA1c calculated from consecutive determinations of HbA1c at regular time-intervals could be the most relevant index for assessing the long-term variability with a threshold value of 5% (%CV = SD of HbA1c/mean HbA1c) to separate stability from lability of HbA1c. Presently, no one can deny that short- and long-term glucose variability should be maintained within their lower ranges to limit the incidence of hypoglycaemia. Usually, therapeutic strategies aimed at reducing post-meal glucose excursions, i.e. the major contributor to daily glucose fluctuations, exert a beneficial effect on the short-term glucose variability. This explains the effectiveness of adjunct therapies with either GLP- receptor agonists or SGLT inhibitors in type 2 diabetes. In type 1 diabetes, the application of a CGM device alone reduces the short-term glycaemic variability. In contrast, sophisticated insulin delivery does not necessarily lead to such reductions despite marked downward shifts of 24-hour glycaemic profiles. Such contrasting observations raise the question as to whether the prolonged wear of CGM devices is or not the major causative factor for improvement in glucose variability among intensively insulin-treated persons with type 1 diabetes.
Collapse
|
58
|
Kreiner FF, von Scholten BJ, Coppieters K, von Herrath M. Current state of antigen-specific immunotherapy for type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2021; 28:411-418. [PMID: 34101651 DOI: 10.1097/med.0000000000000647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Update on antigen-specific immunotherapy (ASIT) in type 1 diabetes (T1D) with focus on deoxyribonucleic acid (DNA)-induced immunization and the current obstacles to further research and clinical realization. RECENT FINDINGS In T1D, immune system imbalances together with malfunctioning islet-specific processes cause autoreactive immune cells to destroy beta cells in the islets. ASIT may restore self-tolerance; however, the approach has yet to fully meet its promise and may require co-administration of antigen (preproinsulin) and suitable immune response modifiers. SUMMARY A self-tolerant immune system may be regained using ASIT where T effector cells are repressed and/or T regulatory cells are induced. Administration of exogenous antigens has been safe in T1D. Conversely, adequate and lasting beta cell preservation has yet to be tested in sufficiently large clinical trials in suitable patients and may require targeting of multiple parts of the immunopathophysiology using combination therapies. DNA-based induction of native antigen expression to ensure important posttranscriptional modifications and presentation to the immune system together with tolerance-enhancing immune response modifiers (i.e., cytokines) may be more efficacious than exogenous antigens given alone. Progress is limited mainly by the scarcity of validated biomarkers to track the effects of ASIT in T1D.
Collapse
Affiliation(s)
| | | | | | - Matthias von Herrath
- Global Chief Medical Office, Novo Nordisk A/S, Søborg
- Type 1 Diabetes Center, The La Jolla Institute for Immunology, La Jolla, California, USA
| |
Collapse
|
59
|
Frontino G, Guercio Nuzio S, Scaramuzza AE, D'Annunzio G, Toni S, Citriniti F, Bonfanti R. Prevention of type 1 diabetes: where we are and where we are going. Minerva Pediatr (Torino) 2021; 73:486-503. [PMID: 34286946 DOI: 10.23736/s2724-5276.21.06529-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
T1D (T1D) is one of the most frequent chronic disease in children and is associated to the risk of severe acute and chronic complications. There are about 550000 children with T1D in the world and about 86000 children are diagnosed with T1D every year and its incidence is ever increasing. In this narrative review we will discuss current and future perspectives in T1D prevention strategies as well as their pitfalls. It is important to remember that for the first time one drug, in particular Teplizumab (antibody anti CD3) is going to be accepted for treatment in stage 2 of type 1 diabetes mellitus: this represent the onset of a new era.
Collapse
Affiliation(s)
- Giulio Frontino
- Diabetes Research Institute, Department of Pediatrics, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Salvatore Guercio Nuzio
- Division of Pediatric, Santa Maria della Speranza Hospital, Battipaglia, ASL Salerno, Salerno, Italy
| | | | - Giuseppe D'Annunzio
- Pediatric Clinic and Endocrinology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Sonia Toni
- Diabetology and Endocrinology Unit, Meyer Children Hospital, Firenze, Italy
| | - Felice Citriniti
- Department of Pediatrics, Pugliese-Ciaccio Hospital, Catanzaro, Italy
| | - Riccardo Bonfanti
- Diabetes Research Institute, Department of Pediatrics, IRCCS San Raffaele Scientific Institute, Milano, Italy - .,Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
60
|
Borg DJ, Faridi P, Giam KL, Reeves P, Fotheringham AK, McCarthy DA, Leung S, Ward MS, Harcourt BE, Ayala R, Scheijen JL, Briskey D, Dudek NL, Schalkwijk CG, Steptoe R, Purcell AW, Forbes JM. Short Duration Alagebrium Chloride Therapy Prediabetes Does Not Inhibit Progression to Autoimmune Diabetes in an Experimental Model. Metabolites 2021; 11:426. [PMID: 34203471 PMCID: PMC8305727 DOI: 10.3390/metabo11070426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Mechanisms by which advanced glycation end products (AGEs) contribute to type 1 diabetes (T1D) pathogenesis are poorly understood. Since life-long pharmacotherapy with alagebrium chloride (ALT) slows progression to experimental T1D, we hypothesized that acute ALT therapy delivered prediabetes, may be effective. However, in female, non-obese diabetic (NODShiLt) mice, ALT administered prediabetes (day 50-100) did not protect against experimental T1D. ALT did not decrease circulating AGEs or their precursors. Despite this, pancreatic β-cell function was improved, and insulitis and pancreatic CD45.1+ cell infiltration was reduced. Lymphoid tissues were unaffected. ALT pre-treatment, prior to transfer of primed GC98 CD8+ T cell receptor transgenic T cells, reduced blood glucose concentrations and delayed diabetes, suggesting islet effects rather than immune modulation by ALT. Indeed, ALT did not reduce interferon-γ production by leukocytes from ovalbumin-pre-immunised NODShiLt mice and NODscid recipients given diabetogenic ALT treated NOD splenocytes were not protected against T1D. To elucidate β-cell effects, NOD-derived MIN6N8 β-cell major histocompatibility complex (MHC) Class Ia surface antigens were examined using immunopeptidomics. Overall, no major changes in the immunopeptidome were observed during the various treatments with all peptides exhibiting allele specific consensus binding motifs. As expected, longer MHC Class Ia peptides were captured bound to H-2Db than H-2Kb under all conditions. Moreover, more 10-12 mer peptides were isolated from H-2Db after AGE modified bovine serum albumin (AGE-BSA) treatment, compared with bovine serum albumin (BSA) or AGE-BSA+ALT treatment. Proteomics of MIN6N8 cells showed enrichment of processes associated with catabolism, the immune system, cell cycling and presynaptic endocytosis with AGE-BSA compared with BSA treatments. These data show that short-term ALT intervention, given prediabetes, does not arrest experimental T1D but transiently impacts β-cell function.
Collapse
Affiliation(s)
- Danielle J. Borg
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
- Pregnancy and Development, Mater Research Institute, The University of Queensland, South Brisbane, QLD 4101, Australia
| | - Pouya Faridi
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Kai Lin Giam
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Peta Reeves
- Tolerance and Autoimmunity Group, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia; (P.R.); (R.S.)
| | - Amelia K. Fotheringham
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Domenica A. McCarthy
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Sherman Leung
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Micheal S. Ward
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Brooke E. Harcourt
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Rochelle Ayala
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Jean L. Scheijen
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, 6211 Maastricht, The Netherlands; (J.L.S.); (C.G.S.)
- Cardiovascular Research Institute Maastricht, 6211 Maastricht, The Netherlands
| | - David Briskey
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4067, Australia;
| | - Nadine L. Dudek
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Casper G. Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, 6211 Maastricht, The Netherlands; (J.L.S.); (C.G.S.)
- Cardiovascular Research Institute Maastricht, 6211 Maastricht, The Netherlands
| | - Raymond Steptoe
- Tolerance and Autoimmunity Group, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia; (P.R.); (R.S.)
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Josephine M. Forbes
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Mater Clinical School, The University of Queensland, Brisbane, QLD 4101, Australia
| |
Collapse
|
61
|
George MN, Leavens KF, Gadue P. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers. Front Endocrinol (Lausanne) 2021; 12:682625. [PMID: 34149620 PMCID: PMC8206553 DOI: 10.3389/fendo.2021.682625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
A mechanistic understanding of the genetic basis of complex diseases such as diabetes mellitus remain elusive due in large part to the activity of genetic disease modifiers that impact the penetrance and/or presentation of disease phenotypes. In the face of such complexity, rare forms of diabetes that result from single-gene mutations (monogenic diabetes) can be used to model the contribution of individual genetic factors to pancreatic β-cell dysfunction and the breakdown of glucose homeostasis. Here we review the contribution of protein coding and non-protein coding genetic disease modifiers to the pathogenesis of diabetes subtypes, as well as how recent technological advances in the generation, differentiation, and genome editing of human pluripotent stem cells (hPSC) enable the development of cell-based disease models. Finally, we describe a disease modifier discovery platform that utilizes these technologies to identify novel genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with monogenic diabetes caused by heterozygous mutations.
Collapse
Affiliation(s)
- Matthew N. George
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Karla F. Leavens
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
62
|
Affiliation(s)
- Sally M Marshall
- Translational and Clinical Research Institute, Faculty of Clinical Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|