51
|
Illiano A, Pinto G, Melchiorre C, Carpentieri A, Faraco V, Amoresano A. Protein Glycosylation Investigated by Mass Spectrometry: An Overview. Cells 2020; 9:E1986. [PMID: 32872358 PMCID: PMC7564411 DOI: 10.3390/cells9091986] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
The protein glycosylation is a post-translational modification of crucial importance for its involvement in molecular recognition, protein trafficking, regulation, and inflammation. Indeed, abnormalities in protein glycosylation are correlated with several disease states such as cancer, inflammatory diseases, and congenial disorders. The understanding of cellular mechanisms through the elucidation of glycan composition encourages researchers to find analytical solutions for their detection. Actually, the multiplicity and diversity of glycan structures bond to the proteins, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies make their detection much trickier than other kinds of biopolymers. An overview of the most prominent techniques based on mass spectrometry (MS) for protein glycosylation (glycoproteomics) studies is here presented. The tricks and pre-treatments of samples are discussed as a crucial step prodromal to the MS analysis to improve the glycan ionization efficiency. Therefore, the different instrumental MS mode is also explored for the qualitative and quantitative analysis of glycopeptides and the glycans structural composition, thus contributing to the elucidation of biological mechanisms.
Collapse
Affiliation(s)
- Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
- CEINGE Advanced Biotechnology, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
- Istituto Nazionale Biostrutture e Biosistemi—Consorzio Interuniversitario, Viale delle Medaglie d’Oro, 305, 00136 Rome, Italy
| |
Collapse
|
52
|
Purification of natural neutral N-glycans by using two-dimensional hydrophilic interaction liquid chromatography × porous graphitized carbon chromatography for glycan-microarray assay. Talanta 2020; 221:121382. [PMID: 33076051 DOI: 10.1016/j.talanta.2020.121382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/06/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022]
Abstract
Glycan microarray for studying carbohydrate-protein interactions requires diverse classes of well-defined glycan standards. In this study, a purification strategy was established based on two-dimensional hydrophilic interaction liquid chromatography and porous graphitized carbon chromatography (HILIC × PGC) for the acquisition of neutral N-glycan standards from natural source. A total of thirty-one N-glycan compounds including seven pairs of isomers with the amounts from 0.7 to 230.0 nmol were isolated from ovalbumin as the model glycoconjugate. The purified N-glycans covered high-mannose, hybrid as well as multi-antenna asymmetric complex types. The purity of majority of these N-glycans was higher than 90%. Detailed structures of the N-glycan compounds were verified via negative ion tandem MS analysis, in which specific diagnostic ions including D- and E-ions were used to identify isomeric and terminal fine structures. The tag-free glycan compounds with well-defined structures, purity and amounts were finally assembled on the glass slide through neoglycolipid technology. Microarray binding assay of purified glycans with WGA lectin indicated the potential of the established strategy in glycan library expansion and functional glycomics.
Collapse
|
53
|
Cao WQ, Liu MQ, Kong SY, Wu MX, Huang ZZ, Yang PY. Novel methods in glycomics: a 2019 update. Expert Rev Proteomics 2020; 17:11-25. [PMID: 31914820 DOI: 10.1080/14789450.2020.1708199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Glycomics, which aims to define the glycome of a biological system to better assess the biological attributes of the glycans, has attracted increasing interest. However, the complexity and diversity of glycans present challenging barriers to glycome definition. Technological advances are major drivers in glycomics.Areas covered: This review summarizes the main methods and emphasizes the most recent advances in mass spectrometry-based methods regarding glycomics following the general workflow in glycomic analysis.Expert opinion: Recent mass spectrometry-based technological advances have significantly lowered the barriers in glycomics. The field of glycomics is moving toward both generic and precise analysis.
Collapse
Affiliation(s)
- Wei-Qian Cao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Ming-Qi Liu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Si-Yuan Kong
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meng-Xi Wu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Zheng-Ze Huang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng-Yuan Yang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
54
|
Development of Immobilized Enzyme Reactors for the characterization of the glycosylation heterogeneity of a protein. Talanta 2020; 206:120171. [DOI: 10.1016/j.talanta.2019.120171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 11/19/2022]
|
55
|
De Leoz MLA, Duewer DL, Fung A, Liu L, Yau HK, Potter O, Staples GO, Furuki K, Frenkel R, Hu Y, Sosic Z, Zhang P, Altmann F, Grunwald-Grube C, Shao C, Zaia J, Evers W, Pengelley S, Suckau D, Wiechmann A, Resemann A, Jabs W, Beck A, Froehlich JW, Huang C, Li Y, Liu Y, Sun S, Wang Y, Seo Y, An HJ, Reichardt NC, Ruiz JE, Archer-Hartmann S, Azadi P, Bell L, Lakos Z, An Y, Cipollo JF, Pucic-Bakovic M, Štambuk J, Lauc G, Li X, Wang PG, Bock A, Hennig R, Rapp E, Creskey M, Cyr TD, Nakano M, Sugiyama T, Leung PKA, Link-Lenczowski P, Jaworek J, Yang S, Zhang H, Kelly T, Klapoetke S, Cao R, Kim JY, Lee HK, Lee JY, Yoo JS, Kim SR, Suh SK, de Haan N, Falck D, Lageveen-Kammeijer GSM, Wuhrer M, Emery RJ, Kozak RP, Liew LP, Royle L, Urbanowicz PA, Packer NH, Song X, Everest-Dass A, Lattová E, Cajic S, Alagesan K, Kolarich D, Kasali T, Lindo V, Chen Y, Goswami K, Gau B, Amunugama R, Jones R, Stroop CJM, Kato K, Yagi H, Kondo S, Yuen CT, Harazono A, Shi X, Magnelli PE, Kasper BT, Mahal L, Harvey DJ, O'Flaherty R, Rudd PM, Saldova R, Hecht ES, Muddiman DC, Kang J, Bhoskar P, Menard D, Saati A, Merle C, Mast S, Tep S, Truong J, Nishikaze T, Sekiya S, Shafer A, Funaoka S, Toyoda M, de Vreugd P, Caron C, Pradhan P, Tan NC, Mechref Y, Patil S, Rohrer JS, Chakrabarti R, Dadke D, Lahori M, Zou C, Cairo C, Reiz B, Whittal RM, Lebrilla CB, Wu L, Guttman A, Szigeti M, Kremkow BG, Lee KH, Sihlbom C, Adamczyk B, Jin C, Karlsson NG, Örnros J, Larson G, Nilsson J, Meyer B, Wiegandt A, Komatsu E, Perreault H, Bodnar ED, Said N, Francois YN, Leize-Wagner E, Maier S, Zeck A, Heck AJR, Yang Y, Haselberg R, Yu YQ, Alley W, Leone JW, Yuan H, Stein SE. NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods. Mol Cell Proteomics 2020; 19:11-30. [PMID: 31591262 PMCID: PMC6944243 DOI: 10.1074/mcp.ra119.001677] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Indexed: 01/24/2023] Open
Abstract
Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods.
Collapse
Affiliation(s)
- Maria Lorna A De Leoz
- Mass Spectrometry Data Center, Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive Gaithersburg, Maryland 20899.
| | - David L Duewer
- Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive Gaithersburg, Maryland 20899
| | - Adam Fung
- Analytical Development, Agensys, Inc., 1800 Steward Street Santa Monica, California 90404
| | - Lily Liu
- Analytical Development, Agensys, Inc., 1800 Steward Street Santa Monica, California 90404
| | - Hoi Kei Yau
- Analytical Development, Agensys, Inc., 1800 Steward Street Santa Monica, California 90404
| | - Oscar Potter
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd Santa Clara, California 95051
| | - Gregory O Staples
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd Santa Clara, California 95051
| | - Kenichiro Furuki
- Astellas Pharma, 5-2-3 Tokodai, Tsukiba, Ibaraki, 300-2698, Japan
| | - Ruth Frenkel
- Analytical Development, Biogen, 14 Cambridge Center Cambridge, Massachusetts 02142
| | - Yunli Hu
- Analytical Development, Biogen, 14 Cambridge Center Cambridge, Massachusetts 02142
| | - Zoran Sosic
- Analytical Development, Biogen, 14 Cambridge Center Cambridge, Massachusetts 02142
| | - Peiqing Zhang
- Bioprocessing Technology Institute, 20 Biopolis Way, Level 3 Singapore 138668
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Science, Vienna (BOKU), Muthgasse 18 1190 Wien, Austria
| | - Clemens Grunwald-Grube
- Department of Chemistry, University of Natural Resources and Life Science, Vienna (BOKU), Muthgasse 18 1190 Wien, Austria
| | - Chun Shao
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street Boston, Massachusetts 02118
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street Boston, Massachusetts 02118
| | - Waltraud Evers
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | | | - Detlev Suckau
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Anja Wiechmann
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Anja Resemann
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Wolfgang Jabs
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany; Department of Life Sciences & Technology, Beuth Hochschule für Technik Berlin, Seestraβe 64, 13347 Berlin, Germany
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74164 St Julien-en-Genevois, France
| | - John W Froehlich
- Department of Urology, Boston Children's Hospital, 300 Longwood Avenue Boston Massachusetts 02115
| | - Chuncui Huang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Road, Chaoyang District, Beijing 100101 China
| | - Yan Li
- Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Road, Chaoyang District, Beijing 100101 China
| | - Yaming Liu
- Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Road, Chaoyang District, Beijing 100101 China
| | - Shiwei Sun
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 15 Da Tun Road, Chaoyang District, Beijing 100101 China
| | - Yaojun Wang
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 15 Da Tun Road, Chaoyang District, Beijing 100101 China
| | - Youngsuk Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Gung-dong 220, Yuseong-Gu, Daejeon 305-764, Korea (South)
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Gung-dong 220, Yuseong-Gu, Daejeon 305-764, Korea (South)
| | | | | | - Stephanie Archer-Hartmann
- Analytical Services, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road Athens, Georgia 30602
| | - Parastoo Azadi
- Analytical Services, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road Athens, Georgia 30602
| | - Len Bell
- BioCMC Solutions (Large Molecules), Covance Laboratories Limited, Otley Road, Harrogate, North Yorks HG3 1PY, United Kingdom
| | - Zsuzsanna Lakos
- Biochemistry Method Development & Validation, Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike Lancaster, Pennsylvania 17601
| | - Yanming An
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993
| | - John F Cipollo
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993
| | - Maja Pucic-Bakovic
- Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia
| | - Jerko Štambuk
- Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia
| | - Gordan Lauc
- Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Xu Li
- Department of Chemistry, Georgia State University, 100 Piedmont Avenue, Atlanta, Georgia 30303
| | - Peng George Wang
- Department of Chemistry, Georgia State University, 100 Piedmont Avenue, Atlanta, Georgia 30303
| | - Andreas Bock
- glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany
| | - René Hennig
- glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany
| | - Erdmann Rapp
- glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany; AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom
| | - Marybeth Creskey
- Health Products and Foods Branch, Health Canada, AL 2201E, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9 Canada
| | - Terry D Cyr
- Health Products and Foods Branch, Health Canada, AL 2201E, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9 Canada
| | - Miyako Nakano
- Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima 739-8530 Japan
| | - Taiki Sugiyama
- Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima 739-8530 Japan
| | | | - Paweł Link-Lenczowski
- Department of Medical Physiology, Jagiellonian University Medical College, ul. Michalowskiego 12, 31-126 Krakow, Poland
| | - Jolanta Jaworek
- Department of Medical Physiology, Jagiellonian University Medical College, ul. Michalowskiego 12, 31-126 Krakow, Poland
| | - Shuang Yang
- Department of Pathology, Johns Hopkins University, 400 N. Broadway Street Baltimore, Maryland 21287
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, 400 N. Broadway Street Baltimore, Maryland 21287
| | - Tim Kelly
- Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704
| | - Song Klapoetke
- Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704
| | - Rui Cao
- Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704
| | - Jin Young Kim
- Division of Mass Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363-883 Korea (South)
| | - Hyun Kyoung Lee
- Division of Mass Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363-883 Korea (South)
| | - Ju Yeon Lee
- Division of Mass Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363-883 Korea (South)
| | - Jong Shin Yoo
- Division of Mass Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363-883 Korea (South)
| | - Sa-Rang Kim
- Advanced Therapy Products Research Division, Korea National Institute of Food and Drug Safety, 187 Osongsaengmyeong 2-ro Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363-700, Korea (South)
| | - Soo-Kyung Suh
- Advanced Therapy Products Research Division, Korea National Institute of Food and Drug Safety, 187 Osongsaengmyeong 2-ro Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363-700, Korea (South)
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Robert J Emery
- Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom
| | - Radoslaw P Kozak
- Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom
| | - Li Phing Liew
- Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom
| | - Louise Royle
- Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom
| | - Paulina A Urbanowicz
- Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom
| | - Nicolle H Packer
- Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, North Ryde, Australia
| | - Xiaomin Song
- Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, North Ryde, Australia
| | - Arun Everest-Dass
- Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, North Ryde, Australia
| | - Erika Lattová
- Proteomics, Central European Institute for Technology, Masaryk University, Kamenice 5, A26, 625 00 BRNO, Czech Republic
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Kathirvel Alagesan
- Department of Biomolecular Sciences, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Daniel Kolarich
- Department of Biomolecular Sciences, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Toyin Kasali
- AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom
| | - Viv Lindo
- AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom
| | - Yuetian Chen
- Merck, 2015 Galloping Hill Rd, Kenilworth, New Jersey 07033
| | - Kudrat Goswami
- Merck, 2015 Galloping Hill Rd, Kenilworth, New Jersey 07033
| | - Brian Gau
- Analytical R&D, MilliporeSigma, 2909 Laclede Ave. St. Louis, Missouri 63103
| | - Ravi Amunugama
- MS Bioworks, LLC, 3950 Varsity Drive Ann Arbor, Michigan 48108
| | - Richard Jones
- MS Bioworks, LLC, 3950 Varsity Drive Ann Arbor, Michigan 48108
| | | | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787 Japan; Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603 Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603 Japan
| | - Sachiko Kondo
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603 Japan; Medical & Biological Laboratories Co., Ltd, 2-22-8 Chikusa, Chikusa-ku, Nagoya 464-0858 Japan
| | - C T Yuen
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG United Kingdom
| | - Akira Harazono
- Division of Biological Chemistry & Biologicals, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 Japan
| | - Xiaofeng Shi
- New England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938
| | - Paula E Magnelli
- New England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938
| | - Brian T Kasper
- New York University, 100 Washington Square East New York City, New York 10003
| | - Lara Mahal
- New York University, 100 Washington Square East New York City, New York 10003
| | - David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| | - Roisin O'Flaherty
- GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Pauline M Rudd
- GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Radka Saldova
- GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Elizabeth S Hecht
- Department of Chemistry, North Carolina State University, 2620 Yarborough Drive Raleigh, North Carolina 27695
| | - David C Muddiman
- Department of Chemistry, North Carolina State University, 2620 Yarborough Drive Raleigh, North Carolina 27695
| | - Jichao Kang
- Pantheon, 201 College Road East Princeton, New Jersey 08540
| | | | | | - Andrew Saati
- Pfizer Inc., 1 Burtt Road Andover, Massachusetts 01810
| | - Christine Merle
- Proteodynamics, ZI La Varenne 20-22 rue Henri et Gilberte Goudier 63200 RIOM, France
| | - Steven Mast
- ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545
| | - Sam Tep
- ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545
| | - Jennie Truong
- ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545
| | - Takashi Nishikaze
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho Nakagyo-ku, Kyoto, 604 8511 Japan
| | - Sadanori Sekiya
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho Nakagyo-ku, Kyoto, 604 8511 Japan
| | - Aaron Shafer
- Children's GMP LLC, St. Jude Children's Research Hospital, 262 Danny Thomas Place Memphis, Tennessee 38105
| | - Sohei Funaoka
- Sumitomo Bakelite Co., Ltd., 1-5 Muromati 1-Chome, Nishiku, Kobe, 651-2241 Japan
| | - Masaaki Toyoda
- Sumitomo Bakelite Co., Ltd., 1-5 Muromati 1-Chome, Nishiku, Kobe, 651-2241 Japan
| | - Peter de Vreugd
- Synthon Biopharmaceuticals, Microweg 22 P.O. Box 7071, 6503 GN Nijmegen, The Netherlands
| | - Cassie Caron
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139
| | - Pralima Pradhan
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139
| | - Niclas Chiang Tan
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, Texas 79409
| | - Sachin Patil
- Thermo Fisher Scientific, 1214 Oakmead Parkway Sunnyvale, California 94085
| | - Jeffrey S Rohrer
- Thermo Fisher Scientific, 1214 Oakmead Parkway Sunnyvale, California 94085
| | - Ranjan Chakrabarti
- United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District, Hyderabad 500 101 Telangana, India
| | - Disha Dadke
- United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District, Hyderabad 500 101 Telangana, India
| | - Mohammedazam Lahori
- United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District, Hyderabad 500 101 Telangana, India
| | - Chunxia Zou
- Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada
| | - Christopher Cairo
- Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada
| | - Béla Reiz
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada
| | - Randy M Whittal
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616
| | - Lauren Wu
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616
| | - Andras Guttman
- Horváth Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem ter 1, Hungary
| | - Marton Szigeti
- Horváth Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem ter 1, Hungary; Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Egyetem ut 10, Hungary
| | - Benjamin G Kremkow
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way Newark, Delaware 19711
| | - Kelvin H Lee
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way Newark, Delaware 19711
| | - Carina Sihlbom
- Proteomics Core Facility, University of Gothenburg, Medicinaregatan 1G SE 41390 Gothenburg, Sweden
| | - Barbara Adamczyk
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden
| | - Jessica Örnros
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Straket 16, 41345 Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Straket 16, 41345 Gothenburg, Sweden
| | - Bernd Meyer
- Department of Chemistry, University of Hamburg, Martin Luther King Pl. 6 20146 Hamburg, Germany
| | - Alena Wiegandt
- Department of Chemistry, University of Hamburg, Martin Luther King Pl. 6 20146 Hamburg, Germany
| | - Emy Komatsu
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2
| | - Helene Perreault
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2
| | - Edward D Bodnar
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2; Agilent Technologies, Inc., 5301 Stevens Creek Blvd Santa Clara, California 95051
| | - Nassur Said
- Laboratory of Mass Spectrometry of Interactions and Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France
| | - Yannis-Nicolas Francois
- Laboratory of Mass Spectrometry of Interactions and Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France
| | - Emmanuelle Leize-Wagner
- Laboratory of Mass Spectrometry of Interactions and Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France
| | - Sandra Maier
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstraβe 55, 72770 Reutlingen, Germany
| | - Anne Zeck
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstraβe 55, 72770 Reutlingen, Germany
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Yang Yang
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Ying Qing Yu
- Department of Chemistry, Waters Corporation, 34 Maple Street Milford, Massachusetts 01757
| | - William Alley
- Department of Chemistry, Waters Corporation, 34 Maple Street Milford, Massachusetts 01757
| | | | - Hua Yuan
- Zoetis, 333 Portage St. Kalamazoo, Michigan 49007
| | - Stephen E Stein
- Mass Spectrometry Data Center, Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive Gaithersburg, Maryland 20899
| |
Collapse
|
56
|
Campbell MP, Abrahams JL, Rapp E, Struwe WB, Costello CE, Novotny M, Ranzinger R, York WS, Kolarich D, Rudd PM, Kettner C. The minimum information required for a glycomics experiment (MIRAGE) project: LC guidelines. Glycobiology 2019; 29:349-354. [PMID: 30778580 DOI: 10.1093/glycob/cwz009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/13/2022] Open
Abstract
The Minimum Information Required for a Glycomics Experiment (MIRAGE) is an initiative created by experts in the fields of glycobiology, glycoanalytics and glycoinformatics to design guidelines that improve the reporting and reproducibility of glycoanalytical methods. Previously, the MIRAGE Commission has published guidelines for describing sample preparation methods and the reporting of glycan array and mass spectrometry techniques and data collections. Here, we present the first version of guidelines that aim to improve the quality of the reporting of liquid chromatography (LC) glycan data in the scientific literature. These guidelines cover all aspects of instrument setup and modality of data handling and manipulation and is cross-linked with other MIRAGE recommendations. The most recent version of the MIRAGE-LC guidelines is freely available at the MIRAGE project website doi:10.3762/mirage.4.
Collapse
Affiliation(s)
- Matthew P Campbell
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Jodie L Abrahams
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, Germany
| | - Weston B Struwe
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, UK
| | - Catherine E Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA, USA
| | - Milos Novotny
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, USA
| | - Rene Ranzinger
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - William S York
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.,ARC Centre for Nanoscale BioPhotonics, Griffith University, Gold Coast, Queensland, Australia
| | - Pauline M Rudd
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore
| | - Carsten Kettner
- Beilstein-Institut, Trakehner Str. 7-9, Frankfurt am Main, Germany
| |
Collapse
|
57
|
Duivelshof BL, Jiskoot W, Beck A, Veuthey JL, Guillarme D, D’Atri V. Glycosylation of biosimilars: Recent advances in analytical characterization and clinical implications. Anal Chim Acta 2019; 1089:1-18. [DOI: 10.1016/j.aca.2019.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022]
|
58
|
Wong TL, Li LF, Zhang JX, Bai SP, Zhou LS, Fung HY, Zhang QW, Ma DL, Leung CH, Zhao ZZ, Han QB. Oligosaccharide-marker approach for qualitative and quantitative analysis of specific polysaccharide in herb formula by ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry: Dendrobium officinale, a case study. J Chromatogr A 2019; 1607:460388. [DOI: 10.1016/j.chroma.2019.460388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/30/2022]
|
59
|
Mass spectrometry-based qualitative and quantitative N-glycomics: An update of 2017-2018. Anal Chim Acta 2019; 1091:1-22. [PMID: 31679562 DOI: 10.1016/j.aca.2019.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
N-glycosylation is one of the most frequently occurring protein post-translational modifications (PTMs) with broad cellular, physiological and pathological relevance. Mass spectrometry-based N-glycomics has become the state-of-the-art instrumental analytical pipeline for sensitive, high-throughput and comprehensive characterization of N-glycans and N-glycomes. Improvement and new development of methods in N-glycan release, enrichment, derivatization, isotopic labeling, separation, ionization, MS, tandem MS and informatics accompany side-by-side wider and deeper application. This review provides a comprehensive update of mass spectrometry-based qualitative and quantitative N-glycomics in the years of 2017-2018.
Collapse
|
60
|
Tóth G, Vékey K, Drahos L, Horváth V, Turiák L. Salt and solvent effects in the microscale chromatographic separation of heparan sulfate disaccharides. J Chromatogr A 2019; 1610:460548. [PMID: 31547957 DOI: 10.1016/j.chroma.2019.460548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/28/2019] [Accepted: 09/14/2019] [Indexed: 12/25/2022]
Abstract
The analysis of heparan sulfate disaccharides poses a real challenge both from chromatographic and mass spectrometric point of view. This necessitates the constant improvement of their analytical methodology. In the present study, the chromatographic effects of solvent composition, salt concentration, and salt type were systematically investigated in isocratic HILIC-WAX separations of heparan sulfate disaccharides. The combined use of 75% acetonitrile with ammonium formate had overall benefits regarding intensity, detection limits, and peak shape for all salt concentrations investigated. Results obtained with the isocratic measurements suggested the potential use of a salt gradient method in order to maximize separation efficiency. A 3-step gradient from 14 mM to 65 mM ammonium formate concentration proved to be ideal for separation and quantitation. The LOD of the resulting method was 0.8-1.5 fmol for the individual disaccharides and the LOQ was between 2.5-5 fmol. Outstanding linearity could be observed up to 2 pmol. This novel combination provided sufficient sensitivity for disaccharide analysis, which was demonstrated by the analysis of heparan sulfate samples from porcine and bovine origin.
Collapse
Affiliation(s)
- Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary
| | - Viola Horváth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary; MTA-BME Computation Driven Chemistry Research Group, Szent Gellért tér 4., H-1111 Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary.
| |
Collapse
|
61
|
Gray CJ, Migas LG, Barran PE, Pagel K, Seeberger PH, Eyers CE, Boons GJ, Pohl NLB, Compagnon I, Widmalm G, Flitsch SL. Advancing Solutions to the Carbohydrate Sequencing Challenge. J Am Chem Soc 2019; 141:14463-14479. [PMID: 31403778 DOI: 10.1021/jacs.9b06406] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbohydrates possess a variety of distinct features with stereochemistry playing a particularly important role in distinguishing their structure and function. Monosaccharide building blocks are defined by a high density of chiral centers. Additionally, the anomericity and regiochemistry of the glycosidic linkages carry important biological information. Any carbohydrate-sequencing method needs to be precise in determining all aspects of this stereodiversity. Recently, several advances have been made in developing fast and precise analytical techniques that have the potential to address the stereochemical complexity of carbohydrates. This perspective seeks to provide an overview of some of these emerging techniques, focusing on those that are based on NMR and MS-hybridized technologies including ion mobility spectrometry and IR spectroscopy.
Collapse
Affiliation(s)
- Christopher J Gray
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Lukasz G Migas
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Perdita E Barran
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Kevin Pagel
- Institute for Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Peter H Seeberger
- Biomolecular Systems Department , Max Planck Institute for Colloids and Interfaces , Am Muehlenberg 1 , 14476 Potsdam , Germany
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology , University of Liverpool , Crown Street , Liverpool L69 7ZB , U.K
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Nicola L B Pohl
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Isabelle Compagnon
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS , Université de Lyon , 69622 Villeurbanne Cedex , France.,Institut Universitaire de France IUF , 103 Blvd St Michel , 75005 Paris , France
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , S-106 91 Stockholm , Sweden
| | - Sabine L Flitsch
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| |
Collapse
|
62
|
Mernie EG, Tolesa LD, Lee MJ, Tseng MC, Chen YJ. Direct Oligosaccharide Profiling Using Thin-Layer Chromatography Coupled with Ionic Liquid-Stabilized Nanomatrix-Assisted Laser Desorption-Ionization Mass Spectrometry. Anal Chem 2019; 91:11544-11552. [DOI: 10.1021/acs.analchem.9b01241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elias Gizaw Mernie
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Leta Deressa Tolesa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Ming-Jer Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, Soochow University, Taipei 106, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
63
|
Tsai S, Liew CY, Hsu C, Huang S, Weng W, Kuo Y, Ni C. Automatic Full Glycan Structural Determination through Logically Derived Sequence Tandem Mass Spectrometry. Chembiochem 2019; 20:2351-2359. [DOI: 10.1002/cbic.201900228] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shang‐Ting Tsai
- Institute of Atomic and Molecular SciencesAcademia Sinica P. O. Box 23-166 Taipei 10617 Taiwan
| | - Chia Yen Liew
- Institute of Atomic and Molecular SciencesAcademia Sinica P. O. Box 23-166 Taipei 10617 Taiwan
- Molecular Science and Technology International Graduate ProgramAcademia Sinica and National University Taipei 10617 Taiwan
| | - Chen Hsu
- Institute of Atomic and Molecular SciencesAcademia Sinica P. O. Box 23-166 Taipei 10617 Taiwan
| | - Shih‐Pei Huang
- Institute of Atomic and Molecular SciencesAcademia Sinica P. O. Box 23-166 Taipei 10617 Taiwan
| | - Wei‐Chien Weng
- Institute of Atomic and Molecular SciencesAcademia Sinica P. O. Box 23-166 Taipei 10617 Taiwan
| | - Yu‐Hsiang Kuo
- Institute of Atomic and Molecular SciencesAcademia Sinica P. O. Box 23-166 Taipei 10617 Taiwan
| | - Chi‐Kung Ni
- Institute of Atomic and Molecular SciencesAcademia Sinica P. O. Box 23-166 Taipei 10617 Taiwan
- Department of ChemistryNational Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
64
|
Banazadeh A, Nieman R, Goli M, Peng W, Hussein A, Bursal E, Lischka H, Mechref Y. Characterization of glycan isomers using magnetic carbon nanoparticles as a MALDI co-matrix. RSC Adv 2019; 9:20137-20148. [PMID: 31316759 PMCID: PMC6625494 DOI: 10.1039/c9ra02337b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix-assisted laser desorption ionization-in source decay (MALDI-ISD) analysis is a useful technique in the structural analysis of glycans. Our recent publication demonstrated that magnetic carbon nanoparticles (MCNPs), used as a MALDI co-matrix, significantly enhanced ISD efficiency for glycomic analysis by MALDI-TOF. In this study, MCNPs were used for the structural study of isomeric glycans. Results from the standard glycans confirmed easy distinction of positional and linkage isomers without the need for further derivatization of glycan molecules. Extensive glycosidic and cross-ring fragmented ions provided different fragment patterns for various glycan isomers. Core- and branch-fucosylated isomers were distinguished by several unique ions, and pseudo-MS3 data were used to recognize the fucosylated branch. Although no diagnostic fragment ion was observed for 2,3- and 2,6-linked sialic acid isomers, their MALDI-ISD patterns were found to be significantly different (P < 0.05). Furthermore, the method introduced in this study could not only be used for the identification of glycan isomers but has also proved effective for the isomeric structural confirmation of gangliosides. GD1a and GD1b gangliosides were easily distinguished by the diagnostic ion originated from GD1a, produced by Z4αZ2β cleavages. Moreover, liquid chromatography coupled with MALDI-TOF was applied to analyze N-glycan isomers derived from a pooled human blood serum sample, providing an alternative method of isomeric glycomic analysis of biological specimens. Magnetic carbon nanoparticles as a MALDI co-matrix enable isomeric characterization of glycans in biological samples.![]()
Collapse
Affiliation(s)
- Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
| | - Ahmed Hussein
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059.,Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, 21526, Egypt
| | - Ercan Bursal
- Department of Nursing, School of Health, Mus Alparslan University, Mus, Turkey
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059.,School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059.,Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
65
|
Hao Q, Nan T, Zhou L, Kang L, Guo L, Yu Y. Rapid simultaneous quantification of fructooligosaccharides in
Morinda officianalis
by ultra‐high performance liquid chromatography. J Sep Sci 2019; 42:2222-2230. [DOI: 10.1002/jssc.201801287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Qingxiu Hao
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical Sciences Beijng P. R. China
- National Resource Center for Chinese Materia Medica‐Infinitus (China) Joint Laboratory Herbs Quality Research Beijing P. R. China
| | - Tiegui Nan
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical Sciences Beijng P. R. China
- National Resource Center for Chinese Materia Medica‐Infinitus (China) Joint Laboratory Herbs Quality Research Beijing P. R. China
| | - Li Zhou
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical Sciences Beijng P. R. China
- National Resource Center for Chinese Materia Medica‐Infinitus (China) Joint Laboratory Herbs Quality Research Beijing P. R. China
| | - Liping Kang
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical Sciences Beijng P. R. China
- National Resource Center for Chinese Materia Medica‐Infinitus (China) Joint Laboratory Herbs Quality Research Beijing P. R. China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical Sciences Beijng P. R. China
- National Resource Center for Chinese Materia Medica‐Infinitus (China) Joint Laboratory Herbs Quality Research Beijing P. R. China
| | - Yi Yu
- National Resource Center for Chinese Materia Medica‐Infinitus (China) Joint Laboratory Herbs Quality Research Beijing P. R. China
- Infinitus (China) Company Ltd Guangzhou P. R. China
| |
Collapse
|
66
|
Seo Y, Oh MJ, Park JY, Ko JK, Kim JY, An HJ. Comprehensive Characterization of Biotherapeutics by Selective Capturing of Highly Acidic Glycans Using Stepwise PGC-SPE and LC/MS/MS. Anal Chem 2019; 91:6064-6071. [DOI: 10.1021/acs.analchem.9b00603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Youngsuk Seo
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Myung Jin Oh
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jin Young Park
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jae Kyoung Ko
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jin Young Kim
- Department of Mass Spectrometry, Korea Basic Science Institute, Ochang 28119, Korea
| | - Hyun Joo An
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
67
|
Barbosa EA, Fontes NDC, Santos SCL, Lefeber DJ, Bloch C, Brum JM, Brand GD. Relative quantification of plasma N-glycans in type II congenital disorder of glycosylation patients by mass spectrometry. Clin Chim Acta 2019; 492:102-113. [PMID: 30776362 DOI: 10.1016/j.cca.2019.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Type II Congenital Disorders of Glycosylation (CDG-II) are a group of diseases with challenging diagnostics characterized by defects in the processing of glycans in the Golgi apparatus. Mass Spectrometry (MS) has been a valuable tool in the definition of CDG-II subtypes. While some CDG-II subtypes are associated with specific N-glycan structures, others only produce changes in relative levels, reinforcing the demand for quantification methods. METHODS Plasma samples from control individuals were pooled, derivatized with deuterated iodomethane (I-CD3), and used as internal standards for controls and patients whose glycans were derivatized with iodomethane (I-CH3), followed by MALDI MS, LC-MS and -MS/MS analyses. RESULTS Total N-glycans from fifteen CDG-II patients were evaluated, and 4 cases with molecular diagnosis were considered in detail: 2ATP6V0A2-CDG siblings, and 2 MAN1B1-CDG patients, one of them carrying a previously undescribed p.Gly536Val mutation. CONCLUSIONS Our methodology offers a feasible alternative to the current methods for CDG-II diagnosis by MS, which quantify glycan structures as fractions of the total summed signal across a mass spectrum, a strategy that lowers the variability of minor components. Moreover, given its sensitivity for less concentrated yet biologically relevant structures, it might assist the uncovering of novel diagnostic glycans in other CDG-II subtypes.
Collapse
Affiliation(s)
- E A Barbosa
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química - IQ, Universidade de Brasília - UnB, Brasília, DF, Brazil; Laboratório de Espectrometria de Massa - LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - N do C Fontes
- Laboratório de Genética Bioquímica, Rede Sarah de Hospitais de Reabilitação, Brasília, DF, Brazil
| | - S C L Santos
- Laboratório de Biologia Molecular, Rede Sarah de Hospitais de Reabilitação, Brasília, DF, Brazil
| | - D J Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Donders Center for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - C Bloch
- Laboratório de Espectrometria de Massa - LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - J M Brum
- Laboratório de Genética Bioquímica, Rede Sarah de Hospitais de Reabilitação, Brasília, DF, Brazil
| | - G D Brand
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química - IQ, Universidade de Brasília - UnB, Brasília, DF, Brazil.
| |
Collapse
|
68
|
Ji ES, Lee HK, Park GW, Kim KH, Kim JY, Yoo JS. Isomer separation of sialylated O- and N-linked glycopeptides using reversed-phase LC-MS/MS at high temperature. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:101-107. [PMID: 30798070 DOI: 10.1016/j.jchromb.2019.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 01/28/2023]
Abstract
Analyses of intact glycopeptides using mass spectrometry is challenging due to the numerous types of isomers of glycan moieties attached to the peptide backbone. Here, we demonstrate that high-temperature reversed-phase liquid chromatography (RPLC) can be used to separate isomeric O- and N-linked glycopeptides. In general, high column temperatures enhanced the resolution for separation of sialylated O- and N-linked glycopeptide isomers with decreased retention times. Using the high-temperature RPLC method, α2-6-linked sialylated N-glycopeptides were eluted first, followed by α2-3-linked isomers. However, highly sialylated N-glycopeptides containing hydrophobic amino acids exhibited increased retention times at high temperature. The separation of sialylated O- and N-glycopeptides with different glycan isoforms using a high-temperature RPLC method was demonstrated. This study indicates that reversed-phase chromatographic separation at high column temperatures is suitable for the separation of glycopeptide structural isomers.
Collapse
Affiliation(s)
- Eun Sun Ji
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Hyun Kyoung Lee
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Gun Wook Park
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Kwang Hoe Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea.
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
69
|
Mucha E, Stuckmann A, Marianski M, Struwe WB, Meijer G, Pagel K. In-depth structural analysis of glycans in the gas phase. Chem Sci 2019; 10:1272-1284. [PMID: 30809341 PMCID: PMC6357860 DOI: 10.1039/c8sc05426f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
Although there have been substantial improvements in glycan analysis over the past decade, the lack of both high-resolution and high-throughput methods hampers progress in glycomics. This perspective article highlights the current developments of liquid chromatography, mass spectrometry, ion-mobility spectrometry and cryogenic IR spectroscopy for glycan analysis and gives a critical insight to their individual strengths and limitations. Moreover, we discuss a novel concept in which ion mobility-mass spectrometry and cryogenic IR spectroscopy is combined in a single instrument such that datasets consisting of m/z, collision cross sections and IR fingerprints can be obtained. This multidimensional data will then be compared to a comprehensive reference library of intact glycans and their fragments to accurately identify unknown glycans on a high-throughput scale with minimal sample requirements. Due to the complementarity of the obtained information, this novel approach is highly diagnostic and also suitable for the identification of larger glycans; however, the workflow and instrumentation is straightforward enough to be implemented into a user-friendly setup.
Collapse
Affiliation(s)
- Eike Mucha
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Alexandra Stuckmann
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Mateusz Marianski
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
| | - Weston B Struwe
- Oxford Glycobiology Institute , Department of Biochemistry , University of Oxford , OX1 3QU Oxford , UK
| | - Gerard Meijer
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| |
Collapse
|
70
|
Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: A review based on the separation characteristics of the hydrophilic interaction chromatography phases. J Sep Sci 2019; 42:130-213. [DOI: 10.1002/jssc.201801074] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tohru Ikegami
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Kyoto Japan
- Institute of Pharmaceutical Sciences; Pharmaceutical (Bio-) Analysis; Eberhard-Karls Universität Tübingen; Tübingen Germany
| |
Collapse
|
71
|
High-selectivity profiling of released and labeled N-glycans via polar-embedded reversed-phase chromatography. Anal Bioanal Chem 2018; 411:735-743. [PMID: 30478517 PMCID: PMC6338698 DOI: 10.1007/s00216-018-1495-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 01/07/2023]
Abstract
N-Glycosylation is the most complex post-translational modification of proteins and involved in many physiological processes and is therefore of major interest in academic research and in the biopharmaceutical industry. Reliable, robust, reproducible, and selective analysis of N-glycans is essential to understand the multitude of biological roles of N-glycosylation. So far, hydrophilic interaction liquid chromatography analysis of 2-AB or 2-AA derivatized N-glycans has been the standard method. In this work, the superiority of reversed-phase chromatography for complex N-glycosylation analysis is demonstrated. Separation of N-glycans derivatized with anthranilic acid on polar-embedded stationary alkyl phases with sub-2-μm particles results in outstanding selectivity and resolution. In combination with the highly mass spectrometry–compatible mobile phase, even very complex glycan mixtures can be separated, identified, and quantified precisely and accurately. The presented methodology can be applied broadly from basic research to analytical control and release testing of biological drug products and can be implemented in analytical laboratories with minimal effort. ᅟ ![]()
Collapse
|
72
|
Peng W, Zhao J, Dong X, Banazadeh A, Huang Y, Hussien A, Mechref Y. Clinical application of quantitative glycomics. Expert Rev Proteomics 2018; 15:1007-1031. [PMID: 30380947 PMCID: PMC6647030 DOI: 10.1080/14789450.2018.1543594] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Aberrant glycosylation has been associated with many diseases. Decades of research activities have reported many reliable glycan biomarkers of different diseases which enable effective disease diagnostics and prognostics. However, none of the glycan markers have been approved for clinical diagnosis. Thus, a review of these studies is needed to guide the successful clinical translation. Area covered: In this review, we describe and discuss advances in analytical methods enabling clinical glycan biomarker discovery, focusing only on studies of released glycans. This review also summarizes the different glycobiomarkers identified for cancers, Alzheimer's disease, diabetes, hepatitis B and C, and other diseases. Expert commentary: Along with the development of techniques in quantitative glycomics, more glycans or glycan patterns have been reported as better potential biomarkers of different diseases and proved to have greater diagnostic/diagnostic sensitivity and specificity than existing markers. However, to successfully apply glycan markers in clinical diagnosis, more studies and verifications on large biological cohorts need to be performed. In addition, faster and more efficient glycomic strategies need to be developed to shorten the turnaround time. Thus, glycan biomarkers have an immense chance to be used in clinical prognosis and diagnosis of many diseases in the near future.
Collapse
Affiliation(s)
- Wenjing Peng
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Jingfu Zhao
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Xue Dong
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Alireza Banazadeh
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Yifan Huang
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Ahmed Hussien
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA.,b Department of Biotechnology , Institute of Graduate Studies and Research, University of Alexandria , Alexandria , Egypt
| | - Yehia Mechref
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| |
Collapse
|
73
|
An attempt to characterize the human Chorionic Gonadotropin protein by reversed phase liquid chromatography coupled with high-resolution mass spectrometry at the intact level. J Pharm Biomed Anal 2018; 161:35-44. [DOI: 10.1016/j.jpba.2018.07.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/18/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022]
|
74
|
|
75
|
Lu G, Crihfield CL, Gattu S, Veltri LM, Holland LA. Capillary Electrophoresis Separations of Glycans. Chem Rev 2018; 118:7867-7885. [PMID: 29528644 PMCID: PMC6135675 DOI: 10.1021/acs.chemrev.7b00669] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 01/04/2023]
Abstract
Capillary electrophoresis has emerged as a powerful approach for carbohydrate analyses since 2014. The method provides high resolution capable of separating carbohydrates by charge-to-size ratio. Principle applications are heavily focused on N-glycans, which are highly relevant to biological therapeutics and biomarker research. Advances in techniques used for N-glycan structural identification include migration time indexing and exoglycosidase and lectin profiling, as well as mass spectrometry. Capillary electrophoresis methods have been developed that are capable of separating glycans with the same monosaccharide sequence but different positional isomers, as well as determining whether monosaccharides composing a glycan are alpha or beta linked. Significant applications of capillary electrophoresis to the analyses of N-glycans in biomarker discovery and biological therapeutics are emphasized with a brief discussion included on carbohydrate analyses of glycosaminoglycans and mono-, di-, and oligosaccharides relevant to food and plant products. Innovative, emerging techniques in the field are highlighted and the future direction of the technology is projected based on the significant contributions of capillary electrophoresis to glycoscience from 2014 to the present as discussed in this review.
Collapse
Affiliation(s)
- Grace Lu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Cassandra L. Crihfield
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Srikanth Gattu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lindsay M. Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
76
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
77
|
Banazadeh A, Williamson S, Zabet M, Hussien A, Mechref Y. Magnetic carbon nanocomposites as a MALDI co-matrix enhancing MS-based glycomics. Anal Bioanal Chem 2018; 410:7395-7404. [PMID: 30196422 PMCID: PMC6375713 DOI: 10.1007/s00216-018-1345-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 01/26/2023]
Abstract
More than 50% of all known proteins are glycosylated, which is critical for many biological processes such as protein folding and signal transduction. Glycosylation has proven to be associated with different mammalian diseases such as breast and liver cancers. Therefore, characterization of glycans is highly important to facilitate a better understanding of the development and progression of many human diseases. Although matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) offers several advantages such as ease of operation and short analysis times, however, due to the complexity of glycan structures and their low ionization efficiency, there are still challenges that need to be addressed to achieve sensitive glycan analysis. Here, magnetic carbon nanocomposites (CNPs@Fe3O4 NCs) were used as a new MALDI matrix or co-matrix for the analysis of glycans derived from different model glycoproteins and human blood serum samples. The addition of CNPs@Fe3O4 NCs to the matrix significantly enhanced glycan signal intensity by several orders of magnitude, and effectively controlled/reduced/eliminated in-source decay (ISD) fragmentation. The latter was attained by modulating CNPs@Fe3O4 NCs concentrations and allowed the simultaneous study of intact and fragmented glycans, and pseudo-MS3 analysis. Moreover, CNPs@Fe3O4 NCs was also effectively employed to desalt samples directly on MALDI plate, thus enabling direct MALDI-MS analysis of unpurified permethylated glycans derived from both model glycoproteins and biological samples. On-plate desalting enhanced sensitivity by reducing sample loss. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Seth Williamson
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Masoud Zabet
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Ahmed Hussien
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.,Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, 21526, Egypt
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA. .,Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
78
|
High-performance liquid chromatographic separation of 8-aminopyrene-1,3,6-trisulfonic acid labeled N-glycans using a functional tetrazole hydrophilic interaction liquid chromatography column. J Chromatogr A 2018; 1566:44-50. [DOI: 10.1016/j.chroma.2018.06.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/04/2018] [Accepted: 06/19/2018] [Indexed: 12/28/2022]
|
79
|
Tang Y, Wei J, Costello CE, Lin C. Characterization of Isomeric Glycans by Reversed Phase Liquid Chromatography-Electronic Excitation Dissociation Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1295-1307. [PMID: 29654534 PMCID: PMC6004250 DOI: 10.1007/s13361-018-1943-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/10/2018] [Accepted: 03/10/2018] [Indexed: 05/15/2023]
Abstract
The occurrence of numerous structural isomers in glycans from biological sources presents a severe challenge for structural glycomics. The subtle differences among isomeric structures demand analytical methods that can provide structural details while working efficiently with on-line glycan separation methods. Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a powerful tool for mixture analysis, the commonly utilized collision-induced dissociation (CID) method often does not generate a sufficient number of fragments at the MS2 level for comprehensive structural characterization. Here, we studied the electronic excitation dissociation (EED) behaviors of metal-adducted, permethylated glycans, and identified key spectral features that could facilitate both topology and linkage determinations. We developed an EED-based, nanoscale, reversed phase (RP)LC-MS/MS platform, and demonstrated its ability to achieve complete structural elucidation of up to five structural isomers in a single LC-MS/MS analysis. Graphical Abstract.
Collapse
Affiliation(s)
- Yang Tang
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Juan Wei
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Catherine E Costello
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
80
|
Hydrophilic interaction liquid chromatography in the separation of glycopeptides and their isomers. Anal Bioanal Chem 2018; 410:5001-5008. [PMID: 29806066 DOI: 10.1007/s00216-018-1150-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 10/14/2022]
Abstract
The analysis of intact glycopeptides is a challenge because of the structural variety of the complex conjugates. In this work, we used separation involving hydrophilic interaction liquid chromatography using a superficially porous particle HALO® penta-HILIC column with tandem mass spectrometric detection for the analysis of N-glycopeptides of hemopexin. We tested the effect of the mobile phase composition on retention and separation of the glycopeptides. The results indicated that the retention of the glycopeptides was the combination of partitioning and adsorption processes. Under the optimized conditions, our HILIC method showed the ability to efficiently separate the glycoforms of the same peptide backbone including separation of the isobaric glycoforms. We achieved efficient separation of core and outer arm linked fucose of bi-antennary and tri-antennary glycoforms of the SWPAVGNCSSALR peptide and bi-antennary glycoform of the ALPQPQNVTSLLGCTH peptide, respectively. Moreover, we demonstrated the separation of antennary position of sialic acid linked via α2-6 linkage of the monosialylated glycopeptides. Glycopeptide isomers are often differentially associated with various biological processes. Therefore, chromatographic separation of the species without the need for an extensive sample preparation appears attractive for their identification, characterization, and reliable quantification.
Collapse
|
81
|
Evaporative fluorophore labeling of carbohydrates via reductive amination. Talanta 2018; 185:365-369. [PMID: 29759213 DOI: 10.1016/j.talanta.2018.03.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/13/2018] [Accepted: 03/29/2018] [Indexed: 01/21/2023]
Abstract
As analytical glycomics became to prominence, newer and more efficient sample preparation methods are being developed. Albeit, numerous reductive amination based carbohydrate labeling protocols have been reported in the literature, the preferred way to conduct the reaction is in closed vials. Here we report on a novel evaporative labeling protocol with the great advantage of continuously concentrating the reagents during the tagging reaction, therefore accommodating to reach the optimal reagent concentrations for a wide range of glycan structures in a complex mixture. The optimized conditions of the evaporative labeling process minimized sialylation loss, otherwise representing a major issue in reductive amination based carbohydrate tagging. In addition, complete and uniform dispersion of dry samples was obtained by supplementing the low volume labeling mixtures (several microliters) with the addition of extra solvent (e.g., THF). Evaporative labeling is an automation-friendly glycan labeling method, suitable for standard open 96 well plate format operation.
Collapse
|
82
|
|
83
|
Structural analysis of N-/O-glycans assembled on proteins in yeasts. J Microbiol 2018; 56:11-23. [DOI: 10.1007/s12275-018-7468-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/02/2017] [Accepted: 12/03/2017] [Indexed: 01/06/2023]
|
84
|
Kailemia MJ, Xu G, Wong M, Li Q, Goonatilleke E, Leon F, Lebrilla CB. Recent Advances in the Mass Spectrometry Methods for Glycomics and Cancer. Anal Chem 2018; 90:208-224. [PMID: 29049885 PMCID: PMC6200424 DOI: 10.1021/acs.analchem.7b04202] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Muchena J. Kailemia
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- These authors contributed equally to this work
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- These authors contributed equally to this work
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Frank Leon
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
- Foods for Health Institute, University of California, Davis, CA 95616, USA
| |
Collapse
|
85
|
Veillon L, Huang Y, Peng W, Dong X, Cho BG, Mechref Y. Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis 2017; 38:2100-2114. [PMID: 28370073 PMCID: PMC5581235 DOI: 10.1002/elps.201700042] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/21/2017] [Accepted: 03/12/2017] [Indexed: 12/12/2022]
Abstract
The characterization of glycosylation is critical for obtaining a comprehensive view of the regulation and functions of glycoproteins of interest. Due to the complex nature of oligosaccharides, stemming from variable compositions and linkages, and ion suppression effects, the chromatographic separation of glycans, including isomeric structures, is necessary for exhaustive characterization by MS. This review introduces the fundamental principles underlying the techniques in LC utilized by modern day glycomics researchers. Recent advances in porous graphitized carbon, reverse phase, ion exchange, and hydrophilic interaction LC utilized in conjunction with MS, for the characterization of protein glycosylation, are described with an emphasis on methods capable of resolving isomeric glycan structures.
Collapse
Affiliation(s)
- Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | | | | | | | - Byeong G. Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| |
Collapse
|
86
|
Kozlik P, Sanda M, Goldman R. Nano reversed phase versus nano hydrophilic interaction liquid chromatography on a chip in the analysis of hemopexin glycopeptides. J Chromatogr A 2017; 1519:152-155. [PMID: 28888681 DOI: 10.1016/j.chroma.2017.08.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/08/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Abstract
Analysis of the glycosylation of proteins is a challenge that requires orthogonal methods to achieve separation of the diverse glycoforms. A combination of reversed phase chromatography with tandem mass spectrometry (RP-LC-MS/MS) is one of the most powerful tools for glycopeptide analysis. In this work, we developed and compared RP-LC and hydrophilic interaction liquid chromatography (HILIC) in nanoscale on a chip combined with MS/MS in order to separate glycoforms of two peptides obtained from the tryptic digest of hemopexin. We observed reduction of the retention time with decreasing polarity of glycans attached to the same peptide backbone in HILIC. The opposite effect was observed for RP-LC. The presence of sialic acids prolonged the retention of glycopeptides in both chromatographic modes. The nanoHILIC method provided higher selectivity based on the composition of glycan, compared to nanoRP-LC but a lower sensitivity. The nanoHILIC method was able to partially separate linkage isomers of fucose (core and outer arm) on bi-antennary glycoform of SWPAVGDCSSALR glycopeptide, which is beneficial in the elucidation of the structure of the fucosylated glycoforms.
Collapse
Affiliation(s)
- Petr Kozlik
- Department of Oncology, Lombardi Comprehensive Cancer Center PSB GF9, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, United States; Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Miloslav Sanda
- Department of Oncology, Lombardi Comprehensive Cancer Center PSB GF9, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, United States
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center PSB GF9, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, United States; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, United States.
| |
Collapse
|
87
|
Stine KJ. Application of Porous Materials to Carbohydrate Chemistry and Glycoscience. Adv Carbohydr Chem Biochem 2017; 74:61-136. [PMID: 29173727 DOI: 10.1016/bs.accb.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There is a growing interest in using a range of porous materials to meet research needs in carbohydrate chemistry and glycoscience in general. Among the applications of porous materials reviewed in this chapter, enrichment of glycans from biological samples prior to separation and analysis by mass spectrometry is a major emphasis. Porous materials offer high surface area, adjustable pore sizes, and tunable surface chemistry for interacting with glycans, by boronate affinity, hydrophilic interactions, molecular imprinting, and polar interactions. Among the materials covered in this review are mesoporous silica and related materials, porous graphitic carbon, mesoporous carbon, porous polymers, and nanoporous gold. In some applications, glycans are enzymatically or chemically released from glycoproteins or glycopeptides, and the porous materials have the advantage of size selectivity admitting only the glycans into the pores and excluding proteins. Immobilization of lectins onto porous materials of suitable pore size allows for the use of lectin-carbohydrate interactions in capture or separation of glycoproteins. Porous material surfaces modified with carbohydrates can be used for the selective capture of lectins. Controlled release of therapeutics from porous materials mediated by glycans has been reported, and so has therapeutic targeting using carbohydrate-modified porous particles. Additional applications of porous materials in glycoscience include their use in the supported synthesis of oligosaccharides and in the development of biosensors for glycans.
Collapse
|