51
|
Mustapha P, Epalle T, Allegra S, Girardot F, Garraud O, Riffard S. Monitoring of Legionella pneumophila viability after chlorine dioxide treatment using flow cytometry. Res Microbiol 2015; 166:215-9. [DOI: 10.1016/j.resmic.2015.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/20/2015] [Accepted: 01/25/2015] [Indexed: 01/01/2023]
|
52
|
Omiccioli E, Schiavano GF, Ceppetelli V, Amagliani G, Magnani M, Brandi G. Validation according to ISO/TS 12869:2012 of a molecular method for the isolation and quantification of Legionella spp. in water. Mol Cell Probes 2015; 29:86-91. [DOI: 10.1016/j.mcp.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
53
|
Baron JL, Harris JK, Holinger EP, Duda S, Stevens MJ, Robertson CE, Ross KA, Pace NR, Stout JE. Effect of monochloramine treatment on the microbial ecology of Legionella and associated bacterial populations in a hospital hot water system. Syst Appl Microbiol 2015; 38:198-205. [PMID: 25840824 DOI: 10.1016/j.syapm.2015.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 12/22/2022]
Abstract
Opportunistic pathogens, including Legionella spp. and non-tuberculous mycobacteria, can thrive in building hot water systems despite municipal and traditional on-site chlorine disinfection. Monochloramine is a relatively new approach to on-site disinfection, but the microbiological impact of on-site chloramine use has not been well studied. We hypothesized that comparison of the microbial ecology associated with monochloramine treatment versus no on-site treatment would yield highly dissimilar bacterial communities. Hot water samples were collected monthly from 7 locations for three months from two buildings in a Pennsylvania hospital complex supplied with common municipal water: (1) a hospital administrative building (no on-site treatment) and (2) an adjacent acute-care hospital treated on-site with monochloramine to control Legionella spp. Water samples were subjected to DNA extraction, rRNA PCR, and 454 pyrosequencing. Stark differences in the microbiome of the chloraminated water and the control were observed. Bacteria in the treated samples were primarily Sphingomonadales and Limnohabitans, whereas Flexibacter and Planctomycetaceae predominated in untreated control samples. Serendipitously, one sampling month coincided with dysfunction of the on-site disinfection system that resulted in a Legionella bloom detected by sequencing and culture. This study also demonstrates the potential utility of high-throughput DNA sequencing to monitor microbial ecology in water systems.
Collapse
Affiliation(s)
- Julianne L Baron
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA 15261, USA; Special Pathogens Laboratory, Pittsburgh, PA 15219, USA
| | - J Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eric P Holinger
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Scott Duda
- Special Pathogens Laboratory, Pittsburgh, PA 15219, USA
| | - Mark J Stevens
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Charles E Robertson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Kimberly A Ross
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Norman R Pace
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Janet E Stout
- Special Pathogens Laboratory, Pittsburgh, PA 15219, USA; Department of Civil and Environmental Engineering, University of Pittsburgh, Swanson School of Engineering, Pittsburgh, PA 15261, USA.
| |
Collapse
|
54
|
Helmi K, Barthod F, Méheut G, Henry A, Poty F, Laurent F, Charni-Ben-Tabassi N. Methods for microbiological quality assessment in drinking water: a comparative study. JOURNAL OF WATER AND HEALTH 2015; 13:34-41. [PMID: 25719463 DOI: 10.2166/wh.2014.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The present study aimed to compare several methods for quantifying and discriminating between the different physiological states of a bacterial population present in drinking water. Flow cytometry (FCM), solid-phase cytometry (SPC), epifluorescence microscopy (MSP) and culture method performances were assessed by comparing the results obtained for different water samples. These samples, including chlorinated and non-chlorinated water, were collected in a drinking water treatment plant. Total bacteria were quantified by using SYBR Green II (for FCM) and 4',6'-diamino-2-phenylindole (DAPI) (for MSP), viable and non-viable bacteria were distinguished by using SYBR Green II and propidium iodide dual staining (for FCM), and active cells were distinguished by using CTC (for MSP) and Chemchrome V6 (for FCM and SPC). In our conditions, counts using microscopy and FCM were significantly correlated regarding total bacteria and active cells. Conversely, counts were not significantly similar using solid-phase and FCM for active bacteria. Moreover, the R2A medium showed that bacterial culturability could be recovered after chlorination. This study highlights that FCM appears to be a useful and powerful technique for drinking water production monitoring.
Collapse
Affiliation(s)
- K Helmi
- Veolia Environnement Recherche et Innovation, Immeuble le Dufy, 1 Place de Turenne, 94417 St Maurice Cedex, France E-mail:
| | - F Barthod
- Veolia Environnement Recherche et Innovation, Immeuble le Dufy, 1 Place de Turenne, 94417 St Maurice Cedex, France E-mail:
| | - G Méheut
- Veolia Environnement Recherche et Innovation, Immeuble le Dufy, 1 Place de Turenne, 94417 St Maurice Cedex, France E-mail:
| | - A Henry
- Veolia Environnement Recherche et Innovation, Immeuble le Dufy, 1 Place de Turenne, 94417 St Maurice Cedex, France E-mail:
| | - F Poty
- Veolia Environnement Recherche et Innovation, Immeuble le Dufy, 1 Place de Turenne, 94417 St Maurice Cedex, France E-mail:
| | - F Laurent
- Veolia Environnement Recherche et Innovation, Immeuble le Dufy, 1 Place de Turenne, 94417 St Maurice Cedex, France E-mail:
| | - N Charni-Ben-Tabassi
- Veolia Environnement Recherche et Innovation, Immeuble le Dufy, 1 Place de Turenne, 94417 St Maurice Cedex, France E-mail:
| |
Collapse
|
55
|
Sánchez-Busó L, Olmos MP, Camaró ML, Adrián F, Calafat JM, González-Candelas F. Phylogenetic analysis of environmental Legionella pneumophila isolates from an endemic area (Alcoy, Spain). INFECTION GENETICS AND EVOLUTION 2015; 30:45-54. [DOI: 10.1016/j.meegid.2014.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/02/2014] [Accepted: 12/06/2014] [Indexed: 12/20/2022]
|
56
|
Zhang S, Ye C, Lin H, Lv L, Yu X. UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1721-1728. [PMID: 25584685 DOI: 10.1021/es505211e] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The occurrence of a viable but nonculturable (VBNC) state in bacteria may dramatically underestimate the health risks associated with drinking water. Therefore, the potential for UV treatment to induce a VBNC state in Escherichia coli and Pseudomonas aeruginosa was investigated. UV disinfection effectively reduced the culturability of E. coli and P. aeruginosa, with the destruction of nucleic acids demonstrated using gadA long gene fragment qPCR amplification. Following UV radiation, copy numbers for the high transcriptional levels of the 16S rRNA gene varied insignificantly in both strains, confirming results from plate counting assays indicating that VBNC states were induced in both strains. Furthermore, the virulence genes gadA and oprL remained highly expressed, suggesting that the VBNC bacteria still displayed pathogenicity. Propidium monoazide qPCR indicated that cell membranes remained intact even at a UV dose of 300 mJ/cm(2). The RT-qPCR results after UV and chlorine treatments in E. coli were significantly different (8.41 and 5.59 log units, respectively), further confirming the induction of VBNC bacteria induced by UV radiation. Finally, resuscitation was achieved, with E. coli showing greater resuscitation ability than P. aeruginosa. These results systematically revealed the potential health risks of UV disinfection and strongly suggest a combined disinfection strategy.
Collapse
Affiliation(s)
- Shenghua Zhang
- Institute of Urban Environment, Chinese Academy of Science , Xiamen, 361021, P. R. China
| | | | | | | | | |
Collapse
|
57
|
Mercante JW, Winchell JM. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin Microbiol Rev 2015; 28:95-133. [PMID: 25567224 PMCID: PMC4284297 DOI: 10.1128/cmr.00029-14] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Legionnaires' disease (LD) is an often severe and potentially fatal form of bacterial pneumonia caused by an extensive list of Legionella species. These ubiquitous freshwater and soil inhabitants cause human respiratory disease when amplified in man-made water or cooling systems and their aerosols expose a susceptible population. Treatment of sporadic cases and rapid control of LD outbreaks benefit from swift diagnosis in concert with discriminatory bacterial typing for immediate epidemiological responses. Traditional culture and serology were instrumental in describing disease incidence early in its history; currently, diagnosis of LD relies almost solely on the urinary antigen test, which captures only the dominant species and serogroup, Legionella pneumophila serogroup 1 (Lp1). This has created a diagnostic "blind spot" for LD caused by non-Lp1 strains. This review focuses on historic, current, and emerging technologies that hold promise for increasing LD diagnostic efficiency and detection rates as part of a coherent testing regimen. The importance of cooperation between epidemiologists and laboratorians for a rapid outbreak response is also illustrated in field investigations conducted by the CDC with state and local authorities. Finally, challenges facing health care professionals, building managers, and the public health community in combating LD are highlighted, and potential solutions are discussed.
Collapse
Affiliation(s)
- Jeffrey W Mercante
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonas M Winchell
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
58
|
Epalle T, Girardot F, Allegra S, Maurice-Blanc C, Garraud O, Riffard S. Viable but not culturable forms of Legionella pneumophila generated after heat shock treatment are infectious for macrophage-like and alveolar epithelial cells after resuscitation on Acanthamoeba polyphaga. MICROBIAL ECOLOGY 2015; 69:215-224. [PMID: 25074793 DOI: 10.1007/s00248-014-0470-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
Legionella pneumophila, the causative agent of legionellosis is transmitted to human through aerosols from environmental sources and invades lung's macrophages. It also can invade and replicate within various protozoan species in environmental reservoirs. Following exposures to various stresses, L. pneumophila enters a non-replicative viable but non-culturable (VBNC) state. Here, we evaluated whether VBNC forms of three L. pneumophila serogroup 1 strains (Philadelphia GFP 008, clinical 044 and environmental RNN) infect differentiated macrophage-like cell lines (U937 and HL-60), A549 alveolar cells and Acanthamoeba polyphaga. VBNC forms obtained following shocks at temperatures ranging from 50 to 70 °C for 5 to 60 min were quantified using a flow cytometric assay (FCA). Their loss of culturability was checked on BCYE agar medium. VBNC forms were systematically detected upon a 70 °C heat shock for 30 min. When testing their potential to resuscitate upon amoebal infection, VBNC forms obtained after 30 min at 70 °C were re-cultivated except for the clinical strain. No resuscitation or cell lysis was evidenced when using U937, HL-60, or A549 cells despite the use of various contact times and culture media. None of the strains tested could infect A. polyphaga, macrophage-like or alveolar epithelial cells after a 60-min treatment at 70 °C. However, heat-treated VBNC forms were able to infect macrophage-like or alveolar epithelial cells following their resuscitation on A. polyphaga. These results suggest that heat-generated VBNC forms of L. pneumophila (i) are not infectious for macrophage-like or alveolar epithelial cells in vitro although resuscitation is still possible using amoeba, and (ii) may become infectious for human cell lines following a previous interaction with A. polyphaga.
Collapse
Affiliation(s)
- Thibaut Epalle
- Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP), EA 3064, SFR 143, University of Lyon, 42023, Saint-Etienne, France
| | | | | | | | | | | |
Collapse
|
59
|
Whiley H, Keegan A, Fallowfield H, Ross K. Uncertainties associated with assessing the public health risk from Legionella. Front Microbiol 2014; 5:501. [PMID: 25309526 PMCID: PMC4174118 DOI: 10.3389/fmicb.2014.00501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/05/2014] [Indexed: 11/13/2022] Open
Abstract
Legionella is an opportunistic pathogen of public health concern. Current regulatory and management guidelines for the control of this organism are informed by risk assessments. However, there are many unanswered questions and uncertainties regarding Legionella epidemiology, strain infectivity, infectious dose, and detection methods. This review follows the EnHealth Risk Assessment Framework, to examine the current information available regarding Legionella risk and discuss the uncertainties and assumptions. This review can be used as a tool for understanding the uncertainties associated with Legionella risk assessment. It also serves to highlight the areas of Legionella research that require future focus. Improvement of these uncertainties will provide information to enhance risk management practices for Legionella, potentially improving public health protection and reducing the economic costs by streamlining current management practices.
Collapse
Affiliation(s)
- Harriet Whiley
- Health and the Environment, Flinders UniversityAdelaide, SA, Australia
| | | | | | - Kirstin Ross
- Health and the Environment, Flinders UniversityAdelaide, SA, Australia
| |
Collapse
|
60
|
Taylor MJ, Bentham RH, Ross KE. Limitations of Using Propidium Monoazide with qPCR to Discriminate between Live and Dead Legionella in Biofilm Samples. Microbiol Insights 2014; 7:15-24. [PMID: 25288885 PMCID: PMC4167484 DOI: 10.4137/mbi.s17723] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 01/17/2023] Open
Abstract
Accurately quantifying Legionella for regulatory purposes to protect public health is essential. Real-time PCR (qPCR) has been proposed as a better method for detecting and enumerating Legionella in samples than conventional culture method. However, since qPCR amplifies any target DNA in the sample, the technique’s inability to discriminate between live and dead cells means that counts are generally significantly overestimated. Propidium monoazide (PMA) has been used successfully in qPCR to aid live/dead discrimination. We tested PMA use as a method to count only live Legionella cells in samples collected from a modified chemostat that generates environmentally comparable samples. Counts from PMA-treated samples that were pretreated with either heat or three types of disinfectants (to kill the cells) were highly variable, with the only consistent trend being the relationship between biofilm mass and numbers of Legionella cells. Two possibilities explain this result: 1. PMA treatment worked and the subsequent muted response of Legionella to disinfection treatment is a factor of biofilm/microbiological effects; although this does not account for the relationship between the amount of biofilm sampled and the viable Legionella count as determined by PMA-qPCR; or 2. PMA treatment did not work, and any measured decrease or increase in detectable Legionella is because of other factors affecting the method. This is the most likely explanation for our results, suggesting that higher concentrations of PMA might be needed to compensate for the presence of other compounds in an environmental sample or that lower amounts of biofilm need to be sampled. As PMA becomes increasingly toxic at higher concentrations and is very expensive, augmenting the method to include higher PMA concentrations is both counterproductive and cost prohibitive. Conversely, if smaller volumes of biofilm are used, the reproducibility of the method is reduced. Our results suggest that using PMA is not an appropriate method for discriminating between live and dead cells to enumerate Legionella for regulatory purposes.
Collapse
Affiliation(s)
- Michael J Taylor
- Health and Environment, School of the Environment, Flinders University, Adelaide, Australia
| | - Richard H Bentham
- Health and Environment, School of the Environment, Flinders University, Adelaide, Australia
| | - Kirstin E Ross
- Health and Environment, School of the Environment, Flinders University, Adelaide, Australia
| |
Collapse
|
61
|
Detection of Legionella, L. pneumophila and Mycobacterium avium complex (MAC) along potable water distribution pipelines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7393-405. [PMID: 25046636 PMCID: PMC4113883 DOI: 10.3390/ijerph110707393] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/25/2014] [Accepted: 07/10/2014] [Indexed: 12/22/2022]
Abstract
Inhalation of potable water presents a potential route of exposure to opportunistic pathogens and hence warrants significant public health concern. This study used qPCR to detect opportunistic pathogens Legionella spp., L. pneumophila and MAC at multiple points along two potable water distribution pipelines. One used chlorine disinfection and the other chloramine disinfection. Samples were collected four times over the year to provide seasonal variation and the chlorine or chloramine residual was measured during collection. Legionella spp., L. pneumophila and MAC were detected in both distribution systems throughout the year and were all detected at a maximum concentration of 103 copies/mL in the chlorine disinfected system and 106, 103 and 104 copies/mL respectively in the chloramine disinfected system. The concentrations of these opportunistic pathogens were primarily controlled throughout the distribution network through the maintenance of disinfection residuals. At a dead-end and when the disinfection residual was not maintained significant (p < 0.05) increases in concentration were observed when compared to the concentration measured closest to the processing plant in the same pipeline and sampling period. Total coliforms were not present in any water sample collected. This study demonstrates the ability of Legionella spp., L. pneumophila and MAC to survive the potable water disinfection process and highlights the need for greater measures to control these organisms along the distribution pipeline and at point of use.
Collapse
|
62
|
Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 2014; 5:258. [PMID: 24917854 PMCID: PMC4040921 DOI: 10.3389/fmicb.2014.00258] [Citation(s) in RCA: 562] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
Abstract
Many bacterial species have been found to exist in a viable but non-culturable (VBNC) state since its discovery in 1982. VBNC cells are characterized by a loss of culturability on routine agar, which impairs their detection by conventional plate count techniques. This leads to an underestimation of total viable cells in environmental or clinical samples, and thus poses a risk to public health. In this review, we present recent findings on the VBNC state of human bacterial pathogens. The characteristics of VBNC cells, including the similarities and differences to viable, culturable cells and dead cells, and different detection methods are discussed. Exposure to various stresses can induce the VBNC state, and VBNC cells may be resuscitated back to culturable cells under suitable stimuli. The conditions that trigger the induction of the VBNC state and resuscitation from it are summarized and the mechanisms underlying these two processes are discussed. Last but not least, the significance of VBNC cells and their potential influence on human health are also reviewed.
Collapse
Affiliation(s)
- Laam Li
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - Nilmini Mendis
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - Hana Trigui
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - James D Oliver
- Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
63
|
Hines SA, Chappie DJ, Lordo RA, Miller BD, Janke RJ, Lindquist HA, Fox KR, Ernst HS, Taft SC. Assessment of relative potential for Legionella species or surrogates inhalation exposure from common water uses. WATER RESEARCH 2014; 56:203-13. [PMID: 24681377 DOI: 10.1016/j.watres.2014.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/07/2014] [Accepted: 02/03/2014] [Indexed: 05/22/2023]
Abstract
The Legionella species have been identified as important waterborne pathogens in terms of disease morbidity and mortality. Microbial exposure assessment is a tool that can be utilized to assess the potential of Legionella species inhalation exposure from common water uses. The screening-level exposure assessment presented in this paper developed emission factors to model aerosolization, quantitatively assessed inhalation exposures of aerosolized Legionella species or Legionella species surrogates while evaluating two generalized levels of assumed water concentrations, and developed a relative ranking of six common in-home uses of water for potential Legionella species inhalation exposure. Considerable variability in the calculated exposure dose was identified between the six identified exposure pathways, with the doses differing by over five orders of magnitude in each of the evaluated exposure scenarios. The assessment of exposure pathways that have been epidemiologically associated with legionellosis transmission (ultrasonic and cool mist humidifiers) produced higher estimated inhalation exposure doses than pathways where epidemiological evidence of transmission has been less strong (faucet and shower) or absent (toilets and therapy pool). With consideration of the large uncertainties inherent in the exposure assessment process used, a relative ranking of exposure pathways from highest to lowest exposure doses was produced using culture-based measurement data and the assumption of constant water concentration across exposure pathways. In this ranking, the ultrasonic and cool mist humidifier exposure pathways were estimated to produce the highest exposure doses, followed by the shower and faucet exposure pathways, and then the toilet and therapy pool exposure pathways.
Collapse
Affiliation(s)
| | | | | | | | - Robert J Janke
- U.S. Environmental Protection Agency, National Homeland Security Research Center, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - H Alan Lindquist
- U.S. Environmental Protection Agency, National Homeland Security Research Center, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Kim R Fox
- U.S. Environmental Protection Agency, National Homeland Security Research Center, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Hiba S Ernst
- U.S. Environmental Protection Agency, National Homeland Security Research Center, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Sarah C Taft
- U.S. Environmental Protection Agency, National Homeland Security Research Center, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| |
Collapse
|
64
|
Donohue MJ, O'Connell K, Vesper SJ, Mistry JH, King D, Kostich M, Pfaller S. Widespread molecular detection of Legionella pneumophila Serogroup 1 in cold water taps across the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3145-3152. [PMID: 24548208 DOI: 10.1021/es4055115] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the United States, 6,868 cases of legionellosis were reported to the Center for Disease Control and Prevention in 2009-2010. Of these reports, it is estimated that 84% are caused by the microorganism Legionella pneumophila Serogroup (Sg) 1. Legionella spp. have been isolated and recovered from a variety of natural freshwater environments. Human exposure to L. pneumophila Sg1 may occur from aerosolization and subsequent inhalation of household and facility water. In this study, two primer/probe sets (one able to detect L. pneumophila and the other L. pneumophila Sg1) were determined to be highly sensitive and selective for their respective targets. Over 272 water samples, collected in 2009 and 2010 from 68 public and private water taps across the United States, were analyzed using the two qPCR assays to evaluate the incidence of L. pneumophila Sg1. Nearly half of the taps showed the presence of L. pneumophila Sg1 in one sampling event, and 16% of taps were positive in more than one sampling event. This study is the first United States survey to document the occurrence and colonization of L. pneumophila Sg1 in cold water delivered from point of use taps.
Collapse
Affiliation(s)
- Maura J Donohue
- Office of Research and Development, National Exposure Research Laboratory, United States Environmental Protection Agency , 26 West Martin Luther King Drive, Mail Stop 593, Cincinnati, Ohio 45268, United States
| | | | | | | | | | | | | |
Collapse
|
65
|
Goncharuk VV, Roi IY, Klymenko NA, Zdorovenko GM. Characteristic of resistance to compounds of chlorine of water microorganisms according to cultural-morphological indices. J WATER CHEM TECHNO+ 2014. [DOI: 10.3103/s1063455x14010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Abstract
Legionella spp. are the causative agent of Legionnaire's disease and an opportunistic pathogen of significant public health concern. Identification and quantification from environmental sources is crucial for identifying outbreak origins and providing sufficient information for risk assessment and disease prevention. Currently there are a range of methods for Legionella spp. quantification from environmental sources, but the two most widely used and accepted are culture and real-time polymerase chain reaction (qPCR). This paper provides a review of these two methods and outlines their advantages and limitations. Studies from the last 10 years which have concurrently used culture and qPCR to quantify Legionella spp. from environmental sources have been compiled. 26/28 studies detected Legionella at a higher rate using qPCR compared to culture, whilst only one study detected equivalent levels of Legionella spp. using both qPCR and culture. Aggregating the environmental samples from all 28 studies, 2856/3967 (72%) tested positive for the presence of Legionella spp. using qPCR and 1331/3967 (34%) using culture. The lack of correlation between methods highlights the need to develop an acceptable standardized method for quantification that is sufficient for risk assessment and management of this human pathogen.
Collapse
Affiliation(s)
- Harriet Whiley
- a Department of Health and the Environment , Flinders University , Adelaide , Australia
| | - Michael Taylor
- a Department of Health and the Environment , Flinders University , Adelaide , Australia
| |
Collapse
|
67
|
Casini B, Buzzigoli A, Cristina ML, Spagnolo AM, Del Giudice P, Brusaferro S, Poscia A, Moscato U, Valentini P, Baggiani A, Privitera G. Long-term effects of hospital water network disinfection on Legionella and other waterborne bacteria in an Italian university hospital. Infect Control Hosp Epidemiol 2014; 35:293-9. [PMID: 24521596 DOI: 10.1086/675280] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE AND DESIGN Legionella control still remains a critical issue in healthcare settings where the preferred approach to health risk assessment and management is to develop a water safety plan. We report the experience of a university hospital, where a water safety plan has been applied since 2002, and the results obtained with the application of different methods for disinfecting hot water distribution systems in order to provide guidance for the management of water risk. INTERVENTIONS The disinfection procedures included continuous chlorination with chlorine dioxide (0.4-0.6 mg/L in recirculation loops) reinforced by endpoint filtration in critical areas and a water treatment based on monochloramine (2-3 mg/L). Real-time polymerase chain reaction and a new immunoseparation and adenosine triphosphate bioluminescence analysis were applied in environmental monitoring. RESULTS After 9 years, the integrated disinfection-filtration strategy significantly reduced positive sites by 55% and the mean count by 78% (P < .05); however, the high costs and the occurrence of a chlorine-tolerant clone belonging to Legionella pneumophila ST269 prompted us to test a new disinfectant. The shift to monochloramine allowed us to eliminate planktonic Legionella and did not require additional endpoint filtration; however, nontuberculous mycobacteria were isolated more frequently as long as the monochloramine concentration was 2 mg/L; their cultivability was never regained by increasing the concentration up to 3 mg/L. CONCLUSIONS Any disinfection method needs to be adjusted/fine-tuned in individual hospitals in order to maintain satisfactory results over time, and only a locally adapted evidence-based approach allows assessment of the efficacy and disadvantages of the control measures.
Collapse
Affiliation(s)
- Beatrice Casini
- Department of Translational Research, New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Ducret A, Chabalier M, Dukan S. Characterization and resuscitation of 'non-culturable' cells of Legionella pneumophila. BMC Microbiol 2014; 14:3. [PMID: 24383402 PMCID: PMC3882098 DOI: 10.1186/1471-2180-14-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Legionella pneumophila is a waterborne pathogen responsible for Legionnaires' disease, an infection which can lead to potentially fatal pneumonia. After disinfection, L. pneumophila has been detected, like many other bacteria, in a "viable but non culturable" state (VBNC). The physiological significance of the VBNC state is unclear and controversial: it could be an adaptive response favoring long-term survival; or the consequence of cellular deterioration which, despite maintenance of certain features of viable cells, leads to death; or an injured state leading to an artificial loss of culturability during the plating procedure. VBNC cells have been found to be resuscitated by contact with amoebae. RESULTS We used quantitative microscopic analysis, to investigate this "resuscitation" phenomenon in L. pneumophila in a model involving amending solid plating media with ROS scavengers (pyruvate or glutamate), and co-culture with amoebae. Our results suggest that the restoration observed in the presence of pyruvate and glutamate may be mostly due to the capacity of these molecules to help the injured cells to recover after a stress. We report evidence that this extracellular signal leads to a transition from a not-culturable form to a culturable form of L. pneumophila, providing a technique for recovering virulent and previously uncultivated forms of L. pneumophila. CONCLUSION These new media could be used to reduce the risk of underestimation of counts of virulent of L. pneumophila cells in environmental samples.
Collapse
Affiliation(s)
- Adrien Ducret
- Aix Marseille Université, Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée - CNRS, 31, Chemin Joseph Aiguier, 13402 Marseille, France
- Present address: Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405 USA
| | - Maïalène Chabalier
- Aix Marseille Université, Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée - CNRS, 31, Chemin Joseph Aiguier, 13402 Marseille, France
| | - Sam Dukan
- Aix Marseille Université, Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée - CNRS, 31, Chemin Joseph Aiguier, 13402 Marseille, France
| |
Collapse
|
69
|
Kusić D, Kampe B, Rösch P, Popp J. Identification of water pathogens by Raman microspectroscopy. WATER RESEARCH 2014; 48:179-189. [PMID: 24103393 DOI: 10.1016/j.watres.2013.09.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 05/27/2023]
Abstract
Legionella species can be found living in water mostly in a viable but nonculturable state or associated with protozoa and complex biofilm formations. Isolation and afterwards identification of these pathogens from environmental samples by using common identification procedures based on cultivation are extremely difficult and prolonged. The development of fast and sensitive method based on the cultivation free identification of bacteria is necessary. In this study Raman microspectroscopy combined with multiclass support vector machines have been used to discriminate between Legionella and other common aquatic bacteria, to distinguish among clinically relevant Legionella species and to classify unknown Raman spectra for a fast and reliable identification. Recorded Raman spectra of the twenty-two Legionella species as well as the Raman spectra of Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa were utilized to build the classification model. Afterwards, independent Raman spectra of eleven species were used to identify them on the basis of the classification model that was created. The present study shows that Raman microspectroscopy can be used as a rapid and reliable method to distinguish between Legionella species recognized as human pathogens and to identify samples which are unknown to the model based on multiclass support vector machines (MC-SVM).
Collapse
Affiliation(s)
- Dragana Kusić
- Institut für Physikalische Chemie and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | | | | | | |
Collapse
|
70
|
Alleron L, Khemiri A, Koubar M, Lacombe C, Coquet L, Cosette P, Jouenne T, Frere J. VBNC Legionella pneumophila cells are still able to produce virulence proteins. WATER RESEARCH 2013; 47:6606-17. [PMID: 24064547 DOI: 10.1016/j.watres.2013.08.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/24/2013] [Accepted: 08/27/2013] [Indexed: 05/22/2023]
Abstract
Legionella pneumophila is the agent responsible for legionellosis. Numerous bacteria, including L. pneumophila, can enter into a viable but not culturable (VBNC) state under unfavorable environmental conditions. In this state, cells are unable to form colonies on standard medium but are still alive. Here we show that VBNC L. pneumophila cells, obtained by monochloramine treatment, were still able to synthesize proteins, some of which are involved in virulence. Protein synthesis was measured using (35)S-labeling and the proteomes of VBNC and culturable cells then compared. This analysis allowed the identification of nine proteins that were accumulated in the VBNC state. Among them, four were involved in virulence, i.e., the macrophage infectivity potentiator protein, the hypothetical protein lpl2247, the ClpP protease proteolytic subunit and the 27 kDa outer membrane protein. Others, i.e., the enoyl reductase, the electron transfer flavoprotein (alpha and beta subunits), the 50S ribosomal proteins (L1 and L25) are involved in metabolic and energy production pathways. However, resuscitation experiments performed with Acanthamoeba castellanii failed, suggesting that the accumulation of virulence factors by VBNC cells is not sufficient to maintain their virulence.
Collapse
Affiliation(s)
- Laëtitia Alleron
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, B36, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Abdel-Nour M, Duncan C, Low DE, Guyard C. Biofilms: the stronghold of Legionella pneumophila. Int J Mol Sci 2013; 14:21660-75. [PMID: 24185913 PMCID: PMC3856027 DOI: 10.3390/ijms141121660] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/07/2013] [Accepted: 10/14/2013] [Indexed: 11/28/2022] Open
Abstract
Legionellosis is mostly caused by Legionella pneumophila and is defined as a severe respiratory illness with a case fatality rate ranging from 5% to 80%. L. pneumophila is ubiquitous in natural and anthropogenic water systems. L. pneumophila is transmitted by inhalation of contaminated aerosols produced by a variety of devices. While L. pneumophila replicates within environmental protozoa, colonization and persistence in its natural environment are also mediated by biofilm formation and colonization within multispecies microbial communities. There is now evidence that some legionellosis outbreaks are correlated with the presence of biofilms. Thus, preventing biofilm formation appears as one of the strategies to reduce water system contamination. However, we lack information about the chemical and biophysical conditions, as well as the molecular mechanisms that allow the production of biofilms by L. pneumophila. Here, we discuss the molecular basis of biofilm formation by L. pneumophila and the roles of other microbial species in L. pneumophila biofilm colonization. In addition, we discuss the protective roles of biofilms against current L. pneumophila sanitation strategies along with the initial data available on the regulation of L. pneumophila biofilm formation.
Collapse
Affiliation(s)
- Mena Abdel-Nour
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, ON M9P 3T1, Canada; E-Mails: (M.A.-N.); (C.D.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Carla Duncan
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, ON M9P 3T1, Canada; E-Mails: (M.A.-N.); (C.D.)
| | - Donald E. Low
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Cyril Guyard
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, ON M9P 3T1, Canada; E-Mails: (M.A.-N.); (C.D.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-416-880-1339; Fax: +1-416-235-6281
| |
Collapse
|
72
|
Buse HY, Donohue MJ, Ashbolt NJ. Hartmannella vermiformis inhibition of Legionella pneumophila cultivability. MICROBIAL ECOLOGY 2013; 66:715-726. [PMID: 23764733 DOI: 10.1007/s00248-013-0250-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/27/2013] [Indexed: 06/02/2023]
Abstract
Hartmannella vermiformis and Acanthamoeba polyphaga are frequently isolated from drinking water and permissive to Legionella pneumophila parasitization. In this study, extracellular factor(s) produced by H. vermiformis and A. polyphaga were assessed for their effects on cultivability of L. pneumophila. Page's amoeba saline (PAS) was used as an encystment medium for H. vermiformis and A. polyphaga monolayers, and the culture supernatants (HvS and ApS, respectively) were assessed against L. pneumophila growth. Compared to PAS and ApS, HvS significantly inhibited L. pneumophila strain Philadelphia-1 (Ph-1) cultivability by 3 log(10) colony forming unit (CFU) mL(-1) after 3 days of exposure compared to <0.5 log(10) CFU mL(-1) reduction of strain Lp02 (P < 0.001). Flow cytometric analysis revealed changes in the percentage and cultivability of three bacterial subpopulations: intact/slightly damaged membrane (ISM), undefined membrane status (UD), and mixed type (MT). After 3 days of HvS exposure, the MT subpopulation decreased significantly (31.6 vs 67.2 %, respectively, P < 0.001), while the ISM and UD subpopulations increased (+26.7 and +6.9 %, respectively) with the ISM subpopulation appearing as viable but nonculturable (VBNC) cells. HvS was separated into two fractions based on molecular weight, with more than 99 % of the L. pneumophila inhibition arising from the <5 kDa fraction (P < 0.001). Liquid chromatography indicated the inhibitory molecule(s) are likely polar and elute from a Novapak C18 column between 6 and 15 min. These results demonstrate that H. vermiformis is capable of extracellular modulation of L. pneumophila cultivability and probably promote the VBNC state for this bacterium.
Collapse
Affiliation(s)
- Helen Y Buse
- Dynamac c/o US Environmental Protection Agency, 26 W Martin Luther King Dr, Cincinnati, OH, 45268, USA,
| | | | | |
Collapse
|
73
|
Jakubek D, Guillaume C, Binet M, Leblon G, DuBow M, Le Brun M. Susceptibility of Legionella strains to the chlorinated biocide, monochloramine. Microbes Environ 2013; 28:336-45. [PMID: 24005820 PMCID: PMC4070956 DOI: 10.1264/jsme2.me12205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Members of the Legionella genus find suitable conditions for their growth and survival in nuclear power plant cooling circuits. To limit the proliferation of Legionella pathogenic bacteria in nuclear power plant cooling circuits, and ensure that levels remain below regulatory thresholds, monochloramine treatment can be used. Although the treatment is highly effective, i.e. it reduces Legionella numbers by over 99%, Legionella bacteria can still be detected at low concentrations and rapid re-colonisation of circuits can occur after the treatment has ceased. The aim of this study was to develop an in vitro methodology for determining the intrinsic susceptibility of L. pneumophila strains, collected from various nuclear power plant cooling circuits subjected to different treatment conditions. The methodology was developed by using an original approach based on response surface methodology (RSM) combined with a multifactorial experimental design. The susceptibility was evaluated by the Ct factor. The susceptibility of environmental strains varies widely and is, for some strains, greater than that of known tolerant species; however, strain susceptibility was not related to treatment conditions. Selection pressure induced by monochloramine use did not result in the selection of more tolerant Legionella strains and did not explain the detection of Legionella during treatment or the rapid re-colonisation of cooling circuits after disinfection has ceased.
Collapse
|
74
|
Al-Bana BH, Haddad MT, Garduño RA. Stationary phase and mature infectious forms of Legionella pneumophila produce distinct viable but non-culturable cells. Environ Microbiol 2013; 16:382-95. [PMID: 23968544 DOI: 10.1111/1462-2920.12219] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 11/28/2022]
Abstract
Legionella pneumophila is an intracellular bacterial parasite of freshwater protozoa and an accidental waterborne human pathogen. L. pneumophila is highly pleomorphic showing several forms that differentiate within its developmental cycle. In water, L. pneumophila produces viable but non-culturable cells (VBNCCs), which remain largely uncharacterized. We produced VBNCCs from two developmental forms of L. pneumophila [stationary phase forms (SPFs) and mature infectious forms (MIFs)] in two water microcosms [double-deionized (dd) and tap water] at 45°C. In contrast with SPFs, MIFs upheld a robust ultrastructure and high viability in the two water microcosms. In dd-water, MIFs and SPFs lost their culturability faster than in tap water and did not consume their poly-β-hydroxybutyrate inclusions. Resuscitation in Acanthamoeba castellani was only possible for VBNCCs produced from SPFs in tap water. Addition of salts to dd-water prolonged L. pneumophila culturability to tap water levels, suggesting that L. pneumophila requires ions to maintain its readiness to resume growth. VBNCCs resisted detergent lysis and digestion in the ciliate Tetrahymena, except for VBNCCs produced from SPFs in dd-water. L. pneumophila VBNCCs thus show distinct traits according to its originating developmental form and the surrounding water microcosm.
Collapse
Affiliation(s)
- Badii H Al-Bana
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
75
|
Structural and thermodynamic insight into phenylalanine hydroxylase from the human pathogen Legionella pneumophila. FEBS Open Bio 2013; 3:370-8. [PMID: 24251098 PMCID: PMC3821034 DOI: 10.1016/j.fob.2013.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 11/20/2022] Open
Abstract
Phenylalanine hydroxylase from Legionella pneumophila (lpPAH) has a major functional role in the synthesis of the pigment pyomelanin, which is a potential virulence factor. We present here the crystal structure of lpPAH, which is a dimeric enzyme that shows high thermostability, with a midpoint denaturation temperature of 79 °C, and low substrate affinity. The structure revealed a dimerization motif that includes ionic interactions and a hydrophobic core, composed of both β-structure and a C-terminal region, with the specific residues (P255, P256, Y257 and F258) interacting with the same residues from the adjacent subunit within the dimer. This unique dimerization interface, together with a number of aromatic clusters, appears to contribute to the high thermal stability of lpPAH. The crystal structure also explains the increased aggregation of the enzyme in the presence of salt. Moreover, the low affinity for substrate l-Phe could be explained from three consecutive glycine residues (G181, 182, 183) located at the substrate-binding site. This is the first structure of a dimeric bacterial PAH and provides a framework for interpreting the molecular and kinetic properties of lpPAH and for further investigating the regulation of the enzyme. The structure Legionella pneumophila PAH (lpPAH) has been resolved The Tm of lpPAH at 79 °C is explained by structure The unique dimer interface of lpPAH comprises aromatic and ionic interactions Tyr257 seems important for dimerization This is the first structure of a dimeric bacterial PAH
Collapse
|
76
|
Jakubek D, Le Brun M, Leblon G, DuBow M, Binet M. The impact of monochloramine on the diversity and dynamics ofLegionella pneumophilasubpopulations in a nuclear power plant cooling circuit. FEMS Microbiol Ecol 2013; 85:302-12. [DOI: 10.1111/1574-6941.12121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
| | | | - Gerard Leblon
- Institut de Génétique et de Microbiologie; CNRS UMR 8621; Univ Paris-Sud; Orsay Cedex; France
| | - Michael DuBow
- Institut de Génétique et de Microbiologie; CNRS UMR 8621; Univ Paris-Sud; Orsay Cedex; France
| | | |
Collapse
|
77
|
Bedrina B, Macián S, Solís I, Fernández-Lafuente R, Baldrich E, Rodríguez G. Fast immunosensing technique to detect Legionella pneumophila in different natural and anthropogenic environments: comparative and collaborative trials. BMC Microbiol 2013; 13:88. [PMID: 23601924 PMCID: PMC3637370 DOI: 10.1186/1471-2180-13-88] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/16/2013] [Indexed: 12/05/2022] Open
Abstract
Background Legionellosis is an uncommon form of pneumonia. After a clinical encounter, the necessary antibiotic treatment is available if the diagnosis is made early in the illness. Before the clinical encounter, early detection of the main pathogen involved, Legionella pneumophila, in hazardous environments is important in preventing infectious levels of this bacterium. In this study a qualitative test based on combined magnetic immunocapture and enzyme-immunoassay for the fast detection of Legionella pneumophila in water samples was compared with the standard method, in both comparative and collaborative trials. The test was based on the use of anti-Legionella pneumophila antibodies immobilized on magnetic microspheres. The final protocol included concentration by filtration, resuspension and immunomagnetic capture. The whole assay took less than 1 hour to complete. Results A comparative trial was performed against the standard culture method (ISO 11731) on both artificially and naturally contaminated water samples, for two matrices: chlorinated tap water and cooling tower water. Performance characteristics of the test used as screening with culture confirmation resulted in sensitivity, specificity, false positive, false negative, and efficiency of 96.6%, 100%, 0%, 3.4%, and 97.8%, respectively. The detection limit at the level under which the false negative rate increases to 50% (LOD50) was 93 colony forming units (CFU) in the volume examined for both tested matrices. The collaborative trial included twelve laboratories. Water samples spiked with certified reference materials were tested. In this study the coincidence level between the two methods was 95.8%. Conclusion Results demonstrate the applicability of this immunosensing technique to the rapid, simple, and efficient detection of Legionella pneumophila in water samples. This test is not based on microbial growth, so it could be used as a rapid screening technique for the detection of L. pneumophila in waters, maintaining the performance of conventional culture for isolation of the pathogen and related studies.
Collapse
Affiliation(s)
- Begoña Bedrina
- Biótica, Bioquímica Analítica, S.L, Science and Technology Park of Jaume I University, Campus Riu Sec - Espaitec 2, planta baja, E12071, Castellón de la Plana, Spain
| | | | | | | | | | | |
Collapse
|
78
|
Conza L, Casati S, Gaia V. Detection limits of Legionella pneumophila in environmental samples after co-culture with Acanthamoeba polyphaga. BMC Microbiol 2013; 13:49. [PMID: 23442526 PMCID: PMC3598970 DOI: 10.1186/1471-2180-13-49] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/08/2013] [Indexed: 11/16/2022] Open
Abstract
Background The efficiency of recovery and the detection limit of Legionella after co-culture with Acanthamoeba polyphaga are not known and so far no investigations have been carried out to determine the efficiency of the recovery of Legionella spp. by co-culture and compare it with that of conventional culturing methods. This study aimed to assess the detection limits of co-culture compared to culture for Legionella pneumophila in compost and air samples. Compost and air samples were spiked with known concentrations of L. pneumophila. Direct culturing and co-culture with amoebae were used in parallel to isolate L. pneumophila and recovery standard curves for both methods were produced for each sample. Results The co-culture proved to be more sensitive than the reference method, detecting 102-103 L. pneumophila cells in 1 g of spiked compost or 1 m3 of spiked air, as compared to 105-106 cells in 1 g of spiked compost and 1 m3 of spiked air. Conclusions Co-culture with amoebae is a useful, sensitive and reliable technique to enrich L. pneumophila in environmental samples that contain only low amounts of bacterial cells.
Collapse
Affiliation(s)
- Lisa Conza
- Swiss National Reference Centre for Legionella, Cantonal Institute of Microbiology, Via Mirasole 22a, 6500, Bellinzona, Switzerland.
| | | | | |
Collapse
|
79
|
Involvement of minerals in adherence of Legionella pneumophila to surfaces. Curr Microbiol 2013; 66:437-42. [PMID: 23292133 DOI: 10.1007/s00284-012-0295-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/07/2012] [Indexed: 02/05/2023]
Abstract
Legionella pneumophila is the causative agent of 90 % of Legionnaires' disease cases. This bacterium lives naturally in fresh water and can colonize biofilms, which play an important role in the protection of Legionella against environmental stress factors. Relationship between the presence of minerals in water and Legionella adherence to surfaces is not well-known. In this study, we studied influence of minerals on bacterial adherence. For the first time, to our knowledge, this report shows that calcium and magnesium in a less extent, enhances the adherence of Legionella to surfaces compared to the bacteria behavior in distilled water. Treatment with proteinase K of live cells showed that surface proteins do not seem to play a crucial role in bacteria adherence to surfaces. Our results represent a first step in understanding effect of ions on Legionella adherence to surfaces. Such field of research could be helpful to better understand biofilm colonization by this bacterium to improve Legionella risk management in water networks.
Collapse
|
80
|
Ducret A, Dukan S. Single-cell analysis of cell viability after a biocide treatment unveils an absence of positive correlation between two commonly used viability markers. Microbiologyopen 2013; 2:123-9. [PMID: 23281341 PMCID: PMC3584218 DOI: 10.1002/mbo3.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/13/2012] [Accepted: 11/19/2012] [Indexed: 11/07/2022] Open
Abstract
Discrimination among viable/active or dead/inactive cells in a microbial community is a vital question to address issues on ecological microbiology or microbiological quality control. It is commonly assumed that metabolically active cells (ChemchromeV6 [CV6] procedure) correspond to viable cells (direct viable count procedure [DVC]), although this assumption has never been demonstrated and is therefore a matter of debate. Indeed, simultaneous determination of cell viability and metabolic activity has never been performed on the same cells. Here, we developed a microfluidic device to investigate the viability and the metabolic activity of Escherichia coli cells at single-cell level. Cells were immobilized in a flow chamber in which different solutions were sequentially injected according to different scenarios. By using time-lapse microscopy combined with automated tracking procedures, we first successfully assessed the ability of cells to divide and their metabolic activity at single-cell level. Applying these two procedures on the same cells after a hypochlorous acid (HOCl) treatment, we showed that the ability of cells to divide and their metabolic activity were anticorrelated. These results indicate that the relation between CV6 uptake and cell viability may be partially incorrect. Care must be taken in using the terms "CV6-positive" and "viable" synonymously.
Collapse
Affiliation(s)
- Adrien Ducret
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée-Université Aix-Marseille, CNRS UMR7283, 31 Chemin Joseph Aiguier, Marseille, 13009, France
| | | |
Collapse
|
81
|
Farhat M, Moletta-Denat M, Frère J, Onillon S, Trouilhé MC, Robine E. Effects of disinfection on Legionella spp., eukarya, and biofilms in a hot water system. Appl Environ Microbiol 2012; 78:6850-8. [PMID: 22820326 PMCID: PMC3457500 DOI: 10.1128/aem.00831-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/10/2012] [Indexed: 11/20/2022] Open
Abstract
Legionella species are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics of Legionella spp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics of Legionella and eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenic Legionella species remained after the heat shock and chemical treatments (Legionella pneumophila and Legionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebae sp., Vannella sp., and Hartmanella vermiformis) and after the first heat shock treatment, but only H. vermiformis remained. However, another protozoan affiliated with Alveolata, which is known as a host cell for Legionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effective Legionella disinfection may be dependent on the elimination of these important microbial components. We suggest that eradicating Legionella in hot water networks requires better study of bacterial and eukaryal species associated with Legionella in biofilms.
Collapse
Affiliation(s)
- Maha Farhat
- Université Paris-Est, Centre Scientifique et Technique du Bâtiment, Département Energie Santé Environnement, Division Santé, Laboratoire de Recherche et d'Innovation pour l'Hygiène des Bâtiments, Marne-la-Vallée, France.
| | | | | | | | | | | |
Collapse
|
82
|
Sohier D, Jamet E, Le Dizes AS, Dizin M, Pavan S, Postollec F, Coton E. Polyphasic approach for quantitative analysis of obligately heterofermentative Lactobacillus species in cheese. Food Microbiol 2012; 31:271-7. [DOI: 10.1016/j.fm.2012.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 01/05/2012] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
|
83
|
Kirschner A, Rameder A, Schrammel B, Indra A, Farnleitner A, Sommer R. Development of a new CARD-FISH protocol for quantification of Legionella pneumophila and its application in two hospital cooling towers. J Appl Microbiol 2012; 112:1244-56. [DOI: 10.1111/j.1365-2672.2012.05289.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
84
|
Bodet C, Sahr T, Dupuy M, Buchrieser C, Héchard Y. Legionella pneumophila transcriptional response to chlorine treatment. WATER RESEARCH 2012; 46:808-816. [PMID: 22192759 DOI: 10.1016/j.watres.2011.11.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 05/31/2023]
Abstract
Legionella pneumophila is a ubiquitous environmental microorganism found in freshwater that can cause an acute form of pneumonia known as Legionnaires' disease. Despite widespread use of chlorine to ensure drinking water quality and awareness that L. pneumophila may escape these treatments, little is known about its effects on L. pneumophila. The aim of this study was to investigate the L. pneumophila transcriptional response induced by chlorine treatment. Transcriptome analysis, using DNA arrays, showed that a sublethal dose of chlorine induces a differential expression of 391 genes involved in stress response, virulence, general metabolism, information pathways and transport. Many of the stress response genes were significantly upregulated, whereas a significant number of virulence genes were repressed. In particular, exposure of L. pneumophila to chlorine induced the expression of cellular antioxidant proteins, stress proteins and transcriptional regulators. In addition, glutathione S-transferase specific activity was enhanced following chlorine treatment. Our results clearly indicate that chlorine induces expression of proteins involved in cellular defence mechanisms against oxidative stress that might be involved in adaptation or resistance to chlorine treatment.
Collapse
Affiliation(s)
- Charles Bodet
- Laboratoire de Chimie et Microbiologie de l'Eau, UMR 6008, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France.
| | | | | | | | | |
Collapse
|
85
|
Evaluation of propidium monoazide (PMA) treatment directly on membrane filter for the enumeration of viable but non cultivable Legionella by qPCR. J Microbiol Methods 2012; 88:319-21. [DOI: 10.1016/j.mimet.2011.12.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/12/2011] [Accepted: 12/12/2011] [Indexed: 11/24/2022]
|
86
|
Application of EMA-qPCR as a complementary tool for the detection and monitoring of Legionella in different water systems. World J Microbiol Biotechnol 2012; 28:1881-90. [DOI: 10.1007/s11274-011-0986-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 12/17/2011] [Indexed: 11/26/2022]
|
87
|
Falentin H, Henaff N, Le Bivic P, Deutsch SM, Parayre S, Richoux R, Sohier D, Thierry A, Lortal S, Postollec F. Reverse transcription quantitative PCR revealed persistency of thermophilic lactic acid bacteria metabolic activity until the end of the ripening of Emmental cheese. Food Microbiol 2011; 29:132-40. [PMID: 22029927 DOI: 10.1016/j.fm.2011.09.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 11/16/2022]
Abstract
For Emmental manufacture two kinds of adjunct culture are added: (i) thermophilic lactic acid bacteria (starters) such as Lactobacillus helveticus (LH), and Streptococcus thermophilus (ST) growing the first day of the manufacture and (ii) ripening culture. ST and LH have a key role in curd acidification and proteolysis at the beginning of the manufacture but are considered to be lyzed for a great part of them at the ripening step. The aim of this work was to assess the metabolic activity of these bacteria throughout manufacture and ripening. During Emmental cheesemaking, LH and ST were subjected to i) population quantification by numerations and by quantitative PCR (qPCR) ii) reverse transcription (RT) Temporal Temperature Gel Electrophoresis (TTGE) iii) transcript quantification by RT-qPCR targeting 16S rRNA, tuf and groL mRNAs to evaluate bacterial metabolic activity. During ripening, ST and LH numerations showed a 2.5 log(10) loss of culturability whereas qPCR on pelleted cells revealed only one log(10) of decrease for both of these species. 10(9) ST and 10(8) LH cells/g of cheese still remained. They contained a stable number of 16S transcript and at least 10(6) copies of mRNAs per 10(9) cells until the end of ripening. These results prove the unexpected persistency of thermophilic lactic acid bacteria starters (ST and LH) metabolic activity until the end of ripening and open new perspectives in term of their involvement in the quality of cheeses during ripening.
Collapse
Affiliation(s)
- Hélène Falentin
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, F-35000, Rennes, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Touron-Bodilis A, Pougnard C, Frenkiel-Lebossé H, Hallier-Soulier S. Usefulness of real-time PCR as a complementary tool to the monitoring of Legionella spp. and Legionella pneumophila by culture in industrial cooling systems. J Appl Microbiol 2011; 111:499-510. [PMID: 21624019 DOI: 10.1111/j.1365-2672.2011.05063.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS This study was designed to evaluate the usefulness of quantification by real-time PCR as a management tool to monitor concentrations of Legionella spp. and Legionella pneumophila in industrial cooling systems and its ability to anticipate culture trends by the French standard method (AFNOR T90-431). METHODS AND RESULTS Quantifications of Legionella bacteria were achieved by both methods on samples from nine cooling systems with different water qualities. Proportion of positive samples for L. pneumophila quantified by PCR was clearly lower in deionized or river waters submitted to a biocide treatment than in raw river waters, while positive samples for Legionella spp. were quantified for almost all the samples. For some samples containing PCR inhibitors, high quantification limits (up to 4·80 × 10(5) GU l(-1) ) did not allow us to quantify L. pneumophila, when they were quantified by culture. Finally, the monitoring of concentrations of L. pneumophila by both methods showed similar trends for 57-100% of the samples. CONCLUSIONS These results suggest that, if some methodological steps designed to reduce inhibitory problems and thus decrease the quantification limits, could be developed to quantify Legionella in complex waters, the real-time PCR could be a valuable complementary tool to monitor the evolution of L. pneumophila concentrations. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows the possibility of using real-time PCR to monitor L. pneumophila proliferations in cooling systems and the importance to adapt nucleic acid extraction and purification protocols to raw waters.
Collapse
Affiliation(s)
- A Touron-Bodilis
- EDF Research and Development, Laboratoire National d'Hydraulique et d'Environnement, Chatou Cedex, France.
| | | | | | | |
Collapse
|
89
|
Cellular response of the amoeba Acanthamoeba castellanii to chlorine, chlorine dioxide, and monochloramine treatments. Appl Environ Microbiol 2011; 77:4974-80. [PMID: 21602398 DOI: 10.1128/aem.00234-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii.
Collapse
|
90
|
Lee JV, Lai S, Exner M, Lenz J, Gaia V, Casati S, Hartemann P, Lück C, Pangon B, Ricci ML, Scaturro M, Fontana S, Sabria M, Sánchez I, Assaf S, Surman-Lee S. An international trial of quantitative PCR for monitoring Legionella in artificial water systems. J Appl Microbiol 2011; 110:1032-44. [PMID: 21276147 PMCID: PMC3564408 DOI: 10.1111/j.1365-2672.2011.04957.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/11/2011] [Accepted: 01/21/2011] [Indexed: 11/29/2022]
Abstract
AIMS To perform an international trial to derive alert and action levels for the use of quantitative PCR (qPCR) in the monitoring of Legionella to determine the effectiveness of control measures against legionellae. METHODS AND RESULTS Laboratories (7) participated from six countries. Legionellae were determined by culture and qPCR methods with comparable detection limits. Systems were monitored over ≥10 weeks. For cooling towers (232 samples), there was a significant difference between the log mean difference between qPCR (GU l(-1) ) and culture (CFU l(-1) ) for Legionella pneumophila (0·71) and for Legionella spp. (2·03). In hot and cold water (506 samples), the differences were less, 0·62 for Leg. pneumophila and 1·05 for Legionella spp. Results for individual systems depended on the nature of the system and its treatment. In cooling towers, Legionella spp. GU l(-1) always exceeded CFU l(-1) , and usually Legionella spp. were detected by qPCR when absent by culture. The pattern of results by qPCR for Leg. pneumophila followed the culture trend. In hot and cold water, culture and qPCR gave similar results, particularly for Leg. pneumophila. There were some marked exceptions with temperatures ≥50°C, or in the presence of supplementary biocides. Action and alert levels for qPCR were derived that gave results comparable to the application of the European Guidelines based on culture. Algorithms are proposed for the use of qPCR for routine monitoring. CONCLUSIONS Action and alert levels for qPCR can be adjusted to ensure public health is protected with the benefit that remedial actions can be validated earlier with only a small increase in the frequency of action being required. SIGNIFICANCE AND IMPACT OF THE STUDY This study confirms it is possible to derive guidelines on the use of qPCR for monitoring the control of legionellae with consequent improvement to response and public health protection.
Collapse
Affiliation(s)
- J V Lee
- Health Protection Agency, London, UK Institute for Hygiene and Public Health, Universität Bonn, Bonn, Germany Istituto Cantonale di Microbiologia, Bellinzona, Switzerland CHU Nancy, Nancy, France Institute of Medical Microbiology and Hygiene, University of Technology, Dresden, Germany Unité de Microbiologie-Hygiène, CH Versailles, Versailles, France Istituto Superiore di Sanità, Roma, Italy Autonomous University of Barcelona, Barcelona, Spain Pall GeneSystems, Bruz, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Pécastaings S, Bergé M, Dubourg KM, Roques C. Sessile Legionella pneumophila is able to grow on surfaces and generate structured monospecies biofilms. BIOFOULING 2010; 26:809-819. [PMID: 20835931 DOI: 10.1080/08927014.2010.520159] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Currently, models for studying Legionella pneumophila biofilm formation rely on multi-species biofilms with low reproducibility or on growth in rich medium, where planktonic growth is unavoidable. The present study describes a new medium adapted to the growth of L. pneumophila monospecies biofilms in vitro. A microplate model was used to test several media. After incubation for 6 days in a specific biofilm broth not supporting planktonic growth, biofilms consisted of 5.36 ± 0.40 log (cfu cm(-2)) or 5.34 ± 0.33 log (gu cm(-2)). The adhered population remained stable for up to 3 weeks after initial inoculation. In situ confocal microscope observations revealed a typical biofilm structure, comprising cell clusters ranging up to approximately 300 μm in height. This model is adapted to growing monospecies L. pneumophila biofilms that are structurally different from biofilms formed in a rich medium. High reproducibility and the absence of other microbial species make this model useful for studying genes involved in biofilm formation.
Collapse
Affiliation(s)
- S Pécastaings
- LU 49, Adhesion bacterienne et formation de biofilms, UPS, Universite de Toulouse, Toulouse, France.
| | | | | | | |
Collapse
|
92
|
Thomas V, McDonnell G, Denyer SP, Maillard JY. Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev 2010; 34:231-59. [DOI: 10.1111/j.1574-6976.2009.00190.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
93
|
Wang Y, Claeys L, van der Ha D, Verstraete W, Boon N. Effects of chemically and electrochemically dosed chlorine on Escherichia coli and Legionella beliardensis assessed by flow cytometry. Appl Microbiol Biotechnol 2010; 87:331-41. [DOI: 10.1007/s00253-010-2526-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 11/29/2022]
|
94
|
Chen N, Chang C. Rapid quantification of viable legionellae in water and biofilm using ethidium monoazide coupled with real‐time quantitative PCR. J Appl Microbiol 2010; 109:623-634. [DOI: 10.1111/j.1365-2672.2010.04678.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N.‐T. Chen
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - C.‐W. Chang
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Center for Research on Environmental and Occupational Health, National Taiwan University, Taipei, Taiwan
- Research Center for Genes, Environment and Human Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
95
|
Farhat M, Trouilhé MC, Briand E, Moletta-Denat M, Robine E, Frère J. Development of a pilot-scale 1 for Legionella elimination in biofilm in hot water network: heat shock treatment evaluation. J Appl Microbiol 2009; 108:1073-1082. [PMID: 19796094 DOI: 10.1111/j.1365-2672.2009.04541.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS (i) To develop an analytical tool in order to evaluate the effectiveness of anti-Legionella treatment in biofilm and (ii) study the fate of Legionella populations in water and biofilm after applying a heat shock treatment. METHODS AND RESULTS A pilot-scale unit simulating a hot water system was built and designed by the Scientific and Technical Building Centre (CSTB, France). At the end of the contamination period, a stable cultivable Legionella spp. concentration of 5x10(5) CFU l(-1) was obtained. Two heat shock treatments (70 degrees C for 30 min) were applied. The results showed that the first treatment had a transitional effect on the abatement of Legionella concentrations, while the second treatment had no detectable effect on Legionella populations in water and biofilm. The DAPI (4',6'-diamidino-2-phenylindole), Legionella PCR and GVPC (glycocolle vancomycin pyrophosphate cycloheximide) counts measured in the dead leg water of the Test Loop were 1, 2 and 2 log units higher than results found in the Test Loop water. Moreover, Legionella spp. count in tap water was about 10(4) GU l(-1). These analyses revealed that they are responsible for the rapid recolonization as well as the uncomplete destroyed biofilm. In addition, a resistance test was conducted and showed that Legionella in the second heat shock treatment was not thermo-resistant but thermo-acclimated. CONCLUSION Thermal disinfection does not seem to be efficient enough to eliminate Legionella when it is used as a curative treatment. SIGNIFICANCE AND IMPACT OF THE STUDY This work could help water managers for a better management of water network and for a better control of Legionella.
Collapse
Affiliation(s)
- M Farhat
- Centre Scientifique et Technique du Bâtiment, Marne-la-Vallée cedex 02, France., Laboratoire de Chimie et de Microbiologie de l'Eau, Université de Poitiers, Poitiers, France
| | - M-C Trouilhé
- Centre Scientifique et Technique du Bâtiment, Marne-la-Vallée cedex 02, France
| | - E Briand
- Direction Générale de la santé, Bureau EA2 - Environnements intérieurs, milieux de travail et accidents de la vie courante, Paris, France
| | - M Moletta-Denat
- Centre Scientifique et Technique du Bâtiment, Marne-la-Vallée cedex 02, France
| | - E Robine
- Centre Scientifique et Technique du Bâtiment, Marne-la-Vallée cedex 02, France
| | - J Frère
- Laboratoire de Chimie et de Microbiologie de l'Eau, Université de Poitiers, Poitiers, France
| |
Collapse
|