51
|
Fonseca AF, Antunes DA. CrossDome: an interactive R package to predict cross-reactivity risk using immunopeptidomics databases. Front Immunol 2023; 14:1142573. [PMID: 37377956 PMCID: PMC10291144 DOI: 10.3389/fimmu.2023.1142573] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
T-cell-based immunotherapies hold tremendous potential in the fight against cancer, thanks to their capacity to specifically targeting diseased cells. Nevertheless, this potential has been tempered with safety concerns regarding the possible recognition of unknown off-targets displayed by healthy cells. In a notorious example, engineered T-cells specific to MAGEA3 (EVDPIGHLY) also recognized a TITIN-derived peptide (ESDPIVAQY) expressed by cardiac cells, inducing lethal damage in melanoma patients. Such off-target toxicity has been related to T-cell cross-reactivity induced by molecular mimicry. In this context, there is growing interest in developing the means to avoid off-target toxicity, and to provide safer immunotherapy products. To this end, we present CrossDome, a multi-omics suite to predict the off-target toxicity risk of T-cell-based immunotherapies. Our suite provides two alternative protocols, i) a peptide-centered prediction, or ii) a TCR-centered prediction. As proof-of-principle, we evaluate our approach using 16 well-known cross-reactivity cases involving cancer-associated antigens. With CrossDome, the TITIN-derived peptide was predicted at the 99+ percentile rank among 36,000 scored candidates (p-value < 0.001). In addition, off-targets for all the 16 known cases were predicted within the top ranges of relatedness score on a Monte Carlo simulation with over 5 million putative peptide pairs, allowing us to determine a cut-off p-value for off-target toxicity risk. We also implemented a penalty system based on TCR hotspots, named contact map (CM). This TCR-centered approach improved upon the peptide-centered prediction on the MAGEA3-TITIN screening (e.g., from 27th to 6th, out of 36,000 ranked peptides). Next, we used an extended dataset of experimentally-determined cross-reactive peptides to evaluate alternative CrossDome protocols. The level of enrichment of validated cases among top 50 best-scored peptides was 63% for the peptide-centered protocol, and up to 82% for the TCR-centered protocol. Finally, we performed functional characterization of top ranking candidates, by integrating expression data, HLA binding, and immunogenicity predictions. CrossDome was designed as an R package for easy integration with antigen discovery pipelines, and an interactive web interface for users without coding experience. CrossDome is under active development, and it is available at https://github.com/AntunesLab/crossdome.
Collapse
Affiliation(s)
| | - Dinler A. Antunes
- Antunes Lab, Center for Nuclear Receptors and Cell Signaling (CNRCS), Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
52
|
Castro JT, Brito R, Hojo-Souza NS, Azevedo B, Salazar N, Ferreira CP, Junqueira C, Fernandes AP, Vasconcellos R, Cardoso JM, Aguiar-Soares RDO, Vieira PMA, Carneiro CM, Valiate B, Toledo C, Salazar AM, Caballero O, Lannes-Vieira J, Teixeira SR, Reis AB, Gazzinelli RT. ASP-2/Trans-sialidase chimeric protein induces robust protective immunity in experimental models of Chagas' disease. NPJ Vaccines 2023; 8:81. [PMID: 37258518 DOI: 10.1038/s41541-023-00676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Immunization with the Amastigote Surface Protein-2 (ASP-2) and Trans-sialidase (TS) antigens either in the form of recombinant protein, encoded in plasmids or human adenovirus 5 (hAd5) confers robust protection against various lineages of Trypanosoma cruzi. Herein we generated a chimeric protein containing the most immunogenic regions for T and B cells from TS and ASP-2 (TRASP) and evaluated its immunogenicity in comparison with our standard protocol of heterologous prime-boost using plasmids and hAd5. Mice immunized with TRASP protein associated to Poly-ICLC (Hiltonol) were highly resistant to challenge with T. cruzi, showing a large decrease in tissue parasitism, parasitemia and no lethality. This protection lasted for at least 3 months after the last boost of immunization, being equivalent to the protection induced by DNA/hAd5 protocol. TRASP induced high levels of T. cruzi-specific antibodies and IFNγ-producing T cells and protection was primarily mediated by CD8+ T cells and IFN-γ. We also evaluated the toxicity, immunogenicity, and efficacy of TRASP and DNA/hAd5 formulations in dogs. Mild collateral effects were detected at the site of vaccine inoculation. While the chimeric protein associated with Poly-ICLC induced high levels of antibodies and CD4+ T cell responses, the DNA/hAd5 induced no antibodies, but a strong CD8+ T cell response. Immunization with either vaccine protected dogs against challenge with T. cruzi. Despite the similar efficacy, we conclude that moving ahead with TRASP together with Hiltonol is advantageous over the DNA/hAd5 vaccine due to pre-existing immunity to the adenovirus vector, as well as the cost-benefit for development and large-scale production.
Collapse
Affiliation(s)
- Julia T Castro
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz-Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Rory Brito
- Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Natalia S Hojo-Souza
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | - Bárbara Azevedo
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | - Natalia Salazar
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
| | | | - Caroline Junqueira
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Paula Fernandes
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
| | | | | | | | | | | | - Bruno Valiate
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | - Cristiane Toledo
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | - Santuza R Teixeira
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
| | | | - Ricardo T Gazzinelli
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil.
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil.
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz-Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
53
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
54
|
Naghavian R, Faigle W, Oldrati P, Wang J, Toussaint NC, Qiu Y, Medici G, Wacker M, Freudenmann LK, Bonté PE, Weller M, Regli L, Amigorena S, Rammensee HG, Walz JS, Brugger SD, Mohme M, Zhao Y, Sospedra M, Neidert MC, Martin R. Microbial peptides activate tumour-infiltrating lymphocytes in glioblastoma. Nature 2023; 617:807-817. [PMID: 37198490 PMCID: PMC10208956 DOI: 10.1038/s41586-023-06081-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Microbial organisms have key roles in numerous physiological processes in the human body and have recently been shown to modify the response to immune checkpoint inhibitors1,2. Here we aim to address the role of microbial organisms and their potential role in immune reactivity against glioblastoma. We demonstrate that HLA molecules of both glioblastoma tissues and tumour cell lines present bacteria-specific peptides. This finding prompted us to examine whether tumour-infiltrating lymphocytes (TILs) recognize tumour-derived bacterial peptides. Bacterial peptides eluted from HLA class II molecules are recognized by TILs, albeit very weakly. Using an unbiased antigen discovery approach to probe the specificity of a TIL CD4+ T cell clone, we show that it recognizes a broad spectrum of peptides from pathogenic bacteria, commensal gut microbiota and also glioblastoma-related tumour antigens. These peptides were also strongly stimulatory for bulk TILs and peripheral blood memory cells, which then respond to tumour-derived target peptides. Our data hint at how bacterial pathogens and bacterial gut microbiota can be involved in specific immune recognition of tumour antigens. The unbiased identification of microbial target antigens for TILs holds promise for future personalized tumour vaccination approaches.
Collapse
Affiliation(s)
- Reza Naghavian
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- Cellerys AG, Schlieren, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- Cellerys AG, Schlieren, Switzerland
- Immunity and Cancer, Institut Curie, PSL University, INSERM U932, Paris, France
| | - Pietro Oldrati
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Jian Wang
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Nora C Toussaint
- NEXUS Personalized Health Technologies, ETH Zurich, Schlieren, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Yuhan Qiu
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Gioele Medici
- Clinical Neuroscience Center, Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marcel Wacker
- Department of Peptide-based Immunotherapy, University of Tübingen, University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Lena K Freudenmann
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | | | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology and Clinical Neuroscience, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Luca Regli
- Clinical Neuroscience Center, Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sebastian Amigorena
- Immunity and Cancer, Institut Curie, PSL University, INSERM U932, Paris, France
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, University of Tübingen, University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Malte Mohme
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, University of Hamburg, Hamburg, Germany
| | - Yingdong Zhao
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, MD, USA
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- Cellerys AG, Schlieren, Switzerland
| | - Marian C Neidert
- Clinical Neuroscience Center, Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland.
- Cellerys AG, Schlieren, Switzerland.
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
- Therapeutic Immune Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
55
|
Tagliamonte M, Cavalluzzo B, Mauriello A, Ragone C, Buonaguro FM, Tornesello ML, Buonaguro L. Molecular mimicry and cancer vaccine development. Mol Cancer 2023; 22:75. [PMID: 37101139 PMCID: PMC10131527 DOI: 10.1186/s12943-023-01776-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The development of cancer immunotherapeutic strategies relies on the identification and validation of optimal target tumor antigens, which should be tumor-specific as well as able to elicit a swift and potent anti-tumor immune response. The vast majority of such strategies are based on tumor associated antigens (TAAs) which are shared wild type cellular self-epitopes highly expressed on tumor cells. Indeed, TAAs can be used to develop off-the-shelf cancer vaccines appropriate to all patients affected by the same malignancy. However, given that they may be also presented by HLAs on the surface of non-malignant cells, they may be possibly affected by immunological tolerance or elicit autoimmune responses. MAIN BODY In order to overcome such limitations, analogue peptides with improved antigenicity and immunogenicity able to elicit a cross-reactive T cell response are needed. To this aim, non-self-antigens derived from microorganisms (MoAs) may be of great benefit.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Angela Mauriello
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Concetta Ragone
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori, IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori, IRCCS - "Fond G. Pascale", Naples, Italy
| | - Luigi Buonaguro
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy.
| |
Collapse
|
56
|
Gao F, Mallajosyula V, Arunachalam PS, van der Ploeg K, Manohar M, Röltgen K, Yang F, Wirz O, Hoh R, Haraguchi E, Lee JY, Willis R, Ramachandiran V, Li J, Kathuria KR, Li C, Lee AS, Shah MM, Sindher SB, Gonzalez J, Altman JD, Wang TT, Boyd SD, Pulendran B, Jagannathan P, Nadeau KC, Davis MM. Spheromers reveal robust T cell responses to the Pfizer/BioNTech vaccine and attenuated peripheral CD8 + T cell responses post SARS-CoV-2 infection. Immunity 2023; 56:864-878.e4. [PMID: 36996809 PMCID: PMC10017386 DOI: 10.1016/j.immuni.2023.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/05/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer" peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring 1 week post the second vaccination (boost), whereas CD8+ T cells peaked 2 weeks later. These peripheral T cell responses were elevated compared with COVID-19 patients. We also found that previous SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that previous infection can influence the T cell response to vaccination.
Collapse
Affiliation(s)
- Fei Gao
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Kattria van der Ploeg
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Katharina Röltgen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fan Yang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ramona Hoh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily Haraguchi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ji-Yeun Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard Willis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Jiefu Li
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Karan Raj Kathuria
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra S Lee
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mihir M Shah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sayantani B Sindher
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph Gonzalez
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - John D Altman
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Scott D Boyd
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Kari C Nadeau
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA; Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard, MA, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
57
|
Pyke RM, Mellacheruvu D, Dea S, Abbott C, Zhang SV, Phillips NA, Harris J, Bartha G, Desai S, McClory R, West J, Snyder MP, Chen R, Boyle SM. Precision Neoantigen Discovery Using Large-Scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation. Mol Cell Proteomics 2023; 22:100506. [PMID: 36796642 PMCID: PMC10114598 DOI: 10.1016/j.mcpro.2023.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Major histocompatibility complex (MHC)-bound peptides that originate from tumor-specific genetic alterations, known as neoantigens, are an important class of anticancer therapeutic targets. Accurately predicting peptide presentation by MHC complexes is a key aspect of discovering therapeutically relevant neoantigens. Technological improvements in mass spectrometry-based immunopeptidomics and advanced modeling techniques have vastly improved MHC presentation prediction over the past 2 decades. However, improvement in the accuracy of prediction algorithms is needed for clinical applications like the development of personalized cancer vaccines, the discovery of biomarkers for response to immunotherapies, and the quantification of autoimmune risk in gene therapies. Toward this end, we generated allele-specific immunopeptidomics data using 25 monoallelic cell lines and created Systematic Human Leukocyte Antigen (HLA) Epitope Ranking Pan Algorithm (SHERPA), a pan-allelic MHC-peptide algorithm for predicting MHC-peptide binding and presentation. In contrast to previously published large-scale monoallelic data, we used an HLA-null K562 parental cell line and a stable transfection of HLA allele to better emulate native presentation. Our dataset includes five previously unprofiled alleles that expand MHC diversity in the training data and extend allelic coverage in underprofiled populations. To improve generalizability, SHERPA systematically integrates 128 monoallelic and 384 multiallelic samples with publicly available immunoproteomics data and binding assay data. Using this dataset, we developed two features that empirically estimate the propensities of genes and specific regions within gene bodies to engender immunopeptides to represent antigen processing. Using a composite model constructed with gradient boosting decision trees, multiallelic deconvolution, and 2.15 million peptides encompassing 167 alleles, we achieved a 1.44-fold improvement of positive predictive value compared with existing tools when evaluated on independent monoallelic datasets and a 1.17-fold improvement when evaluating on tumor samples. With a high degree of accuracy, SHERPA has the potential to enable precision neoantigen discovery for future clinical applications.
Collapse
Affiliation(s)
| | | | - Steven Dea
- Personalis, Inc, Menlo Park, California, USA
| | | | | | | | | | | | - Sejal Desai
- Personalis, Inc, Menlo Park, California, USA
| | | | - John West
- Personalis, Inc, Menlo Park, California, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Palo Alto, California, USA
| | | | | |
Collapse
|
58
|
Zhai Y, Chen L, Zhao Q, Zheng ZH, Chen ZN, Bian H, Yang X, Lu HY, Lin P, Chen X, Chen R, Sun HY, Fan LN, Zhang K, Wang B, Sun XX, Feng Z, Zhu YM, Zhou JS, Chen SR, Zhang T, Chen SY, Chen JJ, Zhang K, Wang Y, Chang Y, Zhang R, Zhang B, Wang LJ, Li XM, He Q, Yang XM, Nan G, Xie RH, Yang L, Yang JH, Zhu P. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity. Science 2023; 379:eabg2482. [PMID: 36927018 DOI: 10.1126/science.abg2482] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Autoimmune diseases such as ankylosing spondylitis (AS) can be driven by emerging neoantigens that disrupt immune tolerance. Here, we developed a workflow to profile posttranslational modifications involved in neoantigen formation. Using mass spectrometry, we identified a panel of cysteine residues differentially modified by carboxyethylation that required 3-hydroxypropionic acid to generate neoantigens in patients with AS. The lysosomal degradation of integrin αIIb [ITGA2B (CD41)] carboxyethylated at Cys96 (ITGA2B-ceC96) generated carboxyethylated peptides that were presented by HLA-DRB1*04 to stimulate CD4+ T cell responses and induce autoantibody production. Immunization of HLA-DR4 transgenic mice with the ITGA2B-ceC96 peptide promoted colitis and vertebral bone erosion. Thus, metabolite-induced cysteine carboxyethylation can give rise to pathogenic neoantigens that lead to autoreactive CD4+ T cell responses and autoantibody production in autoimmune diseases.
Collapse
Affiliation(s)
- Yue Zhai
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Qian Zhao
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Hui Zheng
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Zhi-Nan Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Huijie Bian
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xu Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Huan-Yu Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Peng Lin
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xi Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ruo Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Hao-Yang Sun
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lin-Ni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Bin Wang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiu-Xuan Sun
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Zhuan Feng
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Meng Zhu
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jian-Sheng Zhou
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Shi-Rui Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Tao Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Si-Yu Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jun-Jie Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kui Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yan Wang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Chang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Rui Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Bei Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Li-Juan Wang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Min Li
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qian He
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiang-Min Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Gang Nan
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Rong-Hua Xie
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Liu Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jing-Hua Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
59
|
Bhattacharjee M, Banerjee M, Mukherjee A. In silico designing of a novel polyvalent multi-subunit peptide vaccine leveraging cross-immunity against human visceral and cutaneous leishmaniasis: an immunoinformatics-based approach. J Mol Model 2023; 29:99. [PMID: 36928431 PMCID: PMC10018593 DOI: 10.1007/s00894-023-05503-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
CONTEXT Leishmaniasis is a group of vector-borne infectious diseases caused by over 20 pathogenic Leishmania species that are endemic in many tropical and subtropical countries. The emergence of drug-resistant strains, the adverse side effects of anti-Leishmania drugs, and the absence of a preventative vaccination strategy threaten the sensitive population. Recently, many groups of researchers have exploited the field of reverse vaccinology to develop vaccines, focusing chiefly on inducing immunity against either visceral or cutaneous leishmaniasis. METHODS This present work involves retrieving twelve experimentally validated leishmanial antigenic protein sequences from the UniProt database, followed by their antigenicity profiling employing ANTIGENpro and Vaxijen 2.0 servers. MHC-binding epitopes for the same were predicted using both NetCTL 1.2 and SYFPEITHI servers, while epitopes for B cell were computed using ABCpred and BepiPred 2.0 servers. The screened epitopes with significantly higher scores were utilized for designing the vaccine construct with appropriate linkers and natural adjuvant. The secondary and tertiary structures of the synthetic peptide were determined by conditional random fields, shallow neural networks, and profile-profile threading alignment with iterative structure assembly simulations, respectively. The 3-D vaccine model was validated through CASP10-tested refinement and the MolProbity web server. Molecular docking and multi-scale normal mode analysis simulation were performed to analyze the best vaccine-TLR complex. Finally, computational immune simulation findings revealed promising cellular and humoral immune responses, suggesting that the engineered chimeric peptide is a potential broad-spectrum vaccine against visceral and cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Mainak Bhattacharjee
- Department of Biotechnology, Heritage Institute of Technology, 994, Madurdaha, Kolkata, 700107, India
| | - Monojit Banerjee
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, 713347, India
| | - Arun Mukherjee
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, 713347, India.
| |
Collapse
|
60
|
Song Y, Hu H, Xiao K, Huang X, Guo H, Shi Y, Zhao J, Zhu S, Ji T, Xia B, Jiang J, Cao L, Zhang Y, Zhang Y, Xu W. A Synthetic SARS-CoV-2-Derived T-Cell and B-Cell Peptide Cocktail Elicits Full Protection against Lethal Omicron BA.1 Infection in H11-K18-hACE2 Mice. Microbiol Spectr 2023; 11:e0419422. [PMID: 36912685 PMCID: PMC10100915 DOI: 10.1128/spectrum.04194-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developing the capacity for immune evasion and resistance to existing vaccines and drugs. To address this, development of vaccines against coronavirus disease 2019 (COVID-19) has focused on universality, strong T cell immunity, and rapid production. Synthetic peptide vaccines, which are inexpensive and quick to produce, show low toxicity, and can be selected from the conserved SARS-CoV-2 proteome, are promising candidates. In this study, we evaluated the effectiveness of a synthetic peptide cocktail containing three murine CD4+ T-cell epitopes from the SARS-CoV-2 nonspike proteome and one B-cell epitope from the Omicron BA.1 receptor-binding domain (RBD), along with aluminum phosphate (Al) adjuvant and 5' cytosine-phosphate-guanine 3' oligodeoxynucleotide (CpG-ODN) adjuvant in mice. The peptide cocktail induced good Th1-biased T-cell responses and effective neutralizing-antibody titers against the Omicron BA.1 variant. Additionally, H11-K18-hACE2 transgenic mice were fully protected against lethal challenge with the BA.1 strain, with a 100% survival rate and reduced pulmonary viral load and pathological lesions. Subcutaneous administration was found to be the superior route for synthetic peptide vaccine delivery. Our findings demonstrate the effectiveness of the peptide cocktail in mice, suggesting the feasibility of synthetic peptide vaccines for humans. IMPORTANCE Current vaccines based on production of neutralizing antibodies fail to prevent the infection and transmission of SARS-CoV-2 Omicron and its subvariants. Understanding the critical factors and avoiding the disadvantages of vaccine strategies are essential for developing a safe and effective COVID-19 vaccine, which would include a more effective and durable cellular response, minimal effects of viral mutations, rapid production against emerging variants, and good safety. Peptide-based vaccines are an excellent alternative because they are inexpensive, quick to produce, and very safe. In addition, human leukocyte antigen T-cell epitopes could be targeted at robust T-cell immunity and selected in the conserved region of the SARS-CoV-2 variants. Our study showed that a synthetic SARS-CoV-2-derived peptide cocktail induced full protection against lethal infection with Omicron BA.1 in H11-K18-hACE2 mice for the first time. This could have implications for the development of effective COVID-19 peptide vaccines for humans.
Collapse
Affiliation(s)
- Yang Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqiao Hu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinghu Huang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuqing Shi
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiannan Zhao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangli Zhu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tianjiao Ji
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baicheng Xia
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Jiang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Cao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
61
|
Li T, Li Y, Zhu X, He Y, Wu Y, Ying T, Xie Z. Artificial intelligence in cancer immunotherapy: Applications in neoantigen recognition, antibody design and immunotherapy response prediction. Semin Cancer Biol 2023; 91:50-69. [PMID: 36870459 DOI: 10.1016/j.semcancer.2023.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Cancer immunotherapy is a method of controlling and eliminating tumors by reactivating the body's cancer-immunity cycle and restoring its antitumor immune response. The increased availability of data, combined with advancements in high-performance computing and innovative artificial intelligence (AI) technology, has resulted in a rise in the use of AI in oncology research. State-of-the-art AI models for functional classification and prediction in immunotherapy research are increasingly used to support laboratory-based experiments. This review offers a glimpse of the current AI applications in immunotherapy, including neoantigen recognition, antibody design, and prediction of immunotherapy response. Advancing in this direction will result in more robust predictive models for developing better targets, drugs, and treatments, and these advancements will eventually make their way into the clinical setting, pushing AI forward in the field of precision oncology.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yupeng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Zhu
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, China
| | - Yao He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, China
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, China.
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
62
|
Lim CP, Kok BH, Lim HT, Chuah C, Abdul Rahman B, Abdul Majeed AB, Wykes M, Leow CH, Leow CY. Recent trends in next generation immunoinformatics harnessed for universal coronavirus vaccine design. Pathog Glob Health 2023; 117:134-151. [PMID: 35550001 PMCID: PMC9970233 DOI: 10.1080/20477724.2022.2072456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally devastated public health, the economies of many countries and quality of life universally. The recent emergence of immune-escaped variants and scenario of vaccinated individuals being infected has raised the global concerns about the effectiveness of the current available vaccines in transmission control and disease prevention. Given the high rate mutation of SARS-CoV-2, an efficacious vaccine targeting against multiple variants that contains virus-specific epitopes is desperately needed. An immunoinformatics approach is gaining traction in vaccine design and development due to the significant reduction in time and cost of immunogenicity studies and increasing reliability of the generated results. It can underpin the development of novel therapeutic methods and accelerate the design and production of peptide vaccines for infectious diseases. Structural proteins, particularly spike protein (S), along with other proteins have been studied intensively as promising coronavirus vaccine targets. Numbers of promising online immunological databases, tools and web servers have widely been employed for the design and development of next generation COVID-19 vaccines. This review highlights the role of immunoinformatics in identifying immunogenic peptides as potential vaccine targets, involving databases, and prediction and characterization of epitopes which can be harnessed for designing future coronavirus vaccines.
Collapse
Affiliation(s)
- Chin Peng Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia.,Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Candy Chuah
- Faculty of Health Sciences, Universiti Teknologi MARA, Penang, Malaysia
| | | | | | - Michelle Wykes
- Molecular Immunology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
63
|
Schroeder SM, Nelde A, Walz JS. Viral T-cell epitopes - Identification, characterization and clinical application. Semin Immunol 2023; 66:101725. [PMID: 36706520 DOI: 10.1016/j.smim.2023.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
T-cell immunity, mediated by CD4+ and CD8+ T cells, represents a cornerstone in the control of viral infections. Virus-derived T-cell epitopes are represented by human leukocyte antigen (HLA)-presented viral peptides on the surface of virus-infected cells. They are the prerequisite for the recognition of infected cells by T cells. Knowledge of viral T-cell epitopes provides on the one hand a diagnostic tool to decipher protective T-cell immune responses in the human population and on the other hand various prophylactic and therapeutic options including vaccination approaches and the transfer of virus-specific T cells. Such approaches have already been proven to be effective against various viral infections, particularly in immunocompromised patients lacking sufficient humoral, antibody-based immune response. This review provides an overview on the state of the art as well as current studies regarding the identification and characterization of viral T-cell epitopes and approaches of clinical application. In the first chapter in silico prediction tools and direct, mass spectrometry-based identification of viral T-cell epitopes is compared. The second chapter provides an overview of commonly used assays for further characterization of T-cell responses and phenotypes. The final chapter presents an overview of clinical application of viral T-cell epitopes with a focus on human immunodeficiency virus (HIV), human cytomegalovirus (HCMV) and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), being representatives of relevant viruses.
Collapse
Affiliation(s)
- Sarah M Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Department for Otorhinolaryngology, Head, and Neck Surgery, University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany; Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
64
|
Mühlenbruch L, Abou-Kors T, Dubbelaar ML, Bichmann L, Kohlbacher O, Bens M, Thomas J, Ezić J, Kraus JM, Kestler HA, von Witzleben A, Mytilineos J, Fürst D, Engelhardt D, Doescher J, Greve J, Schuler PJ, Theodoraki MN, Brunner C, Hoffmann TK, Rammensee HG, Walz JS, Laban S. The HLA ligandome of oropharyngeal squamous cell carcinomas reveals shared tumour-exclusive peptides for semi-personalised vaccination. Br J Cancer 2023; 128:1777-1787. [PMID: 36823366 PMCID: PMC9949688 DOI: 10.1038/s41416-023-02197-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND The immune peptidome of OPSCC has not previously been studied. Cancer-antigen specific vaccination may improve clinical outcome and efficacy of immune checkpoint inhibitors such as PD1/PD-L1 antibodies. METHODS Mapping of the OPSCC HLA ligandome was performed by mass spectrometry (MS) based analysis of naturally presented HLA ligands isolated from tumour tissue samples (n = 40) using immunoaffinity purification. The cohort included 22 HPV-positive (primarily HPV-16) and 18 HPV-negative samples. A benign reference dataset comprised of the HLA ligandomes of benign haematological and tissue datasets was used to identify tumour-associated antigens. RESULTS MS analysis led to the identification of naturally HLA-presented peptides in OPSCC tumour tissue. In total, 22,769 peptides from 9485 source proteins were detected on HLA class I. For HLA class II, 15,203 peptides from 4634 source proteins were discovered. By comparative profiling against the benign HLA ligandomic datasets, 29 OPSCC-associated HLA class I ligands covering 11 different HLA allotypes and nine HLA class II ligands were selected to create a peptide warehouse. CONCLUSION Tumour-associated peptides are HLA-presented on the cell surfaces of OPSCCs. The established warehouse of OPSCC-associated peptides can be used for downstream immunogenicity testing and peptide-based immunotherapy in (semi)personalised strategies.
Collapse
Affiliation(s)
- Lena Mühlenbruch
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,German Cancer Consortium (DKTK), Partner Site Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Tsima Abou-Kors
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Marissa L. Dubbelaar
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Quantitative Biology Center (QBiC), Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Leon Bichmann
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Oliver Kohlbacher
- grid.10392.390000 0001 2190 1447Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence Machine Learning in the Sciences (EXC2064), Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.411544.10000 0001 0196 8249Institute for Translational Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Institute for Bioinformatics and Medical Informatics, Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Martin Bens
- grid.418245.e0000 0000 9999 5706Leibniz-Institute on Aging, Fritz-Lipmann-Institute, 07745 Jena, Thüringen Germany
| | - Jaya Thomas
- grid.5491.90000 0004 1936 9297CRUK and NIHR Experimental Cancer Medicine Center & School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ UK
| | - Jasmin Ezić
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Johann M. Kraus
- grid.6582.90000 0004 1936 9748Ulm University, Institute of Medical Systems Biology, Ulm, Germany
| | - Hans A. Kestler
- grid.6582.90000 0004 1936 9748Ulm University, Institute of Medical Systems Biology, Ulm, Germany
| | - Adrian von Witzleben
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Joannis Mytilineos
- grid.410712.10000 0004 0473 882XInstitute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden–Württemberg–Hessen, and University Hospital Ulm, Ulm, Germany ,grid.6582.90000 0004 1936 9748Institute of Transfusion Medicine, Ulm University, Ulm, Germany ,German Stem Cell Donor Registry, German Red Cross Blood Transfusion Service, Ulm, Germany
| | - Daniel Fürst
- grid.410712.10000 0004 0473 882XInstitute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden–Württemberg–Hessen, and University Hospital Ulm, Ulm, Germany ,grid.6582.90000 0004 1936 9748Institute of Transfusion Medicine, Ulm University, Ulm, Germany
| | - Daphne Engelhardt
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Johannes Doescher
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Jens Greve
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Patrick J. Schuler
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Marie-Nicole Theodoraki
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Cornelia Brunner
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Thomas K. Hoffmann
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Hans-Georg Rammensee
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,German Cancer Consortium (DKTK), Partner Site Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Juliane S. Walz
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.411544.10000 0001 0196 8249Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Baden-Württemberg 72076 Germany
| | - Simon Laban
- Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany.
| |
Collapse
|
65
|
Jani SP, Kumar SP, Mangukia N, Patel SK, Pandya HA, Rawal RM. MHC2AffyPred: A machine-learning approach to estimate affinity of MHC class II peptides based on structural interaction fingerprints. Proteins 2023; 91:277-289. [PMID: 36116110 DOI: 10.1002/prot.26428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/03/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023]
Abstract
Understanding how MHC class II (MHC-II) binding peptides with differing lengths exhibit specific interaction at the core and extended sites within the large MHC-II pocket is a very important aspect of immunological research for designing peptides. Certain efforts were made to generate peptide conformations amenable for MHC-II binding and calculate the binding energy of such complex formation but not directed toward developing a relationship between the peptide conformation in MHC-II structures and the binding affinity (BA) (IC50 ). We present here a machine-learning approach to calculate the BA of the peptides within the MHC-II pocket for HLA-DRA1, HLA-DRB1, HLA-DP, and HLA-DQ allotypes. Instead of generating ensembles of peptide conformations conventionally, the biased mode of conformations was created by considering the peptides in the crystal structures of pMHC-II complexes as the templates, followed by site-directed peptide docking. The structural interaction fingerprints generated from such docked pMHC-II structures along with the Moran autocorrelation descriptors were trained using a random forest regressor specific to each MHC-II peptide lengths (9-19). The entire workflow is automated using Linux shell and Perl scripts to promote the utilization of MHC2AffyPred program to any characterized MHC-II allotypes and is made for free access at https://github.com/SiddhiJani/MHC2AffyPred. The MHC2AffyPred attained better performance (correlation coefficient [CC] of .612-.898) than MHCII3D (.03-.594) and NetMHCIIpan-3.2 (.289-.692) programs in the HLA-DRA1, HLA-DRB1 types. Similarly, the MHC2AffyPred program achieved CC between .91 and .98 for HLA-DP and HLA-DQ peptides (13-mer to 17-mer). Further, a case study on MHC-II binding 15-mer peptides of severe acute respiratory syndrome coronavirus-2 showed very close competency in computing the IC50 values compared to the sequence-based NetMHCIIpan v3.2 and v4.0 programs with a correlation of .998 and .570, respectively.
Collapse
Affiliation(s)
- Siddhi P Jani
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Sivakumar Prasanth Kumar
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India.,Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Naman Mangukia
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India.,BioInnovations, Mumbai, Maharashtra, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Himanshu A Pandya
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India.,Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
66
|
Martinov T, Greenberg PD. Targeting Driver Oncogenes and Other Public Neoantigens Using T Cell Receptor-Based Cellular Therapy. ANNUAL REVIEW OF CANCER BIOLOGY 2023; 7:331-351. [PMID: 37655310 PMCID: PMC10470615 DOI: 10.1146/annurev-cancerbio-061521-082114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
T cell reactivity to tumor-specific neoantigens can drive endogenous and therapeutically induced antitumor immunity. However, most tumor-specific neoantigens are unique to each patient (private) and targeting them requires personalized therapy. A smaller subset of neoantigens includes epitopes that span recurrent mutation hotspots, translocations, or gene fusions in oncogenic drivers and tumor suppressors, as well as epitopes that arise from viral oncogenic proteins. Such antigens are likely to be shared across patients (public), uniformly expressed within a tumor, and required for cancer cell survival and fitness. Although a limited number of these public neoantigens are naturally immunogenic, recent studies affirm their clinical utility. In this review, we highlight efforts to target mutant KRAS, mutant p53, and epitopes derived from oncogenic viruses using T cells engineered with off-the-shelf T cell receptors. We also discuss the challenges and strategies to achieving more effective T cell therapies, particularly in the context of solid tumors.
Collapse
Affiliation(s)
- Tijana Martinov
- Program in Immunology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Philip D Greenberg
- Program in Immunology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Immunology Department, University of Washington, Seattle, Washington, USA
| |
Collapse
|
67
|
Qin R, An C, Chen W. Physical-Chemical Regulation of Membrane Receptors Dynamics in Viral Invasion and Immune Defense. J Mol Biol 2023; 435:167800. [PMID: 36007627 PMCID: PMC9394170 DOI: 10.1016/j.jmb.2022.167800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
Mechanical cues dynamically regulate membrane receptors functions to trigger various physiological and pathological processes from viral invasion to immune defense. These cues mainly include various types of dynamic mechanical forces and the spatial confinement of plasma membrane. However, the molecular mechanisms of how they couple with biochemical cues in regulating membrane receptors functions still remain mysterious. Here, we review recent advances in methodologies of single-molecule biomechanical techniques and in novel biomechanical regulatory mechanisms of critical ligand recognition of viral and immune receptors including SARS-CoV-2 spike protein, T cell receptor (TCR) and other co-stimulatory immune receptors. Furthermore, we provide our perspectives of the general principle of how force-dependent kinetics determine the dynamic functions of membrane receptors and of biomechanical-mechanism-driven SARS-CoV-2 neutralizing antibody design and TCR engineering for T-cell-based therapies.
Collapse
Affiliation(s)
- Rui Qin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
68
|
Kuri P, Goswami P. Current Update on Rotavirus in-Silico Multiepitope Vaccine Design. ACS OMEGA 2023; 8:190-207. [PMID: 36643547 PMCID: PMC9835168 DOI: 10.1021/acsomega.2c07213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 06/06/2023]
Abstract
Rotavirus gastroenteritis is one of the leading causes of pediatric morbidity and mortality worldwide in infants and under-five populations. The World Health Organization (WHO) recommended global incorporation of the rotavirus vaccine in national immunization programs to alleviate the burden of the disease. Implementation of the rotavirus vaccination in certain regions of the world brought about a significant and consistent reduction of rotavirus-associated hospitalizations. However, the efficacy of licensed vaccines remains suboptimal in low-income countries where the incidences of rotavirus gastroenteritis continue to happen unabated. The problem of low efficacy of currently licensed oral rotavirus vaccines in low-income countries necessitates continuous exploration, design, and development of new rotavirus vaccines. Traditional vaccine development is a complex, expensive, labor-intensive, and time-consuming process. Reverse vaccinology essentially utilizes the genome and proteome information on pathogens and has opened new avenues for in-silico multiepitope vaccine design for a plethora of pathogens, promising time reduction in the complete vaccine development pipeline by complementing the traditional vaccinology approach. A substantial number of reviews on licensed rotavirus vaccines and those under evaluation are already available in the literature. However, a collective account of rotavirus in-silico vaccines is lacking in the literature, and such an account may further fuel the interest of researchers to use reverse vaccinology to expedite the vaccine development process. Therefore, the main focus of this review is to summarize the research endeavors undertaken for the design and development of rotavirus vaccines by the reverse vaccinology approach utilizing the tools of immunoinformatics.
Collapse
|
69
|
Lybaert L, Lefever S, Fant B, Smits E, De Geest B, Breckpot K, Dirix L, Feldman SA, van Criekinge W, Thielemans K, van der Burg SH, Ott PA, Bogaert C. Challenges in neoantigen-directed therapeutics. Cancer Cell 2023; 41:15-40. [PMID: 36368320 DOI: 10.1016/j.ccell.2022.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
A fundamental prerequisite for the efficacy of cancer immunotherapy is the presence of functional, antigen-specific T cells within the tumor. Neoantigen-directed therapy is a promising strategy that aims at targeting the host's immune response against tumor-specific antigens, thereby eradicating cancer cells. Initial forays have been made in clinical environments utilizing vaccines and adoptive cell therapy; however, many challenges lie ahead. We provide an in-depth overview of the current state of the field with an emphasis on in silico neoantigen discovery and the clinical aspects that need to be addressed to unlock the full potential of this therapy.
Collapse
Affiliation(s)
| | | | | | - Evelien Smits
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium
| | - Bruno De Geest
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc Dirix
- Translational Cancer Research Unit, Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Wim van Criekinge
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sjoerd H van der Burg
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
70
|
Puerta CJ, Cuellar A, Lasso P, Mateus J, Gonzalez JM. Trypanosoma cruzi-specific CD8 + T cells and other immunological hallmarks in chronic Chagas cardiomyopathy: Two decades of research. Front Cell Infect Microbiol 2023; 12:1075717. [PMID: 36683674 PMCID: PMC9846209 DOI: 10.3389/fcimb.2022.1075717] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Trypanosoma cruzi, the causal agent of Chagas disease, has coexisted with humans for thousands of years. Therefore, the parasite has developed several mechanisms of antigenic variability that has allowed it to live inside the cells and evade the host immune response. Since T. cruzi displays an intracellular cycle-stage, our research team focused on providing insights into the CD8+ T cells immune response in chronic Chagas cardiomyopathy. We began our work in the 2000s studying parasite antigens that induce natural immune responses such as the KMP11 protein and TcTLE, its N-terminal derived peptide. Different approaches allowed us to reveal TcTLE peptide as a promiscuous CD8+ T cell epitope, able of inducing multifunctional cellular immune responses and eliciting a humoral response capable of decreasing parasite movement and infective capacity. Next, we demonstrated that as the disease progresses, total CD8+ T cells display a dysfunctional state characterized by a prolonged hyper-activation state along with an increase of inhibitory receptors (2B4, CD160, PD-1, TIM-3, CTLA-4) expression, an increase of specific terminal effector T cells (TTE), a decrease of proliferative capacity, a decrease of stem cell memory (TSCM) frequency, and a decrease of CD28 and CD3ζ expression. Thus, parasite-specific CD8+ T cells undergo clonal exhaustion, distinguished by an increase in late-differentiated cells, a mono-functional response, and enhanced expression of inhibitory receptors. Finally, it was found that anti-parasitic treatment induces an improved CD8+ T cell response in asymptomatic individuals, and a mouse animal model led us to establish a correlation between the quality of the CD8+ T cell responses and the outcome of chronic infection. In the future, using OMICs strategies, the identification of the specific cellular signals involved in disease progression will provide an invaluable resource for discovering new biomarkers of progression or new vaccine and immunotherapy strategies. Also, the inclusion of the TcTLE peptide in the rational design of epitope-based vaccines, the development of immunotherapy strategies using TSCM or the blocking of inhibitory receptors, and the use of the CD8+ T cell response quality to follow treatments, immunotherapies or vaccines, all are alternatives than could be explored in the fight against Chagas disease.
Collapse
Affiliation(s)
- Concepción J. Puerta
- Laboratory of Molecular Parasitology, Infectious Diseases Group, Department of Microbiology, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Cuellar
- Clinical Laboratory Sciences Group, Department of Microbiology, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Laboratory of Molecular Parasitology, Infectious Diseases Group, Department of Microbiology, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jose Mateus
- Laboratory of Molecular Parasitology, Infectious Diseases Group, Department of Microbiology, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - John M. Gonzalez
- Group of Biomedical Sciences, School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
71
|
Ghadaksaz A, Imani Fooladi AA, Mahmoodzadeh Hosseini H, Nejad Satari T, Amin M. Targeting the EGFR in cancer cells by fusion protein consisting of arazyme and third loop of TGF-alpha: an in silico study. J Biomol Struct Dyn 2022; 40:11744-11757. [PMID: 34379041 DOI: 10.1080/07391102.2021.1963318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The anticancer effects of arazyme, a bacterial metalloprotease, have been revealed in previous studies. Because of the overexpression of epidermal growth factor receptor (EGFR) in tumor cells, targeting this receptor is one of the approaches to cancer therapy. In the present study, we designed fusion protein by using a non-mitogenic binding sequence of TGFα, arazyme, and a suitable linker. The I-TASSER and Robetta web servers were employed to predict the territory structures of the Arazyme-linker-TGFαL3, and TGFαL3-linker-Arazyme. Then, models were validated by using PROCHECK, ERRAT, ProSA, and MolProbity web servers. After docking to EGFR, Arazyme-linker-TGFαL3 showed a higher binding affinity and was selected to be optimized through 100 ns Molecular dynamic (MD) simulation. Next, the stability of ligand-bound receptor was examined utilizing MD simulation for 100 ns. Furthermore, the binding free energy calculation and free energy decomposition were carried out employing MM-PBSA and MM-GBSA methods, respectively. The root mean square deviation and fluctuation (RMSD, RMSF), the radius of gyration, H-bond, and binding free energy analysis revealed the stability of the complex during simulation time. Finally, linear and conformational epitopes of B cells, as well as MHC class I and MHC class II were predicted by using different web servers. Meanwhile, the potential B cell and T cell epitopes were identified throughout arazyme protein sequence. Collectively, this study suggests a novel chimera protein candidate prevent cancer cells potentially by inducing an immune response and inhibiting cell proliferation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdolamir Ghadaksaz
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Taher Nejad Satari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, and The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
72
|
Arman I, Haus-Cohen M, Reiter Y. The Intracellular Proteome as a Source for Novel Targets in CAR-T and T-Cell Engagers-Based Immunotherapy. Cells 2022; 12:cells12010027. [PMID: 36611821 PMCID: PMC9818436 DOI: 10.3390/cells12010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
The impressive clinical success of cancer immunotherapy has motivated the continued search for new targets that may serve to guide potent effector functions in an attempt to efficiently kill malignant cells. The intracellular proteome is an interesting source for such new targets, such as neo-antigens and others, with growing interest in their application for cell-based immunotherapies. These intracellular-derived targets are peptides presented by MHC class I molecules on the cell surface of malignant cells. These disease-specific class I HLA-peptide complexes can be targeted by specific TCRs or by antibodies that mimic TCR-specificity, termed TCR-like (TCRL) antibodies. Adoptive cell transfer of TCR engineered T cells and T-cell-receptor-like based CAR-T cells, targeted against a peptide-MHC of interest, are currently tested as cancer therapeutic agents in pre-clinical and clinical trials, along with soluble TCR- and TCRL-based agents, such as immunotoxins and bi-specific T cell engagers. Targeting the intracellular proteome using TCRL- and TCR-based molecules shows promising results in cancer immunotherapy, as exemplified by the success of the anti-gp100/HLA-A2 TCR-based T cell engager, recently approved by the FDA for the treatment of unresectable or metastatic uveal melanoma. This review is focused on the selection and isolation processes of TCR- and TCRL-based targeting moieties, with a spotlight on pre-clinical and clinical studies, examining peptide-MHC targeting agents in cancer immunotherapy.
Collapse
|
73
|
Wang J, Weiss T, Neidert MC, Toussaint NC, Naghavian R, Sellés Moreno C, Foege M, Tomas Ojer P, Medici G, Jelcic I, Schulz D, Rushing E, Dettwiler S, Schrörs B, Shin JH, McKay R, Wu CJ, Lutterotti A, Sospedra M, Moch H, Greiner EF, Bodenmiller B, Regli L, Weller M, Roth P, Martin R. Vaccination with Designed Neopeptides Induces Intratumoral, Cross-reactive CD4+ T-cell Responses in Glioblastoma. Clin Cancer Res 2022; 28:5368-5382. [PMID: 36228153 PMCID: PMC9751771 DOI: 10.1158/1078-0432.ccr-22-1741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE The low mutational load of some cancers is considered one reason for the difficulty to develop effective tumor vaccines. To overcome this problem, we developed a strategy to design neopeptides through single amino acid mutations to enhance their immunogenicity. EXPERIMENTAL DESIGN Exome and RNA sequencing as well as in silico HLA-binding predictions to autologous HLA molecules were used to identify candidate neopeptides. Subsequently, in silico HLA-anchor placements were used to deduce putative T-cell receptor (TCR) contacts of peptides. Single amino acids of TCR contacting residues were then mutated by amino acid replacements. Overall, 175 peptides were synthesized and sets of 25 each containing both peptides designed to bind to HLA class I and II molecules applied in the vaccination. Upon development of a tumor recurrence, the tumor-infiltrating lymphocytes (TIL) were characterized in detail both at the bulk and clonal level. RESULTS The immune response of peripheral blood T cells to vaccine peptides, including natural peptides and designed neopeptides, gradually increased with repetitive vaccination, but remained low. In contrast, at the time of tumor recurrence, CD8+ TILs and CD4+ TILs responded to 45% and 100%, respectively, of the vaccine peptides. Furthermore, TIL-derived CD4+ T-cell clones showed strong responses and tumor cell lysis not only against the designed neopeptide but also against the unmutated natural peptides of the tumor. CONCLUSIONS Turning tumor self-peptides into foreign antigens by introduction of designed mutations is a promising strategy to induce strong intratumoral CD4+ T-cell responses in a cold tumor like glioblastoma.
Collapse
Affiliation(s)
- Jian Wang
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Tobias Weiss
- Laboratory of Molecular Neuro-Oncology, Department of Neurology and Brain Tumor Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marian C. Neidert
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Nora C. Toussaint
- NEXUS Personalized Health Technologies, ETH Zurich, Schlieren, Switzerland.,Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Reza Naghavian
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carla Sellés Moreno
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Magdalena Foege
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Paula Tomas Ojer
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gioele Medici
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ivan Jelcic
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel Schulz
- Department of Quantitative Biomedicine, University of Zürich, Zurich, Switzerland.,Institute of Molecular Life Sciences, University of Zürich, Zurich, Switzerland
| | - Elisabeth Rushing
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Dettwiler
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Barbara Schrörs
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University gGmbH, Mainz, Germany
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ron McKay
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Mireia Sospedra
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zürich, Zurich, Switzerland.,Institute of Molecular Life Sciences, University of Zürich, Zurich, Switzerland
| | - Luca Regli
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology and Brain Tumor Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology and Brain Tumor Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Corresponding Author: Roland Martin, Institute for Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland. Phone: 41-44-2551125; E-mail:
| |
Collapse
|
74
|
Shah S, Al-Omari A, Cook KW, Paston SJ, Durrant LG, Brentville VA. What do cancer-specific T cells 'see'? DISCOVERY IMMUNOLOGY 2022; 2:kyac011. [PMID: 38567060 PMCID: PMC10917189 DOI: 10.1093/discim/kyac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 04/04/2024]
Abstract
Complex cellular interactions between the immune system and cancer can impact tumour development, growth, and progression. T cells play a key role in these interactions; however, the challenge for T cells is to recognize tumour antigens whilst minimizing cross-reactivity with antigens associated with healthy tissue. Some tumour cells, including those associated with viral infections, have clear, tumour-specific antigens that can be targeted by T cells. A high mutational burden can lead to increased numbers of mutational neoantigens that allow very specific immune responses to be generated but also allow escape variants to develop. Other cancer indications and those with low mutational burden are less easily distinguished from normal tissue. Recent studies have suggested that cancer-associated alterations in tumour cell biology including changes in post-translational modification (PTM) patterns may also lead to novel antigens that can be directly recognized by T cells. The PTM-derived antigens provide tumour-specific T-cell responses that both escape central tolerance and avoid the necessity for individualized therapies. PTM-specific CD4 T-cell responses have shown tumour therapy in murine models and highlight the importance of CD4 T cells as well as CD8 T cells in reversing the immunosuppressive tumour microenvironment. Understanding which cancer-specific antigens can be recognized by T cells and the way that immune tolerance and the tumour microenvironment shape immune responses to cancer is vital for the future development of cancer therapies.
Collapse
Affiliation(s)
- Sabaria Shah
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Abdullah Al-Omari
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Katherine W Cook
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Samantha J Paston
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Lindy G Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Victoria A Brentville
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| |
Collapse
|
75
|
Parn S, Savsani K, Dakshanamurthy S. SARS-CoV-2 Omicron (BA.1 and BA.2) specific novel CD8+ and CD4+ T cell epitopes targeting spike protein. IMMUNOINFORMATICS (AMSTERDAM, NETHERLANDS) 2022; 8:100020. [PMID: 36337685 PMCID: PMC9624113 DOI: 10.1016/j.immuno.2022.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Omicron (BA.1/B.1.1.529) variant of SARS-CoV-2 harbors an alarming 37 mutations on its spike protein, reducing the efficacy of current COVID-19 vaccines. In this study, we identified CD8+ and CD4+ T cell epitopes from SARS-CoV-2 S protein mutants. To identify the highest quality CD8 and CD4 epitopes from the Omicron variant, we selected epitopes with a high binding affinity towards both MHC I and MHC II molecules. We applied other clinical checkpoint predictors, including immunogenicity, antigenicity, allergenicity, instability and toxicity. Subsequently, we found eight Omicron (BA.1/B.1.1.529) specific CD8+ and eleven CD4+ T cell epitopes with a world population coverage of 76.16% and 97.46%, respectively. Additionally, we identified common epitopes across Omicron BA.1 and BA.2 lineages that target mutations critical to SARS-CoV-2 virulence. Further, we identified common epitopes across B.1.1.529 and other circulating SARS-CoV-2 variants, such as B.1.617.2 (Delta). We predicted CD8 epitopes' binding affinity to murine MHC alleles to test the vaccine candidates in preclinical models. The CD8 epitopes were further validated using our previously developed software tool PCOptim. We then modeled the three-dimensional structures of our top CD8 epitopes to investigate the binding interaction between peptide-MHC and peptide-MHC-TCR complexes. Notably, our identified epitopes are targeting the mutations on the RNA-binding domain and the fusion sites of S protein. This could potentially eliminate viral infections and form long-term immune responses compared to relatively short-lived mRNA vaccines and maximize the efficacy of vaccine candidates against the current pandemic and potential future variants.
Collapse
Affiliation(s)
- Simone Parn
- University of the District of Columbia, Washington, D.C, USA
| | - Kush Savsani
- Virginia Commonwealth University, Richmond, VA, USA
| | - Sivanesan Dakshanamurthy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057 USA
| |
Collapse
|
76
|
Ehlers M, Schmidt M, Mattes-Gyorgy K, Antke C, Enczmann J, Schlensog M, Japp A, Haase M, Allelein S, Dringenberg T, Giesel F, Esposito I, Schott M. BRAFV600E and BRAF-WT Specific Antitumor Immunity in Papillary Thyroid Cancer. Horm Metab Res 2022; 54:852-858. [PMID: 36427494 DOI: 10.1055/a-1971-7019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One feature of papillary thyroid cancer (PTC) is the frequently present somatic BRAFV600E mutation. PTCs are also characterized by a lymphocytic infiltration, which may correlate with an improved clinical outcome. The objective of the study was the characterization of BRAFV600E specific anti-immunity in PTC patients and correlation analyses with the clinical outcome. Fourteen HLA A2 positive PTC patients were included into the study of whom tumor tissue samples were also available. Of those, 8 PTC patients revealed a somatic BRAFV600E mutation. All PTC patients were also MHC class II typed. Tetramer analyses for detection of MHC class I and MHC class II-restricted, BRAFV600E epitope-specific T cells using unstimulated and peptide-stimulated T cells were performed; correlation analyses between MHC phenotypes, T cell immunity, and the clinical course were performed. In regard to unstimulated T cells, a significantly higher amount of BRAFV600E epitope specific T cells was detected compared to a control tetramer. Importantly, after overnight peptide stimulation a significantly higher number of BRAFV600E positive and BRAF WT epitope-specific T cells could be seen. In regard to the clinical course, however, no significant differences were seen, neither in the context of the initial tumor size, nor in the context of lymph node metastases or peripheral metastastic spread. In conclusion, we clearly demonstrated a BRAF-specific tumor immunity in PTC-patients which is, however, independent of a BRAFV600E status of the PTC patients.
Collapse
Affiliation(s)
- Margret Ehlers
- Division for Specific Endocrinology, Medical Faculty, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Mathias Schmidt
- Division for Specific Endocrinology, Medical Faculty, University Hospital Duesseldorf, Duesseldorf, Germany
| | | | - Christina Antke
- Clinic for Nuclear Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Juergen Enczmann
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University, Duesseldorf, Germany
| | - Martin Schlensog
- Institute of Pathology, Heinrich Heine University, Duesseldorf, Germany
| | - Anna Japp
- Institute of Pathology, Heinrich Heine University, Duesseldorf, Germany
| | - Matthias Haase
- Division for Specific Endocrinology, Medical Faculty, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Stephanie Allelein
- Division for Specific Endocrinology, Medical Faculty, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Till Dringenberg
- Division for Specific Endocrinology, Medical Faculty, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Frederik Giesel
- Clinic for Nuclear Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich Heine University, Duesseldorf, Germany
| | - Matthias Schott
- Division for Specific Endocrinology, Medical Faculty, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
77
|
Zhou W, Yu J, Li Y, Wang K. Neoantigen-specific TCR-T cell-based immunotherapy for acute myeloid leukemia. Exp Hematol Oncol 2022; 11:100. [PMID: 36384590 PMCID: PMC9667632 DOI: 10.1186/s40164-022-00353-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Neoantigens derived from non-synonymous somatic mutations are restricted to malignant cells and are thus considered ideal targets for T cell receptor (TCR)-based immunotherapy. Adoptive transfer of T cells bearing neoantigen-specific TCRs exhibits the ability to preferentially target tumor cells while remaining harmless to normal cells. High-avidity TCRs specific for neoantigens expressed on AML cells have been identified in vitro and verified using xenograft mouse models. Preclinical studies of these neoantigen-specific TCR-T cells are underway and offer great promise as safe and effective therapies. Additionally, TCR-based immunotherapies targeting tumor-associated antigens are used in early-phase clinical trials for the treatment of AML and show encouraging anti-leukemic effects. These clinical experiences support the application of TCR-T cells that are specifically designed to recognize neoantigens. In this review, we will provide a detailed profile of verified neoantigens in AML, describe the strategies to identify neoantigen-specific TCRs, and discuss the potential of neoantigen-specific T-cell-based immunotherapy in AML.
Collapse
|
78
|
Bi J, Zheng Y, Wang C, Ding Y. An Attention Based Bidirectional LSTM Method to Predict the Binding of TCR and Epitope. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3272-3280. [PMID: 34559661 DOI: 10.1109/tcbb.2021.3115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The T-cell epitope prediction has always been a long-term challenge in immunoinformatics and bioinformatics. Studying the specific recognition between T-cell receptor (TCR) and peptide-major histocompatibility complex (p-MHC) complexes can help us better understand the immune mechanism, it's also make a signification contribution in developing vaccines and targeted drugs. Meanwhile, more advanced methods are needed for distinguishing TCRs binding from different epitopes. In this paper, we introduce a hybrid model composed of bidirectional long short-term memory networks (BiLSTM), attention and convolutional neural networks (CNN) that can identified the binding of TCRs to epitopes. The BiLSTM can more completely extract amino acid forward and backward information in the sequence, and attention mechanism can focus on amino acids at certain positions from complex sequences to capture the most important feature, then CNN was used to further extract salient features to predict the binding of TCR-epitope. In McPAS dataset, the AUC value (the area under ROC curve) of naive TCR-epitope binding is 0.974 and specific TCR-epitope binding is 0.887. The model has achieved better prediction results than other existing models (TCRGP, ERGO, NetTCR), and some experiments are used to analyze the advantages of our model. The algorithm is available at https://github.com/bijingshu/BiAttCNN.git.
Collapse
|
79
|
Antigenic mimicry – The key to autoimmunity in immune privileged organs. J Autoimmun 2022:102942. [DOI: 10.1016/j.jaut.2022.102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
|
80
|
Lajevardi MS, Taheri T, Gholami E, Seyed N, Rafati S. Structural analysis of PpSP15 and PsSP9 sand fly salivary proteins designed with a self-cleavable linker as a live vaccine candidate against cutaneous leishmaniasis. Parasit Vectors 2022; 15:377. [PMID: 36261836 PMCID: PMC9580450 DOI: 10.1186/s13071-022-05437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Leishmania parasites are deposited in the host through sand fly bites along with sand fly saliva. Therefore, salivary proteins are promising vaccine candidates for controlling leishmaniasis. Herein, two immunogenic salivary proteins, PpSP15 from Phlebotomus papatasi and PsSP9 from Phlebotomus sergenti, were selected as vaccine candidates to be delivered by live Leishmania tarentolae as vector. The stepwise in silico protocol advantaged in this study for multi-protein design in L. tarentolae is then described in detail. Methods All possible combinations of two salivary proteins, PpSP15 and PsSP9, with or without T2A peptide were designed at the mRNA and protein levels. Then, the best combination for the vaccine candidate was selected based on mRNA and protein stability along with peptide analysis. Results At the mRNA level, the most favored secondary structure was PpSP15-T2A-PsSP9. At the protein level, the refined three-dimensional models of all combinations were structurally valid; however, local quality estimation showed that the PpSp15-T2A-PsSP9 fusion had higher stability for each amino acid position, with low root-mean-square deviation (RMSD), compared with the original proteins. In silico evaluation confirmed the PpSP15-T2A-PsSP9 combination as a good Th1-polarizing candidate in terms of high IFN-γ production and low IL-10/TGF-β ratio in response to three consecutive immunizations. Potential protein expression was then confirmed by Western blotting. Conclusions The approach presented herein is among the first studies to have privileged protein homology modeling along with mRNA analysis for logical live vaccine design-coding multi-proteins. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05437-x.
Collapse
Affiliation(s)
- Mahya Sadat Lajevardi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
81
|
Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci 2022; 29:83. [PMID: 36253762 PMCID: PMC9575280 DOI: 10.1186/s12929-022-00866-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor microenvironment (TME) is a specialized ecosystem of host components, designed by tumor cells for successful development and metastasis of tumor. With the advent of 3D culture and advanced bioinformatic methodologies, it is now possible to study TME’s individual components and their interplay at higher resolution. Deeper understanding of the immune cell’s diversity, stromal constituents, repertoire profiling, neoantigen prediction of TMEs has provided the opportunity to explore the spatial and temporal regulation of immune therapeutic interventions. The variation of TME composition among patients plays an important role in determining responders and non-responders towards cancer immunotherapy. Therefore, there could be a possibility of reprogramming of TME components to overcome the widely prevailing issue of immunotherapeutic resistance. The focus of the present review is to understand the complexity of TME and comprehending future perspective of its components as potential therapeutic targets. The later part of the review describes the sophisticated 3D models emerging as valuable means to study TME components and an extensive account of advanced bioinformatic tools to profile TME components and predict neoantigens. Overall, this review provides a comprehensive account of the current knowledge available to target TME.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
82
|
Sarango G, Richetta C, Pereira M, Kumari A, Ghosh M, Bertrand L, Pionneau C, Le Gall M, Grégoire S, Jeger‐Madiot R, Rosoy E, Subra F, Delelis O, Faure M, Esclatine A, Graff‐Dubois S, Stevanović S, Manoury B, Ramirez BC, Moris A. The Autophagy Receptor TAX1BP1 (T6BP) improves antigen presentation by MHC-II molecules. EMBO Rep 2022; 23:e55470. [PMID: 36215666 PMCID: PMC9724678 DOI: 10.15252/embr.202255470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
CD4+ T lymphocytes play a major role in the establishment and maintenance of immunity. They are activated by antigenic peptides derived from extracellular or newly synthesized (endogenous) proteins presented by the MHC-II molecules. The pathways leading to endogenous MHC-II presentation remain poorly characterized. We demonstrate here that the autophagy receptor, T6BP, influences both autophagy-dependent and -independent endogenous presentation of HIV- and HCMV-derived peptides. By studying the immunopeptidome of MHC-II molecules, we show that T6BP affects both the quantity and quality of peptides presented. T6BP silencing induces the mislocalization of the MHC-II-loading compartments and rapid degradation of the invariant chain (CD74) without altering the expression and internalization kinetics of MHC-II molecules. Defining the interactome of T6BP, we identify calnexin as a T6BP partner. We show that the calnexin cytosolic tail is required for this interaction. Remarkably, calnexin silencing replicates the functional consequences of T6BP silencing: decreased CD4+ T cell activation and exacerbated CD74 degradation. Altogether, we unravel T6BP as a key player of the MHC-II-restricted endogenous presentation pathway, and we propose one potential mechanism of action.
Collapse
Affiliation(s)
- Gabriela Sarango
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Clémence Richetta
- Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance,LBPA, ENS‐Paris Saclay, CNRS UMR8113Université Paris SaclayGif‐sur‐YvetteFrance
| | - Mathias Pereira
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Anita Kumari
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Michael Ghosh
- Department of Immunology, Institute for Cell BiologyUniversity of TübingenTübingenGermany
| | - Lisa Bertrand
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Cédric Pionneau
- Sorbonne UniversitéINSERM, UMS Production et Analyse de Données en Sciences de la vie et en Santé, PASS, Plateforme Post‐génomique de la Pitié SalpêtrièreParisFrance
| | - Morgane Le Gall
- 3P5 proteom'IC facilityUniversité de Paris, Institut Cochin, INSERM U1016, CNRS‐UMR 8104ParisFrance
| | - Sylvie Grégoire
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Raphaël Jeger‐Madiot
- Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance,Present address:
Sorbonne Université, INSERM U959, Immunology‐Immunopathology‐Immunotherapy (i3)ParisFrance
| | - Elina Rosoy
- Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Frédéric Subra
- LBPA, ENS‐Paris Saclay, CNRS UMR8113Université Paris SaclayGif‐sur‐YvetteFrance
| | - Olivier Delelis
- LBPA, ENS‐Paris Saclay, CNRS UMR8113Université Paris SaclayGif‐sur‐YvetteFrance
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonLyonFrance,Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Audrey Esclatine
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Stéphanie Graff‐Dubois
- Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance,Present address:
Sorbonne Université, INSERM U959, Immunology‐Immunopathology‐Immunotherapy (i3)ParisFrance
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell BiologyUniversity of TübingenTübingenGermany
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151‐CNRS UMR 8253, Faculté de médecine NeckerUniversité de ParisParisFrance
| | - Bertha Cecilia Ramirez
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Arnaud Moris
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| |
Collapse
|
83
|
Palatnik-de-Sousa I, Wallace ZS, Cavalcante SC, Ribeiro MPF, Silva JABM, Cavalcante RC, Scheuermann RH, Palatnik-de-Sousa CB. A novel vaccine based on SARS-CoV-2 CD4 + and CD8 + T cell conserved epitopes from variants Alpha to Omicron. Sci Rep 2022; 12:16731. [PMID: 36202985 PMCID: PMC9537284 DOI: 10.1038/s41598-022-21207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
COVID-19 caused, as of September, 1rst, 2022, 599,825,400 confirmed cases, including 6,469,458 deaths. Currently used vaccines reduced severity and mortality but not virus transmission or reinfection by different strains. They are based on the Spike protein of the Wuhan reference virus, which although highly antigenic suffered many mutations in SARS-CoV-2 variants, escaping vaccine-generated immune responses. Multiepitope vaccines based on 100% conserved epitopes of multiple proteins of all SARS-CoV-2 variants, rather than a single highly mutating antigen, could offer more long-lasting protection. In this study, a multiepitope multivariant vaccine was designed using immunoinformatics and in silico approaches. It is composed of highly promiscuous and strong HLA binding CD4+ and CD8+ T cell epitopes of the S, M, N, E, ORF1ab, ORF 6 and ORF8 proteins. Based on the analysis of one genome per WHO clade, the epitopes were 100% conserved among the Wuhan-Hu1, Alpha, Beta, Gamma, Delta, Omicron, Mµ, Zeta, Lambda and R1 variants. An extended epitope-conservancy analysis performed using GISAID metadata of 3,630,666 SARS-CoV-2 genomes of these variants and the additional genomes of the Epsilon, Lota, Theta, Eta, Kappa and GH490 R clades, confirmed the high conservancy of the epitopes. All but one of the CD4 peptides showed a level of conservation greater than 97% among all genomes. All but one of the CD8 epitopes showed a level of conservation greater than 96% among all genomes, with the vast majority greater than 99%. A multiepitope and multivariant recombinant vaccine was designed and it was stable, mildly hydrophobic and non-toxic. The vaccine has good molecular docking with TLR4 and promoted, without adjuvant, strong B and Th1 memory immune responses and secretion of high levels of IL-2, IFN-γ, lower levels of IL-12, TGF-β and IL-10, and no IL-6. Experimental in vivo studies should validate the vaccine's further use as preventive tool with cross-protective properties.
Collapse
Affiliation(s)
- Iam Palatnik-de-Sousa
- Department of Electrical Engeneering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zachary S Wallace
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Stephany Christiny Cavalcante
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Paula Fonseca Ribeiro
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Antônio Barbosa Martins Silva
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Ciro Cavalcante
- Department of Pharmacy, Campus Professor Antônio Garcia Filho, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
- Global Virus Network, Baltimore, MD, USA
| | - Clarisa Beatriz Palatnik-de-Sousa
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute for Immunological Investigation (III), INCT, National Council for Scientific and Technological Development (CNPq), São Paulo, Brazil.
| |
Collapse
|
84
|
Weis-Banke SE, Lisle TL, Perez-Penco M, Schina A, Hübbe ML, Siersbæk M, Holmström MO, Jørgensen MA, Marie Svane I, Met Ö, Ødum N, Madsen DH, Donia M, Grøntved L, Andersen MH. Arginase-2-specific cytotoxic T cells specifically recognize functional regulatory T cells. J Immunother Cancer 2022; 10:jitc-2022-005326. [PMID: 36316062 PMCID: PMC9628693 DOI: 10.1136/jitc-2022-005326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
Background High expression of the metabolic enzyme arginase-2 (ARG2) by cancer cells, regulatory immune cells, or cells of the tumor stroma can reduce the availability of arginine (L-Arg) in the tumor microenvironment (TME). Depletion of L-Arg has detrimental consequences for T cells and leads to T-cell dysfunction and suppression of anticancer immune responses. Previous work from our group has demonstrated the presence of proinflammatory ARG2-specific CD4 T cells that inhibited tumor growth in murine models on activation with ARG2-derived peptides. In this study, we investigated the natural occurrence of ARG2-specific CD8 T cells in both healthy donors (HDs) and patients with cancer, along with their immunomodulatory capabilities in the context of the TME. Materials and methods A library of 15 major histocompatibility complex (MHC) class I-restricted ARG2-derived peptides were screened in HD peripheral blood mononuclear cells using interferon gamma (IFN-γ) ELISPOT. ARG2-specific CD8 T-cell responses were identified using intracellular cytokine staining and ARG2-specific CD8 T-cell cultures were established by enrichment and rapid expansion following in vitro peptide stimulation. The reactivity of the cultures toward ARG2-expressing cells, including cancer cell lines and activated regulatory T cells (Tregs), was assessed using IFN-γ ELISPOT and a chromium release assay. The Treg signature was validated based on proliferation suppression assays, flow cytometry and quantitative reverse transcription PCR (RT-qPCR). In addition, vaccinations with ARG2-derived epitopes were performed in the murine Pan02 tumor model, and induction of ARG2-specific T-cell responses was evaluated with IFN-γ ELISPOT. RNAseq and subsequent GO-term and ImmuCC analysis was performed on the tumor tissue. Results We describe the existence of ARG2-specific CD8+ T cells and demonstrate these CD8+ T-cell responses in both HDs and patients with cancer. ARG2-specific T cells recognize and react to an ARG2-derived peptide presented in the context of HLA-B8 and exert their cytotoxic function against cancer cells with endogenous ARG2 expression. We demonstrate that ARG2-specific T cells can specifically recognize and react to activated Tregs with high ARG2 expression. Finally, we observe tumor growth suppression and antitumorigenic immunomodulation following ARG2 vaccination in an in vivo setting. Conclusion These findings highlight the ability of ARG2-specific T cells to modulate the immunosuppressive TME and suggest that ARG2-based immunomodulatory vaccines may be an interesting option for cancer immunotherapy.
Collapse
Affiliation(s)
- Stine Emilie Weis-Banke
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Thomas Landkildehus Lisle
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Maria Perez-Penco
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Aimilia Schina
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Mie Linder Hübbe
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Majken Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Morten Orebo Holmström
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mia Aaboe Jørgensen
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Inge Marie Svane
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Özcan Met
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Hargbøl Madsen
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Marco Donia
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mads Hald Andersen
- Department of Oncology, Herlev Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark .,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
85
|
Karim M, Singh G, Thakur S, Rana A, Rub A, Akhter Y. Evaluating complete surface-associated and secretory proteome of Leishmania donovani for discovering novel vaccines and diagnostic targets. Arch Microbiol 2022; 204:604. [PMID: 36069945 DOI: 10.1007/s00203-022-03219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
The protozoa Leishmania donovani causes visceral leishmaniasis (kala-azar), the third most common vector-borne disease. The visceral organs, particularly the spleen, liver, and bone marrow, are affected by the disease. The lack of effective treatment regimens makes curing and eradicating the disease difficult. The availability of complete L. donovani genome/proteome data allows for the development of specific and efficient vaccine candidates using the reverse vaccinology method, while utilizing the unique sequential and structural features of potential antigenic proteins to induce protective T cell and B cell responses. Such shortlisted candidates may then be tested quickly for their efficacy in the laboratory and later in clinical settings. These antigens will also be useful for designing antigen-based next-generation sero-diagnostic assays. L. donovani's cell surface-associated proteins and secretory proteins are among the first interacting entities to be exposed to the host immune machinery. As a result, potential antigenic epitope peptides derived from these proteins could serve as competent vaccine components. We used a stepwise filtering-based in silico approach to identify the entire surface-associated and secretory proteome of L. donovani, which may provide rationally selected most exposed antigenic proteins. Our study identified 12 glycosylphosphatidylinositol-anchored proteins, 45 transmembrane helix-containing proteins, and 73 secretory proteins as potent antigens unique to L. donovani. In addition, we used immunoinformatics to identify B and T cell epitopes in them. Out of the shortlisted surface-associated and secretory proteome, 66 protein targets were found to have the most potential overlapping B cell and T cell epitopes (linear and conformational; MHC class I and MHC class II).
Collapse
Affiliation(s)
- Munawwar Karim
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Garima Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India.
| |
Collapse
|
86
|
Pissarra J, Dorkeld F, Loire E, Bonhomme V, Sereno D, Lemesre JL, Holzmuller P. SILVI, an open-source pipeline for T-cell epitope selection. PLoS One 2022; 17:e0273494. [PMID: 36070252 PMCID: PMC9451077 DOI: 10.1371/journal.pone.0273494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
High-throughput screening of available genomic data and identification of potential antigenic candidates have promoted the development of epitope-based vaccines and therapeutics. Several immunoinformatic tools are available to predict potential epitopes and other immunogenicity-related features, yet it is still challenging and time-consuming to compare and integrate results from different algorithms. We developed the R script SILVI (short for: from in silico to in vivo), to assist in the selection of the potentially most immunogenic T-cell epitopes from Human Leukocyte Antigen (HLA)-binding prediction data. SILVI merges and compares data from available HLA-binding prediction servers, and integrates additional relevant information of predicted epitopes, namely BLASTp alignments with host proteins and physical-chemical properties. The two default criteria applied by SILVI and additional filtering allow the fast selection of the most conserved, promiscuous, strong binding T-cell epitopes. Users may adapt the script at their discretion as it is written in open-source R language. To demonstrate the workflow and present selection options, SILVI was used to integrate HLA-binding prediction results of three example proteins, from viral, bacterial and parasitic microorganisms, containing validated epitopes included in the Immune Epitope Database (IEDB), plus the Human Papillomavirus (HPV) proteome. Applying different filters on predicted IC50, hydrophobicity and mismatches with host proteins allows to significantly reduce the epitope lists with favourable sensitivity and specificity to select immunogenic epitopes. We contemplate SILVI will assist T-cell epitope selections and can be continuously refined in a community-driven manner, helping the improvement and design of peptide-based vaccines or immunotherapies. SILVI development version is available at: github.com/JoanaPissarra/SILVI2020 and https://doi.org/10.5281/zenodo.6865909.
Collapse
Affiliation(s)
- Joana Pissarra
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), Montpellier, France
- * E-mail:
| | - Franck Dorkeld
- UMR CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier (I-MUSE), Montpellier, France
| | - Etienne Loire
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Vincent Bonhomme
- ISEM, CNRS, EPHE, IRD, University of Montpellier (I-MUSE), Montpellier, France
| | - Denis Sereno
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), Montpellier, France
| | - Jean-Loup Lemesre
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), Montpellier, France
| | - Philippe Holzmuller
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| |
Collapse
|
87
|
Minegishi Y, Kiyotani K, Nemoto K, Inoue Y, Haga Y, Fujii R, Saichi N, Nagayama S, Ueda K. Differential ion mobility mass spectrometry in immunopeptidomics identifies neoantigens carrying colorectal cancer driver mutations. Commun Biol 2022; 5:831. [PMID: 35982173 PMCID: PMC9388627 DOI: 10.1038/s42003-022-03807-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding the properties of human leukocyte antigen (HLA) peptides (immunopeptides) is essential for precision cancer medicine, while the direct identification of immunopeptides from small biopsies of clinical tissues by mass spectrometry (MS) is still confronted with technical challenges. Here, to overcome these hindrances, high-field asymmetric waveform ion mobility spectrometry (FAIMS) is introduced to conduct differential ion mobility (DIM)-MS by seamless gas-phase fractionation optimal for scarce samples. By established DIM-MS for immunopeptidomics analysis, on average, 42.9 mg of normal and tumor colorectal tissues from identical patients (n = 17) were analyzed, and on average 4921 immunopeptides were identified. Among these 44,815 unique immunopeptides, two neoantigens, KRAS-G12V and CPPED1-R228Q, were identified. These neoantigens were confirmed by synthetic peptides through targeted MS in parallel reaction monitoring (PRM) mode. Comparison of the tissue-based personal immunopeptidome revealed tumor-specific processing of immunopeptides. Since the direct identification of neoantigens from tumor tissues suggested that more potential neoantigens have yet to be identified, we screened cell lines with known oncogenic KRAS mutations and identified 2 more neoantigens that carry KRAS-G12V. These results indicated that the established FAIMS-assisted DIM-MS is effective in the identification of immunopeptides and potential recurrent neoantigens directly from scarce samples such as clinical tissues.
Collapse
Affiliation(s)
- Yuriko Minegishi
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensaku Nemoto
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Yoshimi Haga
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Risa Fujii
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naomi Saichi
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Nagayama
- Development of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
88
|
Kumar S, Kumar GS, Maitra SS, Malý P, Bharadwaj S, Sharma P, Dwivedi VD. Viral informatics: bioinformatics-based solution for managing viral infections. Brief Bioinform 2022; 23:6659740. [PMID: 35947964 DOI: 10.1093/bib/bbac326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Several new viral infections have emerged in the human population and establishing as global pandemics. With advancements in translation research, the scientific community has developed potential therapeutics to eradicate or control certain viral infections, such as smallpox and polio, responsible for billions of disabilities and deaths in the past. Unfortunately, some viral infections, such as dengue virus (DENV) and human immunodeficiency virus-1 (HIV-1), are still prevailing due to a lack of specific therapeutics, while new pathogenic viral strains or variants are emerging because of high genetic recombination or cross-species transmission. Consequently, to combat the emerging viral infections, bioinformatics-based potential strategies have been developed for viral characterization and developing new effective therapeutics for their eradication or management. This review attempts to provide a single platform for the available wide range of bioinformatics-based approaches, including bioinformatics methods for the identification and management of emerging or evolved viral strains, genome analysis concerning the pathogenicity and epidemiological analysis, computational methods for designing the viral therapeutics, and consolidated information in the form of databases against the known pathogenic viruses. This enriched review of the generally applicable viral informatics approaches aims to provide an overview of available resources capable of carrying out the desired task and may be utilized to expand additional strategies to improve the quality of translation viral informatics research.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.,Institute of Advanced Materials, IAAM, 59053 Ulrika, Sweden
| |
Collapse
|
89
|
Bi SQ, Zhang QM, Zeng X, Liu C, Nong WX, Xie H, Li F, Lin LN, Luo B, Ge YY, Xie XX. Combined treatment with epigenetic agents enhances anti-tumor activity of MAGE-D4 peptide-specific T cells by upregulating the MAGE-D4 expression in glioma. Front Oncol 2022; 12:873639. [PMID: 35992806 PMCID: PMC9382192 DOI: 10.3389/fonc.2022.873639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe study evaluated the efficacy of combined epigenetic drugs of decitabine (DAC), valproic acid (VPA), and trichostatin A (TSA) on immunotherapy against glioma.MethodsThe expression and prognosis of MAGE-D4 in glioma were analyzed online, and the expression of MAGE-D4 and HLA-A2 in glioma induced by epigenetic drugs was detected by qRT-PCR, Western blot, and flow cytometry. The methylation status of the MAGE-D4 promoter was determined by pyrosequencing. An HLA-A2 restricted MAGE-D4 peptide was predicted and synthesized. An affinity assay and a peptide/HLA complex stability assay were performed to determine the affinity between peptide and HLA. CCK8 assay, CFSE assay, ELISA and ELISPOT were performed to detect the function of MAGE-D4 peptide-specific T cells. Flow cytometry, ELISA, and cytotoxicity assays were used to detect the cytotoxicity effect of MAGE-D4 peptide-specific T cells combined with epigenetic drugs against glioma in vitro. Finally, the glioma-loaded mouse model was applied to test the inhibitory effect of specific T cells on gliomas in vivo.ResultsMAGE-D4 was highly expressed in glioma and correlated with poor prognosis. Glioma cells could be induced to express MAGE-D4 and HLA-A2 by epigenetic drugs. MAGE-D4-associated peptides were found that induce DCs to stimulate the highest T-cell activities of proliferation, IL-2 excretion, and IFN-γ secretion. MAGE-D4 peptide-specific T cells treated with TSA only or combining TSA and DAC had the most cytotoxicity effect, and its cytotoxicity effect on glioma cells decreased significantly after HLA blocking. In vivo experiments also confirmed that MAGE-D4-specific T cells inhibit TSA-treated glioma.ConclusionMAGE-D4 is highly expressed in glioma and correlated with the prognosis of glioma. The novel MAGE-D4 peptide identified was capable of inducing MAGE-D4-specific T cells that can effectively inhibit glioma growth, and the epigenetic drug application can enhance this inhibition.
Collapse
Affiliation(s)
- Shui-Qing Bi
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Neurosurgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qing-Mei Zhang
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Key laboratory of Preclinical Medicine, Education Department of Guangxi Zhuang Autonomous region, Nanning, China
| | - Xia Zeng
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei-Xia Nong
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Huan Xie
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Feng Li
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Na Lin
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Bin Luo
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Key laboratory of Preclinical Medicine, Education Department of Guangxi Zhuang Autonomous region, Nanning, China
| | - Ying-Ying Ge
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- *Correspondence: Ying-Ying Ge, ; Xiao-Xun Xie,
| | - Xiao-Xun Xie
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Key laboratory of Preclinical Medicine, Education Department of Guangxi Zhuang Autonomous region, Nanning, China
- *Correspondence: Ying-Ying Ge, ; Xiao-Xun Xie,
| |
Collapse
|
90
|
van Haren SD, Pedersen GK, Kumar A, Ruckwardt TJ, Moin S, Moore IN, Minai M, Liu M, Pak J, Borriello F, Doss-Gollin S, Beijnen EMS, Ahmed S, Helmel M, Andersen P, Graham BS, Steen H, Christensen D, Levy O. CAF08 adjuvant enables single dose protection against respiratory syncytial virus infection in murine newborns. Nat Commun 2022; 13:4234. [PMID: 35918315 PMCID: PMC9346114 DOI: 10.1038/s41467-022-31709-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Respiratory syncytial virus is a leading cause of morbidity and mortality in children, due in part to their distinct immune system, characterized by impaired induction of Th 1 immunity. Here we show application of cationic adjuvant formulation CAF08, a liposomal vaccine formulation tailored to induce Th 1 immunity in early life via synergistic engagement of Toll-like Receptor 7/8 and the C-type lectin receptor Mincle. We apply quantitative phosphoproteomics to human dendritic cells and reveal a role for Protein Kinase C-δ for enhanced Th1 cytokine production in neonatal dendritic cells and identify signaling events resulting in antigen cross-presentation. In a murine in vivo model a single immunization at birth with CAF08-adjuvanted RSV pre-fusion antigen protects newborn mice from RSV infection by induction of antigen-specific CD8+ T-cells and Th1 cells. Overall, we describe a pediatric adjuvant formulation and characterize its mechanism of action providing a promising avenue for development of early life vaccines against RSV and other respiratory viral pathogens.
Collapse
Affiliation(s)
- Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Gabriel K Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Azad Kumar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Syed Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark Liu
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Jensen Pak
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Generate Biomedicines, Cambridge, MA, USA
| | - Simon Doss-Gollin
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Elisabeth M S Beijnen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Saima Ahmed
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michaela Helmel
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Andersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanno Steen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| |
Collapse
|
91
|
Trevizani R, Yan Z, Greenbaum JA, Sette A, Nielsen M, Peters B. A comprehensive analysis of the IEDB MHC class-I automated benchmark. Brief Bioinform 2022; 23:6632617. [PMID: 35794711 DOI: 10.1093/bib/bbac259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 11/12/2022] Open
Abstract
In 2014, the Immune Epitope Database automated benchmark was created to compare the performance of the MHC class I binding predictors. However, this is not a straightforward process due to the different and non-standardized outputs of the methods. Additionally, some methods are more restrictive regarding the HLA alleles and epitope sizes for which they predict binding affinities, while others are more comprehensive. To address how these problems impacted the ranking of the predictors, we developed an approach to assess the reliability of different metrics. We found that using percentile-ranked results improved the stability of the ranks and allowed the predictors to be reliably ranked despite not being evaluated on the same data. We also found that given the rate new data are incorporated into the benchmark, a new method must wait for at least 4 years to be ranked against the pre-existing methods. The best-performing tools with statistically indistinguishable scores in this benchmark were NetMHCcons, NetMHCpan4.0, ANN3.4, NetMHCpan3.0 and NetMHCpan2.8. The results of this study will be used to improve the evaluation and display of benchmark performance. We highly encourage anyone working on MHC binding predictions to participate in this benchmark to get an unbiased evaluation of their predictors.
Collapse
Affiliation(s)
- Raphael Trevizani
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA.,Fiocruz Ceará, Fundação Oswaldo Cruz, Rua São José s/n, Precabura, Eusébio/CE, Brazil
| | - Zhen Yan
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | - Jason A Greenbaum
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, B1650 Buenos Aires, Argentina
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
92
|
Mitra D, Pandey J, Jain A, Swaroop S. In silico design of multi-epitope-based peptide vaccine against SARS-CoV-2 using its spike protein. J Biomol Struct Dyn 2022; 40:5189-5202. [PMID: 33403946 PMCID: PMC7876912 DOI: 10.1080/07391102.2020.1869092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022]
Abstract
SARS-CoV-2 has been efficient in ensuring that many countries are brought to a standstill. With repercussions ranging from rampant mortality, fear, paranoia, and economic recession, the virus has brought together countries to look at possible therapeutic countermeasures. With prophylactic interventions possibly months away from being particularly effective, a slew of measures and possibilities concerning the design of vaccines are being worked upon. We attempted a structure-based approach utilizing a combination of epitope prediction servers and Molecular dynamic (MD) simulations to develop a multi-epitope-based subunit vaccine that involves the two subunits of the spike glycoprotein of SARS-CoV-2 (S1 and S2) coupled with a substantially effective chimeric adjuvant to create stable vaccine constructs. The designed constructs were evaluated based on their docking with Toll-Like Receptor (TLR) 4. Our findings provide an epitope-based peptide fragment that can be a potential candidate for the development of a vaccine against SARS-CoV-2. Recent experimental studies based on determining immunodominant regions across the spike glycoprotein of SARS-CoV-2 indicate the presence of the predicted epitopes included in this study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debarghya Mitra
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Janmejay Pandey
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Alok Jain
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Shiv Swaroop
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
93
|
Khanum S, Carbone V, Gupta SK, Yeung J, Shu D, Wilson T, Parlane NA, Altermann E, Estein SM, Janssen PH, Wedlock DN, Heiser A. Mapping immunogenic epitopes of an adhesin-like protein from Methanobrevibacter ruminantium M1 and comparison of empirical data with in silico prediction methods. Sci Rep 2022; 12:10394. [PMID: 35729277 PMCID: PMC9213418 DOI: 10.1038/s41598-022-14545-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
In silico prediction of epitopes is a potentially time-saving alternative to experimental epitope identification but is often subject to misidentification of epitopes and may not be useful for proteins from archaeal microorganisms. In this study, we mapped B- and T-cell epitopes of a model antigen from the methanogen Methanobrevibacter ruminantium M1, the Big_1 domain (AdLP-D1, amino acids 19-198) of an adhesin-like protein. A series of 17 overlapping 20-mer peptides was selected to cover the Big_1 domain. Peptide-specific antibodies were produced in mice and measured by ELISA, while an in vitro splenocyte re-stimulation assay determined specific T-cell responses. Overall, five peptides of the 17 peptides were shown to be major immunogenic epitopes of AdLP-D1. These immunogenic regions were examined for their localization in a homology-based model of AdLP-D1. Validated epitopes were found in the outside region of the protein, with loop like secondary structures reflecting their flexibility. The empirical data were compared with epitope predictions made by programmes based on a range of algorithms. In general, the epitopes identified by in silico predictions were not comparable to those determined empirically.
Collapse
Affiliation(s)
| | | | | | | | - Dairu Shu
- AgResearch, Palmerston North, New Zealand
| | | | | | - Eric Altermann
- AgResearch, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Silvia M Estein
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CICPBA, Facultad de Ciencias Veterinarias, Campus Universitario, 7000, Tandil, Argentina
| | | | | | | |
Collapse
|
94
|
Kumar A, Sahu U, Kumari P, Dixit A, Khare P. Designing of multi-epitope chimeric vaccine using immunoinformatic platform by targeting oncogenic strain HPV 16 and 18 against cervical cancer. Sci Rep 2022; 12:9521. [PMID: 35681036 PMCID: PMC9184633 DOI: 10.1038/s41598-022-13442-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer is the most common gynaecological cancer and reaches an alarming stage. HPVs are considered the main causative agents for cervical cancer and other sexually transmitted infections across the globe. Currently, three prophylactic vaccines are available against HPV infections with no therapeutic values. Due to a lack of effective therapeutic and prophylactic measures, the HPV infection is spreading in an uncontrolled manner. Next-generation of vaccine is needed to have both prophylactic and therapeutic values against HPV. Here first time we have designed a multi-epitope chimeric vaccine using the most oncogenic strain HPV 16 and HPV 18 through an immunoinformatic approach. In this study, we have used the L1, E5, E6 and E7 oncoproteins from both HPV 16 and HPV 18 strains for epitope prediction. Our recombinant chimeric vaccine construct consists, selected helper and cytotoxic T cell epitopes. Our computational analysis suggests that this chimeric construct is highly stable, non-toxic and also capable of inducing both cell-mediated and humoral immune responses. Furthermore, in silico cloning of the multi-epitope chimeric vaccine construct was done and the stabilization of the vaccine construct is validated with molecular dynamics simulation studies. Finally, our results indicated that our construct could be used for an effective prophylactic and therapeutic vaccine against HPV.
Collapse
Affiliation(s)
- Anoop Kumar
- National Institute of Biologicals (NIB), Noida, Uttar Pradesh, India
| | - Utkarsha Sahu
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India
- Division of Synthetic Biology, Absolute foods, 5th floor, Plot 68, Sector 44, Gurugram, Haryana, 122003, India
| | - Pratima Kumari
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad Rd, Faridabad, Haryana, 121001, India
| | - Anshuman Dixit
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Prashant Khare
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India.
- Division of Synthetic Biology, Absolute foods, 5th floor, Plot 68, Sector 44, Gurugram, Haryana, 122003, India.
| |
Collapse
|
95
|
Jiang L, Tang J, Guo F, Guo Y. Prediction of Major Histocompatibility Complex Binding with Bilateral and Variable Long Short Term Memory Networks. BIOLOGY 2022; 11:biology11060848. [PMID: 35741369 PMCID: PMC9220200 DOI: 10.3390/biology11060848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Major histocompatibility complex molecules are of significant biological and clinical importance due to their utility in immunotherapy. The prediction of potential MHC binding peptides can estimate a T-cell immune response. The variable length of existing MHC binding peptides creates difficulty for MHC binding prediction algorithms. Thus, we utilized a bilateral and variable long-short term memory neural network to address this specific problem and developed a novel MHC binding prediction tool. Abstract As an important part of immune surveillance, major histocompatibility complex (MHC) is a set of proteins that recognize foreign molecules. Computational prediction methods for MHC binding peptides have been developed. However, existing methods share the limitation of fixed peptide sequence length, which necessitates the training of models by peptide length or prediction with a length reduction technique. Using a bidirectional long short-term memory neural network, we constructed BVMHC, an MHC class I and II binding prediction tool that is independent of peptide length. The performance of BVMHC was compared to seven MHC class I prediction tools and three MHC class II prediction tools using eight performance criteria independently. BVMHC attained the best performance in three of the eight criteria for MHC class I, and the best performance in four of the eight criteria for MHC class II, including accuracy and AUC. Furthermore, models for non-human species were also trained using the same strategy and made available for applications in mice, chimpanzees, macaques, and rats. BVMHC is composed of a series of peptide length independent MHC class I and II binding predictors. Models from this study have been implemented in an online web portal for easy access and use.
Collapse
Affiliation(s)
- Limin Jiang
- Comprehensive Cancer Center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
- Correspondence: (F.G.); (Y.G.)
| | - Yan Guo
- Comprehensive Cancer Center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
- Correspondence: (F.G.); (Y.G.)
| |
Collapse
|
96
|
Kawasaki T, Ikegawa M, Kawai T. Antigen Presentation in the Lung. Front Immunol 2022; 13:860915. [PMID: 35615351 PMCID: PMC9124800 DOI: 10.3389/fimmu.2022.860915] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
The lungs are constantly exposed to environmental and infectious agents such as dust, viruses, fungi, and bacteria that invade the lungs upon breathing. The lungs are equipped with an immune defense mechanism that involves a wide variety of immunological cells to eliminate these agents. Various types of dendritic cells (DCs) and macrophages (MACs) function as professional antigen-presenting cells (APCs) that engulf pathogens through endocytosis or phagocytosis and degrade proteins derived from them into peptide fragments. During this process, DCs and MACs present the peptides on their major histocompatibility complex class I (MHC-I) or MHC-II protein complex to naïve CD8+ or CD4+ T cells, respectively. In addition to these cells, recent evidence supports that antigen-specific effector and memory T cells are activated by other lung cells such as endothelial cells, epithelial cells, and monocytes through antigen presentation. In this review, we summarize the molecular mechanisms of antigen presentation by APCs in the lungs and their contribution to immune response.
Collapse
Affiliation(s)
| | | | - Taro Kawai
- *Correspondence: Takumi Kawasaki, ; Taro Kawai,
| |
Collapse
|
97
|
Jiang J, Du Y, Peng T. SARS-CoV-2 Omicron Variant is Expected to Retain Most of the Spike Protein Specific Dominant T-Cell Epitopes Presented by COVID-19 Vaccines - Worldwide, 2021. China CDC Wkly 2022; 4:381-384. [PMID: 35686202 PMCID: PMC9167615 DOI: 10.46234/ccdcw2022.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
What is already known about this topic? The newly emerged variant of Omicron, which carries many of the mutations found in other variants of concern (VOCs), as well as a great number of new mutations that may enhance its immune escape, has spread rapidly around the world. This has raised public concern about the effectiveness of the current coronavirus disease 2019 (COVID-19) vaccine. What is added by this report? In this study, different bioinformatic softwares were applied to predict the dominant Omicron spike (S) protein cytotoxic T lymphocyte (CTL) and T helper (Th) epitopes in representative world population and Chinese population. Compared to the original severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, limited mutations were identified within the dominant CTL and Th epitopes in Omicron variant. What are the implications for public health practice? The results of this study suggested that the current COVID-19 vaccine-induced T-cell immunity may still provide significant protection against Omicron variant infection in fully vaccinated individuals.
Collapse
Affiliation(s)
- Jiajing Jiang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yingying Du
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China,Yingying Du,
| | - Tao Peng
- Guangdong South China Vaccine, Guangzhou, Guangdong, China,Tao Peng,
| |
Collapse
|
98
|
Nandre R, Verma V, Gaur P, Patil V, Yang X, Ramlaoui Z, Shobaki N, Andersen MH, Pedersen AW, Zocca MB, Mkrtichyan M, Gupta S, Khleif SN. IDO Vaccine Ablates Immune-Suppressive Myeloid Populations and Enhances Antitumor Effects Independent of Tumor Cell IDO Status. Cancer Immunol Res 2022; 10:571-580. [PMID: 35290437 PMCID: PMC9381100 DOI: 10.1158/2326-6066.cir-21-0457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 01/07/2023]
Abstract
The immunosuppressive tumor microenvironment (TME) does not allow generation and expansion of antitumor effector cells. One of the potent immunosuppressive factors present in the TME is the indoleamine-pyrrole 2,3-dioxygenase (IDO) enzyme, produced mainly by cancer cells and suppressive immune cells of myeloid origin. In fact, IDO+ myeloid-derived suppressor cells (MDSC) and dendritic cells (DC) tend to be more suppressive than their IDO- counterparts. Hence, therapeutic approaches that would target the IDO+ cells in the TME, while sparing the antigen-presenting functions of IDO- myeloid populations, are needed. Using an IDO-specific peptide vaccine (IDO vaccine), we explored the possibility of generating effector cells against IDO and non-IDO tumor-derived antigens. For this, IDO-secreting (B16F10 melanoma) and non-IDO-secreting (TC-1) mouse tumor models were employed. We showed that the IDO vaccine significantly reduced tumor growth and enhanced survival of mice in both the tumor models, which associated with a robust induction of IDO-specific effector cells in the TME. The IDO vaccine significantly enhanced the antitumor efficacy of non-IDO tumor antigen-specific vaccines, leading to an increase in the number of total and antigen-specific activated CD8+ T cells (IFNγ+ and granzyme B+). Treatment with the IDO vaccine significantly reduced the numbers of IDO+ MDSCs and DCs, and immunosuppressive regulatory T cells in both tumor models, resulting in enhanced therapeutic ratios. Together, we showed that vaccination against IDO is a promising therapeutic option for both IDO-producing and non-IDO-producing tumors. The IDO vaccine selectively ablates the IDO+ compartment in the TME, leading to a significant enhancement of the immune responses against other tumor antigen-specific vaccines.
Collapse
Affiliation(s)
- Rahul Nandre
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Vivek Verma
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Pankaj Gaur
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Veerupaxagouda Patil
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Xingdong Yang
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Zainab Ramlaoui
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Nour Shobaki
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | | | | | | | - Mikayel Mkrtichyan
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Seema Gupta
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Samir N. Khleif
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| |
Collapse
|
99
|
Debnath U, Verma S, Patra J, Mandal SK. A review on recent synthetic routes and computational approaches for antibody drug conjugation developments used in anti-cancer therapy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
100
|
The Use of Molecular Dynamics Simulation Method to Quantitatively Evaluate the Affinity between HBV Antigen T Cell Epitope Peptides and HLA-A Molecules. Int J Mol Sci 2022; 23:ijms23094629. [PMID: 35563019 PMCID: PMC9105472 DOI: 10.3390/ijms23094629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic hepatitis B virus (HBV), a potentially life-threatening liver disease, makes people vulnerable to serious diseases such as cancer. T lymphocytes play a crucial role in clearing HBV virus, while the pathway depends on the strong binding of T cell epitope peptide and HLA. However, the experimental identification of HLA-restricted HBV antigenic peptides is extremely time-consuming. In this study, we provide a novel prediction strategy based on structure to assess the affinity between the HBV antigenic peptide and HLA molecule. We used residue scanning, peptide docking and molecular dynamics methods to obtain the molecular docking model of HBV peptide and HLA, and then adopted the MM-GBSA method to calculate the binding affinity of the HBV peptide–HLA complex. Overall, we collected 59 structures of HLA-A from Protein Data Bank, and finally obtained 352 numerical affinity results to figure out the optimal bind choice between the HLA-A molecules and 45 HBV T cell epitope peptides. The results were highly consistent with the qualitative affinity level determined by the competitive peptide binding assay, which confirmed that our affinity prediction process based on an HLA structure is accurate and also proved that the homologous modeling strategy for HLA-A molecules in this study was reliable. Hence, our work highlights an effective way by which to predict and screen for HLA-peptide binding that would improve the treatment of HBV infection.
Collapse
|