51
|
Mautner K, Bowers R, Easley K, Fausel Z, Robinson R. Functional Outcomes Following Microfragmented Adipose Tissue Versus Bone Marrow Aspirate Concentrate Injections for Symptomatic Knee Osteoarthritis. Stem Cells Transl Med 2019; 8:1149-1156. [PMID: 31328447 PMCID: PMC6811695 DOI: 10.1002/sctm.18-0285] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/17/2019] [Indexed: 01/05/2023] Open
Abstract
This study aimed to determine whether autologous orthobiologic tissue source affects pain and functional outcomes in patients with symptomatic knee osteoarthritis (OA) who received microfragmented adipose tissue (MFAT) or bone marrow aspirate concentrate (BMAC) injection. We retrospectively reviewed prospectively collected data from patients who received BMAC or MFAT injection for symptomatic knee OA. Patients completed baseline and follow-up surveys. Each survey included the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire, Emory Quality of Life (EQOL) questionnaire, and Visual Analog Scale (VAS) for pain. The follow-up responses were compared with baseline for all patients and between BMAC and MFAT groups. A total of 110 patients met inclusion criteria, with 76 patients (BMAC 41, MFAT 35) and 106 knees (BMAC 58, MFAT 48) having appropriate follow-up data. The BMAC group included 17 females and 24 males, with a mean age of 59 ± 11 years. The MFAT group included 23 females and 12 males, with a mean age of 63 ± 11 years. Minimum follow-up time was 0.5 years. Mean follow-up time was 1.80 ± 0.88 years for BMAC and 1.09 ± 0.49 years for MFAT. Both groups had significant improvement in EQOL, VAS, and all KOOS parameters preprocedure versus postprocedure (p < .001). There was not a significant difference when comparing postprocedure scores between groups (p = .09, .38, .63, .94, .17, .15, .70, respectively). These data demonstrate significant improvement in pain and function with both MFAT and BMAC injections in patients with symptomatic knee OA without a significant difference in improvement when comparing the two autologous tissue sources. Stem Cells Translational Medicine 2019;8:1149-1156.
Collapse
Affiliation(s)
- Kenneth Mautner
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA.,Department of Physical Medicine and Rehabilitation, Emory University, Atlanta, Georgia, USA
| | - Robert Bowers
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA.,Department of Physical Medicine and Rehabilitation, Emory University, Atlanta, Georgia, USA
| | - Kirk Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health Emory University, Atlanta, Georgia, USA
| | - Zachary Fausel
- Department of Physical Medicine and Rehabilitation, Emory University, Atlanta, Georgia, USA
| | - Ryan Robinson
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
52
|
Barakat AS, Ibrahim NM, Elghobashy O, Sultan AM, Abdel-Kader KFM. Prevention of post-traumatic osteoarthritis after intra-articular knee fractures using hyaluronic acid: a randomized prospective pilot study. INTERNATIONAL ORTHOPAEDICS 2019; 43:2437-2445. [PMID: 31230119 DOI: 10.1007/s00264-019-04360-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Based on the irreversible destruction of hyaline cartilage, post-traumatic osteoarthritis (PTOA) is a notorious sequelae after intra-articular knee fractures. This study evaluates the clinical efficacy and applicability of immediate post-operative intra-articular injection of hyaluronic acid (IA HA) into the knee joint with an intra-articular fracture. METHODS Prospective randomized case-control study involving 40 patients (20 in each group) with intra-articular knee fracture with an average follow-up of 23 months (range 18-24 months). Twenty patients with intra-articular distal femoral or intra-articular proximal tibial fractures who met our inclusion criteria received three intra-articular hyaluronic acid injections weekly starting immediately after ORIF. Another 20 patients serving as a control group received no injection after ORIF. Patients were assessed functionally with Knee injury and Osteoarthritis Outcome Score (KOOS) and International Knee Documentation Committee (IKDC) score. Plain X-rays and when indicated CT scans were used to assess radiological union. RESULTS The results showed patients treated with intra-articular hyaluronic acid injection after fixation had significantly less pain (KOOS) (p = 0.01). No significant difference was found between both groups in other KOOS-related outcome measures, complications, functional outcome, or quality of life. CONCLUSIONS These preliminary results support a direct role for hyaluronic acid in the acute phase of the inflammatory process that follows articular injury and provides initial evidence for the efficacy of IA HA.
Collapse
Affiliation(s)
| | | | - Osama Elghobashy
- Orthopedics Department, Sligo University Hospital, Sligo, Ireland
| | | | | |
Collapse
|
53
|
Jenio FZ, Scholes C, Marenah M, Li J, Cowley M, Ebrahimi M, Harrison-Brown M, Murrell WD. Quality in practice: implementation of a clinical outcomes registry in regenerative medicine. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:130. [PMID: 31157251 DOI: 10.21037/atm.2019.02.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The aim of this didactic article is to describe the implementation of a clinical outcomes registry within a clinical setting for musculoskeletal regenerative medicine. A patient-centred clinical registry, designed and implemented into the practice of a musculoskeletal clinic specializing in regenerative medicine. Methods A focus on patient outcomes at all levels of the patient journey was established to monitor and continually improve care. The registry was designed to monitor the diagnosis, treatment and outcomes of musculoskeletal pathologies of the shoulder, elbow, hip, knee, foot and spine presenting to the clinic. Specifically, the registry was designed for surveillance, tracking, and reporting of efficacy and adverse events of cellular-based therapies. Results The registry has completed its implementation phase and is now in a pilot period to confirm data collection processes and user feedback. Initial findings indicate suboptimal data entry compliance in key areas that were rectified by refining data fields, reimaging within existing operating systems, and linkage to external supporting documents. Conclusions The key impacts of the registry implementation have been to (I) redefine criteria for treatment success and failure within the area of biologic treatments in musculoskeletal practice; (II) instigate discussion, and document standardized treatment pathways, clinical handover processes and shared decision-making with patients; and (III) act as a catalyst to target deficiencies in staff knowledge and skills in the areas of patient management and interaction, clinical documentation and administration processes. A practice registry provides a platform for monitoring treatment safety and efficacy in the context of biologic therapies in musculoskeletal medicine. Registries of this kind will contribute to ongoing discourse regarding best value treatments in the musculoskeletal context.
Collapse
Affiliation(s)
| | | | - Maimuna Marenah
- Emirates Integra Medical & Surgery Centre, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Jinjie Li
- Emirates Integra Medical & Surgery Centre, Dubai Healthcare City, Dubai, United Arab Emirates
| | | | | | | | - William D Murrell
- Emirates Integra Medical & Surgery Centre, Dubai Healthcare City, Dubai, United Arab Emirates.,Emirates Healthcare, Dubai, United Arab Emirates.,Landsthul Regional Medical Center, Landsthul, Germany.,7th Medical Support Unit, Kaiserslautern, Germany
| |
Collapse
|
54
|
Humbyrd CJ, Wynia M. Profit Motives Require a Proscriptive Approach. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2019; 19:30-31. [PMID: 31135324 DOI: 10.1080/15265161.2019.1602177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
55
|
Hsieh PC, Buser Z, Skelly AC, Brodt ED, Brodke D, Meisel HJ, Park JB, Yoon ST, Wang JC. Allogenic Stem Cells in Spinal Fusion: A Systematic Review. Global Spine J 2019; 9:22S-38S. [PMID: 31157144 PMCID: PMC6512196 DOI: 10.1177/2192568219833336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY DESIGN Systematic review. OBJECTIVES To review, critically appraise, and synthesize evidence on the use of allogenic stem cell products for spine fusion compared with other bone graft materials. METHODS Systematic searches of PubMed/MEDLINE, through October 31, 2018 and of EMBASE and ClinicalTrials.gov through April 13, 2018 were conducted for literature comparing allogenic stem cell sources for fusion in the lumbar or cervical spine with other fusion methods. In the absence of comparative studies, case series of ≥10 patients were considered. RESULTS From 382 potentially relevant citations identified, 6 publications on lumbar fusion and 5 on cervical fusion met the inclusion criteria. For lumbar arthrodesis, mean Oswestry Disability Index (ODI), visual analogue scale (VAS) pain score, and fusion rates were similar for anterior lumbar interbody fusion (ALIF) using allogenic multipotent adult progenitor cells (Map3) versus recombinant human bone morphogenetic protein-2 (rhBMP-2) in the one comparative lumbar study (90% vs 92%). Across case series of allogenic stem cell products, function and pain were improved relative to baseline and fusion occurred in ≥90% of patients at ≥12 months. For cervical arthrodesis across case series, stem cell products improved function and pain compared with baseline at various time frames. In a retrospective cohort study fusion rates were not statistically different for Osteocel compared with Vertigraft allograft (88% vs 95%). Fusion rates varied across time frames and intervention products in case series. CONCLUSIONS The overall quality (strength) of evidence of effectiveness and safety of allogenic stem cells products for lumbar and cervical arthrodesis was very low, meaning that we have very little confidence that the effects seen are reflective of the true effects.
Collapse
Affiliation(s)
| | - Zorica Buser
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Darrel Brodke
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
56
|
Amoo-Achampong K, Krill MK, Acheampong D, Nwachukwu BU, McCormick F. Evaluating strategies and outcomes following rotator cuff tears. Shoulder Elbow 2019; 11:4-18. [PMID: 31019557 PMCID: PMC6463377 DOI: 10.1177/1758573218768099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Rotator cuff tear surgical repair techniques have significantly progressed. However, tendon retear following primary repair persistently occurs at high rates. Rehabilitation protocols, surgical fixation techniques, biologic therapy with scaffolds, platelet-rich plasma, and even stem cell applications are under study to promote adequate tendon healing. METHODS A nonsystematic query of the PubMed database was conducted in July 2016 utilizing the search terms "rotator cuff repair," "tear," "rehabilitation," "scaffold," "platelet-rich plasma," and "stem cell" to identify, analyze, and summarize relevant studies. CONCLUSION Individualized rehabilitation protocols may be the best approach for small to medium sized tears. Surgical fixation will continue to be debated as modifications to single-row technique and increases in suture number have improved tensile strength. Double-row repairs have been associated with higher costs. Transosseous equivalent technique exhibits comparable subjective and objective outcomes to single- and double-row repair at two-year follow-up. Biocompatible scaffold augmentation has showed inconsistent short-term results. Platelet-rich plasma has lacked uniformity in treatment preparation, administration, and outcome measurement with mixed results. Few human studies have suggested decreased retear rates and improved repair maintenance following bone marrow-derived mesenchymal stem cell augmentation. This review reiterated the necessity of additional high-quality, large-sample studies to develop any final verdict regarding efficacy.
Collapse
Affiliation(s)
- Kelms Amoo-Achampong
- Icahn School of Medicine at Mount Sinai, New York, USA,Department of Orthopaedic Surgery, Duke University, USA
| | - Michael K Krill
- Department of Neurology, Division of Neurorehabilitation, Washington University in St. Louis, St. Louis, USA,The Ohio State University Wexner Medical Center, Jameson Crane Sports Medicine Institute, Motion Analysis and Performance Laboratory, Columbus, USA
| | | | | | - Frank McCormick
- Department of Orthopaedics, Beth Israel Deaconess Medical Center, Boston, USA,Department of Sports Medicine, Beth Israel Deaconess Medical Center, Boston, USA,Harvard Medical School, Boston, USA,Frank McCormick, 330 Brookline Ave, Boston MA 02215, USA.
| |
Collapse
|
57
|
Rivera-Izquierdo M, Cabeza L, Láinez-Ramos-Bossini A, Quesada R, Perazzoli G, Alvarez P, Prados J, Melguizo C. An updated review of adipose derived-mesenchymal stem cells and their applications in musculoskeletal disorders. Expert Opin Biol Ther 2019; 19:233-248. [PMID: 30653367 DOI: 10.1080/14712598.2019.1563069] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Adipose-derived mesenchymal stem cells (ASCs) represent a new therapeutic strategy in biomedicine with many potential applications, especially in musculoskeletal disorders. Preclinical and clinical studies based on the administration of ASCs support their efficacy in bone regeneration, joint repair, tendon injury and skeletal muscle alterations. Many of these novel treatments may improve patients' quality of life and prognosis. However, several concerns about the use of stem cells remain unsolved, particularly regarding their safety and side effects. The present work aims to review the nature, clinical trials and patents involving the use of ASCs in musculoskeletal disorders. AREAS COVERED In this article, we describe ASCs' isolation, culture and differentiation in vivo and in vitro, advances on ASCs' applications in bone, cartilage, muscle and tendon repair, and patents involving the use of ASCs. EXPERT OPINION The use of ASCs in musculoskeletal disorders presents significant therapeutic advantages, including limited autoimmune response, potential cell expansion ex vivo, high plasticity to differentiate into several mesodermal cell lineages, and additional effects of therapeutic interest such as secretion of neurotrophic factors and anti-inflammatory properties. For these reasons, ASCs are promising therapeutic agents for clinical applications in musculoskeletal disorders.
Collapse
Affiliation(s)
- Mario Rivera-Izquierdo
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
| | - Laura Cabeza
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
| | - Antonio Láinez-Ramos-Bossini
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
- d Department of Radiology , Hospital Universitario Virgen de las Nieves , Granada , Spain
| | - Raul Quesada
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
| | - Gloria Perazzoli
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
| | - Pablo Alvarez
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
| | - Jose Prados
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
| | - Consolación Melguizo
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
| |
Collapse
|
58
|
Cabon Q, Febre M, Gomez N, Cachon T, Pillard P, Carozzo C, Saulnier N, Robert C, Livet V, Rakic R, Plantier N, Saas P, Maddens S, Viguier E. Long-Term Safety and Efficacy of Single or Repeated Intra-Articular Injection of Allogeneic Neonatal Mesenchymal Stromal Cells for Managing Pain and Lameness in Moderate to Severe Canine Osteoarthritis Without Anti-inflammatory Pharmacological Support: Pilot Clinical Study. Front Vet Sci 2019; 6:10. [PMID: 30805348 PMCID: PMC6371748 DOI: 10.3389/fvets.2019.00010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/14/2019] [Indexed: 01/24/2023] Open
Abstract
Objective: To explore the long-term safety and efficacy of canine allogeneic mesenchymal stromal cells (MSC) administered intra-articularly as single or repeated injections in appendicular joints of dogs affected by moderate to severe refractory osteoarthritis. Study Design: 22 pet dogs were recruited into a non-randomized, open and monocentric study initially administering one cellular injection. A second injection was offered after 6 months to owners if the first injection did not produce expected results. Materials and Methods: Anti-inflammatory treatment (if prescribed) was discontinued at last one week before the onset of treatment. Each injection consisted of at least 10 million viable neonatal allogeneic mesenchymal stromal cells obtained from fetal adnexa. Medical data was collected from veterinary clinical evaluations of joints up to 6 months post-injection and owner's assessment of their dog's mobility and well-being followed for a further 2 years when possible. Results: Mild, immediate self-limiting inflammatory joint reactions were observed in 5/22 joints after the first injection, and in almost all dogs having a subsequent injection. No other MSC-related adverse medical events were reported, neither during the 6 months follow up visits, nor during the long-term (2-years) safety follow up. Veterinary clinical evaluation showed a significant and durable clinical improvement (up to 6 months) following MSC administration. Eight dogs (11 joints) were re-injected 6 months apart, sustaining clinical benefits up to 1 year. Owner's global satisfaction reached 75% at 2 years post-treatment Conclusion: Our data suggest that a single or repeated intra-articular administration of neonatal MSC in dogs with moderate to severe OA is a safe procedure and confer clinical benefits over a 24-month period. When humoral response against MSC is investigated by flow cytometry, a positive mild and transient signal was detected in only one dog from the studied cohort, this dog having had a positive clinical outcome.
Collapse
Affiliation(s)
- Quentin Cabon
- Université de Lyon, VetAgro Sup, Centre Hospitalier Universitaire Vétérinaire, Marcy l'Etoile, France
| | | | - Niels Gomez
- Université de Lyon, VetAgro Sup, Centre Hospitalier Universitaire Vétérinaire, Marcy l'Etoile, France
| | - Thibaut Cachon
- Université de Lyon, VetAgro Sup, Centre Hospitalier Universitaire Vétérinaire, Marcy l'Etoile, France.,Université de Lyon, VetAgro Sup, Interaction Cellule Environnement, ICE, Marcy l'Etoile, France
| | - Paul Pillard
- Université de Lyon, VetAgro Sup, Centre Hospitalier Universitaire Vétérinaire, Marcy l'Etoile, France
| | - Claude Carozzo
- Université de Lyon, VetAgro Sup, Centre Hospitalier Universitaire Vétérinaire, Marcy l'Etoile, France.,Université de Lyon, VetAgro Sup, Interaction Cellule Environnement, ICE, Marcy l'Etoile, France
| | | | | | - Véronique Livet
- Université de Lyon, VetAgro Sup, Centre Hospitalier Universitaire Vétérinaire, Marcy l'Etoile, France
| | | | | | - Philippe Saas
- INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur, Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | | | - Eric Viguier
- Université de Lyon, VetAgro Sup, Centre Hospitalier Universitaire Vétérinaire, Marcy l'Etoile, France.,Université de Lyon, VetAgro Sup, Interaction Cellule Environnement, ICE, Marcy l'Etoile, France
| |
Collapse
|
59
|
Harrison-Brown M, Scholes C, Hafsi K, Marenah M, Li J, Hassan F, Maffulli N, Murrell WD. Efficacy and safety of culture-expanded, mesenchymal stem/stromal cells for the treatment of knee osteoarthritis: a systematic review protocol. J Orthop Surg Res 2019; 14:34. [PMID: 30683159 PMCID: PMC6347797 DOI: 10.1186/s13018-019-1070-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Background Osteoarthritis is a progressive multifactorial condition of the musculoskeletal system with major symptoms including pain, loss of function, damage of articular cartilage and other tissues in the affected area. Knee osteoarthritis imposes major individual and social burden, especially with the cost and complexity of surgical interventions. Mesenchymal stem/stromal cells have been indicated as a treatment for degenerative musculoskeletal conditions given their capacity to differentiate into tissues of the musculoskeletal system. Methods A systematic search will be conducted in Medline, Embase, Cochrane Library, Scopus and relevant trial databases of English, Japanese, Korean, German, French, Italian, Spanish and Portuguese language papers published or in press to June 2018, with no restrictions on publication year applied. References will be screened and assessed for eligibility by two independent reviewers as per PRISMA guidelines. Cohort, cross-sectional or case controlled studies will be included for the analysis. Data extraction will be conducted using a predefined template and quality of evidence assessed. Statistical summaries and meta-analyses will be performed as necessary. Discussion Results will be published in relevant peer-reviewed scientific journals and presented at national or international conferences by the investigators. Trial registration The protocol was registered on the PROSPERO international prospective register of systematic reviews prior to commencement, CRD42018091763. Electronic supplementary material The online version of this article (10.1186/s13018-019-1070-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Kholoud Hafsi
- Emirates Integra Medical and Surgery Centre, Dubai, United Arab Emirates
| | - Maimuna Marenah
- Emirates Integra Medical and Surgery Centre, Dubai, United Arab Emirates
| | - Jinjie Li
- Emirates Integra Medical and Surgery Centre, Dubai, United Arab Emirates
| | - Fadi Hassan
- Good Hope Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, University of Salerno School of Medicine and Dentistry, Salerno, Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry Centre for Sports and Exercise Medicine, Mile End Hospital, London, England
| | - William D Murrell
- Emirates Integra Medical and Surgery Centre, Dubai, United Arab Emirates.,Emirates Healthcare, Dubai, United Arab Emirates.,Department of Orthopaedic Surgery, Landstuhl Regional Medical Center, Landstuhl, Germany
| |
Collapse
|
60
|
Jayaram P, Ikpeama U, Rothenberg JB, Malanga GA. Bone Marrow-Derived and Adipose-Derived Mesenchymal Stem Cell Therapy in Primary Knee Osteoarthritis: A Narrative Review. PM R 2019; 11:177-191. [PMID: 30010050 DOI: 10.1016/j.pmrj.2018.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/29/2018] [Indexed: 12/15/2022]
Abstract
Regenerative medicine in the context of musculoskeletal injury is a broad term that offers potential therapeutic solutions to restore or repair damaged tissue. The current focus in recent literature and clinical practice has been on cell based therapy. In particular, much attention has been centered on autologous bone marrow concentrate and adipose-derived mesenchymal stem cells (MSCs) for cartilage and tendon disorders. This article provides an overview of MSC-derived therapy and offers a comprehensive review of adipose- and bone marrow-derived MSC therapy in primary knee osteoarthritis. LEVEL OF EVIDENCE: IV.
Collapse
Affiliation(s)
- Prathap Jayaram
- H. Ben Taub Dept of Physical Medicine & Rehabilitation, Orthopedic Surgery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| | - Uzoh Ikpeama
- H. Ben Taub Dept of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX
| | - Joshua B Rothenberg
- Departments of Regenerative Medicine and Orthopedic Biologics, BocaCare Orthopedics, Boca Raton Regional Hospital, Boca Raton, FL
| | - Gerard A Malanga
- Department of Physical Medicine and Rehabilitation, Rutgers School of Biomedical and Health Sciences, Newark, NJ; Rutgers University and New Jersey Regenerative Medicine Institute, Cedar Knolls, NJ
| |
Collapse
|
61
|
Ulasli AM, Ozcakar L, Murrel WD. Ultrasound imaging and guidance in the management of knee osteoarthritis in regenerative medicine field. J Clin Orthop Trauma 2019; 10:24-31. [PMID: 30705527 PMCID: PMC6349666 DOI: 10.1016/j.jcot.2018.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Ultrasound (US) is an excellent imaging tool to evaluate most of the structures in the knee joint. US is useful in various applications of regenerative medicine, starting from the biomaterial harvesting stage of the procedures, it can thus/conveniently be used for the diagnosis and treatment of various forms of knee osteoarthritis (OA) where the interventions need to be carried out under US guidance. In this paper, we have reviewed US guided bioharvesting of venous blood, bone marrow and adipose tissue, the US evaluation of the knee joint and the relevant findings in knee OA along with US guided regenerative interventions for the knee joint.
Collapse
Affiliation(s)
- Alper Murat Ulasli
- Lokman Hekim University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Ankara, Turkey,Corresponding author. Lokman Hekim Akay Hastanesi, Büklüm Sokak No: 3 Kavaklıdere, Çankaya, Ankara, Turkey.
| | - Levent Ozcakar
- Hacettepe University, School of Medicine, Department of Physical Medicine and Rehabilitation, Ankara, Turkey
| | - William D. Murrel
- Emirates Integra Medical & Surgery Centre, Department Orthopaedic Sports Medicine, Dubai Healthcare City, Dubai, United Arab Emirates,Emirates Healthcare, Dubai, United Arab Emirates,Landsthul Regional Medical Center, Division of Surgery, Department of Orthopedic Surgery, Landsthul, Germany,7th Medical Support Unit-Europe, Kaiserslautern, Germany
| |
Collapse
|
62
|
Marenah M, Li J, Kumar A, Murrell W. Quality assurance and adverse event management in regenerative medicine for knee osteoarthritis: Current concepts. J Clin Orthop Trauma 2019; 10:53-58. [PMID: 30705533 PMCID: PMC6349654 DOI: 10.1016/j.jcot.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 12/27/2022] Open
Abstract
The economic and human cost of knee osteoarthritis is forecast to increase. This will impact not only aging individuals, but also the working age members of emerging economies. The current treatment pathways are often costly, time-consuming, and insufficient to manage the degeneration of the knee over the ever-increasing lifespan of patients around the world. In response to the shortcomings of a focus on symptom management, international and high-impact regulators, researchers, clinicians, and most importantly patients, are increasingly interested in the possible management of knee osteoarthritis with novel therapies in the field of regenerative medicine treatments. Regenerative medicine is an emerging discipline whose adherents aim to use the tools of the human body to address underlying dysfunction, leading to lasting repair of damaged tissues and structures. The evidence base lacks consensus on issues related to safety, efficacy, cost-efficiency, and treatment specifications. In this current concepts review, we describe the potential impact of regenerative medicine for knee osteoarthritis and evaluate literature of the past decade for elements related to the quality of clinical research. Finally, we discuss strategies for improving the evidence base for the future. The results of the review reveal that the typical follow-up period for most clinical research into the area is between 6 and 12 months; local ethics board approval is commonly reported, and that Platelet-Rich Plasma is the most common option explored. However, several quality elements were lacking in this cohort of recent literature: cost efficacy data, long-term follow-up, and detailed adverse event reporting. In order to address these weaknesses in the literature, patient outcomes registries are needed, in order to satisfy the need for longer follow-up for individuals receiving regenerative treatments, in addition to further clinical trials which address larger and more diverse patient populations. Transparency will be of utmost importance in further research and clinical translation of regenerative medicine for knee osteoarthritis.
Collapse
Affiliation(s)
- Maimuna Marenah
- Emirates Integra Medical & Surgery Centre, Dubai Healthcare City, Dubai, United Arab Emirates
- Corresponding author.
| | - Jinjie Li
- Emirates Integra Medical & Surgery Centre, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Ashok Kumar
- Emirates Integra Medical & Surgery Centre, Dubai Healthcare City, Dubai, United Arab Emirates
| | - William Murrell
- Emirates Integra Medical & Surgery Centre, Dubai Healthcare City, Dubai, United Arab Emirates
- Emirates Healthcare Group, Dubai, United Arab Emirates
- Landsthul Regional Medical Center (LRMC), Division of Surgery, Dept. Orthopaedic Surgery, Landsthul, Germany
| |
Collapse
|
63
|
Mesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and future perspectives. Biomed Pharmacother 2018; 109:2318-2326. [PMID: 30551490 DOI: 10.1016/j.biopha.2018.11.099] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/30/2018] [Accepted: 11/25/2018] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, prevalent, debilitating joint disease characterized by progressive cartilage degradation, subchondral bone remodeling, bone marrow lesions, meniscal damage, and synovitis. Innate immune cells (natural killer cells, macrophages, and mast cells) play the most important pathogenic role in the early inflammatory response, while cells of adaptive immunity (CD4 + Th1 lymphocytes and antibody producing B cells) significantly contribute to the development of chronic, relapsing course of inflammation in OA patients. Conventional therapy for OA is directed toward symptomatic treatment, mainly pain management, and is not able to promote regeneration of degenerated cartilage or to attenuate joint inflammation. Since articular cartilage, intra-articular ligaments, and menisci have no ability to heal, regeneration of these tissues remains one of the most important goals of new therapeutic approaches used for OA treatment. Due to their capacity for differentiation into chondrocytes and due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have been the most extensively explored as new therapeutic agents in the cell-based therapy of OA. Simple acquisition, rapid proliferation, maintenance of differentiation potential after repeated passages in vitro, minor immunological rejection due to the low surface expression of major histocompatibility complex antigens, efficient engraftment and long-term coexistence in the host are the main characteristics of MSCs that enable their therapeutic use in OA. In this review article, we emphasized current knowledge and future perspectives regarding molecular and cellular mechanisms responsible for beneficial effects of autologous and allogeneic MSCs in the treatment of OA.
Collapse
|
64
|
Migliorini F, Rath B, Tingart M, Baroncini A, Quack V, Eschweiler J. Autogenic mesenchymal stem cells for intervertebral disc regeneration. INTERNATIONAL ORTHOPAEDICS 2018; 43:1027-1036. [PMID: 30415465 DOI: 10.1007/s00264-018-4218-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE A systematic review of the literature was conducted to clarify the outcomes of autologous mesenchymal stem cells (MSC) injections for the regeneration of the intervertebral disc (IVD). METHODS The following databases were accessed: PubMed, Medline, CINAHL, Cochrane, Embase and Google Scholar bibliographic databases. Articles including previous or planned surgical interventions were excluded. Only articles reporting percutaneous autologous MSC injection to regenerate IVD in humans were included. We referred to the Coleman Methodology Score for the methodological quality assessment. The statistical analysis was performed using Review Manager Software 5.3. RESULTS After the databases search and cross-references of the bibliographies, seven studies were included in the present work. The funnel plot detected low risk of publication bias. The Coleman Methodology Score reported a good result, scoring 61.07 points. A total of 98 patients were enrolled, with 122 treated levels. All the patients underwent conservative therapies prior to injection. A remarkable improvement in the quality of life were reported after the treatment. The average Oswestry Disability Index (ODI) improved from "severe disability" to "minimal disability" at one year follow-up. The visual analogue scale (VAS) showed an improvement of ca. 30% at one year follow-up. Only one case of herniated nucleus pulposus was reported. No other adverse events at the aspiration or injection site were observed. CONCLUSIONS This systematic review of the literature proved MSC injection to be a safe and feasible option for intervertebral disc regeneration in the early-degeneration stage patients. Irrespective of the source of the MSCs, an overall clinical and radiological improvement of the patients has been evidenced, as indeed a very low complication rate during the follow-up.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Björn Rath
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Alice Baroncini
- Department of Spine Surgery, Eifelklinik St. Brigida, Kammerbruchstraße 8, 52152, Simmerath, Germany
| | - Valentin Quack
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
65
|
Roato I, Belisario DC, Compagno M, Lena A, Bistolfi A, Maccari L, Mussano F, Genova T, Godio L, Perale G, Formica M, Cambieri I, Castagnoli C, Robba T, Felli L, Ferracini R. Concentrated adipose tissue infusion for the treatment of knee osteoarthritis: clinical and histological observations. INTERNATIONAL ORTHOPAEDICS 2018; 43:15-23. [PMID: 30311059 DOI: 10.1007/s00264-018-4192-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Osteoarthritis (OA) is characterized by articular cartilage degeneration and subchondral bone sclerosis. OA can benefit of non-surgical treatments with collagenase-isolated stromal vascular fraction (SVF) or cultured-expanded mesenchymal stem cells (ASCs). To avoid high manipulation of the lipoaspirate needed to obtain ASCs and SVF, we investigated whether articular infusions of autologous concentrated adipose tissue are an effective treatment for knee OA patients. METHODS The knee of 20 OA patients was intra-articularly injected with autologous concentrated adipose tissue, obtained after centrifugation of lipoaspirate. Patients' articular functionality and pain were evaluated by VAS and WOMAC scores at three, six and 18 months from infusion. The osteogenic and chondrogenic ability of ASCs contained in the injected adipose tissue was studied in in vitro primary osteoblast and chondrocyte cell cultures, also plated on 3D-bone scaffold. Knee articular biopsies of patients previously treated with adipose tissue were analyzed. Immunohistochemistry (IHC) and scanning electron microscopy (SEM) were performed to detect cell differentiation and tissue regeneration. RESULTS The treatment resulted safe, and all patients reported an improvement in terms of pain reduction and increase of function. According to the osteogenic or chondrogenic stimulation, ASCs expressed alkaline phosphatase or aggrecan, respectively. The presence of a layer of newly formed tissue was visualized by IHC staining and SEM. The biopsy of previously treated knee joints showed new tissue formation, starting from the bone side of the osteochondral lesion. CONCLUSIONS Overall our data indicate that adipose tissue infusion stimulates tissue regeneration and might be considered a safe treatment for knee OA.
Collapse
Affiliation(s)
- Ilaria Roato
- Center for Research and Medical Studies, A.O.U. Città della Salute e della Scienza, Turin, Italy.
| | - Dimas Carolina Belisario
- Center for Research and Medical Studies, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Mara Compagno
- Center for Research and Medical Studies, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Aurora Lena
- Department of Traumatology and Rehabilitation, C.T.O. Hospital-A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Alessandro Bistolfi
- Department of Traumatology and Rehabilitation, C.T.O. Hospital-A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Luca Maccari
- Department of Surgical Sciences (DISC), Orthopaedic Clinic-IRCCS A.O.U, San Martino, Genoa, Italy
| | - Federico Mussano
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Tullio Genova
- Department of Life Sciences & Systems Biology, University of Turin, Turin, Italy
| | - Laura Godio
- Pathology Unit, A.O.U. Città della Salute e della Scienza of Turin, Turin, Italy
| | - Giuseppe Perale
- Industrie Biomediche Insubri SA, Mezzovico-Vira, Switzerland
- University of Applied Sciences and Arts of Southern Switzerland - SUPSI, Manno, Switzerland
| | - Matteo Formica
- Department of Surgical Sciences (DISC), Orthopaedic Clinic-IRCCS A.O.U, San Martino, Genoa, Italy
| | - Irene Cambieri
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Carlotta Castagnoli
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Tiziana Robba
- Department of Imaging and Radio-diagnostic, C.T.O. Hospital-A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Lamberto Felli
- Department of Surgical Sciences (DISC), Orthopaedic Clinic-IRCCS A.O.U, San Martino, Genoa, Italy
| | - Riccardo Ferracini
- Department of Surgical Sciences (DISC), Orthopaedic Clinic-IRCCS A.O.U, San Martino, Genoa, Italy
| |
Collapse
|
66
|
Hong Z, Chen J, Zhang S, Zhao C, Bi M, Chen X, Bi Q. Intra-articular injection of autologous adipose-derived stromal vascular fractions for knee osteoarthritis: a double-blind randomized self-controlled trial. INTERNATIONAL ORTHOPAEDICS 2018; 43:1123-1134. [PMID: 30109404 DOI: 10.1007/s00264-018-4099-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The purpose of this study was to compare the clinical and radiological efficacy of autologous adipose-derived stromal vascular fraction (SVF) versus hyaluronic acid in patients with bilateral knee osteoarthritis. METHODS Sixteen patients with bilateral symptomatic knee osteoarthritis (K-L grade II to III; initial pain evaluated at four or greater on a ten-point VAS score) were enrolled in this study, which were randomized into two groups. Each patient received 4-ml autologous adipose-derived SVF treatment (group test, n = 16) in one side of knee joints and a single dose of 4-ml hyaluronic acid treatment (group control, n = 16) in the other side. The clinical evaluations were performed pre-operatively and post-operatively at one month, three months, six months, and 12-months follow-up visit, using the ten-point visual analog scale (VAS), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the knee range of motion (ROM). The whole-organ assessment of the knees was performed with whole-organ magnetic resonance imaging score (WORMS) based on MRI at baseline, six months and 12-months follow-up. The articular repair tissue was assessed quantitatively and qualitatively by magnetic resonance observation of cartilage repair tissue (MOCART) score based on follow-up MRI at six months and 12 months. RESULTS No significant baseline differences were found between two groups. Safety was confirmed with no severe adverse events observed during 12-months follow-up. The SVF-treated knees showed significantly improvement in the mean VAS, WOMAC scores, and ROM at 12-months follow-up visit compared with the baseline. In contrast, the mean VAS, WOMAC scores, and ROM of the control group became even worse but not significant from baseline to the last follow-up visit. WORMS and MOCART measurements revealed a significant improvement of articular cartilage repair in SVF-treated knees compared with hyaluronic acid-treated knees. CONCLUSION The results of this study suggest that autologous adipose-derived SVF treatment is safe and can effectively relief pain, improve function, and repair cartilage defects in patients with knee osteoarthritis.
Collapse
Affiliation(s)
- Zheping Hong
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jihang Chen
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Shuijun Zhang
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Chen Zhao
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Mingguang Bi
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Xinji Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing Bi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
67
|
Andia I, Maffulli N. How far have biological therapies come in regenerative sports medicine? Expert Opin Biol Ther 2018; 18:785-793. [PMID: 29939773 DOI: 10.1080/14712598.2018.1492541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Regular engagement in sports produces many health benefits, but also exposes to increased injury risk. The quality of medical care available is crucial not only for sports trauma but also to avoid overuse syndromes and post-traumatic degenerative conditions. AREAS COVERED We provide background information on some clinical needs in sport injuries and describe the main families of biological products used in clinical practice. We also discuss limitations of the current clinical experience. EXPERT OPINION Sport and exercise impairment affects different segments of the population with different needs. The exceptional demands of elite athletes and subsequent media coverage have created hype around regenerative therapies. Statistical evidence, whether weak (cell products) or moderate (PRPs), is not enough to drive medical decisions because of the heterogeneity of the biological products available and their application procedures. Moreover, the specific needs of the different segments of the population along with the available clinical evidence for each musculoskeletal condition should be considered in the decision-making process. There is urgent need to develop regenerative protocols combined with post-intervention rehabilitation, and gather meaningful clinical data on the safety and efficacy of these interventions in the different populations segments.
Collapse
Affiliation(s)
- Isabel Andia
- a Regenerative Medicine Laboratory, BioCruces Health Research Institute, Cruces University Hospital , Barakaldo , Spain
| | - Nicola Maffulli
- b Department of Musculoskeletal Disorders , University of Salerno School of Medicine and Dentristry , Salerno , Italy.,c Centre for Sport and Exercise Medicine , Queen Mary University of London, Barts and the London School of Medicine and Dentistry , London , England
| |
Collapse
|
68
|
Melick G, Hayman N, Landsman AS. Mesenchymal Stem Cell Applications for Joints in the Foot and Ankle. Clin Podiatr Med Surg 2018; 35:323-330. [PMID: 29861015 DOI: 10.1016/j.cpm.2018.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The use of mesenchymal stem cell injections is a new approach to the treatment of painful joints, particularly in the foot and ankle. Previous studies performed in the knee have considered allogeneic and xenogeneic injections, and autologous cells expanded in culture. This article considers these applications and considers the possibility of performing these types of injections in the foot and ankle joints.
Collapse
Affiliation(s)
- Garrett Melick
- Cambridge Health Alliance, 1493 Cambridge Street, Cambridge, MA 02139, USA
| | - Najwah Hayman
- Cambridge Health Alliance, 1493 Cambridge Street, Cambridge, MA 02139, USA
| | - Adam S Landsman
- Division of Podiatric Surgery, Department of Surgery, Cambridge Health Alliance, Harvard Medical School, 1493 Cambridge Street, Floor 2, Cambridge, MA 02139, USA.
| |
Collapse
|
69
|
Abstract
Regenerative medicine seeks to harness the potential of cell biology for tissue replacement therapies, which will restore lost tissue functionality. Controlling and enhancing tissue healing is not just a matter of cells, but also of molecules and mechanical forces. We first describe the main biological technologies to boost musculoskeletal healing, including bone marrow and subcutaneous fat-derived regenerative products, as well as platelet-rich plasma and conditioned media. We provide some information describing possible mechanisms of action. We performed a literature search up to January 2016 searching for clinical outcomes following the use of cell therapies for sports conditions, tendons, and joints. The safety and efficacy of cell therapies for tendon conditions was examined in nine studies involving undifferentiated and differentiated (skin fibroblasts, tenocytes) cells. A total of 54 studies investigated the effects of mesenchymal stem-cell (MSC) products for joint conditions including anterior cruciate ligament, meniscus, and chondral lesions as well as osteoarthritis. In 22 studies, cellular products were injected intra-articularly, whereas in 32 studies MSC products were implanted during surgical/arthroscopic procedures. The heterogeneity of clinical conditions, cellular products, and approaches for delivery/implantation make comparability difficult. MSC products appear safe in the short- and mid-term, but studies with a long follow-up are scarce. Although the current number of randomized clinical studies is low, stem-cell products may have therapeutic potential. However, these regenerative technologies still need to be optimized.
Collapse
Affiliation(s)
- Isabel Andia
- Regenerative Medicine Laboratory, BioCruces Health Research Institute, Cruces University Hospital, Pza Cruces 12, 48903, Barakaldo, Spain.
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, University of Salerno School of Medicine and Dentistry, Salerno, Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London, E1 4DG, England
| |
Collapse
|
70
|
Jevotovsky DS, Alfonso AR, Einhorn TA, Chiu ES. Osteoarthritis and stem cell therapy in humans: a systematic review. Osteoarthritis Cartilage 2018; 26:711-729. [PMID: 29544858 DOI: 10.1016/j.joca.2018.02.906] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/21/2018] [Accepted: 02/27/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a leading cause of disability in the world. Mesenchymal stem cells (MSCs) have been studied to treat OA. This review was performed to systematically assess the quality of literature and compare the procedural specifics surrounding MSC therapy for osteoarthritis. DESIGN PubMed, CINAHL, EMBASE and Cochrane Central Register of Controlled Trials were searched for studies using MSCs for OA treatment (final search December 2017). Outcomes of interest included study evidence level, patient demographics, MSC protocol, treatment results and adverse events. Level I and II evidence articles were further analyzed. RESULTS Sixty-one of 3,172 articles were identified. These studies treated 2,390 patients with osteoarthritis. Most used adipose-derived stem cells (ADSCs) (n = 29) or bone marrow-derived stem cells (BMSCs) (n = 30) though the preparation varied within group. 57% of the sixty-one studies were level IV evidence, leaving five level I and nine level II studies containing 288 patients to be further analyzed. Eight studies used BMSCs, five ADSCs and one peripheral blood stem cells (PBSCs). The risk of bias in these studies showed five level I studies at low risk with seven level II at moderate and two at high risk. CONCLUSION While studies support the notion that MSC therapy has a positive effect on OA patients, there is limited high quality evidence and long-term follow-up. The present study summarizes the specifics of high level evidence studies and identifies a lack of consistency, including a diversity of MSC preparations, and thus a lack of reproducibility amongst these articles' methods.
Collapse
Affiliation(s)
- D S Jevotovsky
- Department of Orthopaedic Surgery, NYU Langone Health, New York, NY, USA.
| | - A R Alfonso
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| | - T A Einhorn
- Department of Orthopaedic Surgery, NYU Langone Health, New York, NY, USA
| | - E S Chiu
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
71
|
Abstract
STUDY DESIGN Systematic review. OBJECTIVE The aim of this study was to investigate, quantify, compare, and compile the various mesenchymal stem cell (MSC) tissue sources within human spinal tissues to act as a compendium for clinical and research application. SUMMARY OF BACKGROUND DATA Recent years have seen a dramatic increase in academic and clinical understanding of human MSCs. Previously limited to cells isolated from bone marrow, the past decade has illicited the characterization and isolation of human MSCs from adipose, bone marrow, synovium, muscle, periosteum, peripheral blood, umbilical cord, placenta, and numerous other tissues. As researchers explore practical applications of cells in these tissues, the absolute levels of MSCs in specific spinal tissue will be critical to guide future research. METHODS The PubMED, MEDLINE, EMBASE, and Cochrane databases were searched for articles relating to the harvest, characterization, isolation, and quantification of human MSCs from spinal tissues. Selected articles were examined for relevant data, categorized according to type of spinal tissue, and when possible, standardized to facilitate comparisons between sites. RESULTS Human MSC levels varied widely between spinal tissues. Yields for intervertebral disc demonstrated roughly 5% of viable cells to be positive for MSC surface markers. Cartilage endplate cells yielded 18,500 to 61,875 cells/0.8 mm thick sample of cartilage end plate. Ligamentum flavum yielded 250,000 to 500,000 cells/g of tissue. Annulus fibrosus fluorescence activated cell sorting treatment found 29% of cells positive for MSC marker Stro-1. Nucleus pulposus yielded mean tissue samples of 40,584 to 234,137 MSCs per gram of tissue. CONCLUSION Numerous tissues within and surrounding the spine represent a consistent and reliable source for the harvest and isolation of human MSCs. Among the tissues of the spine, the annulus fibrosus and ligamentum flavum each offer considerable levels of MSCs, and may prove comparable to that of bone marrow. LEVEL OF EVIDENCE 5.
Collapse
|
72
|
Piuzzi NS, Hussain ZB, Chahla J, Cinque ME, Moatshe G, Mantripragada VP, Muschler GF, LaPrade RF. Variability in the Preparation, Reporting, and Use of Bone Marrow Aspirate Concentrate in Musculoskeletal Disorders: A Systematic Review of the Clinical Orthopaedic Literature. J Bone Joint Surg Am 2018; 100:517-525. [PMID: 29557869 DOI: 10.2106/jbjs.17.00451] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Interest in the therapeutic potential of bone marrow aspirate concentrate (BMAC) has grown exponentially. However, comparisons among studies and their processing methods are challenging because of inconsistent reporting of protocols, as well as poor characterization of the composition of the initial bone marrow aspirate and of the final products delivered. The purpose of this study was to perform a systematic review of the literature to evaluate the level of reporting related to the protocols used for BMAC preparation and the composition of BMAC utilized in the treatment of musculoskeletal diseases in published clinical studies. METHODS A systematic review of the literature was performed by searching PubMed, MEDLINE, the Cochrane Database of Systematic Reviews, and the Cochrane Central Register of Controlled Trials from 1980 to 2016. Inclusion criteria were human clinical trials, English language, and manuscripts that reported on the use of BMAC in musculoskeletal conditions. RESULTS After a comprehensive review of the 986 identified articles, 46 articles met the inclusion criteria for analysis. No study provided comprehensive reporting that included a clear description of the preparation protocol that could be used by subsequent investigators to repeat the method. Only 14 (30%) of the studies provided quantitative metrics of the composition of the BMAC final product. CONCLUSIONS The reporting of BMAC preparation protocols in clinical studies was highly inconsistent and studies did not provide sufficient information to allow the protocol to be reproduced. Moreover, comparison of the efficacy and yield of BMAC products is precluded by deficiencies in the reporting of preparation methods and composition. Future studies should contain standardized and stepwise descriptions of the BMAC preparation protocol, and the composition of the BMAC delivered, to permit validating and rationally optimizing the role of BMAC in musculoskeletal care.
Collapse
Affiliation(s)
- Nicolas S Piuzzi
- Department of Orthopaedic Surgery and Bioengineering, Cleveland Clinic, Cleveland, Ohio.,Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - Jorge Chahla
- Steadman Philippon Research Institute, Vail, Colorado
| | - Mark E Cinque
- Steadman Philippon Research Institute, Vail, Colorado
| | - Gilbert Moatshe
- Steadman Philippon Research Institute, Vail, Colorado.,Oslo University Hospital, University of Oslo, Oslo, Norway.,OSTRC, The Norwegian School of Sports Sciences, Oslo, Norway
| | | | - George F Muschler
- Department of Orthopaedic Surgery and Bioengineering, Cleveland Clinic, Cleveland, Ohio
| | - Robert F LaPrade
- Steadman Philippon Research Institute, Vail, Colorado.,The Steadman Clinic, Vail, Colorado
| |
Collapse
|
73
|
Čamernik K, Barlič A, Drobnič M, Marc J, Jeras M, Zupan J. Mesenchymal Stem Cells in the Musculoskeletal System: From Animal Models to Human Tissue Regeneration? Stem Cell Rev Rep 2018; 14:346-369. [DOI: 10.1007/s12015-018-9800-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
74
|
El-Jawhari JJ, Brockett CL, Ktistakis I, Jones E, Giannoudis PV. The regenerative therapies of the ankle degeneration: a focus on multipotential mesenchymal stromal cells. Regen Med 2018; 13:175-188. [PMID: 29553890 DOI: 10.2217/rme-2017-0104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ankle degeneration ranging from focal osteochondral lesions to osteoarthritis can cause a total joint function loss. With rising life expectancy and activity of the patients, various regenerative therapies were introduced aiming to preserve the joint function via the induction of cartilage and bone repair. Here, biological events and mechanical changes of the ankle degeneration were discussed. The regenerative therapies were reviewed versus the standard surgical treatment. We especially focused on the use of mesenchymal (multipotential) stromal cells (MSCs) highlighting their dual functions of regeneration and cell modulation with an emphasis on the emerging MSC-based clinical studies. Being at an early step, more basic and clinical research is needed to optimize the applications of all ankle regenerative therapies including MSC-based methods.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Clinical pathology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Claire L Brockett
- Institute of Medical & Biological Engineering, University of Leeds, Leeds, UK
| | - Ioannis Ktistakis
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Academic Unit of Trauma and Orthopaedic Surgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Academic Unit of Trauma and Orthopaedic Surgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
75
|
Bubnov RV, Drahulian MV, Buchek PV, Gulko TP. High regenerative capacity of the liver and irreversible injury of male reproductive system in carbon tetrachloride-induced liver fibrosis rat model. EPMA J 2018; 9:59-75. [PMID: 29515688 PMCID: PMC5833895 DOI: 10.1007/s13167-017-0115-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Liver fibrosis (LF) is a chronic disease, associated with many collateral diseases including reproductive dysfunction. Although the normal liver has a large regenerative capacity the complications of LF could be severe and irreversible. Hormone and sex-related issues of LF development and interactions with male reproductive have not been finally studied. The aim was to study the reproductive function of male rats in experimental CCl4-induced liver fibrosis rat model, and the capability for restoration of both the liver and male reproduction system. MATERIALS Studies were conducted on 20 3-month old Wistar male rats. The experimental animals were injected with freshly prepared 50% olive oil solution of carbohydrate tetrachloride (CCl4). On the 8th week after injection we noted the manifestations of liver fibrosis. The rats were left to self-healing of the liver for 8 weeks. All male rats underwent ultrasound and biopsy of the liver and testes on the 8th and 16th weeks. The male rats were mated with healthy females before CCl4 injection, after modeling LF on the 8th week, and after self-healing of the liver. Pregnancy was monitored on ultrasound. RESULTS On the 8th week of experiment we observed ultrasound manifestation of advanced liver fibrosis, including hepatosplenomegaly, portal hypertension. Ultrasound exam of the rat testes showed testicular degeneration, hydrocele, fibrosis, scarring, petrifications, size reduction, and restriction of testicular descent; testes size decreased from 1.24 ± 0.62 ml to 0.61 ± 0.13, p < 0.01. Liver histology showed granular dystrophy of hepatocytes, necrotic areas, lipid inclusions in parenchyma. Rats with liver fibrosis demonstrated severe injury of the reproductive system and altering of fertility: the offspring of male rats with advanced LF was 4.71 ± 0.53 born alive vs 9.55 ± 0.47 born from mating with healthy males, p < 0.001. Eight weeks after last CCl4 injection, we revealed signs of liver regeneration, significant recovery of its structure. The ALT and AST levels significantly decreased and reached background measurements. As a result of the second interbreeding after liver self-healing no significant difference was found vs previous mating. CONCLUSION Carbohydrate tetrachloride induces injury of liver parenchyma evoking fast and severe liver fibrosis, and is associated with irreversible structural and functional changes in testes, reducing fertility, decreasing potential pregnancy rate, and affecting its development. Liver showed high potential to regenerate, however the self-restoring after liver fibrosis was not accompanied with recovery of the reproductive system.
Collapse
Affiliation(s)
- Rostyslav V. Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
- Clinical Hospital ‘Pheophania’ of State Affairs Department, Zabolotny str., 21, Kyiv, 03143 Ukraine
| | - Maria V. Drahulian
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotny str., 150, Kyiv, 03143 Ukraine
| | - Polina V. Buchek
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotny str., 150, Kyiv, 03143 Ukraine
| | - Tamara P. Gulko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotny str., 150, Kyiv, 03143 Ukraine
| |
Collapse
|
76
|
Confalonieri D, Schwab A, Walles H, Ehlicke F. Advanced Therapy Medicinal Products: A Guide for Bone Marrow-derived MSC Application in Bone and Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:155-169. [PMID: 28990462 DOI: 10.1089/ten.teb.2017.0305] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Millions of people worldwide suffer from trauma- or age-related orthopedic diseases such as osteoarthritis, osteoporosis, or cancer. Tissue Engineering (TE) and Regenerative Medicine are multidisciplinary fields focusing on the development of artificial organs, biomimetic engineered tissues, and cells to restore or maintain tissue and organ function. While allogenic and future autologous transplantations are nowadays the gold standards for both cartilage and bone defect repair, they are both subject to important limitations such as availability of healthy tissue, donor site morbidity, and graft rejection. Tissue engineered bone and cartilage products represent a promising and alternative approach with the potential to overcome these limitations. Since the development of Advanced Therapy Medicinal Products (ATMPs) such as TE products requires the knowledge of diverse regulation and an extensive communication with the national/international authorities, the aim of this review is therefore to summarize the state of the art on the clinical applications of human bone marrow-derived stromal cells for cartilage and bone TE. In addition, this review provides an overview of the European legislation to facilitate the development and commercialization of new ATMPs.
Collapse
Affiliation(s)
- Davide Confalonieri
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Andrea Schwab
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Heike Walles
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany .,2 Translational Center Wuerzburg "Regenerative Therapies in Oncology and Musculoskeletal Disease," Wuerzburg, Germany
| | - Franziska Ehlicke
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| |
Collapse
|
77
|
Akhmetov I, Bubnov RV. Innovative payer engagement strategies: will the convergence lead to better value creation in personalized medicine? EPMA J 2017; 8:5-15. [PMID: 28228864 PMCID: PMC5306421 DOI: 10.1007/s13167-017-0078-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND As reimbursement authorities are gaining greater power to influence the prescription behavior of physicians, it remains critical for life science companies focusing on personalized medicine to develop "tailor-made" payer engagement strategies to secure reimbursement and assure timely patient access to their innovative products. Depending on the types of such engagement, pharmaceutical and diagnostic companies may benefit by obtaining access to medical and pharmacy claims data, getting invaluable upfront inputs on evidence requirements and clinical trial design, and strengthening trust by payers, therefore avoiding uncertainties with regards to pricing, reimbursement, and research and development reinvestment. This article aims to study the evolving trend of partnering among two interdependent, yet confronting, stakeholder groups-payers and producers-as well as to identify the most promising payer engagement strategies based on cocreation of value introduced by life science companies in the past few years. We analyzed the recent case studies from both therapeutic and diagnostic realms considered as the "best practices" in payer engagement. The last 5 years were a breakout period for deals between life science companies and reimbursement authorities in the area of personalized medicine with a number of felicitous collaborative practices established already, and many more yet to emerge. We suggest that there are many ways for producers and payers to collaborate throughout the product life cycle-from data exchange and scientific counseling to research collaboration aimed at reducing healthcare costs, addressing adherence issues, and diminishing risks associated with future launches. CONCLUSIONS The presented case studies provide clear insights on how successful personalized medicine companies customize their state-of-the-art payer engagement strategies to ensure closer proximity with payers and establish longer-term trust-based relationships.
Collapse
Affiliation(s)
- Ildar Akhmetov
- Strategic Market Intelligence Department, Unicorn, P.O. Box 91, Zhytomyr, 10020 Ukraine
| | - Rostyslav V. Bubnov
- Clinical Hospital “Pheophania” of State Affairs Department, Zabolotny Str., 21, Kyiv, 03680 Ukraine
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03680 Ukraine
| |
Collapse
|
78
|
Konopelniuk VV, Goloborodko II, Ishchuk TV, Synelnyk TB, Ostapchenko LI, Spivak MY, Bubnov RV. Efficacy of Fenugreek-based bionanocomposite on renal dysfunction and endogenous intoxication in high-calorie diet-induced obesity rat model-comparative study. EPMA J 2017; 8:377-390. [PMID: 29209440 PMCID: PMC5700020 DOI: 10.1007/s13167-017-0098-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Worldwide obesity spread is a global health problem and needs to be further studied. Co-morbidities of obesity include insulin resistance, diabetes mellitus type 2, and dyslipidemia, which are the most frequent contributing factors for metabolic syndrome (MetS), as well as non-alcoholic fatty liver disease and chronic kidney disease. The aim was to study renal function and endogenous intoxication panel on high-calorie diet-induced obesity rat model and perform comparative study of the treatment efficacy of Fenugreek-based bionanocomposite vs antiobesogenic drugs (Orlistat). MATERIALS We included 60 male rats and equally divided them to 6 groups of 10 animals in each group: the experimental groups were firstly assigned as controls and high caloric diet (HCD)-fed groups, and each group further was subdivided to remain untreated, Fenugreek bionanocomposite (BNC)-treated, and Orlistat-treated. Normal control rats (groups 1, 2, 3) were fed by a standard chow, while the others (groups 4, 5, 6) were fed with HCD ad libitum during 98 days. From days 77 to 98, groups 2 and 5 were treated with BNC based on Fenugreek (150 mg/kg body weight, orally) and groups 3 and 6 were treated with antiobesogenic drug Orlistat (10 mg/kg body weight, orally). Food and water consumptions were measured daily and body weights were measured once a week. On day 99, blood was collected; the creatinine, urea, and uric acid were estimated in serum according to the standard protocols. Levels of low and middle molecules (MMs) were measured; the quantity of oligopeptides was estimated by Bradford method. We performed the liver and kidney ultrasonography in rats. RESULTS We revealed an increase in the levels of endogenous intoxication syndrome markers (MM and oligopeptides) in all animals with experimental obesity. Ultrasound data showed injury of the liver and kidneys in obese rats. We observed significant decreasing of MM levels after Orlistat treatment vs controls (p < 0.05). However, this effect was more pronounced in Fenugreek BNC-treated group vs both Orlistat-treated and controls (p < 0.05). Orlistat treatment evoked rising of serum creatinine and oligopeptides in control animals and failed to normalize these markers in experimental group. Fenugreek-based BNC treatment did not evoke signs of kidney failure and changes in the studied indices in control group. We noticed normalization levels of uric acid and urea in the blood under the use of BNC and Orlistat. CONCLUSION High-calorie diet-induced obesity evokes endogenous intoxication syndrome and kidney dysfunction in rats. Application of Orlistat- and Fenugreek-based BNC decreases MM content to the normal level. Orlistat induces increasing levels of oligopeptides in both groups, likely due to adverse side effects on renal function and its pro-oxidant activity.
Collapse
Affiliation(s)
- Victoria V. Konopelniuk
- Educational and Scientific Centre “Institute of Biology”, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Ievgenii I. Goloborodko
- Educational and Scientific Centre “Institute of Biology”, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Tetyana V. Ishchuk
- Educational and Scientific Centre “Institute of Biology”, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Tetyana B. Synelnyk
- Educational and Scientific Centre “Institute of Biology”, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Ludmila I. Ostapchenko
- Educational and Scientific Centre “Institute of Biology”, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Mykola Ya. Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Rostyslav V. Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
- Clinical Hospital “Pheophania” of State Affairs Department, Zabolotny Str., 21, Kyiv, 03143 Ukraine
| |
Collapse
|
79
|
Adjuvant Biological Therapies in Chronic Leg Ulcers. Int J Mol Sci 2017; 18:ijms18122561. [PMID: 29182584 PMCID: PMC5751164 DOI: 10.3390/ijms18122561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
Current biological treatments for non-healing wounds aim to address the common deviations in healing mechanisms, mainly inflammation, inadequate angiogenesis and reduced synthesis of extracellular matrix. In this context, regenerative medicine strategies, i.e., platelet rich plasmas and mesenchymal stromal cell products, may form part of adjuvant interventions in an integral patient management. We synthesized the clinical experience on ulcer management using these two categories of biological adjuvants. The results of ten controlled trials that are included in this systematic review favor the use of mesenchymal stromal cell based-adjuvants for impaired wound healing, but the number and quality of studies is moderate-low and are complicated by the diversity of biological products. Regarding platelet-derived products, 18 controlled studies investigated their efficacy in chronic wounds in the lower limb, but the heterogeneity of products and protocols hinders clinically meaningful quantitative synthesis. Most patients were diabetic, emphasizing an unmet medical need in this condition. Overall, there is not sufficient evidence to inform routine care, and further clinical research is necessary to realize the full potential of adjuvant regenerative medicine strategies in the management of chronic leg ulcers.
Collapse
|
80
|
Centeno C, Markle J, Dodson E, Stemper I, Hyzy M, Williams C, Freeman M. The use of lumbar epidural injection of platelet lysate for treatment of radicular pain. J Exp Orthop 2017; 4:38. [PMID: 29177632 PMCID: PMC5701904 DOI: 10.1186/s40634-017-0113-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
Background Epidural steroid injections (ESI) are the most common pain management procedure performed in the US, however evidence of efficacy is limited. In addition, there is early evidence that the high dose of corticosteroids used can have systemic side effects. We describe the results of a case series evaluating the use of platelet lysate (PL) epidural injections for the treatment of lumbar radicular pain as an alternative to corticosteroids. Methods Registry data was obtained for patients (N = 470) treated with PL epidural injections presenting with symptoms of lumbar radicular pain and MRI findings that were consistent with symptoms. Collected outcomes included numeric pain score (NPS), functional rating index (FRI), and a modified single assessment numeric evaluation (SANE) rating. Results Patients treated with PL epidurals reported significantly lower (p < .0001) NPS and FRI change scores at all time points compared to baseline. Post-treatment FRI change score means exceeded the minimal clinically important difference beyond 1 month. Average modified SANE ratings showed 49.7% improvement at 24 months post-treatment. Twenty-nine (6.3%) patients reported mild adverse events related to treatment. Conclusion Patients treated with PL epidurals reported significant improvements in pain, exceeded the minimal clinically important difference (MCID) for FRI, and reported subjective improvement through 2-year follow-up. PL may be a promising substitute for corticosteroid.
Collapse
Affiliation(s)
- Christopher Centeno
- Centeno-Schultz Clinic, Broomfield, CO, 80021, USA.,Regenexx, LLC, Des Moines, IA, 50321, USA
| | - Jason Markle
- Centeno-Schultz Clinic, Broomfield, CO, 80021, USA
| | - Ehren Dodson
- Centeno-Schultz Clinic, Broomfield, CO, 80021, USA. .,Regenexx, LLC, Des Moines, IA, 50321, USA.
| | | | - Matthew Hyzy
- Centeno-Schultz Clinic, Broomfield, CO, 80021, USA
| | | | - Michael Freeman
- CAPHRI School of Public Health and Primary Care, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
81
|
Musculoskeletal Injuries and Regenerative Medicine in the Elderly Patient. Phys Med Rehabil Clin N Am 2017; 28:777-794. [DOI: 10.1016/j.pmr.2017.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
82
|
Abstract
Orthobiologics are not used as frequently in the hand and wrist as in other sites. The most frequently reported is the use of bone morphogenetic protein for the treatment of Kienböck disease. Animal studies have described improved tendon healing with the use of platelet-rich plasma (PRP), but no clinical studies have confirmed these results. PRP has been reported to produce improvements in the outcomes of distal radial fractures and osteoarthritis of the trapeziometacarpal in small numbers of patients. The use of orthobiologics in the hand and wrist are promising, but clinical trials are necessary to establish efficacy and safety.
Collapse
|
83
|
Yuan X, Wei Y, Villasante A, Ng JJD, Arkonac DE, Chao PHG, Vunjak-Novakovic G. Stem cell delivery in tissue-specific hydrogel enabled meniscal repair in an orthotopic rat model. Biomaterials 2017; 132:59-71. [PMID: 28407495 PMCID: PMC5473162 DOI: 10.1016/j.biomaterials.2017.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 01/21/2023]
Abstract
Interest in non-invasive injectable therapies has rapidly risen due to their excellent safety profile and ease of use in clinical settings. Injectable hydrogels can be derived from the extracellular matrix (ECM) of specific tissues to provide a biomimetic environment for cell delivery and enable seamless regeneration of tissue defects. We investigated the in situ delivery of human mesenchymal stem cells (hMSCs) in decellularized meniscus ECM hydrogel to a meniscal defect in a nude rat model. First, decellularized meniscus ECM hydrogel retained tissue-specific proteoglycans and collagens, and significantly upregulated expression of fibrochondrogenic markers by hMSCs versus collagen hydrogel alone in vitro. The meniscus ECM hydrogel in turn supported delivery of hMSCs for integrative repair of a full-thickness defect model in meniscal explants after in vitro culture and in vivo subcutaneous implantation. When applied to an orthotopic model of meniscal injury in nude rat, hMSCs in meniscus ECM hydrogel were retained out to eight weeks post-injection, contributing to tissue regeneration and protection from joint space narrowing, pathologic mineralization, and osteoarthritis development, as evidenced by macroscopic and microscopic image analysis. Based on these findings, we propose the use of tissue-specific meniscus ECM-derived hydrogel for the delivery of therapeutic hMSCs to treat meniscal injury.
Collapse
Affiliation(s)
- Xiaoning Yuan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yiyong Wei
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aránzazu Villasante
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Johnathan J D Ng
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Derya E Arkonac
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Pen-Hsiu Grace Chao
- Institute of Biomedical Engineering, School of Medicine and School of Engineering, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
84
|
Liu SY, He YB, Deng SY, Zhu WT, Xu SY, Ni GX. Exercise affects biological characteristics of mesenchymal stromal cells derived from bone marrow and adipose tissue. INTERNATIONAL ORTHOPAEDICS 2017; 41:1199-1209. [PMID: 28364139 DOI: 10.1007/s00264-017-3441-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/09/2017] [Indexed: 02/05/2023]
Abstract
Both bone marrow mesenchymal stromal cells (BMSCs) and adipose-derived mesenchymal stromal cells (ADSCs) are good sources for tissue engineering. To maximize therapeutic efficacy of MSCs, an appropriate source of MSCs should be selected according to their own inherent characteristics for future clinical application. Hence, this study was conducted to compare proliferative, differential and antiapoptosis abilities of both MSCs derived from exercised and sedentary rats under normal and hypoxia/serum deprivation conditions (H/SD). Our results showed that exercise may enhance proliferative ability and decrease adipogenic ability of BMSCs and ADSCs. However, positive effect of exercise on osteogenesis was only observed for BMSCs in either environment. Little effect was observed on the antiapoptotic ability of both MSC types. It was also suggested that biological characteristics of both types were partly changed. It is therefore believed that BMSCs derived from exercised rat on early passage may be a good cell source for bone tissue engineering.
Collapse
Affiliation(s)
- Sheng-Yao Liu
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Yong-Bin He
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Song-Yun Deng
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Wen-Ting Zhu
- Biomaterial Research Center, School of pharmaceutical sciences, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Shao-Yong Xu
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Guo-Xin Ni
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China.
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
85
|
Glenohumeral osteoarthritis and the young patient: current options for treatment. CURRENT ORTHOPAEDIC PRACTICE 2017. [DOI: 10.1097/bco.0000000000000482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
86
|
Berman M, Lander E. A Prospective Safety Study of Autologous Adipose-Derived Stromal Vascular Fraction Using a Specialized Surgical Processing System. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/0748806817691152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Autologous adipose-derived stromal vascular fraction (SVF) has been proposed as a remedy for a number of inflammatory, autoimmune, and degenerative conditions. This procedure had mainly been evaluated in veterinary medicine and outside the United States when this study was initiated. This study looks at adverse events to evaluate safety as its primary objective and secondarily follows efficacy of SVF as deployed through intra-articular injections and intravenous infusions for a variety of orthopedic and non-orthopedic conditions. We hypothesized that autologous SVF deployment using a specialized surgical processing system (the CSN Time Machine® system, trademark name for the MediKhan Lipokit/Maxstem system; MediKhan, Los Angeles, California) was safe (ie, minimally acceptable adverse events) and that clinical efficacy could be demonstrated. This was a prospective case series. After institutional review board approval, 1698 SVF deployment procedures were performed between 2011 and 2016 by us and other affiliates with our same system trained by us as a nearly closed sterile surgical lipotransfer procedure on 1524 patients with various degenerative, inflammatory, and autoimmune conditions with a majority involving the musculoskeletal system. All outcome test data were collected in an online database over a 5-year period. Our study shows a very low number of reported adverse events and a reduction in pain ratings after 6 months or more across a variety of musculoskeletal diseases and improvements in a variety of other degenerative conditions. Our system for producing adipose-derived SVF therapy for our patients was safe and benefits could be measured for a long time after SVF deployment. Further controlled long-term studies for specific disease conditions with large patient populations are necessary to further investigate the benefits observed.
Collapse
Affiliation(s)
- Mark Berman
- University of Southern California, Los Angeles, CA, USA
- Cell Surgical Network Corporation, Palm Desert, CA, USA
| | - Elliot Lander
- Cell Surgical Network Corporation, Palm Desert, CA, USA
| |
Collapse
|
87
|
In vitro exploration of a myeloid-derived suppressor cell line as vehicle for cancer gene therapy. Cancer Gene Ther 2016; 24:149-155. [PMID: 27857057 DOI: 10.1038/cgt.2016.60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Recent research indicates that cell-mediated gene therapy can be an interesting method to obtain intratumoral expression of therapeutic proteins. This paper explores the possibility of using transfected myeloid-derived suppressor cells (MDSCs), derived from a murine cell line, as cellular vehicles for transporting plasmid DNA (pDNA) encoding interleukin-12 (IL-12) to tumors. Transfecting these cells via electroporation caused massive cell death. This was not due to electroporation-induced cell damage, but was mainly the result of the intracellular presence of plasmids. In contrast, pDNA transfection using Lipofectamine 2000 (LF2000) did not result in a significant loss of viability. Differences in delivery mechanism may explain the distinctive effects on cell viability. Indeed, electroporation is expected to cause a rapid and massive influx of pDNA resulting in cytosolic pDNA levels that most likely surpass the activation threshold of the intracellular DNA sensors leading to cell death. In contrast, a more sustained intracellular release of the pDNA is expected with LF2000. After lipofection with LF2000, 56% of the MDSCs were transfected and transgene expression lasted for at least 24 h. Moreover, biologically relevant amounts of IL-12 were produced by the MDSCs after lipofection with an IL-12 encoding pDNA. In addition, IL-12 transfection caused a significant upregulation of CD80 and considerably reduced the immunosuppressive capacity of the MDSCs. IL-12-transfected MDSCs were still able to migrate to tumor cells, albeit that lipofection of the MDSCs seemed to slightly decrease their migration capacity.
Collapse
|
88
|
Elabd C, Centeno CJ, Schultz JR, Lutz G, Ichim T, Silva FJ. Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: a long-term safety and feasibility study. J Transl Med 2016; 14:253. [PMID: 27585696 PMCID: PMC5009698 DOI: 10.1186/s12967-016-1015-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/18/2016] [Indexed: 01/07/2023] Open
Abstract
Background Chronic low back pain due to disc degeneration represents a major social and economic burden worldwide. The current standard of care is limited to symptomatic relief and no current approved therapy promotes disc regeneration. Bone marrow-derived mesenchymal stem cells (MSCs) are easily accessible and well characterized. These MSCs are multipotent and exhibit great tissue regenerative potential including bone, cartilage, and fibrous tissue regeneration. The use of this cell-based biologic for treating protruding disc herniation and/or intervertebral disc degeneration is a promising therapeutic strategy, due to their known regenerative, immuno-modulatory and anti-inflammatory properties. Methods Five patients diagnosed with degenerative disc disease received an intra-discal injection of autologous, hypoxic cultured, bone marrow-derived mesenchymal stem cells (15.1–51.6 million cells) as part of a previous study. These patients were re-consented to participate in this study in order to assess long-term safety and feasibility of intra-discal injection of autologous, hypoxic cultured, bone marrow-derived mesenchymal stem cells 4–6 years post mesenchymal stem cell infusion. The follow-up study consisted of a physical examination, a low back MRI, and a quality of life questionnaire. Results Patients’ lower back MRI showed absence of neoplasms or abnormalities surrounding the treated region. Based on the physical examination and the quality of life questionnaire, no adverse events were reported due to the procedure or to the stem cell treatment 4–6 years post autologous, hypoxic cultured mesenchymal stem cell infusion. All patients self-reported overall improvement, as well as improvement in strength, post stem cell treatment, and four out of five patients reported improvement in mobility. Conclusion This early human clinical data suggests the safety and feasibility of the clinical use of hypoxic cultured bone marrow-derived mesenchymal stem cells for the treatment of lower back pain due to degenerative disc disorders and support further studies utilizing hypoxic cultured bone marrow-derived stem cells. The overall improvements reported are encouraging, but a larger double-blind, controlled, randomized clinical study with significant number of patients and implementation of validated endpoint measurements are next steps in order to demonstrate efficacy of this cell-based biologic.
Collapse
Affiliation(s)
- Christian Elabd
- BioRestorative Therapies, Inc., 40 Marcus Drive, Suite One, Melville, NY, 11747, USA
| | - Christopher J Centeno
- The Centeno-Schultz Clinic, 403 Summit Boulevard, Unit 201, Broomfield, CO, 80021-8253, USA
| | - John R Schultz
- The Centeno-Schultz Clinic, 403 Summit Boulevard, Unit 201, Broomfield, CO, 80021-8253, USA
| | - Gregory Lutz
- Department of Physiatry, Hospital for Special Surgery, 429 E 75th Street, 3rd Floor, New York, NY, 10021, USA
| | - Thomas Ichim
- Institute for Molecular Medicine, Huntington Beach, CA, 92649, USA
| | - Francisco J Silva
- BioRestorative Therapies, Inc., 40 Marcus Drive, Suite One, Melville, NY, 11747, USA.
| |
Collapse
|
89
|
|
90
|
Concepts in regenerative medicine: Past, present, and future in articular cartilage treatment. J Clin Orthop Trauma 2016; 7:137-44. [PMID: 27489407 PMCID: PMC4949414 DOI: 10.1016/j.jcot.2016.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 01/01/2023] Open
Abstract
Regenerative medicine is emerging with great interest and hope from patients, industry, academia, and medical professionals. Cartilage regeneration, restoration, or repair is one of the prime targets that remains largely unsolved, and many believe that regenerative medicine can possibly deliver solutions that can be widely used to address the current gap(s) in treatment. In the United States, Europe, Australia, and India the regulation of regenerative based treatments has become a big debate. Although the rules and regulations remain unclear, clinicians that are interested should carry-on with the best available guidelines to ensure safety and compliance during delivery in clinical practice to avoid regulatory infraction. Many have made significant investment of time, resources, and facilities in recent years to provide new regenerative treatment options and advance medical care for patients. Instead of reinventing the wheel, it would be more efficient to adopt currently accepted standards and nomenclature borrowed from transplantation science, and cord blood storage industries. The purposes of this article are to provide some historical background to the field of regenerative medicine as it applies to cartilage, and how this field has developed. This will be followed by a separate discussion on regulatory oversight and input and how it has influenced access to care. Furthermore, we discuss current clinical techniques and progress, and ways to deliver these treatments to patients safely, effectively, and in a cost sensitive manner, concluding with an overview of some of the promising regenerative techniques specific to cartilage.
Collapse
|