51
|
Nizhnikov ME, Pautassi RM, Valinskaya E, Rahmani P, Spear NE. Ontogenetic differences in ethanol's motivational properties during infancy. Alcohol 2012; 46:225-34. [PMID: 22440692 PMCID: PMC3376757 DOI: 10.1016/j.alcohol.2011.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 08/17/2011] [Accepted: 09/07/2011] [Indexed: 01/15/2023]
Abstract
Pairing a conditioned stimulus (CS) with ethanol generally produces aversion for that CS in adult rodents. However, infant rats (PD1-PD3) exposed to ethanol demonstrate appetitive reinforcement to ethanol (Nizhnikov, Varlinskaya, Petrov, & Spear, 2006; Petrov, Varlinskaya, & Spear, 2003). This sensitivity to the appetitive properties of ethanol during infancy may be transient, as during the second postnatal week rat pups tend to exhibit conditioned aversions to flavors paired with ethanol. The present study examined changes in the motivation properties of ethanol through ontogeny and the neurobiology underlying these changes. Rat pups were exposed to a taste conditioning procedure on PD4 or PD12. Rat pups were intraorally infused with 2.5% of their body weight of saccharin solution (0.1%) and immediately after injected intraperitoneolly (i.p.) with one of six doses of ethanol (0.0-2.0 g/kg). A day later pups were given saccharine infusions and percent body weight gain was used as an index of ethanol's reinforcing effects. PD4 pups expressed appetitive reinforcement to ethanol, as indicated by greater saccharin intake, as compared to control counterparts and to the older PD12 pups. Subsequent experiments revealed that PD4 pups were less sensitive to the aversive properties of the drug than PD12 pups. The older pups found high doses of ethanol aversive while PD4 rat pups did not condition aversions to this dose of ethanol after a single trial. A similar pattern of results was observed between the low doses of ethanol and the highest doses of a kappa opioid agonist. The PD12 animals did not condition to the kappa opioid agonist, while the younger rats expressed an appetitive response. These results illustrate an ontogenetic change in the motivational properties of ethanol, with sensitivity to its appetitive properties declining and responsiveness to the aversive properties increasing with age during early infancy.
Collapse
Affiliation(s)
- Michael Eduard Nizhnikov
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Ricardo Marcos Pautassi
- Instituto de Investigaciones Medicas M. y M. Ferreyra (INIMEC-CONICET), Friuli 2434, Cordoba, Cba, 5016, Argentina
| | - Elena Valinskaya
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA
| | | | - Norman E. Spear
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA
| |
Collapse
|
52
|
Femenía T, Manzanares J. Increased ethanol intake in prodynorphin knockout mice is associated to changes in opioid receptor function and dopamine transmission. Addict Biol 2012; 17:322-37. [PMID: 21966993 DOI: 10.1111/j.1369-1600.2011.00378.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to examine the role of the prodynorphin gene in alcohol sensitivity, preference and vulnerability to alcohol consumption. Handling-induced convulsion (HIC) associated to alcohol, alcohol-induced loss of righting reflex (LORR), hypothermic effects in response to acute ethanol challenge, blood ethanol levels (BELs), conditioned place preference, voluntary ethanol consumption and preference, tyrosine hydroxylase (TH), dopamine transporter (DAT) and proenkephalin (PENK) gene expression, and µ-, δ- and κ-opioid agonist-stimulated [S(35) ]- guanosine 5'-triphosphate-binding autoradiography were studied in prodynorphin knockout (PDYN KO) and wild-type (WT) mice. There were no differences in HIC, LORR or the decrease in body temperature in response to acute ethanol challenge between PDYN KO and WT mice. PDYN KO mice presented higher BEL, higher ethanol-conditioned place preference and more ethanol consumption and preference in a two-bottle choice paradigm than WT mice. These findings were associated with lower TH and higher DAT gene expression in the ventral tegmental area and substantia nigra, and with lower PENK gene expression in the caudate-putamen (CPu), accumbens core (AcbC) and accumbens shell (AcbSh) in PDYN KO. The functional activity of the µ-opioid receptor was lower in the CPu, AcbC, AcbSh and cingulate cortex (Cg) of PDYN KO mice. In contrast, δ- and κ-opioid receptor-binding autoradiographies were increased in the CPu and Cg (δ), and in the CPu, AcbC and Cg (κ) of PDYN KO. These results suggest that deletion of the PDYN gene increased vulnerability for ethanol consumption by altering, at least in part, PENK, TH and DAT gene expression, and µ-, δ- and κ-opioid receptor functional activity in brain areas closely related to ethanol reinforcement.
Collapse
Affiliation(s)
- Teresa Femenía
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | | |
Collapse
|
53
|
Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 2012; 69:857-96. [PMID: 22002579 PMCID: PMC11114766 DOI: 10.1007/s00018-011-0844-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
The dynorphin/κ-opioid receptor system has been implicated in the pathogenesis and pathophysiology of several psychiatric disorders. In the present review, we present evidence indicating a key role for this system in modulating neurotransmission in brain circuits that subserve mood, motivation, and cognitive function. We overview the pharmacology, signaling, post-translational, post-transcriptional, transcriptional, epigenetic and cis regulation of the dynorphin/κ-opioid receptor system, and critically review functional neuroanatomical, neurochemical, and pharmacological evidence, suggesting that alterations in this system may contribute to affective disorders, drug addiction, and schizophrenia. We also overview the dynorphin/κ-opioid receptor system in the genetics of psychiatric disorders and discuss implications of the reviewed material for therapeutics development.
Collapse
Affiliation(s)
- H. A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201 USA
| | - T. S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
| | - R. Henriksson
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Clinical Neuroscience, Karolinska Institutet, CMM, L8:04, 17176 Stockholm, Sweden
| |
Collapse
|
54
|
Nguyen K, Tseng A, Marquez P, Hamid A, Lutfy K. The role of endogenous dynorphin in ethanol-induced state-dependent CPP. Behav Brain Res 2011; 227:58-63. [PMID: 22074899 DOI: 10.1016/j.bbr.2011.10.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/18/2011] [Accepted: 10/23/2011] [Indexed: 11/29/2022]
Abstract
The aim of this study was to determine the role of the endogenous dynorphin/kappa opioid receptor (DYN/KOP) system in ethanol-induced state-dependent conditioned place preference (CPP). To this end, mice lacking the pro-DYN gene and their wild-type littermates/controls were tested for baseline place preference on day 1, received 15-min morning and afternoon conditionings with saline or ethanol (2g/kg) each day for three consecutive days and were then tested for CPP under a drug-free state on day 5 and following a saline or ethanol (1 or 2g/kg) challenge on day 8. Given that compensatory developmental changes may occur in knockout mice, the effect of nor-binaltorphimine (nor-BNI), a KOP antagonist, on state-dependent CPP induced by ethanol was also studied in wild-type mice. On day 1, mice were tested for baseline place preference and, 4h later, treated with saline or nor-BNI (10mg/kg). On days 2-4, mice received 15-min morning and afternoon conditionings and were tested for CPP under a drug-free state on day 5 and following an ethanol (1g/kg) challenge on day 8. A comparable CPP was observed in mice lacking the pro-DYN gene and their wild-type littermates/controls as well as in wild-type mice treated with nor-BNI and their saline-treated controls. However, these mice compared to their respective controls exhibited a greater CPP response following an ethanol (1g/kg) challenge, suggesting that the endogenous DYN/KOP system may negatively regulate ethanol-induced state-dependent CPP.
Collapse
Affiliation(s)
- Khanh Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, United States
| | | | | | | | | |
Collapse
|
55
|
Flory JD, Pytte CL, Hurd Y, Ferrell RE, Manuck SB. Alcohol dependence, disinhibited behavior and variation in the prodynorphin gene. Biol Psychol 2011; 88:51-6. [PMID: 21736916 DOI: 10.1016/j.biopsycho.2011.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
The results of the current analyses present preliminary evidence of an association between putatively functional variation in the prodynorphin (PDYN) gene and a dimensional measure of disinhibited behavior. A 68bp sequence in the core promoter region of the PDYN gene was genotyped in a community sample of 1021 adults aged 30-54. Participants were interviewed for lifetime history of DSM-IV alcohol dependence and completed two self-report measures of sensation seeking and impulsiveness. Fifteen percent (n=151) of the sample met DSM-IV criteria for alcohol dependence and while results did not support an association between the PDYN polymorphism and the diagnosis of alcohol dependence, we did observe an association between the "low" expressing L allele of the PDYN gene and a preference for engaging in disinhibited behavior. Additionally, people who had both a history of alcohol dependence and higher scores on this Disinhibited Behavior scale were most likely to carry an L allele. These results indicate that variation in the PDYN gene is associated with a dimensional trait or intermediate phenotype that reflects a preference for heavy drinking and engaging in related risky behaviors (e.g., drug use, sexual activity).
Collapse
Affiliation(s)
- Janine D Flory
- Department of Psychology, Queens College and the Graduate Center, City University of New York, New York, NY, USA.
| | | | | | | | | |
Collapse
|
56
|
Altamirano LJ, Fields HL, D'Esposito M, Boettiger CA. Interaction between family history of alcoholism and Locus of Control in the opioid regulation of impulsive responding under the influence of alcohol. Alcohol Clin Exp Res 2011; 35:1905-14. [PMID: 21569055 DOI: 10.1111/j.1530-0277.2011.01535.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Naltrexone (NTX) is an opioid antagonist indicated for the treatment of alcoholism, which is not universally effective. Thus, identifying individual predictors of NTX's behavioral effects is critical to optimizing its therapeutic use. Moreover, given the high rate of relapse during treatment for alcoholism, understanding NTX's behavioral effects when combined with moderate ethanol intake is important. Our previous study of abstinent alcoholics and control subjects showed that a more internal Locus of Control score predicted increased impulsive choice on NTX (Mitchell et al., 2007, Neuropsychopharmacology 32:439-449). Here, we tested whether this predictive relationship remains in the context of moderate alcohol intake. METHODS In this study, we tested the effect of acute NTX (50 mg) on impulsive choice, motor inhibition, and attentional bias after ingestion of moderate ethanol (∼0.3 g/kg, n = 30 subjects). Subjects included those recruited from a pool of ∼1,200 UC Berkeley undergraduates on the basis of scores on the Barratt Impulsiveness Scale (BIS). RESULTS Impulsive choice was positively correlated with breath alcohol concentration in placebo sessions. Locus of Control was again the sole predictor of NTX's effect on decision making among subjects with a family history of alcoholism. We also found a weak interaction between BIS scores and NTX's effect on impulsive choice. CONCLUSIONS Our results reinforce the predictive relationship between Locus of Control and NTX's effect on decision making in those with a family history of alcoholism, suggesting a possible biological basis to this relationship.
Collapse
Affiliation(s)
- Lee J Altamirano
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
57
|
Nealey KA, Smith AW, Davis SM, Smith DG, Walker BM. κ-opioid receptors are implicated in the increased potency of intra-accumbens nalmefene in ethanol-dependent rats. Neuropharmacology 2011; 61:35-42. [PMID: 21338616 DOI: 10.1016/j.neuropharm.2011.02.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/07/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
Abstract
Previously, it was shown that ethanol-dependent animals display increased sensitivity to the general opioid receptor antagonist nalmefene compared to naltrexone. It was hypothesized that the dissociable effects of the two antagonists were attributable to a κ-opioid receptor mechanism. Nucleus accumbens dynorphin is upregulated following chronic ethanol exposure and such neuroadaptations could contribute to nalmefene's increased potency in ethanol-dependent animals. To test this hypothesis, male Wistar rats were trained to self-administer ethanol using an operant conditioning procedure. Animals were then implanted with bilateral intra-accumbens shell guide cannulae and assigned to either a chronic intermittent ethanol vapor-exposure condition (to induce dependence) or an air-exposed control group. Following a one-month exposure period, nalmefene, nor-binaltorphimine (nor-BNI; selective for κ-opioid receptors) or a combination of the selective opioid receptor antagonists CTOP and naltrindole (selective for the μ- and δ-opioid receptors, respectively) were site-specifically infused into the nucleus accumbens shell prior to ethanol self-administration sessions during acute withdrawal. Nalmefene and CTOP/naltrindole dose-dependently reduced ethanol self-administration in nondependent and dependent animals, whereas nor-BNI selectively attenuated ethanol self-administration in ethanol-dependent animals without affecting the self-administration of nondependent animals. Further analysis indentified that intra-accumbens shell nalmefene was more potent in ethanol-dependent animals and that the increased potency was attributable to a κ-opioid receptor mechanism. These data support the concept that dysregulation of DYN/κ-opioid receptor systems contributes to the excessive self-administration observed in dependent animals and suggest that pharmacotherapeutics for ethanol dependence that target κ-opioid receptors, in addition to μ- and δ-opioid receptors, are preferable to those that target μ- and δ-opioid receptor mechanisms alone.
Collapse
Affiliation(s)
- Kathryn A Nealey
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Mail Code: 644820, Pullman, WA 99164-4820, USA
| | | | | | | | | |
Collapse
|
58
|
Baggott MJ, Erowid E, Erowid F, Galloway GP, Mendelson J. Use patterns and self-reported effects of Salvia divinorum: an internet-based survey. Drug Alcohol Depend 2010; 111:250-6. [PMID: 20627425 DOI: 10.1016/j.drugalcdep.2010.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 02/09/2023]
Abstract
BACKGROUND There is growing use of Salvia divinorum (SD), a psychoactive plant that produces hallucinogen-like effects through a kappa opioid receptor (KOR) mechanism. Little is known about KOR agonist effects in humans and about users of SD. OBJECTIVES To characterize the reasons, methods, and reported consequences of SD use. METHODS Individuals reading SD-related pages of a drug-information website were invited to anonymously complete an online questionnaire if they had used SD. RESULTS Participants (N=500) were 92.6% male and 23.4 ± 8.7 (mean ± s.d.) years old. They had used a median of six times (range 1-250). 80.6% probably or definitely would use SD again. Most participants (92.6%) typically smoked or vaporized SD product. When smoked, the drug's main effects were estimated to last 14.1 ± 12.8 (range 0.5-120) minutes. When asked to compare SD effects to other methods of altering consciousness, the most common answer was that SD was unique (38.4%). 25.8% reported persisting (≥ 24 h) positive effects (often described as increased sense of well-being) on at least one occasion. 4.4% reported persisting negative effects (most often anxiety). CONCLUSIONS SD is typically smoked, acute effects are brief, and persistent adverse effects are uncommon. In addition to acute hallucinogenic effects, SD may produce subacute increases in subjective well-being. Such a subacute effect would be unusual for a drug that is used non-medically, as withdrawal from other drugs typically either does not affect mood or causes dysphoria. Findings from this convenience sample should be confirmed and extended using surveys of random samples and controlled clinical studies.
Collapse
Affiliation(s)
- Matthew J Baggott
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA, USA.
| | | | | | | | | |
Collapse
|
59
|
The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl) 2010; 210:121-35. [PMID: 20352414 PMCID: PMC2879894 DOI: 10.1007/s00213-010-1825-8] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Initial hypotheses regarding the role of the kappa opioid system in drug addiction suggested that kappa receptor stimulation had anti-addictive effects. However, recent research suggests that kappa receptor antagonists may reverse motivational aspects of dependence. In the present review, we revisit the studies that measured the effects of kappa receptor ligands on the reinforcing and rewarding effects of drugs and postulate underlying neurobiological mechanisms for these effects to elaborate a more complex view of the role of kappa receptor ligands in drug addiction. RESULTS The review of studies indicates that kappa receptor stimulation generally antagonizes the acute reinforcing/rewarding effects of drugs whereas kappa receptor blockade has no consistent effect. However, in a drug dependent-like state, kappa receptor blockade was effective in reducing increased drug intake. In animal models of reinstatement, kappa receptor stimulation can induce reinstatement via a stress-like mechanism. Results in conditioned place preference/aversion and intracranial self-stimulation indicate that kappa receptor agonists produce, respectively, aversive-like and dysphoric-like effects. Additionally, preclinical and postmortem studies show that administration or self-administration of cocaine, ethanol, and heroin activate the kappa opioid system. CONCLUSION kappa receptor agonists antagonize the reinforcing/rewarding effects of drugs possibly through punishing/aversive-like effects and reinstate drug seeking through stress-like effects. Evidence suggests that abused drugs activate the kappa opioid system, which may play a key role in motivational aspects of dependence. Kappa opioid systems may have an important role in driving compulsive drug intake.
Collapse
|
60
|
Endogenous kappa-opioid mediation of stress-induced potentiation of ethanol-conditioned place preference and self-administration. Psychopharmacology (Berl) 2010; 210:199-209. [PMID: 20401606 DOI: 10.1007/s00213-010-1844-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE Exposure to inescapable stressors increases both the rewarding properties and self-administration of cocaine through the signaling of the kappa-opioid receptor (KOR), but the effect of this signaling on other reinforcing agents remains unclear. OBJECTIVE The objective of this study is to test the hypothesis that signaling of the KOR mediates the forced swim stress (FSS)-induced potentiation of ethanol reward and self-administration. METHODS Male C57Bl/6J mice were tested in a biased ethanol-conditioned place preference (CPP) procedure, and both C57Bl/6J and prodynorphin gene-disrupted (Dyn -/-) mice were used in two-bottle free choice (TBC) assays, with or without exposure to FSS. To determine the role of the KOR in the resulting behaviors, the KOR agonist U50,488 (10 mg/kg) and antagonist nor-binaltorphimine (nor-BNI, 10 mg/kg) were administered prior to parallel testing. RESULTS C57Bl/6J mice exposed to repeated FSS 5 min prior to daily place conditioning with ethanol (0.8 g/kg) demonstrated a 4.4-fold potentiation of ethanol-CPP compared to unstressed mice that was prevented by nor-BNI pretreatment. Likewise, pretreatment with U50,488 90 min prior to daily ethanol place conditioning resulted in a 2.8-fold potentiation of ethanol-CPP. In the TBC assay, exposure to FSS significantly increased the consumption of 10% (v/v) ethanol by 19.3% in a nor-BNI-sensitive manner. Notably, Dyn -/- mice consumed a similar volume of ethanol as wild-type littermates and C57Bl/6J mice, but did not demonstrate significant stress-induced increases in consumption. CONCLUSIONS These data demonstrated a stress-induced potentiation of the rewarding effects and self-administration of ethanol mediated by KOR signaling.
Collapse
|
61
|
Remage-Healey L, Bass AH. Estradiol interacts with an opioidergic network to achieve rapid modulation of a vocal pattern generator. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 196:137-46. [PMID: 20035335 PMCID: PMC2809949 DOI: 10.1007/s00359-009-0500-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 12/12/2022]
Abstract
Estrogens rapidly regulate neuronal activity within seconds-to-minutes, yet it is unclear how estrogens interact with neural circuits to rapidly coordinate behavior. This study examines whether 17-beta-estradiol interacts with an opioidergic network to achieve rapid modulation of a vocal control circuit. Adult plainfin midshipman fish emit vocalizations that mainly differ in duration, and rhythmic activity of a hindbrain–spinal vocal pattern generator (VPG) directly establishes the temporal features of midshipman vocalizations. VPG activity is therefore predictive of natural calls, and ‘fictive calls’ can be elicited by electrical microstimulation of the VPG. Prior studies show that intramuscular estradiol injection rapidly (within 5 min) increases fictive call duration in midshipman. Here, we delivered opioid antagonists near the VPG prior to estradiol injection. Rapid estradiol actions on fictive calling were completely suppressed by the broad-spectrum opioid antagonist naloxone and the mu-opioid antagonist beta-funaltrexamine, but were unaffected by the kappa-opioid antagonist nor-binaltorphimine. Unexpectedly, prior to estradiol administration, all three opioid antagonists caused immediate, transient reductions in fictive call duration. Together, our results indicate that: (1) vocal activity is modulated by opioidergic networks, confirming hypotheses from birds and mammals, and (2) the rapid actions of estradiol on vocal patterning depend on interactions with a mu-opioid modulatory network.
Collapse
Affiliation(s)
- Luke Remage-Healey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
62
|
Differential role of mu, delta and kappa opioid receptors in ethanol-mediated locomotor activation and ethanol intake in preweanling rats. Physiol Behav 2009; 99:348-54. [PMID: 19954749 DOI: 10.1016/j.physbeh.2009.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/17/2009] [Accepted: 11/24/2009] [Indexed: 11/21/2022]
Abstract
The opioid system modulates ethanol intake and reinforcement in adult and preweanling rodents. While adult heterogeneous rats normally do not show ethanol-mediated locomotor stimulation, preweanling rats show it quite clearly. We recently observed that naloxone, a non-specific opioid antagonist, attenuated ethanol-induced locomotor activation in preweanling rats. In the present study we tested the role of specific opioid receptors (mu, delta and kappa) in ethanol-mediated locomotor stimulation and ethanol intake. In Experiment 1 13-day-old rats received naloxonazine (mu antagonist: 0, 7.5 or 15 mg/kg), naltrindole (delta antagonist: 0, 2 or 4 mg/kg) or nor-binaltorphimine (kappa antagonist: 0, 2, 4 or 8 mg/kg) before an intragastric administration of ethanol (0 or 2.5 g/kg), and subsequent locomotor activity assessment. In Experiment 2, the same opioid antagonists were administered on postnatal days 13 and 14 before consumption of ethanol (6%), saccharin (0.05%) or distilled water. In Experiment 1 only naloxonazine reduced ethanol-mediated locomotor stimulation. None of the opioid antagonists affected locomotor activity in water controls. In Experiment 2 naloxonazine and naltrindole suppressed ingestion of all the solutions tested. Similar to what has been reported in adult rodents, mu-opioid receptors seem to modulate ethanol-activating effects during early ontogeny. Hence, there seems to be a partial overlap of neurochemical mechanisms involved in the rewarding and stimulating effects of ethanol in preweanling rats. Mu-receptor antagonists reduced both ethanol-induced activity and ethanol intake, but it is unclear whether the latter effect is specific to ethanol or only a reflection of an effect on consummatory behavior generally, since mu and delta receptor antagonists also suppressed ingestion of water and saccharin.
Collapse
|
63
|
Barson JR, Carr AJ, Soun JE, Sobhani NC, Rada P, Leibowitz SF, Hoebel BG. Opioids in the hypothalamic paraventricular nucleus stimulate ethanol intake. Alcohol Clin Exp Res 2009; 34:214-22. [PMID: 19951300 DOI: 10.1111/j.1530-0277.2009.01084.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Specialized hypothalamic systems that increase food intake might also increase ethanol intake. To test this possibility, morphine and receptor-specific opioid agonists were microinjected in the paraventricular nucleus (PVN) of rats that had learned to drink ethanol. To cross-validate the results, naloxone methiodide (m-naloxone), an opioid antagonist, was microinjected with the expectation that it would have the opposite effect of morphine and the specific opioid agonists. METHODS Sprague-Dawley rats were trained, without sugar, to drink 4 or 7% ethanol and were then implanted with chronic brain cannulas aimed at the PVN. After recovery, those drinking 7% ethanol, with food and water available, were injected with 2 doses each of morphine or m-naloxone. To test for receptor specificity, 2 doses each of the mu-receptor agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-Enkephalin (DAMGO), delta-receptor agonist D-Ala-Gly-Phe-Met-NH2 (DALA), or kappa-receptor agonist U-50,488H were injected. DAMGO was also tested in rats drinking 4% ethanol without food or water available. As an anatomical control for drug reflux, injections were made 2 mm dorsal to the PVN. RESULTS A main result was a significant increase in ethanol intake induced by PVN injection of morphine. The opposite effect was produced by m-naloxone. The effects of morphine and m-naloxone were exclusively on intake of ethanol, even though food and water were freely available. In the analysis with specific receptor agonists, PVN injection of the delta-agonist DALA significantly increased 7% ethanol intake without affecting food or water intake. This is in contrast to the kappa-agonist U-50,488H, which decreased ethanol intake, and the mu-agonist DAMGO, which had no effect on ethanol intake in the presence or absence of food and water. In the anatomical control location 2 mm dorsal to the PVN, no drug caused any significant changes in ethanol, food, or water intake, providing evidence that the active site was close to the cannula tip. CONCLUSIONS The delta-opioid receptor agonist in the PVN increased ethanol intake in strong preference over food and water, while the kappa-opioid agonist suppressed ethanol intake. Prior studies show that learning to drink ethanol stimulates PVN expression and production of the peptides enkephalin and dynorphin, which are endogenous agonists for the delta- and kappa-receptors, respectively. These results suggest that enkephalin via the delta-opioid system can function locally within a positive feedback circuit to cause ethanol intake to escalate and ultimately contribute to the abuse of ethanol. This is in contrast to dynorphin via the kappa-opioid system, which may act to counter this escalation. Naltrexone therapy for alcoholism may act, in part, by blocking the enkephalin-triggered positive feedback cycle.
Collapse
Affiliation(s)
- Jessica R Barson
- Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Logrip ML, Janak PH, Ron D. Blockade of ethanol reward by the kappa opioid receptor agonist U50,488H. Alcohol 2009; 43:359-65. [PMID: 19671462 DOI: 10.1016/j.alcohol.2009.05.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 05/11/2009] [Accepted: 05/15/2009] [Indexed: 11/17/2022]
Abstract
Alcoholism is a pervasive social problem, and thus understanding factors that regulate alcohol (ethanol) reward is important for designing effective therapies. One putative regulatory system includes the kappa opioid receptor (KOR) and its endogenous ligand, dynorphin. Previously, we demonstrated that acute ethanol increased preprodynorphin expression via brain-derived neurotrophic factor (BDNF) in striatal neurons, and that blockade of the KOR attenuated decreases in ethanol intake observed following increased expression of BDNF. As high doses of KOR agonists can generate an aversive state, we hypothesized that endogenous dynorphin may regulate ethanol intake by interfering with the rewarding properties of ethanol. We found that low, nonaversive doses of the KOR agonist U50,488H blocked the rewarding properties of ethanol during conditioning, thus impairing the acquisition of conditioned place preference. Importantly, we demonstrate that U50,488H also inhibited the conditioned increase in locomotor activation normally observed in the ethanol-paired chamber on test day. Taken together, these data indicate that the KOR/dynorphin system may acutely regulate ethanol intake via inhibition of the rewarding properties of ethanol.
Collapse
Affiliation(s)
- Marian L Logrip
- The Ernest Gallo Research Center, Suite 200, Emeryville, CA 94608, USA
| | | | | |
Collapse
|
65
|
Mysels D, Sullivan MA. The kappa-opiate receptor impacts the pathophysiology and behavior of substance use. Am J Addict 2009; 18:272-6. [PMID: 19444730 PMCID: PMC5846103 DOI: 10.1080/10550490902925862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
There is increasing evidence that the kappa-opiate receptor, in addition to the mu-opiate receptor, plays an important role in substance use pathophysiology and behavior. As dopamine activity is upregulated through chronic substance use, kappa receptor activity, mediated through the peptide dynorphin, is upregulated in parallel. Dynorphin causes dysphoria and decreased locomotion, and the upregulation of its activity on the kappa receptor likely dampens the excitation caused by increased dopaminergic activity. This feedback mechanism may have significant clinical implications for treating drug dependent patients in various stages of their pathology.
Collapse
Affiliation(s)
- David Mysels
- Division on Substance Use Research, Columbia Presbyterian Medical Center/New York State Psychiatric Institution, New York, New York 10032, USA.
| | | |
Collapse
|
66
|
Faccidomo S, Besheer J, Stanford PC, Hodge CW. Increased operant responding for ethanol in male C57BL/6J mice: specific regulation by the ERK1/2, but not JNK, MAP kinase pathway. Psychopharmacology (Berl) 2009; 204:135-47. [PMID: 19125235 PMCID: PMC2845162 DOI: 10.1007/s00213-008-1444-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 12/16/2008] [Indexed: 11/30/2022]
Abstract
RATIONALE Extracellular signal-regulated protein kinase (ERK(1/2)) is a member of the mitogen-activated protein kinase (MAPK) signaling pathway and a key molecular target for ethanol (EtOH) and other drugs of abuse. OBJECTIVE The aim of the study was to assess the role of two MAPK pathways, ERK(1/2) and c-Jun N-terminal kinase (JNK), on the modulation of EtOH and sucrose self-administration. MATERIALS AND METHODS C57BL/6J mice were trained to lever press on a fixed-ratio 4 schedule with 9% EtOH/2% sucrose, or 2% sucrose, as the reinforcer. In experiments 1 and 2, mice were injected with the MEK(1/2) inhibitor SL 327 (0-100 mg/kg) and the JNK inhibitor AS 6012452 (0-56 mg/kg) prior to self-administration. In experiment 3, SL 327 (0-100 mg/kg) was administered prior to performance on a progressive ratio (PR) schedule of EtOH reinforcement. In experiment 4, SL 327 and AS 601245 were injected 2 h before a locomotor test. RESULTS SL 327 (30 mg/kg) significantly increased EtOH self-administration without affecting locomotion. Higher doses of SL 327 and AS 601245 reduced EtOH-reinforced responding and locomotor activity. Reductions of both ligands on sucrose self-administration were due to decreases in motor activity. SL 327 pretreatment had no effect on PR responding. CONCLUSIONS ERK(1/2) activity is more directly involved in modulating the reinforcing properties of EtOH than JNK activity due to its selective potentiation of EtOH-reinforced responding. The specificity of this effect to EtOH self-administration, rather than sucrose self-administration, suggests that the mechanism by which ERK(1/2) increases EtOH-reinforced responding does not generalize to all reinforcing solutions and is not due to increased motivation to consume EtOH.
Collapse
Affiliation(s)
- Sara Faccidomo
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
67
|
Delta-opioid receptor expression in the ventral tegmental area protects against elevated alcohol consumption. J Neurosci 2009; 28:12672-81. [PMID: 19036960 DOI: 10.1523/jneurosci.4569-08.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Alcoholism is a complex and debilitating syndrome affecting approximately 140 million people worldwide. However, not everyone who consumes ethanol develops abuse, raising the possibility that some individuals have a protective mechanism that inhibits elevated alcohol consumption. We tested the hypothesis that the delta-opioid receptor (DOR) plays such a protective role. Here we show that DOR activity in the ventral tegmental area (VTA) robustly decreases ethanol consumption in rats and that these effects depend on baseline ethanol consumption. Intra-VTA microinjection of the DOR agonist DPDPE decreases drinking, particularly in low-drinking animals. Furthermore, VTA microinjection of the DOR selective antagonist TIPP-Psi increases drinking in low, but not high, drinkers and this increase is blocked by comicroinjection of the GABA(A) antagonist bicuculline. Using electrophysiological techniques we found that in VTA brain slices from drinking rats DPDPE presynaptically inhibits GABA(A) receptor mediated IPSCs in low drinkers, but not in high drinkers or naive animals, most likely through activation of DORs on GABA terminals. This DOR-mediated inhibition of IPSCs also correlates inversely with behavioral correlates of anxiety measured in the elevated plus maze. In contrast, presynaptic inhibition of VTA GABA(A) IPSCs by the mu-opioid receptor agonist DAMGO is significantly reduced in both high- and low-drinking rats (<30%) compared with age-matched nondrinking controls (>70%). Together, our findings demonstrate the protective nature of VTA DORs and identify an important new target for therapeutic intervention for alcoholism.
Collapse
|
68
|
Nielsen CK, Simms JA, Pierson HB, Li R, Saini SK, Ananthan S, Bartlett SE. A novel delta opioid receptor antagonist, SoRI-9409, produces a selective and long-lasting decrease in ethanol consumption in heavy-drinking rats. Biol Psychiatry 2008; 64:974-81. [PMID: 18774553 PMCID: PMC3888668 DOI: 10.1016/j.biopsych.2008.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 07/12/2008] [Accepted: 07/18/2008] [Indexed: 11/28/2022]
Abstract
BACKGROUND Naltrexone, a compound with high affinity for the mu opioid receptor (MOP-R) reduces alcohol consumption. SoRI-9409 is a derivative of naltrexone that has highest affinity at delta opioid receptors (DOP-Rs). We have investigated the effects of SoRI-9409 on ethanol consumption to determine the consequences of altering the naltrexone compound to a form with increased efficacy at DOP-Rs. METHODS Effects of the opioid receptor antagonists, SoRI-9409 (0-30 mg/kg, IP), naltrexone (0-30 mg/kg, IP), or naltrindole (0-10 mg/kg, IP) on ethanol consumption was measured in high- and low-ethanol-consuming rats with two different drinking paradigms. SoRI-9409-, naltrexone-, and naltrindole-mediated inhibition of DOP-R-stimulated [(35)S]GTP gamma S binding was measured in brain membranes prepared from high-ethanol-consuming rats. The effects of SoRI-9409 on morphine-mediated analgesia, conditioned place preference, and anxiety were also examined. RESULTS In high- but not low-ethanol-consuming animals, SoRI-9409 is threefold more effective and selective at reducing ethanol consumption when compared with naltrexone or naltrindole for up to 24 hours. SoRI-9409 administered daily for 28 days continuously reduced ethanol consumption, and when the administration of SoRI-9409 was terminated, the amount of ethanol consumed remained lower compared with vehicle-treated animals. Furthermore, SoRI-9409 inhibits DOP-R-stimulated [(35)S]GTP gamma S binding in brain membranes of high-ethanol-consuming rats. CONCLUSIONS SoRI-9409 causes selective and long-lasting reductions of ethanol consumption. This suggests that compounds that have high affinity for DOP-Rs such as SoRI-9409 might be promising candidates for development as a novel therapeutic for the treatment of alcoholism.
Collapse
Affiliation(s)
- Carsten K Nielsen
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California 94608, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Yang CH, Lee BH, Sohn SH. A possible mechanism underlying the effectiveness of acupuncture in the treatment of drug addiction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2008; 5:257-66. [PMID: 18830420 PMCID: PMC2529396 DOI: 10.1093/ecam/nem081] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 06/06/2007] [Indexed: 01/08/2023]
Abstract
Clinical trials are currently underway to determine the effectiveness of acupuncture in the treatment of drug addiction. While there are still many unanswered questions about the basic mechanisms of acupuncture, some evidence exists to suggest that acupuncture can play an important role in reducing reinforcing effects of abused drugs. The purpose of this article is to critically review these data. The neurochemical and behavioral evidence showed that acupuncture's role in suppressing the reinforcing effects of abused drugs takes place by modulating mesolimbic dopamine neurons. Also, several brain neurotransmitter systems such as serotonin, opioid and amino acids including GABA have been implicated in the modulation of dopamine release by acupuncture. These results provided clear evidence for the biological effects of acupuncture that ultimately may help us to understand how acupuncture can be used to treat abused drugs. Additional research using animal models is of primary importance to understanding the basic mechanism underlying acupuncture's effectiveness in the treatment of drug addiction.
Collapse
Affiliation(s)
- Chae Ha Yang
- Department of Physiology and Department of Acupuncture, Moxibution and Acupointology, College of Oriental Medicine, Daegu Haany University, Daegu, 706-828, South Korea
| | - Bong Hyo Lee
- Department of Physiology and Department of Acupuncture, Moxibution and Acupointology, College of Oriental Medicine, Daegu Haany University, Daegu, 706-828, South Korea
| | - Sung Hoon Sohn
- Department of Physiology and Department of Acupuncture, Moxibution and Acupointology, College of Oriental Medicine, Daegu Haany University, Daegu, 706-828, South Korea
| |
Collapse
|
70
|
Zhang H, Kranzler HR, Yang BZ, Luo X, Gelernter J. The OPRD1 and OPRK1 loci in alcohol or drug dependence: OPRD1 variation modulates substance dependence risk. Mol Psychiatry 2008; 13:531-43. [PMID: 17622222 PMCID: PMC3163084 DOI: 10.1038/sj.mp.4002035] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eleven single-nucleotide polymorphisms (SNPs) spanning OPRD1 were examined in 1063 European Americans (EAs) (620 cases with substance dependence (SD), including 557 with alcohol dependence (AD), 225 with cocaine dependence (CD) and 111 with opioid dependence (OD), and 443 controls). Nominally significant associations (P<0.05) of five SNPs with SD were observed; only the association of the non-synonymous variant G80T with OD remained significant after correction for multiple testing using SNPSpD. Haplotype analyses with six tag SNPs indicated that a specific haplotype GCAACT, which harbors G80T G-allele and C921T C-allele, was significantly associated with AD (chi(2)=14.82, degrees of freedom (d.f.)=1, P<0.001), CD (chi(2)=9.19, d.f.=1, P=0.002) and OD (chi(2)=20.68, d.f.=1, P<0.001). Logistic regression analyses, with sex and age being considered, demonstrated that this haplotype had a risk effect on AD (P=0.03, beta=1.86, odds ratio (OR)=6.43) and especially on OD (P<0.001, beta=3.92, OR=50.57). Moreover, seven SNPs covering OPRK1 were examined in the majority of the above subjects (390 cases, including 327 AD, 177 CD and 97 OD subjects, and 358 controls). Although no significant differences in allele, genotype or haplotype frequency distributions were seen between cases and controls, a specific OPRK1 haplotype, GGCTTCT, was significantly associated with AD (chi(2)=8.12, d.f.=1, P=0.004). Logistic regression analyses also revealed its risk effect on AD (P=0.009, beta=1.06, OR=2.90). Population stratification artifact was not observed in the sample. Taken together, our findings supported a positive association between OPRD1 variants and SD, and a positive haplotypic association between OPRK1 and AD in EAs.
Collapse
Affiliation(s)
- H Zhang
- VA Connecticut Healthcare System, West Haven Campus, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - HR Kranzler
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - B-Z Yang
- VA Connecticut Healthcare System, West Haven Campus, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - X Luo
- VA Connecticut Healthcare System, West Haven Campus, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - J Gelernter
- VA Connecticut Healthcare System, West Haven Campus, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
71
|
Sakoori K, Murphy NP. Endogenous nociceptin (orphanin FQ) suppresses basal hedonic state and acute reward responses to methamphetamine and ethanol, but facilitates chronic responses. Neuropsychopharmacology 2008; 33:877-91. [PMID: 17522627 DOI: 10.1038/sj.npp.1301459] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The opioid peptide nociceptin (orphanin FQ) suppresses drug reward, drug self-administration, and impedes some of the processes believed to underlie the transition to addiction. As virtually all previous studies have used administration of nociceptin receptor agonists to evaluate the role of nociceptin on addiction-like behavior, the current study used a pharmacological (nociceptin receptor antagonist) and genetic (nociceptin receptor knockout mice) approach to elucidate the role of endogenous nociceptin. The nociceptin receptor antagonist UFP-101 induced a modest place preference, and enhanced the conditioned place preference induced by methamphetamine. In agreement with this, nociceptin receptor knockout mice had slightly enhanced methamphetamine and ethanol conditioned place preferences compared to wild-type mice. This effect did not appear to depend on differences in learning ability, as nociceptin receptor knockout mice had slightly weaker-conditioned place aversions to lithium chloride, the kappa-opioid receptor agonist, U50488H, and the general opiate antagonist, naloxone. The development of behavioral sensitization to methamphetamine was lower in nociceptin receptor knockout mice, and attenuated by UFP-101 administration to wild-type mice. Additionally, ethanol consumption and preference in a two-bottle choice test was lower in nociceptin receptor knockout mice, though ethanol-stimulated locomotion was stronger. Whereas the rewarding effect of methamphetamine and ethanol following chronic treatment, as measured by place conditioning, strengthened in wild-type mice, this effect was absent in nociceptin receptor knockout mice. These results suggest that endogenous N/OFQ suppresses basal and drug-stimulated increases in hedonic state, and plays either a permissive or facilitatory role in the development of addiction.
Collapse
Affiliation(s)
- Kazuto Sakoori
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan
| | | |
Collapse
|
72
|
Logrip ML, Janak PH, Ron D. Dynorphin is a downstream effector of striatal BDNF regulation of ethanol intake. FASEB J 2008; 22:2393-404. [PMID: 18310464 DOI: 10.1096/fj.07-099135] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We recently identified brain-derived neurotrophic factor (BDNF) in the dorsal striatum to be a major component of a homeostatic pathway controlling ethanol consumption. We hypothesized that ethanol-mediated activation of the BDNF signaling cascade is required for the ethanol-related function of the neurotrophic factor. Here, we demonstrate that exposure of striatal neurons to ethanol results in the activation of the BDNF receptor TrkB, leading to the activation of the mitogen-activated protein kinase (MAP kinase) signaling pathway and the subsequent increase in the expression of preprodynorphin (Pdyn) via BDNF. Finally, we show that activation of the dynorphin receptor, the kappa opioid receptor (KOR), is required for the BDNF-mediated decrease in ethanol intake, illustrating a function of dynorphin in BDNF's homeostatic control of ethanol consumption. Taken together, these results demonstrate that BDNF regulates ethanol intake by initiation of MAP kinase signaling and the ensuing production of downstream gene products, including Pdyn.
Collapse
|
73
|
Shippenberg TS, Zapata A, Chefer VI. Dynorphin and the pathophysiology of drug addiction. Pharmacol Ther 2007; 116:306-21. [PMID: 17868902 PMCID: PMC2939016 DOI: 10.1016/j.pharmthera.2007.06.011] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 06/27/2007] [Indexed: 12/30/2022]
Abstract
Drug addiction is a chronic relapsing disease in which drug administration becomes the primary stimulus that drives behavior regardless of the adverse consequence that may ensue. As drug use becomes more compulsive, motivation for natural rewards that normally drive behavior decreases. The discontinuation of drug use is associated with somatic signs of withdrawal, dysphoria, anxiety, and anhedonia. These consequences of drug use are thought to contribute to the maintenance of drug use and to the reinstatement of compulsive drug use that occurs during the early phase of abstinence. Even, however, after prolonged periods of abstinence, 80-90% of human addicts relapse to addiction, suggesting that repeated drug use produces enduring changes in brain circuits that subserve incentive motivation and stimulus-response (habit) learning. A major goal of addiction research is the identification of the neural mechanisms by which drugs of abuse produce these effects. This article will review data showing that the dynorphin/kappa-opioid receptor (KOPr) system serves an essential function in opposing alterations in behavior and brain neurochemistry that occur as a consequence of repeated drug use and that aberrant activity of this system may not only contribute to the dysregulation of behavior that characterizes addiction but to individual differences in vulnerability to the pharmacological actions of cocaine and alcohol. We will provide evidence that the repeated administration of cocaine and alcohol up-regulates the dynorphin/KOPr system and that pharmacological treatments that target this system may prove effective in the treatment of drug addiction.
Collapse
Affiliation(s)
- T S Shippenberg
- Integrative Neuroscience Section, NIH/NIDA Intramural Research Program, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
74
|
Krishnan-Sarin S, Krystal JH, Shi J, Pittman B, O'Malley SS. Family history of alcoholism influences naltrexone-induced reduction in alcohol drinking. Biol Psychiatry 2007; 62:694-7. [PMID: 17336941 DOI: 10.1016/j.biopsych.2006.11.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 11/10/2006] [Accepted: 11/15/2006] [Indexed: 11/23/2022]
Abstract
BACKGROUND The purpose of this study was to examine the interactive effects of family history of alcoholism (FH+, FH-) and naltrexone dose (0, 50, 100 mg/day) on alcohol drinking. METHODS Ninety-two, non-treatment-seeking alcohol-dependent participants received naltrexone daily for 6 days. On the 6th day, they participated in a laboratory paradigm involving exposure to a priming dose of alcohol followed by a 2-hour drinking period in which they made choices between consuming alcoholic drinks and receiving money. RESULTS Total number of drinks consumed during the drinking period was significantly decreased by the 100-mg dose of naltrexone in FH+ drinkers. Secondary analyses in male drinkers (n = 70) indicated that 100 mg of naltrexone significantly decreased drinking in FH+ participants and increased drinking in FH- drinkers. CONCLUSIONS These results suggest that family history of alcoholism might be a significant clinical predictor of response to naltrexone and that FH+ men are more likely to benefit from naltrexone therapy for alcohol drinking.
Collapse
Affiliation(s)
- Suchitra Krishnan-Sarin
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, USA.
| | | | | | | | | |
Collapse
|
75
|
Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007; 12:227-462. [PMID: 17678505 DOI: 10.1111/j.1369-1600.2007.00070.x] [Citation(s) in RCA: 1015] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conditioned place preference (CPP) continues to be one of the most popular models to study the motivational effects of drugs and non-drug treatments in experimental animals. This is obvious from a steady year-to-year increase in the number of publications reporting the use this model. Since the compilation of the preceding review in 1998, more than 1000 new studies using place conditioning have been published, and the aim of the present review is to provide an overview of these recent publications. There are a number of trends and developments that are obvious in the literature of the last decade. First, as more and more knockout and transgenic animals become available, place conditioning is increasingly used to assess the motivational effects of drugs or non-drug rewards in genetically modified animals. Second, there is a still small but growing literature on the use of place conditioning to study the motivational aspects of pain, a field of pre-clinical research that has so far received little attention, because of the lack of appropriate animal models. Third, place conditioning continues to be widely used to study tolerance and sensitization to the rewarding effects of drugs induced by pre-treatment regimens. Fourth, extinction/reinstatement procedures in place conditioning are becoming increasingly popular. This interesting approach is thought to model certain aspects of relapse to addictive behavior and has previously almost exclusively been studied in drug self-administration paradigms. It has now also become established in the place conditioning literature and provides an additional and technically easy approach to this important phenomenon. The enormous number of studies to be covered in this review prevented in-depth discussion of many methodological, pharmacological or neurobiological aspects; to a large extent, the presentation of data had to be limited to a short and condensed summary of the most relevant findings.
Collapse
Affiliation(s)
- Thomas M Tzschentke
- Grünenthal GmbH, Preclinical Research and Development, Department of Pharmacology, Aachen, Germany.
| |
Collapse
|
76
|
Abstract
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
77
|
Doyon WM, Howard EC, Shippenberg TS, Gonzales RA. Kappa-opioid receptor modulation of accumbal dopamine concentration during operant ethanol self-administration. Neuropharmacology 2006; 51:487-96. [PMID: 16781738 PMCID: PMC1973091 DOI: 10.1016/j.neuropharm.2006.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/21/2006] [Accepted: 04/13/2006] [Indexed: 10/24/2022]
Abstract
Our study examined ethanol self-administration and accumbal dopamine concentration during kappa-opioid receptor (KOPr) blockade. Long-Evans rats were trained to respond for 20 min of access to 10% ethanol (with sucrose) over 7 days. Rats were injected s.c. with the long-acting KOPr antagonist, nor-binaltorphimine (NOR-BNI; 0 or 20 mg/kg) 15-20 h prior to testing. Microdialysis revealed a transient elevation in dopamine concentration within 5 min of ethanol access in controls. NOR-BNI-treated rats did not exhibit this response, but showed a latent increase in dopamine concentration at the end of the access period. The rise in dopamine levels correlated positively with dialysate ethanol concentration but not in controls. NOR-BNI did not alter dopamine levels in rats self-administering 10% sucrose. The transient dopamine response during ethanol acquisition in controls is consistent with previous results that were attributed to ethanol stimulus cues. The altered dopamine response to NOR-BNI during ethanol drinking suggests that KOPr blockade temporarily uncovered a pharmacological stimulation of dopamine release by ethanol. Despite these neurochemical changes, NOR-BNI did not alter operant responding or ethanol intake, suggesting that the KOPr is not involved in ethanol-reinforced behavior under the limited conditions we studied.
Collapse
Affiliation(s)
- William M. Doyon
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elaina C. Howard
- Division of Pharmacology, College of Pharmacy, University of Texas at Austin, 1 University Station A1915, Austin, TX 78712-0125, USA
| | - Toni S. Shippenberg
- Integrative Neuroscience Section, Behavioral Neurosciences Branch, National Institute on Drug Abuse/Intramural Research Program, Baltimore, MD 21224, USA
| | - Rueben A. Gonzales
- Division of Pharmacology, College of Pharmacy, University of Texas at Austin, 1 University Station A1915, Austin, TX 78712-0125, USA
- * Corresponding author. Tel.: +1 512 471 5192; fax: +1 512 475 6088. E-mail address: (R.A. Gonzales)
| |
Collapse
|