51
|
Chen SJ, Lin GJ, Chen JW, Wang KC, Tien CH, Hu CF, Chang CN, Hsu WF, Fan HC, Sytwu HK. Immunopathogenic Mechanisms and Novel Immune-Modulated Therapies in Rheumatoid Arthritis. Int J Mol Sci 2019; 20:ijms20061332. [PMID: 30884802 PMCID: PMC6470801 DOI: 10.3390/ijms20061332] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease of unknown etiology. It is characterized by the presence of rheumatoid factor and anticitrullinated peptide antibodies. The orchestra of the inflammatory process among various immune cells, cytokines, chemokines, proteases, matrix metalloproteinases (MMPs), and reactive oxidative stress play critical immunopathologic roles in the inflammatory cascade of the joint environment, leading to clinical impairment and RA. With the growing understanding of the immunopathogenic mechanisms, increasingly novel marked and potential biologic agents have merged for the treatment of RA in recent years. In this review, we focus on the current understanding of pathogenic mechanisms, highlight novel biologic disease-modifying antirheumatic drugs (DMRADs), targeted synthetic DMRADs, and immune-modulating agents, and identify the applicable immune-mediated therapeutic strategies of the near future. In conclusion, new therapeutic approaches are emerging through a better understanding of the immunopathophysiology of RA, which is improving disease outcomes better than ever.
Collapse
Affiliation(s)
- Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- Department of Pediatrics, Penghu Branch of Tri-Service General Hospital, National Defense Medical Center, No. 90, Qianliao, Magong City, Penghu County 880, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Jing-Wun Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Kai-Chen Wang
- School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei City 112, Taiwan.
- Department of Neurology, Cheng Hsin General Hospital, No. 45, Cheng Hsin St., Pai-Tou, Taipei City 112, Taiwan.
| | - Chiung-Hsi Tien
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Chih-Fen Hu
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Chia-Ning Chang
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Pediatrics, Penghu Branch of Tri-Service General Hospital, National Defense Medical Center, No. 90, Qianliao, Magong City, Penghu County 880, Taiwan.
| | - Wan-Fu Hsu
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Pediatrics, Penghu Branch of Tri-Service General Hospital, National Defense Medical Center, No. 90, Qianliao, Magong City, Penghu County 880, Taiwan.
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Pediatrics, Tungs' Taichung MetroHarborHospital, No. 699, Section 8, Taiwan Blvd., Taichung City 435, Taiwan.
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County 350, Taiwan.
| |
Collapse
|
52
|
Wang Y, Zhang H, Sun W, Wang S, Zhang S, Zhu L, Chen Y, Xie L, Sun Z, Yan B. Macrophages mediate corticotomy-accelerated orthodontic tooth movement. Sci Rep 2018; 8:16788. [PMID: 30429494 PMCID: PMC6235963 DOI: 10.1038/s41598-018-34907-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022] Open
Abstract
Clinical evidence has suggested that surgical corticotomy of the alveolar bone can accelerate local orthodontic tooth movement (OTM), but the underlying cell and molecular mechanisms remain largely unclear. The present study examined the role of macrophages played in corticotomy-assisted OTM. Orthodontic nickel-titanium springs were applied to the left maxillary first molars of rats or mice to induce OTM with or without corticotomy. Corticotomy enhanced OTM distance by accelerating movement through induction of local osteoclastogenesis and macrophage infiltration during OTM. Further analysis showed that macrophages were polarized toward an M1-like phenotype immediately after corticotomy and then switched to an M2-like phenotype during OTM. The microenvironment of corticotomy induced macrophage infiltration and polarization through the production of TNF-α. More importantly, the amount of OTM induced by corticotomy was significantly decreased after mice were depleted of monocyte/macrophages by injection of liposome-encapsulated clodronate. Further experiments by incubating cultured macrophages with fresh tissue suspension obtained from post-corticotomy gingiva switched the cells to an M1 phenotype through activation of the nuclear factor-κB (NF-κB) signaling pathway, and to an M2 phenotype through activation of the JAK/STAT3 signaling pathway. Our results suggest that corticotomy induces macrophage polarization first by activating the NF-κB signaling pathway and later by activating the JAK/STAT3 signaling pathway, and that these processes contribute to OTM by triggering production of inflammatory cytokines and osteoclastogenesis.
Collapse
Affiliation(s)
- Yan Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science & Technology Town Hospital, 215153, Suzhou, Jiangsu Province, China
| | - Hanwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Siyu Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Shuting Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Linlin Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yali Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lizhe Xie
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Zongyang Sun
- Division of Orthodontics, College of Dentistry, Ohio State University, Columbus, USA
| | - Bin Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China. .,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
53
|
MiR-199a-3p inhibits proliferation and induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via suppressing retinoblastoma 1. Biosci Rep 2018; 38:BSR20180982. [PMID: 30352835 PMCID: PMC6239273 DOI: 10.1042/bsr20180982] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/14/2018] [Accepted: 10/09/2018] [Indexed: 01/04/2023] Open
Abstract
Background Fibroblast-like synoviocytes (FLSs) that line the intimal synovium play a crucial role in the pathogenesis of rheumatoid arthritis (RA). miR-199a-3p is a highly conserved miRNA that has been shown to regulate a variety of growth behaviors in diverse cell types. However, the role of miR-199a-3p in RA-FLS is still unknown. Methods Here, we presented the first experimental evidence showing that miR-199a-3p was a critical regulator of RA-FLS function. Results miR-199a-3p expression was significantly reduced in RA-FLS compared with normal FLS. Ectopic expression of miR-199a-3p significantly inhibited RA-FLS proliferation and induced apoptosis, which was demonstrated by an increase in caspase-3 activity and Bax/Bcl-2 ratio. Our bioinformatics analysis identified Retinoblastoma 1 (RB1) gene to be a direct target of miR-199a-3p. In RA-FLS, miR-199a-3p directly targetted the 3′-UTR of RB1 mRNA and suppressed endogenous RB1 expression, whereas miR-199a-3p-resistant variant of RB1 was not affected. Silencing RB1 decreased cell proliferation and promoted apoptosis in RA-FLS, an effect comparable with miR-199a-3p overexpression. Enforced expression of RB1 partially restored cell proliferation and attenuated apoptosis in miR-199a-3p-overexpressing RA-FLSs. Conclusion In summary, miR-199a-3p is down-regulated in RA-FLS, and miR-199a-3p inhibits proliferation and induces apoptosis in RA-FLS, partially via targetting RB1. The miR-199a-3p/RB1 pathway may represent a new therapeutic target for RA.
Collapse
|
54
|
Fan M, Li Y, Yao C, Liu X, Liu X, Liu J. Dihydroartemisinin derivative DC32 attenuates collagen-induced arthritis in mice by restoring the Treg/Th17 balance and inhibiting synovitis through down-regulation of IL-6. Int Immunopharmacol 2018; 65:233-243. [PMID: 30336338 DOI: 10.1016/j.intimp.2018.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
Imbalance of Treg/Th17 and chronic synovitis characterized by the recruitment and infiltration of inflammatory cells are the typical features of rheumatoid arthritis (RA). IL-6 promotes the differentiation and function of Th17 cells, which contributes to the imbalance of Treg/Th17 and aggravates lymphocytic infiltration in joints. DC32, a dihydroartemisinin derivative, was found to have anti-inflammatory and immunosuppressive activities in previous study. The aim of this study is to evaluate the effects and mechanisms of DC32 in immunodeficiency and inflammatory infiltration of RA. In vivo, the antirheumatic effect of DC32 was evaluated in a collagen-induced arthritis (CIA) mouse model in DBA/1 mice. The percentages of Treg and Th17 and transcription of IL-6 in the spleen were assayed. In vitro, a coculture system of ConA-activated lymphocytes and fibroblast-like synoviocytes (FLSs) from rat with adjuvant arthritis (AA) was established. The effects and mechanisms of DC32 on synovitis were investigated. It was shown that DC32 inhibited footpad swelling and lymphocytic infiltration in mice with CIA and significantly restored the Treg/Th17 balance by reducing the transcription of IL-6 in splenocytes. DC32 significantly inhibited the lymphocyte-induced invasion and migration of FLSs by decreasing the secretion of MMPs (MMP-2, MMP-3) in vitro. DC32 also reduced the transcription of chemokines (CXCL12, CX3CL1) and IL-6 in FLSs, as well as IL-6 levels in the supernatant. These results demonstrated that DC32 may attenuate RA by restoring Treg/Th17 balance and inhibiting lymphocytic infiltration through downregulation of the expression and transcription of IL-6. This study supports the potential of DC32 to down-regulate IL-6 for the treatment of RA and other related autoimmune diseases.
Collapse
Affiliation(s)
- Menglin Fan
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanan Li
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhua Yao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiufeng Liu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuming Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Jihua Liu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
55
|
Gorissen B, de Bruin A, Miranda-Bedate A, Korthagen N, Wolschrijn C, de Vries TJ, van Weeren R, Tryfonidou MA. Hypoxia negatively affects senescence in osteoclasts and delays osteoclastogenesis. J Cell Physiol 2018; 234:414-426. [PMID: 29932209 PMCID: PMC6220985 DOI: 10.1002/jcp.26511] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Abstract
Cellular senescence, that is, the withdrawal from the cell cycle, combined with the acquirement of the senescence associated secretory phenotype has important roles during health and disease and is essential for tissue remodeling during embryonic development. Osteoclasts are multinucleated cells, responsible for bone resorption, and cell cycle arrest during osteoclastogenesis is well recognized. Therefore, the aim of this study was to investigate whether these cells should be considered senescent and to assess the influence of hypoxia on their potential senescence status. Osteoclastogenesis and bone resorption capacity of osteoclasts, cultured from CD14+ monocytes, were evaluated in two oxygen concentrations, normoxia (21% O2) and hypoxia (5% O2). Osteoclasts were profiled by using specific staining for proliferation and senescence markers, qPCR of a number of osteoclast and senescence‐related genes and a bone resorption assay. Results show that during in vitro osteoclastogenesis, osteoclasts heterogeneously obtain a senescent phenotype. Furthermore, osteoclastogenesis was delayed at hypoxic compared to normoxic conditions, without negatively affecting the bone resorption capacity. It is concluded that osteoclasts can be considered senescent, although senescence is not uniformly present in the osteoclast population. Hypoxia negatively affects the expression of some senescence markers. Based on the direct relationship between senescence and osteoclastogenesis, it is tempting to hypothesize that contents of the so‐called senescence associated secretory phenotype (SASP) not only play a functional role in matrix resorption, but also may regulate osteoclastogenesis.
Collapse
Affiliation(s)
- Ben Gorissen
- Department of Pathobiology, Anatomy and Physiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alain de Bruin
- Dutch Molecular Pathology Centre, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alberto Miranda-Bedate
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicoline Korthagen
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Claudia Wolschrijn
- Department of Pathobiology, Anatomy and Physiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Teun J de Vries
- Department of Periodontology,, Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
56
|
Berberine inhibits IL-21/IL-21R mediated inflammatory proliferation of fibroblast-like synoviocytes through the attenuation of PI3K/Akt signaling pathway and ameliorates IL-21 mediated osteoclastogenesis. Cytokine 2018; 106:54-66. [DOI: 10.1016/j.cyto.2018.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 01/27/2023]
|
57
|
Dinesh P, Rasool M. uPA/uPAR signaling in rheumatoid arthritis: Shedding light on its mechanism of action. Pharmacol Res 2018; 134:31-39. [PMID: 29859810 DOI: 10.1016/j.phrs.2018.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic and chronic autoimmune inflammatory disorder affecting multiple joints. Various cytokines, chemokines and growth factors synergistically modulate the joint physiology leading to bone erosion and cartilage degradation. Other than these conventional mediators that are well established in the past, the newly identified plasminogen activator (PA) family of proteins have been witnessed to possess a multifactorial approach in mediating RA pathogenesis. One such family of proteins comprises of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR)/soluble-type plasminogen activator receptor (suPAR). PA family of proteins are classified into two types namely: uPA and tissue type plasminogen activator (tPA). Both these subtypes have been implicated to play a key role in RA disease progression. However during RA pathogenesis, uPA secreted by neutrophils, chondrocytes, and monocytes are designated to interact with uPAR expressed on macrophages, fibroblast-like synoviocytes (FLS), chondrocytes and endothelial cells. Interaction of uPA/uPAR promotes the disease progression of RA through secretion of several cytokines, chemokines, growth factors and matrix metalloproteinases (MMPs). Moreover, uPA/uPAR initiates inflammatory responses in macrophages and FLS through activation of PI3K/Akt signaling pathways. Furthermore, uPAR plays a dual role in osteoclastogenesis under the presence/absence of growth factors like monocyte-colony stimulating factor (M-CSF). Overall, this review emphasizes the role of uPA/uPAR on various immune cells, signaling pathways and osteoclastogenesis involved in RA pathogenesis.
Collapse
Affiliation(s)
- Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| | - MahaboobKhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India.
| |
Collapse
|
58
|
Hauser B, Harre U. The Role of Autoantibodies in Bone Metabolism and Bone Loss. Calcif Tissue Int 2018; 102:522-532. [PMID: 29204673 DOI: 10.1007/s00223-017-0370-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Many autoimmune diseases are associated with deranged bone metabolism. The resulting localized or systemic bone loss can compromise the quality of life of patients by causing local bone deformities or fragility fractures. There is emerging evidence that antibodies have a direct impact on key players of bone homeostasis, in particular osteoclasts. Clinical and pre-clinical studies provide insight into the function of autoantibodies related to Rheumatoid Arthritis (rheumatoid factor, anti-citrullinated protein antibodies, and anti-carbamylated protein antibodies) and their inflammation-independent interaction with bone cells. Furthermore, we summarize the current knowledge about neutralizing antibodies to the antiresorptive protein osteoprotegerin, which have been described in patients with Coeliac Disease, Rheumatoid Arthritis, and Spondyloarthritis.
Collapse
Affiliation(s)
- Barbara Hauser
- Centre for Genomics and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ulrike Harre
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
59
|
Mo BY, Guo XH, Yang MR, Liu F, Bi X, Liu Y, Fang LK, Luo XQ, Wang J, Bellanti JA, Pan YF, Zheng SG. Long Non-Coding RNA GAPLINC Promotes Tumor-Like Biologic Behaviors of Fibroblast-Like Synoviocytes as MicroRNA Sponging in Rheumatoid Arthritis Patients. Front Immunol 2018; 9:702. [PMID: 29692777 PMCID: PMC5902673 DOI: 10.3389/fimmu.2018.00702] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/22/2018] [Indexed: 01/15/2023] Open
Abstract
Rapidly accumulating evidence has now suggested that the long non-coding RNAs (LncRNAs), a large and diverse class of non-coding transcribed RNA molecules with diverse functional roles and mechanisms, play a major role in the pathogenesis of many human inflammatory diseases. Although some LncRNAs are overexpressed in plasma, T cell, and synovial tissues of patients with rheumatoid arthritis (RA), there is a dearth of knowledge in what role these transcripts play in fibroblast-like synoviocytes (FLSs) of these patients. Here, our studies showed that GAPLINC, a newly identified functional LncRNA in oncology, displayed a greater degree of expression in FLSs from RA than in patients with traumatic injury. GAPLINC suppression in RA-FLS cells revealed significant alterations in cell proliferation, invasion, migration, and proinflammatory cytokines production. Additionally, we performed a preliminary bioinformatics analysis of GAPLINC gene sequence in order to find its target molecules, using miRanda, PITA, RNAhybrid algorithms, Kyoto encyclopedia of genes and genomes, and gene ontology analysis. Since the results predicted that some of microRNAs and mRNA may interact with GAPLINC, we simulated a gene co-action network model based on a competitive endogenous RNA theory. Further verification of this model demonstrated that silencing of GAPLINC increased miR-382-5p and miR-575 expression. The results of this study suggest that GAPLINC may function as a novel microRNAs sponging agent affecting the biological characteristics of RA-FLSs. Additionally, GAPLINC may also promote RA-FLS tumor-like behaviors in a miR-382-5p-dependent and miR-575-dependent manner. Based upon these findings, LncRNA GAPLINC may provide a novel valuable therapeutic target for RA patients.
Collapse
Affiliation(s)
- Bi Yao Mo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xing Hua Guo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Meng Ru Yang
- Department of Internal Medicine, Division of Rheumatology, The Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Liu
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuan Bi
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- Center for Clinic Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Kai Fang
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi Qing Luo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Julie Wang
- Department of Medicine, Division of Rheumatology, Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Yun Feng Pan
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Medicine, Division of Rheumatology, Hershey Medical Center at Penn State University, Hershey, PA, United States
| |
Collapse
|
60
|
Avenoso A, D'Ascola A, Scuruchi M, Mandraffino G, Calatroni A, Saitta A, Campo S, Campo GM. The proteoglycan biglycan mediates inflammatory response by activating TLR-4 in human chondrocytes: Inhibition by specific siRNA and high polymerized Hyaluronan. Arch Biochem Biophys 2018; 640:75-82. [PMID: 29339093 DOI: 10.1016/j.abb.2018.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
Abstract
Cartilage degeneration are hallmarks of wear, tear, mechanical and inflammatory damage of the joint cartilage. Tissue degradation as well as compromising the integrity and function of the organ, produces different intermediates, directly able to stimulate further inflammatory effect, therefore, amplifying the inflammation response. Biglycan is a soluble component of the extracellular matrix that is released during tissue injury. It has been reported that released biglycan is an endogenous ligand for TLR-2/4 in some cell type. We studied the role of biglycan in an experimental model of biglycan-induced inflammatory response in human chondrocytes and the effect of high polymerized HA on reducing its activity. Exposition of chondrocytes to LPS generated cell injury, including high levels of biglycan. Chondrocyte treatment with biglycan produces a high mRNA expression of several detrimental inflammation mediators such as IL-1β, IL-6, MMP-13, and IL-17, as well as NF-kB and TLR-4 activation. Administration of high polymerized HA to chondrocytes exposed to biglycan was able to attenuate the inflammatory response by decreasing the expression of the inflammatory mediators. Involvement of the TLR-4 in the mediation of the biglycan action was confirmed using a specific silent agent (siRNA). Taken together, these data could be used to develop new anti-inflammatory approaches.
Collapse
Affiliation(s)
- Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125 Messina, Italy
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy
| | - Alberto Calatroni
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy
| | - Antonino Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125 Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy.
| |
Collapse
|
61
|
Abstract
The actin cytoskeleton is essential for the biology of osteoclasts, in particular during bone resorption. As key regulators of actin dynamics, the small GTPases of the Rho family are very important in the control of osteoclast activity. The study of Rho GTPase signaling pathways is essential to uncover the mechanisms of bone resorption and can have interesting applications for the treatment of osteolytic diseases. In this chapter, we describe various techniques to obtain primary osteoclasts from murine bone marrow cells, to measure Rho GTPase activation levels, to monitor bone resorption activity of osteoclasts and to introduce the expression of proteins of interest using a retroviral approach. We illustrate the different methods with experimental examples of the effect of Rac1 activation by the exchange factor Dock5 on bone resorption by osteoclasts.
Collapse
Affiliation(s)
- Anne Morel
- CRBM CNRS UMR 5237, Montpellier, France
- Montpellier University, Montpellier, France
| | - Anne Blangy
- CRBM CNRS UMR 5237, Montpellier, France.
- Montpellier University, Montpellier, France.
| | - Virginie Vives
- CRBM CNRS UMR 5237, Montpellier, France
- Montpellier University, Montpellier, France
| |
Collapse
|
62
|
Rheumatoid arthritis: from basic findings and clinical manifestations to future therapies. Semin Immunopathol 2017. [PMID: 28639062 DOI: 10.1007/s00281-017-0635-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|