51
|
Active site variants provide insight into the nature of conformational changes that accompany the cyclohexanone monooxygenase catalytic cycle. Arch Biochem Biophys 2018; 654:85-96. [DOI: 10.1016/j.abb.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 01/31/2023]
|
52
|
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. BIOLOGY 2018; 7:biology7030042. [PMID: 30072664 PMCID: PMC6165268 DOI: 10.3390/biology7030042] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
Flavoprotein monooxygenases create valuable compounds that are of high interest for the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that use flavin as cofactor are either single- or two-component systems. Here we summarize the current knowledge about two-component flavin adenine dinucleotide (FAD)-dependent monooxygenases and describe their biotechnological relevance. Two-component FAD-dependent monooxygenases catalyze hydroxylation, epoxidation, and halogenation reactions and are physiologically involved in amino acid metabolism, mineralization of aromatic compounds, and biosynthesis of secondary metabolites. The monooxygenase component of these enzymes is strictly dependent on reduced FAD, which is supplied by the reductase component. More and more representatives of two-component FAD-dependent monooxygenases have been discovered and characterized in recent years, which has resulted in the identification of novel physiological roles, functional properties, and a variety of biocatalytic opportunities.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - George Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
53
|
Dong J, Fernández‐Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biocatalytic Oxidation Reactions: A Chemist's Perspective. Angew Chem Int Ed Engl 2018; 57:9238-9261. [PMID: 29573076 PMCID: PMC6099261 DOI: 10.1002/anie.201800343] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/25/2023]
Abstract
Oxidation chemistry using enzymes is approaching maturity and practical applicability in organic synthesis. Oxidoreductases (enzymes catalysing redox reactions) enable chemists to perform highly selective and efficient transformations ranging from simple alcohol oxidations to stereoselective halogenations of non-activated C-H bonds. For many of these reactions, no "classical" chemical counterpart is known. Hence oxidoreductases open up shorter synthesis routes based on a more direct access to the target products. The generally very mild reaction conditions may also reduce the environmental impact of biocatalytic reactions compared to classical counterparts. In this Review, we critically summarise the most important recent developments in the field of biocatalytic oxidation chemistry and identify the most pressing bottlenecks as well as promising solutions.
Collapse
Affiliation(s)
- JiaJia Dong
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Elena Fernández‐Fueyo
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Milja Pesic
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Sandy Schmidt
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Yonghua Wang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Sabry Younes
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Wuyuan Zhang
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|
54
|
Gran-Scheuch A, Trajkovic M, Parra L, Fraaije MW. Mining the Genome of Streptomyces leeuwenhoekii: Two New Type I Baeyer-Villiger Monooxygenases From Atacama Desert. Front Microbiol 2018; 9:1609. [PMID: 30072972 PMCID: PMC6058054 DOI: 10.3389/fmicb.2018.01609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022] Open
Abstract
Actinobacteria are an important source of commercial (bio)compounds for the biotechnological and pharmaceutical industry. They have also been successfully exploited in the search of novel biocatalysts. We set out to explore a recently identified actinomycete, Streptomyces leeuwenhoekii C34, isolated from a hyper-arid region, the Atacama desert, for Baeyer–Villiger monooxygenases (BVMOs). Such oxidative enzymes are known for their broad applicability as biocatalysts by being able to perform various chemical reactions with high chemo-, regio-, and/or enantioselectivity. By choosing this specific Actinobacterium, which comes from an extreme environment, the respective enzymes are also expected to display attractive features by tolerating harsh conditions. In this work, we identified two genes in the genome of S. leeuwenhoekii (sle_13190 and sle_62070) that were predicted to encode for Type I BVMOs, the respective flavoproteins share 49% sequence identity. The two genes were cloned, overexpressed in E. coli with phosphite dehydrogenase (PTDH) as fusion partner and successfully purified. Both flavin-containing proteins showed NADPH-dependent Baeyer–Villiger oxidation activity for various ketones and sulfoxidation activity with some sulfides. Gratifyingly, both enzymes were found to be rather robust by displaying a relatively high apparent melting temperature (45°C) and tolerating water-miscible cosolvents. Specifically, Sle_62070 was found to be highly active with cyclic ketones and displayed a high regioselectivity by producing only one lactone from 2-phenylcyclohexanone, and high enantioselectivity by producing only normal (-)-1S,5R and abnormal (-)-1R,5S lactones (ee > 99%) from bicyclo[3.2.0]hept-2-en-6-one. These two newly discovered BVMOs add two new potent biocatalysts to the known collection of BVMOs.
Collapse
Affiliation(s)
- Alejandro Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Groningen, Netherlands.,Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milos Trajkovic
- Molecular Enzymology Group, University of Groningen, Groningen, Netherlands
| | - Loreto Parra
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, Netherlands
| |
Collapse
|
55
|
Improving catalytic activity of the Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the overproduction of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid. Sci Rep 2018; 8:10280. [PMID: 29980730 PMCID: PMC6035261 DOI: 10.1038/s41598-018-28575-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Baeyer–Villiger monooxygenases (BVMOs) can be used for the biosynthesis of lactones and esters from ketones. However, the BVMO-based biocatalysts are not so stable under process conditions. Thereby, this study focused on enhancing stability of the BVMO-based biocatalysts. The biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid by the recombinant Escherichia coli expressing the BVMO from Pseudomonas putida and an alcohol dehydrogenase from Micrococcus luteus was used as a model system. After thorough investigation of the key factors to influence stability of the BVMO, Cys302 was identified as an engineering target. The substitution of Cys302 to Leu enabled the engineered enzyme (i.e., E6BVMOC302L) to become more stable toward oxidative and thermal stresses. The catalytic activity of E6BVMOC302L-based E. coli biocatalysts was also greater than the E6BVMO-based biocatalysts. Another factor to influence biocatalytic performance of the BVMO-based whole-cell biocatalysts was availability of carbon and energy source during biotransformations. Glucose feeding into the reaction medium led to a marked increase of final product concentrations. Overall, the bioprocess engineering to improve metabolic stability of host cells in addition to the BVMO engineering allowed us to produce (Z)-11-(heptanoyloxy)undec-9-enoic acid to a concentration of 132 mM (41 g/L) from 150 mM ricinoleic acid within 8 h.
Collapse
|
56
|
Dong J, Fernández-Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biokatalytische Oxidationsreaktionen - aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800343] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- JiaJia Dong
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Elena Fernández-Fueyo
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Caroline E. Paul
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Milja Pesic
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Sandy Schmidt
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Yonghua Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 P. R. China
| | - Sabry Younes
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Wuyuan Zhang
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| |
Collapse
|
57
|
Enantioselective sulfoxidations employing the thermostable cyclohexanone monooxygenase from Thermocrispum municipale. Enzyme Microb Technol 2018; 113:24-28. [DOI: 10.1016/j.enzmictec.2018.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 11/23/2022]
|
58
|
Horn A, Kazmaier U. Purified m
CPBA, a Useful Reagent for the Oxidation of Aldehydes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander Horn
- Institute for Organic Chemistry; Saarland University; P.O. Box 151150 66041 Saarbrücken Germany
| | - Uli Kazmaier
- Institute for Organic Chemistry; Saarland University; P.O. Box 151150 66041 Saarbrücken Germany
| |
Collapse
|
59
|
Morrill C, Jensen C, Just-Baringo X, Grogan G, Turner NJ, Procter DJ. Biocatalytic Conversion of Cyclic Ketones Bearing α-Quaternary Stereocenters into Lactones in an Enantioselective Radical Approach to Medium-Sized Carbocycles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Charlotte Morrill
- School of Chemistry; University of Manchester; Manchester M13 9PL UK
| | - Chantel Jensen
- School of Chemistry; University of Manchester; Manchester M13 9PL UK
| | | | - Gideon Grogan
- Department of Chemistry; University of York, Heslington; York YO10 5DD UK
| | | | - David J. Procter
- School of Chemistry; University of Manchester; Manchester M13 9PL UK
| |
Collapse
|
60
|
Morrill C, Jensen C, Just-Baringo X, Grogan G, Turner NJ, Procter DJ. Biocatalytic Conversion of Cyclic Ketones Bearing α-Quaternary Stereocenters into Lactones in an Enantioselective Radical Approach to Medium-Sized Carbocycles. Angew Chem Int Ed Engl 2018; 57:3692-3696. [PMID: 29393988 PMCID: PMC6055628 DOI: 10.1002/anie.201800121] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 01/11/2023]
Abstract
Cyclic ketones bearing α‐quaternary stereocenters underwent efficient kinetic resolution using cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus. Lactones possessing tetrasubstituted stereocenters were obtained with high enantioselectivity (up to >99 % ee) and complete chemoselectivity. Preparative‐scale biotransformations were exploited in conjunction with a SmI2‐mediated cyclization process to access complex, enantiomerically enriched cycloheptan‐ and cycloctan‐1,4‐diols. In a parallel approach to structurally distinct products, enantiomerically enriched ketones from the resolution with an α‐quaternary stereocenter were used in a SmI2‐mediated cyclization process to give cyclobutanol products (up to >99 % ee).
Collapse
Affiliation(s)
- Charlotte Morrill
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Chantel Jensen
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | | | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Nicholas J Turner
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - David J Procter
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
61
|
Miller AF, Park JT, Ferguson KL, Pitsawong W, Bommarius AS. Informing Efforts to Develop Nitroreductase for Amine Production. Molecules 2018; 23:molecules23020211. [PMID: 29364838 PMCID: PMC6017928 DOI: 10.3390/molecules23020211] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 12/19/2022] Open
Abstract
Nitroreductases (NRs) hold promise for converting nitroaromatics to aromatic amines. Nitroaromatic reduction rate increases with Hammett substituent constant for NRs from two different subgroups, confirming substrate identity as a key determinant of reactivity. Amine yields were low, but compounds yielding amines tend to have a large π system and electron withdrawing substituents. Therefore, we also assessed the prospects of varying the enzyme. Several different subgroups of NRs include members able to produce aromatic amines. Comparison of four NR subgroups shows that they provide contrasting substrate binding cavities with distinct constraints on substrate position relative to the flavin. The unique architecture of the NR dimer produces an enormous contact area which we propose provides the stabilization needed to offset the costs of insertion of the active sites between the monomers. Thus, we propose that the functional diversity included in the NR superfamily stems from the chemical versatility of the flavin cofactor in conjunction with a structure that permits tremendous active site variability. These complementary properties make NRs exceptionally promising enzymes for development for biocatalysis in prodrug activation and conversion of nitroaromatics to valuable aromatic amines. We provide a framework for identifying NRs and substrates with the greatest potential to advance.
Collapse
Affiliation(s)
- Anne-Frances Miller
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA.
| | - Jonathan T Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA.
| | - Kyle L Ferguson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA.
| | - Warintra Pitsawong
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA.
| | - Andreas S Bommarius
- School of Chemical and Biomolecular Engineering, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA.
| |
Collapse
|
62
|
Romero E, Gómez Castellanos JR, Gadda G, Fraaije MW, Mattevi A. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chem Rev 2018; 118:1742-1769. [DOI: 10.1021/acs.chemrev.7b00650] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elvira Romero
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - J. Rubén Gómez Castellanos
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giovanni Gadda
- Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
63
|
Balke K, Beier A, Bornscheuer UT. Hot spots for the protein engineering of Baeyer-Villiger monooxygenases. Biotechnol Adv 2018; 36:247-263. [DOI: 10.1016/j.biotechadv.2017.11.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
|
64
|
Cha HJ, Seo EJ, Song JW, Jo HJ, Kumar AR, Park JB. Simultaneous Enzyme/Whole-Cell Biotransformation of C18 Ricinoleic Acid into (R
)-3-Hydroxynonanoic Acid, 9-Hydroxynonanoic Acid, and 1,9-Nonanedioic Acid. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hee-Jeong Cha
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Eun-Ji Seo
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Ji-Won Song
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Hye-Jin Jo
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Akula Ravi Kumar
- Department of Chemistry and Nanoscience; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
- Institute of Molecular Microbiology and Biosystems Engineering; Ewha Womans University; Seoul 03760 Republic of Korea
| |
Collapse
|
65
|
Chiral ethylene-bridged flavinium salts: the stereoselectivity of flavin-10a-hydroperoxide formation and the effect of substitution on the photochemical properties. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
66
|
Ceccoli RD, Bianchi DA, Fink MJ, Mihovilovic MD, Rial DV. Cloning and characterization of the Type I Baeyer-Villiger monooxygenase from Leptospira biflexa. AMB Express 2017; 7:87. [PMID: 28452041 PMCID: PMC5407406 DOI: 10.1186/s13568-017-0390-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 11/27/2022] Open
Abstract
Baeyer–Villiger monooxygenases are recognized by their ability and high selectivity as oxidative biocatalysts for the generation of esters or lactones using ketones as starting materials. These enzymes represent valuable tools for biooxidative syntheses since they can catalyze reactions that otherwise involve strong oxidative reagents. In this work, we present a novel enzyme, the Type I Baeyer–Villiger monooxygenase from Leptospira biflexa. This protein is phylogenetically distant from other well-characterized BVMOs. In order to study this new enzyme, we cloned its gene, expressed it in Escherichia coli and characterized the substrate scope of the Baeyer–Villiger monooxygenase from L. biflexa as a whole-cell biocatalyst. For this purpose, we performed the screening of a collection of ketones with variable structures and sizes, namely acyclic ketones, aromatic ketones, cyclic ketones, and fused ketones. As a result, we observed that this biocatalyst readily oxidized linear- and branched- medium-chain ketones, alkyl levulinates and linear ketones with aromatic substituents with excellent regioselectivity. In addition, this enzyme catalyzed the oxidation of 2-substituted cycloketone derivatives but showed an unusual selection against substituents in positions 3 or 4 of the ring.
Collapse
|
67
|
Polyelectrolyte Complex Beads by Novel Two-Step Process for Improved Performance of Viable Whole-Cell Baeyer-Villiger Monoxygenase by Immobilization. Catalysts 2017. [DOI: 10.3390/catal7110353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
68
|
Milker S, Goncalves LCP, Fink MJ, Rudroff F. Escherichia coli Fails to Efficiently Maintain the Activity of an Important Flavin Monooxygenase in Recombinant Overexpression. Front Microbiol 2017; 8:2201. [PMID: 29180987 PMCID: PMC5693912 DOI: 10.3389/fmicb.2017.02201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/26/2017] [Indexed: 11/23/2022] Open
Abstract
This paper describes the measurement and analysis of in vivo activity and stability of cyclohexanone monooxygenase from Acinetobacter sp. NCIMB 9871 (CHMO), a model Baeyer–Villiger monooxygenase, in the recombinant host Escherichia coli. This enzyme was often described as poorly stable in vitro, and has recently been found to deactivate rapidly in the absence of its essential cofactors and antioxidants. Its stability in vivo was scarcely studied, so far. Under conditions common for the overexpression of CHMO we investigated the ability of the host to support these properties using metabolomics. Our results showed that E. coli failed to provide the intracellular levels of cofactors required to functionally stabilize the enzyme, although the biocatalyst was produced in high concentration, and was invariably detected after protein synthesis had stopped. We thus infer that biotechnological applications of CHMO with this host relied on a residual activity of approximately 5-10%. Other microorganisms might offer a more efficient solution for recombinant production of CHMO and related enzymes.
Collapse
Affiliation(s)
- Sofia Milker
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | | | - Michael J Fink
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| |
Collapse
|
69
|
Polycyclic Ketone Monooxygenase (PockeMO): A Robust Biocatalyst for the Synthesis of Optically Active Sulfoxides. Catalysts 2017. [DOI: 10.3390/catal7100288] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
70
|
Progress in emerging techniques for characterization of immobilized viable whole-cell biocatalysts. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0243-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
71
|
Mthethwa KS, Kassier K, Engel J, Kara S, Smit MS, Opperman DJ. Fungal BVMOs as alternatives to cyclohexanone monooxygenase. Enzyme Microb Technol 2017; 106:11-17. [PMID: 28859804 DOI: 10.1016/j.enzmictec.2017.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/19/2017] [Accepted: 06/30/2017] [Indexed: 12/12/2022]
Abstract
FAD-dependent Baeyer-Villiger monooxygenases (BVMOs) have proven to be useful biocatalysts in the selective and specific oxygenation of various ketones. Despite the cloning, heterologous expression and characterization of close to 80 members of this enzyme family, some sub-groups of BVMOs still remain underrepresented and their evolutionary relationship uncertain. Until recently, very few fungal BVMOs have been described. Our previous investigations into BVMOs from the fungus Aspergillus flavus, yielded very little activity on simple cyclic ketones. Here we report on another four BVMOs from A. flavus that are more closely related to cyclohexanone monooxygenase (CHMO) from Acinetobacter sp. NCIMB 9871. Evolutionary analysis with other characterized BVMOs show their closest relationship to be with either cycloalkanone monooxygenase (CAMO) or 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-coenzyme A monooxygenase (OTEMO). The OTEMO-related BVMOAFL706 and BVMOAFL334 were heterologously expressed in E. coli, purified and shown to be able to convert a range of cyclic and substituted cyclic ketones. Of the unsubstituted cyclic ketones, cyclohexanone showed the highest conversion with maximum turnover frequencies reaching 4.3s-1 for BVMOAFL706. Unlike CHMOacinet, and many of the closely related BVMOs, no substrate inhibition was observed with cyclohexanone to a concentration of up to 30mM, creating the possibility for applications requiring high substrate loading. Aliphatic ketones were also readily converted with excellent regioselectivity. Similar to CHMOacinet, acetophenones were not converted and the oxidation of rac-cis-bicyclo[3.2.0]hept-2-en-6-one occurs enantiodivergently, with the (1R,5S) isomer converted to the "normal" lactone and the (1S,5R) isomer to the "abnormal" lactone.
Collapse
Affiliation(s)
- Katlego Siphamandla Mthethwa
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Karin Kassier
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Jennifer Engel
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, Hamburg, 21073, Germany
| | - Selin Kara
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, Hamburg, 21073, Germany
| | - Martha Sophia Smit
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Diederik Johannes Opperman
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa.
| |
Collapse
|
72
|
de Souza ROMA, Miranda LSM, Bornscheuer UT. A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry 2017; 23:12040-12063. [DOI: 10.1002/chem.201702235] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Leandro S. M. Miranda
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
73
|
|
74
|
Huang L, Romero E, Ressmann AK, Rudroff F, Hollmann F, Fraaije MW, Kara S. Nicotinamide Adenine Dinucleotide-Dependent Redox-Neutral Convergent Cascade for Lactonizations with Type II Flavin-Containing Monooxygenase. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Huang
- Institute of Technical Biocatalysis; Hamburg University of Technology; Denickestr. 15 21073 Hamburg Germany
| | - Elvira Romero
- Molecular Enzymology Group; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Anna K. Ressmann
- Institute of Applied Synthetic Chemistry; TU Wien; Getreidemarkt 9/163-OC 1060 Vienna Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry; TU Wien; Getreidemarkt 9/163-OC 1060 Vienna Austria
| | - Frank Hollmann
- Biocatalysis; Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Selin Kara
- Institute of Technical Biocatalysis; Hamburg University of Technology; Denickestr. 15 21073 Hamburg Germany
| |
Collapse
|
75
|
Organocatalysis and Biocatalysis Hand in Hand: Combining Catalysts in One-Pot Procedures. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700158] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
76
|
Latham J, Brandenburger E, Shepherd SA, Menon BRK, Micklefield J. Development of Halogenase Enzymes for Use in Synthesis. Chem Rev 2017; 118:232-269. [PMID: 28466644 DOI: 10.1021/acs.chemrev.7b00032] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature has evolved halogenase enzymes to regioselectively halogenate a diverse range of biosynthetic precursors, with the halogens introduced often having a profound effect on the biological activity of the resulting natural products. Synthetic endeavors to create non-natural bioactive small molecules for pharmaceutical and agrochemical applications have also arrived at a similar conclusion: halogens can dramatically improve the properties of organic molecules for selective modulation of biological targets in vivo. Consequently, a high proportion of pharmaceuticals and agrochemicals on the market today possess halogens. Halogenated organic compounds are also common intermediates in synthesis and are particularly valuable in metal-catalyzed cross-coupling reactions. Despite the potential utility of organohalogens, traditional nonenzymatic halogenation chemistry utilizes deleterious reagents and often lacks regiocontrol. Reliable, facile, and cleaner methods for the regioselective halogenation of organic compounds are therefore essential in the development of economical and environmentally friendly industrial processes. A potential avenue toward such methods is the use of halogenase enzymes, responsible for the biosynthesis of halogenated natural products, as biocatalysts. This Review will discuss advances in developing halogenases for biocatalysis, potential untapped sources of such biocatalysts and how further optimization of these enzymes is required to achieve the goal of industrial scale biohalogenation.
Collapse
Affiliation(s)
- Jonathan Latham
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eileen Brandenburger
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sarah A Shepherd
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Binuraj R K Menon
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
77
|
Velasco-Lozano S, López-Gallego F. Wiring step-wise reactions with immobilized multi-enzyme systems. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1310208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Group, CIC biomaGUNE, Donostia, Spain
- Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
| |
Collapse
|
78
|
Musumeci MA, Lozada M, Rial DV, Mac Cormack WP, Jansson JK, Sjöling S, Carroll J, Dionisi HM. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach. Mar Drugs 2017; 15:E114. [PMID: 28397770 PMCID: PMC5408260 DOI: 10.3390/md15040114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 11/16/2022] Open
Abstract
The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.
Collapse
Affiliation(s)
- Matías A Musumeci
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos, CONICET, Puerto Madryn, Chubut U9120ACD, Argentina.
| | - Mariana Lozada
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos, CONICET, Puerto Madryn, Chubut U9120ACD, Argentina.
| | - Daniela V Rial
- Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531 S2002LRK Rosario, Argentina.
| | - Walter P Mac Cormack
- Instituto Antártico Argentino, Ciudad Autónoma de Buenos Aires C1010AAZ, Argentina.
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina.
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Sara Sjöling
- School of Natural Sciences and Environmental Studies, Södertörn University, 141 89 Huddinge, Sweden.
| | - JoLynn Carroll
- Akvaplan-niva, Fram-High North Research Centre for Climate and the Environment, NO-9296 Tromsø, Norway.
- ARCEx-Research Centre for Arctic Petroleum Exploration, Department of Geosciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Hebe M Dionisi
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos, CONICET, Puerto Madryn, Chubut U9120ACD, Argentina.
| |
Collapse
|
79
|
Polakovič M, Švitel J, Bučko M, Filip J, Neděla V, Ansorge-Schumacher MB, Gemeiner P. Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications. Biotechnol Lett 2017; 39:667-683. [PMID: 28181062 DOI: 10.1007/s10529-017-2300-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/01/2017] [Indexed: 11/28/2022]
Abstract
Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.
Collapse
Affiliation(s)
- Milan Polakovič
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Juraj Švitel
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Marek Bučko
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jaroslav Filip
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Vilém Neděla
- Institute of Scientific Instruments, Academy of Sciences Czech Republic, Brno, Czech Republic
| | | | - Peter Gemeiner
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
80
|
Angelastro A, Dawson WM, Luk LYP, Allemann RK. A Versatile Disulfide-Driven Recycling System for NADP+ with High Cofactor Turnover Number. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Antonio Angelastro
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - William M. Dawson
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Louis Y. P. Luk
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Rudolf K. Allemann
- School of Chemistry and Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
81
|
Li G, Fürst MJLJ, Mansouri HR, Ressmann AK, Ilie A, Rudroff F, Mihovilovic MD, Fraaije MW, Reetz MT. Manipulating the stereoselectivity of the thermostable Baeyer–Villiger monooxygenase TmCHMO by directed evolution. Org Biomol Chem 2017; 15:9824-9829. [DOI: 10.1039/c7ob02692g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The thermostable Baeyer–Villiger monooxygenase TmCHMO and evolved mutants are viable catalysts in stereoselective reactions of structurally different ketones.
Collapse
Affiliation(s)
- Guangyue Li
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| | | | | | - Anna K. Ressmann
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| | - Adriana Ilie
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| | | | - Marco W. Fraaije
- Molecular Enzymology Group
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| |
Collapse
|
82
|
Wang JB, Li G, Reetz MT. Enzymatic site-selectivity enabled by structure-guided directed evolution. Chem Commun (Camb) 2017; 53:3916-3928. [DOI: 10.1039/c7cc00368d] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers recent advances in the directed evolution of enzymes for controlling site-selectivity of hydroxylation, amination and chlorination.
Collapse
Affiliation(s)
- Jian-bo Wang
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| | - Guangyue Li
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| | - Manfred T. Reetz
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| |
Collapse
|
83
|
First chemo-enzymatic synthesis of the ( R)-Taniguchi lactone and substrate profiles of CAMO and OTEMO, two new Baeyer-Villiger monooxygenases. MONATSHEFTE FUR CHEMIE 2016; 148:157-165. [PMID: 28127101 PMCID: PMC5225235 DOI: 10.1007/s00706-016-1873-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/06/2016] [Indexed: 10/31/2022]
Abstract
ABSTRACT This study investigates the substrate profile of cycloalkanone monooxygenase and 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-coenzyme A monooxygenase, two recently discovered enzymes of the Baeyer-Villiger monooxygenase family, used as whole-cell biocatalysts. Biooxidations of a diverse set of ketones were performed on analytical scale: desymmetrization of substituted prochiral cyclobutanones and cyclohexanones, regiodivergent oxidation of terpenones and bicyclic ketones, as well as kinetic resolution of racemic cycloketones. We demonstrated the applicability of the title enzymes in the enantioselective synthesis of (R)-(-)-Taniguchi lactone, a building block for the preparation of various natural product analogs such as ent-quinine. GRAPHICAL ABSTRACT
Collapse
|
84
|
Romero E, Castellanos JRG, Mattevi A, Fraaije MW. Characterization and Crystal Structure of a Robust Cyclohexanone Monooxygenase. Angew Chem Int Ed Engl 2016; 55:15852-15855. [PMID: 27873437 PMCID: PMC5213842 DOI: 10.1002/anie.201608951] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Indexed: 12/03/2022]
Abstract
Cyclohexanone monooxygenase (CHMO) is a promising biocatalyst for industrial reactions owing to its broad substrate spectrum and excellent regio‐, chemo‐, and enantioselectivity. However, the low stability of many Baeyer–Villiger monooxygenases is an obstacle for their exploitation in industry. Characterization and crystal structure determination of a robust CHMO from Thermocrispum municipale is reported. The enzyme efficiently converts a variety of aliphatic, aromatic, and cyclic ketones, as well as prochiral sulfides. A compact substrate‐binding cavity explains its preference for small rather than bulky substrates. Small‐scale conversions with either purified enzyme or whole cells demonstrated the remarkable properties of this newly discovered CHMO. The exceptional solvent tolerance and thermostability make the enzyme very attractive for biotechnology.
Collapse
Affiliation(s)
- Elvira Romero
- Department of Biotechnology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - J Rubén Gómez Castellanos
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Marco W Fraaije
- Department of Biotechnology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| |
Collapse
|
85
|
Romero E, Castellanos JRG, Mattevi A, Fraaije MW. Characterization and Crystal Structure of a Robust Cyclohexanone Monooxygenase. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608951] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elvira Romero
- Department of Biotechnology; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
| | - J. Rubén Gómez Castellanos
- Department of Biology and Biotechnology “Lazzaro Spallanzani”; University of Pavia; Via Ferrata 9 27100 Pavia Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”; University of Pavia; Via Ferrata 9 27100 Pavia Italy
| | - Marco W. Fraaije
- Department of Biotechnology; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
| |
Collapse
|