51
|
Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH. J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-019-01374-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
52
|
Puyo M, Fau P, Kahn ML, Mesguich D, Launay J, Fajerwerg K. Removable Composite Electrode Made of Silver Nanoparticles on Pyrolyzed Photoresist Film for the Electroreduction of 4-Nitrophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14194-14202. [PMID: 31550887 DOI: 10.1021/acs.langmuir.9b02405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Access to removable nanocomposite electrodes for electrosensing of pollutants is of great importance. However, the preparation of reproducible and reliable carbon electrodes decorated with metallic nanoparticles, a prerequisite for trustworthy devices, remains a challenge. Here we describe an innovative and easy method to prepare such electrodes. These latter are silicon-coated with a thin carbon film on which controlled silver nanostructures are grafted. Different silver nanostructures and surface coverage of the carbon electrode (16, 36, 51, and 67%) can be obtained through a careful control of the time of the hydrogenolysis of the N-N' isopropyl butylamidinate silver organometallic precursor (t = 1, 5, 15, and 60 min, respectively). Importantly, all nanocomposite surfaces are efficient for the electrodetection of 4-nitrophenol with a remarkable decrease of the overpotential of the reduction of such molecule up to 330 mV. The surfaces are characterized by atomic force microscopy, grazing incidence X-ray diffraction, scanning electronic microscopy, and Raman spectroscopy. Furthermore, surface-enhanced Raman scattering effect is also observed. The exaltation of the Raman intensity is proportional to the surface coverage of the electrode; the number of hot spots increases with the surface coverage.
Collapse
Affiliation(s)
- Maxime Puyo
- LCC-CNRS , University of Toulouse , 205 route de Narbonne , F-31077 Toulouse , France
| | - Pierre Fau
- LCC-CNRS , University of Toulouse , 205 route de Narbonne , F-31077 Toulouse , France
| | - Myrtil L Kahn
- LCC-CNRS , University of Toulouse , 205 route de Narbonne , F-31077 Toulouse , France
| | - David Mesguich
- CIRIMAT , University of Toulouse, CNRS, Université Toulouse 3 Paul-Sabatier , 118 route de Narbonne , F-31062 Toulouse cedex 9 , France
| | - Jérôme Launay
- LAAS-CNRS , University of Toulouse , 7 avenue du colonel Roche , F-31077 Toulouse , France
| | - Katia Fajerwerg
- LCC-CNRS , University of Toulouse , 205 route de Narbonne , F-31077 Toulouse , France
| |
Collapse
|
53
|
Pringkasemchai A, Hoshyargar F, Lertanantawong B, O'Mullane AP. Lightweight ITO Electrodes Decorated with Gold Nanostructures for Electrochemical Applications. ELECTROANAL 2019. [DOI: 10.1002/elan.201900152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Angkoonna Pringkasemchai
- Nanoscience and Nanotechnology Graduate Program King Mongkut's University of Technology Thonburi Bangkok 10140 Thailand
| | - Faegheh Hoshyargar
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) GPO Box 2434 Brisbane QLD 4001 Australia
| | - Benchaporn Lertanantawong
- Nanoscience and Nanotechnology Graduate Program King Mongkut's University of Technology Thonburi Bangkok 10140 Thailand
- Department of Biomedical Engineering Mahidol University Nakhon Pathom 73170 Thailand
| | - Anthony P. O'Mullane
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) GPO Box 2434 Brisbane QLD 4001 Australia
| |
Collapse
|
54
|
Postek WB, Rutkowska IA, Cox JA, Kulesza PJ. Electrocatalytic effects during redox reactions of arsenic at platinum nanoparticles in acid medium: Possibility of preconcentration, electroactive film formation, and detection of As(III) and As(V). Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
55
|
Screen-printed electrodes modified with green-synthesized gold nanoparticles for the electrochemical determination of aminothiols. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
56
|
Synthesis of silver nanoparticles assisted by chitosan and its application to catalyze the reduction of 4-nitroaniline. Int J Biol Macromol 2019; 135:752-759. [DOI: 10.1016/j.ijbiomac.2019.05.209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
|
57
|
Azevedo VHR, da Silva JL, Stradiotto NR. Silver oxide nanoparticles in reduced graphene oxide modified electrode for amino acids electrocatalytic oxidation. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
58
|
Cai X, Lin C, Foord JS, Compton RG. The Electrochemical Oxidation of Sulphite on Gold Electrodes. ELECTROANAL 2019. [DOI: 10.1002/elan.201900289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaosheng Cai
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA United Kingdom
| | - Chuhong Lin
- Department of Chemistry, Physical and Theoretical Chemistry LaboratoryUniversity of Oxford South Parks Road Oxford OX1 3QZ United Kingdom
- Institute of Intelligent MachinesChinese Academy of Sciences Hefei 230031 China
| | - John S. Foord
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA United Kingdom
| | - Richard G. Compton
- Department of Chemistry, Physical and Theoretical Chemistry LaboratoryUniversity of Oxford South Parks Road Oxford OX1 3QZ United Kingdom
| |
Collapse
|
59
|
Masikini M, Ghica ME, Baker PGL, Iwuoha EI, Brett CMA. Electrochemical Sensor Based on Multi‐walled Carbon Nanotube/Gold Nanoparticle Modified Glassy Carbon Electrode for Detection of Estradiol in Environmental Samples. ELECTROANAL 2019. [DOI: 10.1002/elan.201900190] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Milua Masikini
- SensorLab, Department of ChemistryUniversity of Western Cape Robert Sobukwe Road, Bellville Cape Town 7535 South Africa
| | - Mariana Emilia Ghica
- Department of Chemistry, Faculty of Sciences and TechnologyUniversity of Coimbra 3004-535 Coimbra Portugal
| | - Priscilla G. L. Baker
- SensorLab, Department of ChemistryUniversity of Western Cape Robert Sobukwe Road, Bellville Cape Town 7535 South Africa
| | - Emmanuel I. Iwuoha
- SensorLab, Department of ChemistryUniversity of Western Cape Robert Sobukwe Road, Bellville Cape Town 7535 South Africa
| | - Christopher M. A. Brett
- Department of Chemistry, Faculty of Sciences and TechnologyUniversity of Coimbra 3004-535 Coimbra Portugal
| |
Collapse
|
60
|
Zahid A, Bakirhan NK, Karadurmuş L, Shah A, Ozkan SA. Development of a Surfactant/Platinum Composite for Sensitive Cardio‐selective Beta Blocker Detection and their Theoretical Studies. ELECTROANAL 2019. [DOI: 10.1002/elan.201900156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Anum Zahid
- Ankara UniversityFaculty of Pharmacy, Department of Analytical Chemistry Ankara Turkey
- Department of ChemistryQuaid-i-Azam University Islamabad 45320 Pakistan
| | - Nurgul K. Bakirhan
- Hitit UniversityFaculty of Art & Science, Department of Chemistry Corum Turkey
| | - Leyla Karadurmuş
- Ankara UniversityFaculty of Pharmacy, Department of Analytical Chemistry Ankara Turkey
- Department of Analytical Chemistry, Faculty of PharmacyAdıyaman University Adıyaman Turkey
| | - Afzal Shah
- Department of Chemistry, College of ScienceUniversity of Bahrain, Sakhir 32038 Bahrain
- Department of ChemistryQuaid-i-Azam University Islamabad 45320 Pakistan
| | - Sibel A. Ozkan
- Ankara UniversityFaculty of Pharmacy, Department of Analytical Chemistry Ankara Turkey
| |
Collapse
|
61
|
Beluomini MA, da Silva JL, de Sá AC, Buffon E, Pereira TC, Stradiotto NR. Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: A review. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
62
|
Nakova A, Ilieva M, Boijadjieva-Scherzer T, Tsakova V. Glycerol oxidation on Pd nanocatalysts obtained on PEDOT-coated graphite supports. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
63
|
Gómez-Monedero B, González-Sánchez MI, Iniesta J, Agrisuelas J, Valero E. Design and Characterization of Effective Ag, Pt and AgPt Nanoparticles to H₂O₂ Electrosensing from Scrapped Printed Electrodes. SENSORS 2019; 19:s19071685. [PMID: 30970580 PMCID: PMC6479472 DOI: 10.3390/s19071685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 11/19/2022]
Abstract
The use of disposable screen-printed electrodes (SPEs) has extraordinarily grown in the last years. In this paper, conductive inks from scrapped SPEs were removed by acid leaching, providing high value feedstocks suitable for the electrochemical deposition of Ag, Pt and Ag core-Pt shell-like bimetallic (AgPt) nanoparticles, onto screen-printed carbon electrodes (ML@SPCEs, M = Ag, Pt or AgPt, L = metal nanoparticles from leaching solutions). ML@SPCEs were characterized by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The results were compared to those obtained when metal nanoparticles were synthesised using standard solutions of metal salts (MS@SPCEs). Both ML@SPCEs and MS@SPCEs exhibited similar cyclic voltammetric patterns referred to the electrochemical stripping of silver or the adsorption/desorption of hydrogen/anions in the case of platinum, proving leaching solutions extremely effective for the electrodeposition of metallic nanoparticles. The use of both ML@SPCEs and MS@SPCEs proved effective in enhancing the sensitivity for the detection of H₂O₂ in phosphate buffer solutions (pH = 7). The AgPtL@SPCE was used as proof of concept for the validation of an amperometric sensor for the determination of H₂O₂ within laundry boosters and antiseptic samples. The electrochemical sensor gave good agreement with the results obtained by a spectrophotometric method with H₂O₂ recoveries between 100.6% and 106.4%.
Collapse
Affiliation(s)
- Beatriz Gómez-Monedero
- Department of Physical Chemistry, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - María-Isabel González-Sánchez
- Department of Physical Chemistry, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Jesús Iniesta
- Department of Physical Chemistry, Institute of Electrochemistry, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain.
| | - Jerónimo Agrisuelas
- Department of Physical Chemistry, Faculty of Chemistry, University of Valencia, Dr Moliner 50, 46100 Burjassot, Valencia, Spain.
| | - Edelmira Valero
- Department of Physical Chemistry, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| |
Collapse
|
64
|
Alshalfouh A, Oezaslan M, Dosche C, Wittstock G. Electrochemistry of CdSe Quantum Dots Studied by Single Molecule Spectroscopy. ChemElectroChem 2019. [DOI: 10.1002/celc.201801793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Abdallatif Alshalfouh
- Institute of ChemistryCarl von Ossietzky University of Oldenburg 26111 Oldenburg Germany
| | - Mehtap Oezaslan
- Institute of ChemistryCarl von Ossietzky University of Oldenburg 26111 Oldenburg Germany
| | - Carsten Dosche
- Institute of ChemistryCarl von Ossietzky University of Oldenburg 26111 Oldenburg Germany
| | - Gunther Wittstock
- Institute of ChemistryCarl von Ossietzky University of Oldenburg 26111 Oldenburg Germany
| |
Collapse
|
65
|
Cyclic Voltammetry Characterization of Au, Pd, and AuPd Nanoparticles Supported on Different Carbon Nanofibers. SURFACES 2019. [DOI: 10.3390/surfaces2010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three types of carbon nanofibers (pyrolytically stripped carbon nanofibers (PS), low-temperature heat treated carbon nanofibers (LHT), and high-temperature heat treated carbon nanofibers (HHT)) with different graphitization degrees and surface chemistry have been used as support for Au, Pd, or bimetallic AuPd alloy nanoparticles (NPs). The carbon supports have been characterized using Raman, X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Moreover, the morphology of the metal nanoparticles was investigated using transmission electron microscopy (TEM) and CV. The different properties of the carbon-based supports (particularly the graphitization degree) yield different electrochemical behaviors, in terms of potential window widths and electrocatalytic effects. Comparing the electrochemical behavior of monometallic Au and Pd and bimetallic AuPd, it is possible to observe the interaction of the two metals when alloyed. Moreover, we demonstrate that carbon surface has a strong effect on the electrochemical stability of AuPd nanoparticles. By tuning the Au-Pd nanoparticles’ morphology and modulating the surface chemistry of the carbon support, it is possible to obtain materials characterized by novel electrochemical properties. This aspect makes them good candidates to be conveniently applied in different fields.
Collapse
|
66
|
Hanko M, Švorc Ľ, Planková A, Mikuš P. Overview and recent advances in electrochemical sensing of glutathione - A review. Anal Chim Acta 2019; 1062:1-27. [PMID: 30947984 DOI: 10.1016/j.aca.2019.02.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
The present paper is aimed at providing an overview of the recent advances in the electrochemical sensing of glutathione (GSH), an important electrochemically and biologically active molecule, for the period 2012-2018. Herein, the analytical performances of newly developed electrochemical methods, procedures and protocols for GSH sensing are comprehensively and critically discussed with respect to the type of method, electrodes used (new electrode modifications, advanced materials and formats), sample matrices, and basic validation parameters obtained (limit of detection, linear dynamic range, precision, selectivity/evaluation of interferences). This paper considers electrochemical methods used alone as well as the hyphenated methods with electrochemical detection (ECD), such as HPLC-ECD or CE-ECD. The practical applicability of the platforms developed for GSH detection and quantification is mostly focused on pharmaceutical and biomedical analysis. The most significant electrochemical approaches for GSH detection in multicomponent analyte samples and multicomponent matrices and for real-time in vivo GSH analysis are highlighted. The great variability in the electrochemical techniques, electrode approaches, and obtainable performance parameters, discussed in this review, brought new insights not only on current GSH and glutathione disulfide (GSSG) determinations, but, along with this, on the advances in electrochemical analysis from a more general point of view.
Collapse
Affiliation(s)
- Michal Hanko
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Ľubomír Švorc
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
| | - Alexandra Planková
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Peter Mikuš
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic; Comenius University in Bratislava, Faculty of Pharmacy, Toxicological and Antidoping Center, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic.
| |
Collapse
|
67
|
Direct self-assembly of CuHCF-PPy nanocomposites on rGO for amperometric nicotine sensing at high concentration range. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
68
|
Abdel Hameed R, Medany SS. Construction of core-shell structured nickel@platinum nanoparticles on graphene sheets for electrochemical determination of nitrite in drinking water samples. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
69
|
Zuo Y, Xu J, Zhu X, Duan X, Lu L, Yu Y. Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review. Mikrochim Acta 2019; 186:171. [PMID: 30756239 DOI: 10.1007/s00604-019-3248-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
This review (with 155 refs.) summarizes the progress made in the past few years in the field of electrochemical sensors based on graphene-derived materials for the determination of heavy metal ions. Following an introduction of this field and a discussion of the various kinds of modified graphenes including graphene oxide and reduced graphene oxide, the review covers graphene based electrodes modified (or doped) with (a) heteroatoms, (b) metal nanoparticles, (c) metal oxides, (d) small organic molecules, (e) polymers, and (f) ternary nanocomposites. Tables are provided that afford an overview of representative methods and materials for fabricating electrochemical sensors. Furthermore, sensing mechanisms are discussed. A concluding section presents new perspectives, opportunities and current challenges. Graphical Abstract Schematic illustration of electrochemical sensor for heavy metal ion sensing based on heteroatom-doped graphene, metal-modified graphene, metal-oxide-modified graphene, organically modified graphene, polymer-modified graphene, and ternary graphene based nanocomposites.
Collapse
Affiliation(s)
- Yinxiu Zuo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.,Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, Nanchang, 330045, China
| | - Jingkun Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.,School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Xiaofei Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, Nanchang, 330045, China.
| | - Yongfang Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, Nanchang, 330045, China
| |
Collapse
|
70
|
Stankevičius E, Garliauskas M, Laurinavičius L, Trusovas R, Tarasenko N, Pauliukaitė R. Engineering electrochemical sensors using nanosecond laser treatment of thin gold film on ITO glass. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
71
|
Florea A, Feier B, Cristea C. In situ analysis based on molecularly imprinted polymer electrochemical sensors. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
72
|
Highly Sensitive AgNP/MWCNT/Nafion Modified GCE-Based Sensor for the Determination of Heavy Metals in Organic and Non-organic Vegetables. Sci Rep 2018; 8:17445. [PMID: 30487525 PMCID: PMC6261986 DOI: 10.1038/s41598-018-35781-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/08/2018] [Indexed: 11/23/2022] Open
Abstract
Silver nanoparticles/multi-walled carbon nanotubes/Nafion modified glassy carbon electrodes (AgNPs/MWCNTs/Nafion-GCE) were fabricated and were used as working electrode in anodic stripping voltammetry (ASV) for trace level determination of lead (Pb2+) and cadmium (Cd2+). The fabricated electrodes were characterized using scanning electron microscopy and cyclic voltammetry. The amounts of the electrode modifiers and the ASV parameters were optimized. It was found that the electrode modified with 1 mg AgNPs and 2 mg MWCNTs exhibited the best analytical response towards the determination of Pb2+ and Cd2+. The optimized ASV parameters were 60 s for the deposition time, 90 s for the accumulation time, and 100 mV/s for the scan rate. The electrode exhibited linearity from 0.493 ppb to 157.2 ppb for Pb2+ and 1.864 ppb to 155.1 ppb for Cd2+. The limit of detection was found to be 0.216 ppb for Pb2+ and 0.481 ppb for Cd2+. Real sampling analysis was carried out using organic vegetables from Sitio San Ysiro, Antipolo and Daraitan, Rizal and commercially available vegetables from Divisoria, all in Luzon, Philippines. Trace amounts of lead, cadmium, and copper were detected in the samples. Unwashed vegetables contained more heavy metal concentration compared to the washed vegetables. Atomic absorption spectroscopy was performed to validate the presence of the heavy metals in the vegetables.
Collapse
|
73
|
Mohammadi SZ, Beitollahi H, Khodaparast B, Hosseinzadeh R. Electrochemical determination of epinephrine, uric acid and folic acid using a carbon paste electrode modified with novel ferrocene derivative and core–shell magnetic nanoparticles. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3668-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
74
|
In Situ Metalorganic Deposition of Silver Nanoparticles on Gold Substrate and Square Wave Voltammetry: A Highly Efficient Combination for Nanomolar Detection of Nitrate Ions in Sea Water. CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6040050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The electro-reduction of nitrate ions in artificial sea water was investigated at a gold substrate (EAu) functionalized by silver nanoparticles (AgNPs). These AgNPs were generated in situ on the gold substrate by the direct decomposition of the metalorganic N,N′-diisopropylacetamidinate silver precursor [Ag(Amd)] in the liquid phase. Very small and well dispersed AgNPs were deposited on the gold electrode and then used as working electrode (EAu/AgNPs). Square wave voltammetry (SWV) was successfully employed to detect nitrate ions (NO3−) with a detection limit (LOD) of 0.9 nmol∙L−1 in artificial sea water (pH = 6.0) without pre-concentration or pH adjustment.
Collapse
|
75
|
Mafuwe PT, Moyo M, Mugadza T, Shumba M, Nyoni S. Cobalt oxide nanoparticles anchored polyaniline-appended cobalt tetracarboxy phthalocyanine, modified glassy carbon electrode for facile electrocatalysis of amitrole. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4131-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
76
|
Brainina K, Stozhko N, Bukharinova M, Vikulova E. Nanomaterials: Electrochemical Properties and Application in Sensors. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2018-8050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The unique properties of nanoparticles make them an extremely valuable modifying material, being used in electrochemical sensors. The features of nanoparticles affect the kinetics and thermodynamics of electrode processes of both nanoparticles and redox reactions occurring on their surface. The paper describes theoretical background and experimental studies of these processes. During the transition from macro- to micro- and nanostructures, the analytical characteristics of sensors modify. These features of metal nanoparticles are related to their size and energy effects, which affects the analytical characteristics of developed sensors. Modification of the macroelectrode with nanoparticles and other nanomaterials reduces the detection limit and improves the degree of sensitivity and selectivity of measurements. The use of nanoparticles as transducers, catalytic constituents, parts of electrochemical sensors for antioxidant detection, adsorbents, analyte transporters, and labels in electrochemical immunosensors and signal-generating elements is described.
Collapse
|
77
|
Sonkoue BM, Tchekwagep PMS, Nanseu-Njiki CP, Ngameni E. Electrochemical Determination of Arsenic Using Silver Nanoparticles. ELECTROANAL 2018. [DOI: 10.1002/elan.201800520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Emmanuel Ngameni
- Analytical Chemistry Laboratory, Faculty of Science; University of Yaoundé I; 812 Yaoundé Cameroon
| |
Collapse
|
78
|
Mahmoud RH, Samhan FA, Ali GH, Ibrahim MK, Hassan RY. Assisting the biofilm formation of exoelectrogens using nanostructured microbial fuel cells. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.07.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
79
|
Oliveira PR, Kalinke C, Mangrich AS, Marcolino-Junior LH, Bergamini MF. Copper hexacyanoferrate nanoparticles supported on biochar for amperometric determination of isoniazid. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
80
|
Shahrokhian S, Hafezi-Kahnamouei M. Glassy carbon electrode modified with a nanocomposite of multi-walled carbon nanotube decorated with Ag nanoparticles for electrochemical investigation of Isoxsuprine. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
81
|
Sunlight photocurrent generation from thylakoid membranes on gold nanoparticle modified screen-printed electrodes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
82
|
Garcia-Hernandez C, Medina-Plaza C, Garcia-Cabezon C, Blanco Y, Fernandez-Escudero JA, Barajas-Tola E, Rodriguez-Perez MA, Martin-Pedrosa F, Rodriguez-Mendez ML. Monitoring the Phenolic Ripening of Red Grapes Using a Multisensor System Based on Metal-Oxide Nanoparticles. Front Chem 2018; 6:131. [PMID: 29740576 PMCID: PMC5928143 DOI: 10.3389/fchem.2018.00131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/09/2018] [Indexed: 11/29/2022] Open
Abstract
The maturity of grapes is usually monitored by means of the sugar concentration. However, the assessment of other parameters such as the phenolic content is also important because the phenolic maturity has an important impact on the organoleptic characteristics of wines. In this work, voltammetric sensors able to detect phenols in red grapes have been developed. They are based on metal oxide nanoparticles (CeO2, NiO, and TiO2,) whose excellent electrocatalytic properties toward phenols allows obtaining sensors with detection limits in the range of 10-8 M and coefficients of variation lower than 7%. An electronic tongue constructed using a combination of the nanoparticle-based sensors is capable to monitor the phenolic maturity of red grapes from véraison to maturity. Principal Component Analysis (PCA) can be successfully used to discriminate samples according to the ripeness. Regression models performed using Partial Least Squares (PLS-1) have established good correlations between voltammetric data obtained with the electrochemical sensors and the Total Polyphenolic Index, the Brix degree and the Total Acidity, with correlation coefficients close to 1 and low number of latent variables. An advantage of this system is that the electronic tongue can be used for the simultaneous assessment of these three parameters which are the main factors used to monitor the maturity of grapes. Thus the electronic tongue based on metal oxide nanoparticles can be a valuable tool to monitor ripeness. These results demonstrate the exciting possible applications of metal oxide nanoparticles in the field of electronic tongues.
Collapse
Affiliation(s)
- Celia Garcia-Hernandez
- Group UVaSens, Department of Inorganic Chemistry, Escuela de Ingenierías Industriales, Universidad de Valladolid, Valladolid, Spain
| | - Cristina Medina-Plaza
- Group UVaSens, Department of Inorganic Chemistry, Escuela de Ingenierías Industriales, Universidad de Valladolid, Valladolid, Spain
| | - Cristina Garcia-Cabezon
- Group UVasens, Department of Materials Science, Universidad de Valladolid, Valladolid, Spain
| | - Yolanda Blanco
- Group UVasens, Department of Materials Science, Universidad de Valladolid, Valladolid, Spain
| | | | | | - Miguel A. Rodriguez-Perez
- Group UVaSens, Department of Inorganic Chemistry, Escuela de Ingenierías Industriales, Universidad de Valladolid, Valladolid, Spain
| | - Fernando Martin-Pedrosa
- Group UVasens, Department of Materials Science, Universidad de Valladolid, Valladolid, Spain
| | - Maria L. Rodriguez-Mendez
- Group UVaSens, Department of Inorganic Chemistry, Escuela de Ingenierías Industriales, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
83
|
Mamme MH, Köhn C, Deconinck J, Ustarroz J. Numerical insights into the early stages of nanoscale electrodeposition: nanocluster surface diffusion and aggregative growth. NANOSCALE 2018; 10:7194-7209. [PMID: 29620775 DOI: 10.1039/c7nr08529j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fundamental understanding of the early stages of electrodeposition at the nanoscale is key to address the challenges in a wide range of applications. Despite having been studied for decades, a comprehensive understanding of the whole process is still out of reach. In this work, we introduce a novel modelling approach that couples a finite element method (FEM) with a random walk algorithm, to study the early stages of nanocluster formation, aggregation and growth, during electrochemical deposition. This approach takes into account not only electrochemical kinetics and transport of active species, but also the surface diffusion and aggregation of adatoms and small nanoclusters. The simulation results reveal that the relative surface mobility of the nanoclusters compared to that of the adatoms plays a crucial role in the early growth stages. The number of clusters, their size and their size dispersion are influenced more significantly by nanocluster mobility than by the applied overpotential itself. Increasing the overpotential results in shorter induction times and leads to aggregation prevalence at shorter times. A higher mobility results in longer induction times, a delayed transition from nucleation to aggregation prevalence, and as a consequence, a larger surface coverage of smaller clusters with a smaller size dispersion. As a consequence, it is shown that a classical first-order nucleation kinetics equation cannot describe the evolution of the number of clusters with time, N(t), in potentiostatic electrodeposition. Instead, a more accurate representation of N(t) is provided. We show that an evaluation of N(t), which neglects the effect of nanocluster mobility and aggregation, can induce errors of several orders of magnitude in the determination of nucleation rate constants. These findings are extremely important towards evaluating the elementary electrodeposition processes, considering not only adatoms, but also nanoclusters as building blocks.
Collapse
Affiliation(s)
- Mesfin Haile Mamme
- Vrije Universiteit Brussel (VUB), Research Group Electrochemical and Surface Engineering (SURF), Pleinlaan 2, 1050 Brussels, Belgium.
| | | | | | | |
Collapse
|
84
|
Umeya Y, Kobayashi Y, Kawashimo T, Ahn S, Chang G, Oyama M. Preparation of Gold Modified Nickel Wire Electrodes for Electroanalysis via a Galvanic Replacement Reaction. ELECTROANAL 2018. [DOI: 10.1002/elan.201800077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuki Umeya
- Department of Material Chemistry, Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8520 Japan
| | - Yusuke Kobayashi
- Department of Material Chemistry, Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8520 Japan
| | - Toshiyuki Kawashimo
- Department of Material Chemistry, Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8520 Japan
| | - Sunyhik Ahn
- Department of Material Chemistry, Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8520 Japan
| | - Gang Chang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering; Hubei University; No. 368 Youyi Avenue, Wuchang Wuhan 430062 China
| | - Munetaka Oyama
- Department of Material Chemistry, Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8520 Japan
| |
Collapse
|
85
|
Ultrasensitive Determination of Malathion Using Acetylcholinesterase Immobilized on Chitosan-Functionalized Magnetic Iron Nanoparticles. BIOSENSORS-BASEL 2018; 8:bios8010016. [PMID: 29438301 PMCID: PMC5872064 DOI: 10.3390/bios8010016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 01/19/2023]
Abstract
A renewable, disposable, low cost, and sensitive sensor for the detection of organophosphorus pesticides was constructed by immobilizing the acetylcholinesterase enzyme (AChE), via glutaraldehyde, on magnetic iron nanoparticles (Fe3O4) previously synthesized and functionalized with chitosan (CS). The sensor was denoted AChE/CS/Fe3O4. The magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy and transmission electron microscopy. Acetylthiocholine (ATCh) was incubated with AChE/CS/Fe3O4 and attached to a screen-printed electrode using a magnet. The oxidation of thiocholine (from ATCh hydrolysis) was monitored at an applied potential of +0.5 V vs. Ag/AgCl(KClsat) in 0.1 mol L−1 phosphate buffer solution (pH 7.5) as the supporting electrolyte. A mixture of the pesticide malathion and ATCh was investigated using the same procedure, and the results were compared and expressed as inhibition percentages. For determination of malathion, the proposed sensor presented a linear response in the range from 0.5 to 20 nmol L−1 (R = 0.9942). The limits of detection (LOD) and quantification (LOQ) were 0.3 and 0.8 nmol L−1, respectively. Real samples were also investigated, with recovery values of 96.0% and 108.3% obtained for tomato and pond water samples, respectively. The proposed sensor is a feasible option for malathion detection, offering a linear response, good sensitivity, and a low detection limit.
Collapse
|
86
|
Beluomini MA, da Silva JL, Stradiotto NR. Amperometric determination of myo-inositol by using a glassy carbon electrode modified with molecularly imprinted polypyrrole, reduced graphene oxide and nickel nanoparticles. Mikrochim Acta 2018; 185:170. [DOI: 10.1007/s00604-018-2710-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/26/2018] [Indexed: 11/25/2022]
|
87
|
Dong H, Dai Y, Zhang X, Zhang Z, Fu S, Zhong Z. The influence of amine structures on the stability and catalytic activity of gold nanoparticles stabilized by amine-modified hyperbranched polymers. NANOTECHNOLOGY 2018; 29:055705. [PMID: 29231179 DOI: 10.1088/1361-6528/aaa0fe] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amine-modified amphiphilic hyperbranched polymers (MePEG-H104-Nx) were prepared from hyperbranched 2,2-bis(methylol)propionic acid polyester (H104) by decoration with polyethylene glycol monomethyl ether (MePEG) and different classes of oligo(ethylenimine)s. By using the MePEG-H104-Nx polymers as stabilizers, gold nanoparticles (AuNPs) were prepared in an aqueous medium by the reduction of HAuCl4 with NaBH4. The AuNPs were sphere-like with diameters of 2-4 nm, which were dependent on the structure of the amines. Further, the catalytic activity of these AuNPs was evaluated by monitoring the reduction reaction of 4-nitrophenol by sodium borohydride. The results demonstrate that the longer chain length and the branched structure of the amine moieties are beneficial for the stability and catalytic activity of the AuNPs. The AuNPs stabilized by MePEG-H104-N4 and MePEG-H104-Nb3 showed high catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol.
Collapse
Affiliation(s)
- Hui Dong
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
88
|
Lipskikh O, Korotkova E, Khristunova Y, Barek J, Kratochvil B. Sensors for voltammetric determination of food azo dyes - A critical review. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
89
|
Sierra-Rosales P, Torres R, Sepúlveda C, Kogan MJ, Arturo Squella J. Electrochemical Characterization and Electrocatalytic Application of Gold Nanoparticles Synthesized with Different Stabilizing Agents. ELECTROANAL 2017. [DOI: 10.1002/elan.201700633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Paulina Sierra-Rosales
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación; Universidad Tecnológica Metropolitana; Ignacio Valdivieso 2409 P.O Box 8940577 San Joaquín, Santiago Chile
| | - Rodrigo Torres
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile.; 8380492 Santiago Chile
| | - Carlos Sepúlveda
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile.; 8380492 Santiago Chile
| | - Marcelo J. Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile.; 8380492 Santiago Chile
- Advanced Center for Chronic Diseases (ACCDis); Santiago Chile
| | - Juan Arturo Squella
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile.; 8380492 Santiago Chile
| |
Collapse
|
90
|
Wang Z, Wu Z, Liu J, Zhang W. Particle morphology: an important factor affecting drug delivery by nanocarriers into solid tumors. Expert Opin Drug Deliv 2017; 15:379-395. [PMID: 29264946 DOI: 10.1080/17425247.2018.1420051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Efficient delivery of drugs by nanoparticles deep into solid tumors is the precondition of valid cancer therapy. Despite profound understanding of the delivery of spherical nanoparticles into solid tumor attained, insufficient attention was paid to anisotropic particles. Actually, owing to their structural asymmetry, some non-spherical particles exhibit significant advantages over their spherical counterparts. AREAS COVERED This review will focus on particles with different shapes (discoidal particle, nanorod, filamentous particle, single-walled carbon nanotube) and the influence of their morphological characteristics (size, aspect ratio, rigidity) on the process of drug delivery to solid tumor in view of systemic circulation, transport from circulation system to tumor tissue, intratumoral transport and uptake by tumor cells, on the basis of introduction of challenges for drug delivery to solid tumor. In addition, the morphological characteristics will be briefly introduced to provide an understanding of anisotropic particle morphology. EXPERT OPINION Anisotropic particles exhibit desirable properties such as enhanced circulation time and efficient tumor penetration that could serve as an enlightenment in the exploitation of novel non-spherical nanocarriers to clinical therapy. Yet, current understanding of how anisotropic particles interact with organism is insufficient, which restricts the biomedical application of anisotropic particles. Further work is desired for the development of practical fabrication of anisotropic particles, quantitative analysis of particle morphology, as well as profound understanding of new targeting mechanism and intratumoral penetration of anisotropic particles.
Collapse
Affiliation(s)
- Zhen Wang
- a Department of Pharmaceutics , China Pharmaceutical University , Nanjing , PR China.,b Drug Discovery Department , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | - Zimei Wu
- c School of Pharmacy , University of Auckland , Auckland , New Zealand
| | - Jianping Liu
- a Department of Pharmaceutics , China Pharmaceutical University , Nanjing , PR China
| | - Wenli Zhang
- a Department of Pharmaceutics , China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
91
|
Graphite nanocomposites sensor for multiplex detection of antioxidants in food. Food Chem 2017; 237:912-920. [DOI: 10.1016/j.foodchem.2017.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 11/18/2022]
|
92
|
Erady V, Mascarenhas RJ, Satpati AK, Detriche S, Mekhalif Z, Dalhalle J, Dhason A. Sensitive detection of Ferulic acid using multi-walled carbon nanotube decorated with silver nano-particles modified carbon paste electrode. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.10.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
93
|
Analytical methodology for the electro-catalytic determination of estradiol and progesterone based on graphene quantum dots and poly(sulfosalicylic acid) co-modified electrode. Talanta 2017; 174:243-255. [DOI: 10.1016/j.talanta.2017.05.083] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 12/20/2022]
|
94
|
Determination of amino acids in sugarcane vinasse by ion chromatographic using nickel nanoparticles on reduced graphene oxide modified electrode. Microchem J 2017. [DOI: 10.1016/j.microc.2017.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
95
|
Khan I, Pandit UJ, Limaye SN. Design of Electrochemically Modified fMWCNT-pencil Graphite Electrode Decorated with Cu and Ag Nanofilm and its Electrocatalytic Behavior Towards Imazethapyr. ELECTROANAL 2017. [DOI: 10.1002/elan.201700128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Imran Khan
- Rare Earth and Electroanalytical Research Laboratory; Department of Chemistry; Dr. HariSingh Gour Vishwavidyalaya (A Central University) Sagar, (M.P.); India
| | - Umar J. Pandit
- Rare Earth and Electroanalytical Research Laboratory; Department of Chemistry; Dr. HariSingh Gour Vishwavidyalaya (A Central University) Sagar, (M.P.); India
| | - Sudhir N. Limaye
- Rare Earth and Electroanalytical Research Laboratory; Department of Chemistry; Dr. HariSingh Gour Vishwavidyalaya (A Central University) Sagar, (M.P.); India
| |
Collapse
|
96
|
Silva TR, Smaniotto A, Vieira IC. Exfoliated graphite nanoplatelets and gold nanoparticles based electrochemical sensor for determination of levodopa. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3677-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
97
|
Kurbanoglu S, Ozkan SA. Electrochemical carbon based nanosensors: A promising tool in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2017; 147:439-457. [PMID: 28780997 DOI: 10.1016/j.jpba.2017.06.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
Nanotechnology has become very popular in the sensor fields in recent times. It is thought that the utilization of such technologies, as well as the use of nanosized materials, could well have beneficial effects for the performance of sensors. Nano-sized materials have been shown to have a number of novel and interesting physical and chemical properties. Low-dimensional nanometer-sized materials and systems have defined a new research area in condensed-matter physics within past decades. Apart from the aforesaid categories of materials, there exist various materials of different types for fabricating nanosensors. Carbon is called as a unique element, due to its magnificent applications in many areas. Carbon is an astonishing element that can be found many forms including graphite, diamond, fullerenes, and graphene. This review provides an overview of some of the important and recent developments brought about by the application of carbon based nanostructures to nanotechnology for both chemical and biological sensor development and their application in pharmaceutical and biomedical area.
Collapse
Affiliation(s)
- Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Tandogan, Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Tandogan, Ankara, Turkey.
| |
Collapse
|
98
|
Ogończyk D, Gocyla M, Andryszewski T, Opallo M. Continuous Electrochemical Detection of Gold Nanoparticles in Flow. ELECTROANAL 2017. [DOI: 10.1002/elan.201700188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- D. Ogończyk
- Institute of Physical Chemistry; Polish Academy of Sciences; Kasprzaka, 44/52 01-224 Warsaw Poland
| | - M. Gocyla
- Institute of Physical Chemistry; Polish Academy of Sciences; Kasprzaka, 44/52 01-224 Warsaw Poland
- Faculty of Chemistry; Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| | - T. Andryszewski
- Institute of Physical Chemistry; Polish Academy of Sciences; Kasprzaka, 44/52 01-224 Warsaw Poland
| | - M. Opallo
- Institute of Physical Chemistry; Polish Academy of Sciences; Kasprzaka, 44/52 01-224 Warsaw Poland
| |
Collapse
|
99
|
Ustarroz J, Geboes B, Vanrompay H, Sentosun K, Bals S, Breugelmans T, Hubin A. Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16168-16177. [PMID: 28418651 DOI: 10.1021/acsami.7b01619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoporous Pt nanoparticles (NPs) are promising fuel cell catalysts due to their large surface area and increased electrocatalytic activity toward the oxygen reduction reaction (ORR). Herein, we report on the influence of the growth mechanisms on the surface properties of electrodeposited Pt dendritic NPs with large surface areas. The electrochemically active surface was studied by hydrogen underpotential deposition (H UPD) and compared for the first time to high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) quantitative 3D electron tomography of individual nanoparticles. Large nucleation overpotential leads to a large surface coverage of roughened spheroids, which provide a large roughness factor (Rf) but low mass-specific electrochemically active surface area (EASA). Lowering the nucleation overpotential leads to highly porous Pt NPs with pores stretching to the center of the structure. At the expense of smaller Rf, the obtained EASA values of these structures are in the range of those of large surface area supported fuel cell catalysts. The active surface area of the Pt dendritic NPs was measured by electron tomography, and it was found that the potential cycling in the H adsorption/desorption and Pt oxidation/reduction region, which is generally performed to determine the EASA, leads to a significant reduction of that surface area due to a partial collapse of their dendritic and porous morphology. Interestingly, the extrapolation of the microscopic tomography results in macroscopic electrochemical parameters indicates that the surface properties measured by H UPD are comparable to the values measured on individual NPs by electron tomography after the degradation caused by the H UPD measurement. These results highlight that the combination of electrochemical and quantitative 3D surface analysis techniques is essential to provide insights into the surface properties, the electrochemical stability, and, hence, the applicability of these materials. Moreover, it indicates that care must be taken with widely used electrochemical methods of surface area determination, especially in the case of large surface area and possibly unstable nanostructures, since the measured surface can be strongly affected by the measurement itself.
Collapse
Affiliation(s)
- Jon Ustarroz
- Vrije Universiteit Brussel (VUB) , Research Group Electrochemical and Surface Engineering (SURF), Pleinlaan 2, 1050 Brussels, Belgium
| | - Bart Geboes
- Research Group Advanced Reactor Technology (ART), University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Hans Vanrompay
- Electron Microscopy for Materials Research (EMAT), University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Kadir Sentosun
- Electron Microscopy for Materials Research (EMAT), University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Research (EMAT), University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Tom Breugelmans
- Research Group Advanced Reactor Technology (ART), University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Annick Hubin
- Vrije Universiteit Brussel (VUB) , Research Group Electrochemical and Surface Engineering (SURF), Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
100
|
Gerent GG, Spinelli A. Magnetite-platinum nanoparticles-modified glassy carbon electrode as electrochemical detector for nitrophenol isomers. JOURNAL OF HAZARDOUS MATERIALS 2017; 330:105-115. [PMID: 28214399 DOI: 10.1016/j.jhazmat.2017.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 05/12/2023]
Abstract
A glassy carbon electrode was modified with magnetite and platinum nanoparticles stabilized with 3-n-propyl-4-picoline silsesquioxane chloride. This chemically-modified electrode is proposed for the first time for the individual or simultaneous electrochemical detection of nitrophenol isomers. Nanoparticles act as catalysts and also increase the surface area. The polymer stabilizes the particles and provides the electrochemical separation of isomers. Under optimized conditions, the reduction peak currents, obtained by differential-pulse voltammetry, of 2-, 3-, and 4-nitrophenol increased linearly with increases in their concentration in the range of 0.1-1.5μmolL-1. In individual analysis, the detection limits were 33.7nmolL-1, 45.3nmolL-1 and 48.2nmolL-1, respectively. Also, simultaneous analysis was possible for 2-, and 4-nitrophenol. In this case, the separation of the peak potentials was 0.138V and the detection limits were 69.6nmolL-1 and 58.0nmolL-1, respectively. These analytical figures of merit evidence the outstanding performance of the modified electrode, which was also successfully applied to the individual determination of isomers in environmental and biological samples. The magnetite and platinum nanoparticles modified glassy carbon electrode was able to detect nitrophenol isomers at the ppm level in rain water and human urine samples.
Collapse
Affiliation(s)
- Giles G Gerent
- Grupo de Estudos de Processos Eletroquímicos e Eletroanalíticos, Universidade Federal de Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Departamento de Química - CFM, 88040-900, Florianópolis, SC, Brazil
| | - Almir Spinelli
- Grupo de Estudos de Processos Eletroquímicos e Eletroanalíticos, Universidade Federal de Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Departamento de Química - CFM, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|