51
|
De Pablo-Fernández E, Warner TT. Hypothalamic α-synuclein and its relation to autonomic symptoms and neuroendocrine abnormalities in Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:223-233. [PMID: 34266594 DOI: 10.1016/b978-0-12-819973-2.00015-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder presenting with defining motor features and a variable combination of nonmotor symptoms. There is growing evidence suggesting that hypothalamic involvement in PD may contribute to the pathogenesis of nonmotor symptoms. Initial neuropathologic studies demonstrated histologic involvement of hypothalamic nuclei by Lewy pathology, i.e., neuronal aggregates including Lewy bodies (round eosinophilic inclusions with a halo found in the neuronal perikarya) and other inclusions in neuronal processes such as Lewy neurites. Recent studies using more sensitive immunohistochemistry have shown that synuclein deposition is common in all hypothalamic nuclei and can happen at preclinical stages of the disease. Several neuropathologic changes, including synuclein deposition, neuronal loss, and adaptative morphologic changes, have been described in neurochemically defined specific hypothalamic cell populations with a potential role in the pathogenesis of nonmotor symptoms such as autonomic dysfunction, blood pressure control, circadian rhythms, sleep, and body weight regulation. The clinical implications of these hypothalamic neuropathologic changes are not fully understood and a direct clinical correlation may be challenging due to the multifactorial pathogenesis of the symptomatology and the additional involvement of other peripheral regulatory mechanisms. Future neuropathologic research using histological and functional assessments should establish the potential role of hypothalamic dysfunction on clinical burden, symptomatic therapies, and disease biomarkers in PD.
Collapse
Affiliation(s)
- Eduardo De Pablo-Fernández
- Reta Lila Weston Institute and Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Movement and Clinical Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Reta Lila Weston Institute and Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Movement and Clinical Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
52
|
Goldstein DS. The "Sick-but-not-Dead" Phenomenon Applied to Catecholamine Deficiency in Neurodegenerative Diseases. Semin Neurol 2020; 40:502-514. [PMID: 32906170 PMCID: PMC10680399 DOI: 10.1055/s-0040-1713874] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The catecholamines dopamine and norepinephrine are key central neurotransmitters that participate in many neurobehavioral processes and disease states. Norepinephrine is also the main neurotransmitter mediating regulation of the circulation by the sympathetic nervous system. Several neurodegenerative disorders feature catecholamine deficiency. The most common is Parkinson's disease (PD), in which putamen dopamine content is drastically reduced. PD also entails severely decreased myocardial norepinephrine content, a feature that characterizes two other Lewy body diseases-pure autonomic failure and dementia with Lewy bodies. It is widely presumed that tissue catecholamine depletion in these conditions results directly from loss of catecholaminergic neurons; however, as highlighted in this review, there are also important functional abnormalities in extant residual catecholaminergic neurons. We refer to this as the "sick-but-not-dead" phenomenon. The malfunctions include diminished dopamine biosynthesis via tyrosine hydroxylase (TH) and L-aromatic-amino-acid decarboxylase (LAAAD), inefficient vesicular sequestration of cytoplasmic catecholamines, and attenuated neuronal reuptake via cell membrane catecholamine transporters. A unifying explanation for catecholaminergic neurodegeneration is autotoxicity exerted by 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate intermediate in cytoplasmic dopamine metabolism. In PD, putamen DOPAL is built up with respect to dopamine, associated with a vesicular storage defect and decreased aldehyde dehydrogenase activity. Probably via spontaneous oxidation, DOPAL potently oligomerizes and forms quinone-protein adducts with ("quinonizes") α-synuclein (AS), a major constituent in Lewy bodies, and DOPAL-induced AS oligomers impede vesicular storage. DOPAL also quinonizes numerous intracellular proteins and inhibits enzymatic activities of TH and LAAAD. Treatments targeting DOPAL formation and oxidation therefore might rescue sick-but-not-dead catecholaminergic neurons in Lewy body diseases.
Collapse
Affiliation(s)
- David S. Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
53
|
Jia L, Liu Y, Wang W, Wang Y, Liu H, Liu F, Chen R, Dawson VL, Dawson TM, Lu F, Liu L, Wang Y, Mao X. Molecular Mediation of Prion-like α-Synuclein Fibrillation from Toxic PFFs to Nontoxic Species. ACS APPLIED BIO MATERIALS 2020; 3:6096-6102. [PMID: 35021742 DOI: 10.1021/acsabm.0c00684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Braak's theory described Parkinson's disease (PD) progression as prion-like α-synuclein (αSyn) spreading, which fundamentally subverts the understanding of pathogenesis. The pathological αSyn spreading pathway includes uptake, propagation, and release. However, the previous disease models were limitedly focusing on amyloid propagation/aggregation, which significantly impedes the mechanism exploration in spreading pathways and related therapeutic development. The spreading model can be achieved using recombinant αSyn preformed fibrils (PFFs), which seeds endogenous αSyn monomer to aggregation and causes substantial pathology and neurotoxicity. Here, we determined that dihydromyricetin (DHM), a natural flavonoid extracted from Ampelopsis grossedentata, can promote the fibrillization of prion-like PFF and induce propagation to form a distinct strain. Furthermore, administration of DHM significantly reduced prion-like PFF-induced propagation and neurotoxicity. The discovery of inducing infectious and neurotoxic PFF to a nontoxic strain resulting in neuron protection via promoting the fibrillization of PFF rather than inhibiting advances the understanding of the prion-like spreading mechanism and helps in developing treatments against PD and related α-synucleinopathies.
Collapse
Affiliation(s)
- Longgang Jia
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuqing Liu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Wenliang Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Ying Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haiqing Liu
- Department of Physiology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhejiang 212013, China
| | - Yanping Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
54
|
Wakabayashi K. Where and how alpha-synuclein pathology spreads in Parkinson's disease. Neuropathology 2020; 40:415-425. [PMID: 32750743 DOI: 10.1111/neup.12691] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
In Parkinson's disease (PD), neuronal alpha-synuclein aggregates are distributed throughout the nervous system, including the brain, spinal cord, sympathetic ganglia, submandibular gland, enteric nervous system, cardiac and pelvic plexuses, adrenal medulla, and skin. Thus, PD is a progressive multiorgan disease clinically associated with various motor and nonmotor symptoms. The earliest PD-related lesions appear to develop in the olfactory bulb, dorsal vagal nucleus, and possibly also the peripheral autonomic nervous system. The brain is closely connected with the enteric nervous system via axons of the efferent fibers of the dorsal nucleus of vagal nerve. Anatomical connections also exist between the olfactory bulb and brainstem. Accumulating evidence from experimental studies indicates that transneuronal propagation of misfolded alpha-synuclein is involved in the progression of PD. However, it cannot be ruled out that alpha-synuclein pathology in PD is multicentric in origin. Based on pathological findings from studies on human materials, the present review will update the progression pattern of alpha-synuclein pathology in PD.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
55
|
Candelise N, Baiardi S, Franceschini A, Rossi M, Parchi P. Towards an improved early diagnosis of neurodegenerative diseases: the emerging role of in vitro conversion assays for protein amyloids. Acta Neuropathol Commun 2020; 8:117. [PMID: 32711575 PMCID: PMC7382043 DOI: 10.1186/s40478-020-00990-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue accumulation of abnormal aggregates of amyloidogenic proteins such as prion protein, α-synuclein, and tau represents the hallmark of most common neurodegenerative disorders and precedes the onset of symptoms by years. As a consequence, the sensitive and specific detection of abnormal forms of these proteins in patients' accessible tissues or fluids as biomarkers may have a significant impact on the clinical diagnosis of these disorders. By exploiting seeded polymerization propagation mechanisms to obtain cell-free reactions that allow highly amplified detection of these amyloid proteins, novel emerging in vitro techniques, such as the real-time quaking-induced conversion assay (RT-QuIC) have paved the way towards this important goal. Given its high accuracy in identifying misfolded forms of prion protein from Creutzfeldt-Jakob disease (CJD) CSF, RT-QuIC has already been included in the diagnostic criteria for the clinical diagnosis of sporadic CJD, the most common human prion disease. By showing that this assay may also accurately discriminate between Lewy body disorders and other forms of parkinsonisms or dementias, more recent studies strongly suggested that CSF RT-QuIC can also be successfully applied to synucleinopathies. Finally, preliminary encouraging data also suggested that CSF RT-QuIC might also work for tau protein, and accurately distinguish between 3R- and 4R tauopathies, including Pick's disease, progressive supranuclear palsy, and corticobasal degeneration. Here we will review the state of the art of cell-free aggregation assays, their current diagnostic value and putative limitations, and the future perspectives for their expanded use in clinical practice.
Collapse
Affiliation(s)
- Niccolò Candelise
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Simone Baiardi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessia Franceschini
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| |
Collapse
|
56
|
Mazzetti S, Basellini MJ, Ferri V, Cassani E, Cereda E, Paolini M, Calogero AM, Bolliri C, De Leonardis M, Sacilotto G, Cilia R, Cappelletti G, Pezzoli G. α-Synuclein oligomers in skin biopsy of idiopathic and monozygotic twin patients with Parkinson's disease. Brain 2020; 143:920-931. [PMID: 32025699 PMCID: PMC7089656 DOI: 10.1093/brain/awaa008] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
A variety of cellular processes, including vesicle clustering in the presynaptic compartment, are impaired in Parkinson’s disease and have been closely associated with α-synuclein oligomerization. Emerging evidence proves the existence of α-synuclein-related pathology in the peripheral nervous system, even though the presence of α-synuclein oligomers in situ in living patients remains poorly investigated. In this case-control study, we show previously undetected α-synuclein oligomers within synaptic terminals of autonomic fibres in skin biopsies by means of the proximity ligation assay and propose a procedure for their quantification (proximity ligation assay score). Our study revealed a significant increase in α-synuclein oligomers in consecutive patients with Parkinson’s disease compared to consecutive healthy controls (P < 0.001). Proximity ligation assay score (threshold value > 96 using receiver operating characteristic) was found to have good sensitivity, specificity and positive predictive value (82%, 86% and 89%, respectively). Furthermore, to disclose the role of putative genetic predisposition in Parkinson’s disease aetiology, we evaluated the differential accumulation of oligomers in a unique cohort of 19 monozygotic twins discordant for Parkinson’s disease. The significant difference between patients and healthy subjects was confirmed in twins. Intriguingly, although no difference in median values was detected between consecutive healthy controls and healthy twins, the prevalence of healthy subjects positive for proximity ligation assay score was significantly greater in twins than in the consecutive cohort (47% versus 14%, P = 0.019). This suggests that genetic predisposition is important, but not sufficient, in the aetiology of the disease and strengthens the contribution of environmental factors. In conclusion, our data provide evidence that α-synuclein oligomers accumulate within synaptic terminals of autonomic fibres of the skin in Parkinson’s disease for the first time. This finding endorses the hypothesis that α-synuclein oligomers could be used as a reliable diagnostic biomarker for Parkinson’s disease. It also offers novel insights into the physiological and pathological roles of α-synuclein in the peripheral nervous system.
Collapse
Affiliation(s)
- Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Milo J Basellini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Valentina Ferri
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy.,Parkinson Institute, ASST 'Gaetano Pini-CTO', Milan, Italy
| | - Erica Cassani
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy.,Parkinson Institute, ASST 'Gaetano Pini-CTO', Milan, Italy
| | - Emanuele Cereda
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matilde Paolini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandra M Calogero
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Carlotta Bolliri
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy.,Parkinson Institute, ASST 'Gaetano Pini-CTO', Milan, Italy
| | - Mara De Leonardis
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | - Roberto Cilia
- Parkinson Institute, ASST 'Gaetano Pini-CTO', Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy.,Parkinson Institute, ASST 'Gaetano Pini-CTO', Milan, Italy
| |
Collapse
|
57
|
Driver-Dunckley ED, Zhang N, Adler CH, Serrano GE, Sue LI, Shill HA, Mehta SH, Belden CM, Zamrini EY, Davis K, Beach TG. Brain Lewy-Type Synucleinopathy Density Is Associated with a Lower Prevalence of Atherosclerotic Cardiovascular Disease Risk Factors in Patients with Parkinson's Disease1. JOURNAL OF PARKINSONS DISEASE 2020; 9:543-552. [PMID: 31282425 DOI: 10.3233/jpd-191610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Some epidemiology studies suggest that atherosclerotic cardiovascular disease (ASCVD) risk factors increase the risk of developing Parkinson's disease (PD). However, conflicting data suggest lower rates of ASCVD in PD. OBJECTIVE The objective of this study is to determine, with data from a longitudinal clinicopathological study, whether ASCVD risk factors are associated with a PD diagnosis and/or increased brain or peripheral load of Lewy-type synucleinopathy (LTS). METHODS All subjects were followed to autopsy and neuropathological examination in the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). Multivariable regression models, including age, gender, and smoking history, were used to investigate the association of a PD diagnosis or brain or submandibular gland LTS load with ASCVD risk factors. RESULTS 150 subjects were included (PD n = 60, controls n = 90). Univariable comparisons and regression models showed a general trend to inverse associations. The multivariable odds ratio (OR) of brain LTS load for carotid artery disease was 0.93 (95% CI: 0.86 to 0.98; p = 0.02), for anticoagulant use 0.95 (95% CI: 0.90 to 0.99; p = 0.04) and for abnormal heart weight 0.96 (95% CI: 0.92 to 0.99; p = 0.01). Composite clinical and overall (clinical + pathology composite risk scores) composite risk scores were also significantly lower in the PD subjects (p = 0.0164 and 0.0187, respectively). Submandibular gland LTS load was not significantly related to ASCVD conditions. CONCLUSIONS This study shows associations of higher brain LTS with lower prevalence of both clinical and pathological indices of ASCVD in PD subjects versus age-similar controls. We suggest that this is due to α-synuclein pathology-induced sympathetic denervation in PD.
Collapse
Affiliation(s)
| | - Nan Zhang
- Section of Biostatistics, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Lucia I Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | | - Christine M Belden
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Edward Y Zamrini
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Kathryn Davis
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| |
Collapse
|
58
|
Abstract
BACKGROUND Gastrointestinal (GI) symptoms are common in Parkinson disease (PD), often preceding neurological manifestations; however, early diagnostic utility of GI biopsies remains controversial. Studies suggest aberrant deposition of alpha-synuclein (α-syn) follows step-wise progression in central nervous system though histologic interpretation of normal and aberrant staining patterns have shown variable results. This study examines whether GI α-syn mRNA expression combined with standard α-syn immunohistochemical staining enhance the role of GI biopsy in PD. MATERIALS AND METHODS Four groups were examined, including pediatric (21) and adult control patients (18), PD clinic patients (17), and pathologically confirmed PD cases from hospital archives (16). Enteric nervous system α-syn staining was evaluated by immunohistochemistry in 33 PD and 39 controls. α-Syn mRNA levels were compared between patient groups using quantitative polymerase chain reaction and stomach and colon levels in PD. RESULTS PD patients had Lewy bodies (LB) and diffuse neuronal α-syn staining. GI tissues from elderly controls, children, and young adults exhibited diffuse positivity. LB were limited to PD. Myenteric plexus immunoreactivity varied in different regions. Widespread staining was noted within stomach and colon. Immunoreactivity was present within esophagus, appendix, and small bowel. α-Syn mRNA expression was highest in PD; however, levels varied between proximal and distal GI tract. CONCLUSIONS α-Syn is normally present within young and elderly enteric nervous system; furthermore, while α-syn mRNA is always detectable, levels are highest and most variable in PD. This suggests that enteric α-syn may be altered in neurodegenerative disease. The presence of LB in the GI tract, not solely α-syn expression, may prove useful, distinguishing neurodegenerative disease patients from normal controls.
Collapse
|
59
|
Salcedo‐Arellano MJ, Wolf‐Ochoa MW, Hong T, Amina S, Tassone F, Lechpammer M, Hagerman R, Martínez‐Cerdeño V. Parkinsonism Versus Concomitant Parkinson's Disease in Fragile X-Associated Tremor/Ataxia Syndrome. Mov Disord Clin Pract 2020; 7:413-418. [PMID: 32373658 PMCID: PMC7197312 DOI: 10.1002/mdc3.12942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/10/2020] [Accepted: 03/09/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder associated with premutation alleles (55-200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene. FXTAS is characterized by the presence of ubiquitin-positive inclusions in neurons and astrocytes and by cerebellar tremor and ataxia. Parkinsonism has been reported in FXTAS, but most patients lack the characteristic rest tremor and severe rigidity seen in idiopathic Parkinson's disease (PD). OBJECTIVE To describe the frequency of concomitant PD in FXTAS. METHODS We reviewed the medical record of 40 deceased patients diagnosed with FXTAS and performed a pathology analysis to confirm both FXTAS and PD. RESULTS Clinical histories indicated that 5 FXTAS patients were diagnosed with idiopathic PD and 2 with atypical parkinsonian syndrome. After pathological examination, we found that 7 patients in the PD clinical diagnosis group had dopaminergic neuronal loss; however, only 2 of 7 presented Lewy bodies (LBs) in the substantia nigra. Therefore, a total of 5% of the 40 cohort patients met the pathologic criteria for the concomitant diagnosis of FXTAS and PD. In addition, 2 patients not clinically diagnosed with PD also had nigral neuronal loss with LBs in substantia nigra. In total 10% of these 40 patients had LBs. CONCLUSION This report expands our understanding of clinical symptoms and unusual presentations in patients with FXTAS and the concept that the parkinsonism found in FXTAS is sometimes indistinguishable from PD. We propose that FMR1 should be recognized as one of the exceptional genetic causes of parkinsonism with presynaptic dopaminergic loss and LBs.
Collapse
Affiliation(s)
- María Jimena Salcedo‐Arellano
- Department of PediatricsUniversity of CaliforniaDavis, School of Medicine, SacramentoCaliforniaUSA
- Medical Investigation of Neurodevelopmental Disorders Institute (MIND)University of CaliforniaDavis, SacramentoCaliforniaUSA
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern CaliforniaSacramentoCaliforniaUSA
- Department of Pathology and Laboratory MedicineUniversity of California, Davis, School of MedicineSacramentoCaliforniaUSA
| | - Marisol Wendy Wolf‐Ochoa
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern CaliforniaSacramentoCaliforniaUSA
- Department of Pathology and Laboratory MedicineUniversity of California, Davis, School of MedicineSacramentoCaliforniaUSA
| | - Tiffany Hong
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern CaliforniaSacramentoCaliforniaUSA
- Department of Pathology and Laboratory MedicineUniversity of California, Davis, School of MedicineSacramentoCaliforniaUSA
| | - Sarwat Amina
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern CaliforniaSacramentoCaliforniaUSA
- Department of Pathology and Laboratory MedicineUniversity of California, Davis, School of MedicineSacramentoCaliforniaUSA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders Institute (MIND)University of CaliforniaDavis, SacramentoCaliforniaUSA
- Department of Biochemistry and Molecular MedicineUniversity of CaliforniaDavis, SacramentoCaliforniaUSA
| | - Mirna Lechpammer
- Department of Pathology and Laboratory MedicineUniversity of California, Davis, School of MedicineSacramentoCaliforniaUSA
| | - Randi Hagerman
- Department of PediatricsUniversity of CaliforniaDavis, School of Medicine, SacramentoCaliforniaUSA
- Medical Investigation of Neurodevelopmental Disorders Institute (MIND)University of CaliforniaDavis, SacramentoCaliforniaUSA
| | - Verónica Martínez‐Cerdeño
- Medical Investigation of Neurodevelopmental Disorders Institute (MIND)University of CaliforniaDavis, SacramentoCaliforniaUSA
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern CaliforniaSacramentoCaliforniaUSA
- Department of Pathology and Laboratory MedicineUniversity of California, Davis, School of MedicineSacramentoCaliforniaUSA
| |
Collapse
|
60
|
Beach TG, Adler CH, Zhang N, Serrano GE, Sue LI, Driver-Dunckley E, Mehta SH, Zamrini EE, Sabbagh MN, Shill HA, Belden CM, Shprecher DR, Caselli RJ, Reiman EM, Davis KJ, Long KE, Nicholson LR, Intorcia AJ, Glass MJ, Walker JE, Callan MM, Oliver JC, Arce R, Gerkin RC. Severe hyposmia distinguishes neuropathologically confirmed dementia with Lewy bodies from Alzheimer's disease dementia. PLoS One 2020; 15:e0231720. [PMID: 32320406 PMCID: PMC7176090 DOI: 10.1371/journal.pone.0231720] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/30/2020] [Indexed: 11/19/2022] Open
Abstract
Many subjects with neuropathologically-confirmed dementia with Lewy bodies (DLB) are never diagnosed during life, instead being categorized as Alzheimer's disease dementia (ADD) or unspecified dementia. Unrecognized DLB therefore is a critical impediment to clinical studies and treatment trials of both ADD and DLB. There are studies that suggest that olfactory function tests may be able to distinguish DLB from ADD, but few of these had neuropathological confirmation of diagnosis. We compared University of Pennsylvania Smell Identification Test (UPSIT) results in 257 subjects that went on to autopsy and neuropathological examination. Consensus clinicopathological diagnostic criteria were used to define ADD and DLB, as well as Parkinson's disease with dementia (PDD), with (PDD+AD) or without (PDD-AD) concurrent AD; a group with ADD and Lewy body disease (LBD) not meeting criteria for DLB (ADLB) and a clinically normal control group were also included. The subjects with DLB, PDD+AD and PDD-AD all had lower (one-way ANOVA p < 0.0001, pairwise Bonferroni p < 0.05) first and mean UPSIT scores than the ADD, ADLB or control groups. For DLB subjects with first and mean UPSIT scores less than 20 and 17, respectively, Firth logistic regression analysis, adjusted for age, gender and mean MMSE score, conferred statistically significant odds ratios of 17.5 and 18.0 for the diagnosis, vs ADD. For other group comparisons (PDD+AD and PDD-AD vs ADD) and UPSIT cutoffs of 17, the same analyses resulted in odds ratios ranging from 16.3 to 31.6 (p < 0.0001). To our knowledge, this is the largest study to date comparing olfactory function in subjects with neuropathologically-confirmed LBD and ADD. Olfactory function testing may be a convenient and inexpensive strategy for enriching dementia studies or clinical trials with DLB subjects, or conversely, reducing the inclusion of DLB subjects in ADD studies or trials.
Collapse
Affiliation(s)
- Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Charles H. Adler
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Nan Zhang
- Department of Biostatistics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Lucia I. Sue
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | | | - Shayamal H. Mehta
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Edouard E. Zamrini
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Marwan N. Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, United States of America
| | - Holly A. Shill
- Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Christine M. Belden
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - David R. Shprecher
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard J. Caselli
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, Arizona, United States of America
| | - Kathryn J. Davis
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Kathy E. Long
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Lisa R. Nicholson
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Anthony J. Intorcia
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Michael J. Glass
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Jessica E. Walker
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Michael M. Callan
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Javon C. Oliver
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard Arce
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard C. Gerkin
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
61
|
Coughlin DG, Hurtig H, Irwin DJ. Pathological Influences on Clinical Heterogeneity in Lewy Body Diseases. Mov Disord 2020; 35:5-19. [PMID: 31660655 PMCID: PMC7233798 DOI: 10.1002/mds.27867] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/06/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
PD, PD with dementia, and dementia with Lewy bodies are clinical syndromes characterized by the neuropathological accumulation of alpha-synuclein in the CNS that represent a clinicopathological spectrum known as Lewy body disorders. These clinical entities have marked heterogeneity of motor and nonmotor symptoms with highly variable disease progression. The biological basis for this clinical heterogeneity remains poorly understood. Previous attempts to subtype patients within the spectrum of Lewy body disorders have centered on clinical features, but converging evidence from studies of neuropathology and ante mortem biomarkers, including CSF, neuroimaging, and genetic studies, suggest that Alzheimer's disease beta-amyloid and tau copathology strongly influence clinical heterogeneity and prognosis in Lewy body disorders. Here, we review previous clinical biomarker and autopsy studies of Lewy body disorders and propose that Alzheimer's disease copathology is one of several likely pathological contributors to clinical heterogeneity of Lewy body disorders, and that such pathology can be assessed in vivo. Future work integrating harmonized assessments and genetics in PD, PD with dementia, and dementia with Lewy bodies patients followed to autopsy will be critical to further refine the classification of Lewy body disorders into biologically distinct endophenotypes. This approach will help facilitate clinical trial design for both symptomatic and disease-modifying therapies to target more homogenous subsets of Lewy body disorders patients with similar prognosis and underlying biology. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David G Coughlin
- University of Pennsylvania Health System, Department of Neurology
- Digital Neuropathology Laboratory
- Lewy Body Disease Research Center of Excellence
| | - Howard Hurtig
- University of Pennsylvania Health System, Department of Neurology
| | - David J Irwin
- University of Pennsylvania Health System, Department of Neurology
- Digital Neuropathology Laboratory
- Lewy Body Disease Research Center of Excellence
- Frontotemporal Degeneration Center, Philadelphia PA, USA 19104
| |
Collapse
|
62
|
Almela P, Cuenca-Bermejo L, Yuste JE, Estrada C, de Pablos V, Bautista-Hernández V, Fernández-Villalba E, Laorden ML, Herrero MT. Cardiac Noradrenaline Turnover and Heat Shock Protein 27 Phosphorylation in Dyskinetic Monkeys. Mov Disord 2019; 35:698-703. [PMID: 31872915 DOI: 10.1002/mds.27958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Autonomic dysfunction is a well-known dominant symptom in the advanced stages of Parkinson's disease. However, the role of cardiac sympathetic nerves still needs to be elucidated. OBJECTIVES To evaluate cardiac sympathetic response in Parkinsonian and dyskinetic monkeys. METHODS Adult male monkeys were divided into 1 of the following 3 groups: controls, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine+levodopa-treated animals. Noradrenaline, its metabolite normetanephrine, and phospho-Heat shock proten 27 (p-Hsp27) at serine 82 levels were analyzed in the left and right ventricles of the heart. Tyrosine hydroxylase immunohistochemistry was performed in the ventral mesencephalon. RESULTS The results were the following: (1) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication significantly increased normetanephrine levels and decreased noradrenaline turnover in the right ventricle without changes in the left ventricle; however, (2) levodopa treatment decreased noradrenaline levels and enhanced the normetanephrine/noradrenaline ratio in parallel with a very significant increase of Hsp27 activity in both ventricles. CONCLUSIONS Levodopa treatment could induce protective cardiac effects through the increased Hsp27 activity. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pilar Almela
- Department of Pharmacology, School of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia (IMIB), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120 El Palmar, Murcia, España
| | - Lorena Cuenca-Bermejo
- Institute of Biomedical Research of Murcia (IMIB), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120 El Palmar, Murcia, España.,Clinical & Experimental Neuroscience, Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain
| | - José E Yuste
- Clinical & Experimental Neuroscience, Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain
| | - Cristina Estrada
- Institute of Biomedical Research of Murcia (IMIB), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120 El Palmar, Murcia, España.,Clinical & Experimental Neuroscience, Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain
| | - Vicente de Pablos
- Institute of Biomedical Research of Murcia (IMIB), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120 El Palmar, Murcia, España.,Clinical & Experimental Neuroscience, Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain
| | - Víctor Bautista-Hernández
- Clinical & Experimental Neuroscience, Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain.,Department of Cardiovascular Surgery, Integrated Management Area of A Coruña, La Coruña, Spain
| | - Emiliano Fernández-Villalba
- Institute of Biomedical Research of Murcia (IMIB), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120 El Palmar, Murcia, España.,Clinical & Experimental Neuroscience, Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain
| | - María-Luisa Laorden
- Department of Pharmacology, School of Medicine, University of Murcia, Murcia, Spain.,Clinical & Experimental Neuroscience, Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain
| | - María-Trinidad Herrero
- Institute of Biomedical Research of Murcia (IMIB), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120 El Palmar, Murcia, España.,Clinical & Experimental Neuroscience, Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
63
|
Abstract
Staging of neurodegenerative diseases is based chiefly on the topographical or anatomical extent of aggregated proteinaceous inclusions, and the density or severity of the lesions in a given region is usually assessed semiquantitatively. Associated phenomena, such as cell loss and synapse loss, are evaluated but not staged. This article reviews the development of neuropathological staging of the sporadic Alzheimer's and sporadic Parkinson's diseases. It considers challenges for staging systems, and it poses the question whether neuropathological staging as practiced up to now is still relevant.
Collapse
|
64
|
Lebowitz JJ, Khoshbouei H. Heterogeneity of dopamine release sites in health and degeneration. Neurobiol Dis 2019; 134:104633. [PMID: 31698055 DOI: 10.1016/j.nbd.2019.104633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
Despite comprising only ~ 0.001% of all neurons in the human brain, ventral midbrain dopamine neurons exert a profound influence on human behavior and cognition. As a neuromodulator, dopamine selectively inhibits or enhances synaptic signaling to coordinate neural output for action, attention, and affect. Humans invariably lose brain dopamine during aging, and this can be exacerbated in disease states such as Parkinson's Disease. Further, it is well established in multiple disease states that cell loss is selective for a subset of highly sensitive neurons within the nigrostriatal dopamine tract. Regional differences in dopamine tone are regulated pre-synaptically, with subcircuits of projecting dopamine neurons exhibiting distinct molecular and physiological signatures. Specifically, proteins at dopamine release sites that synthesize and package cytosolic dopamine, modulate its release and reuptake, and alter neuronal excitability show regional differences that provide linkages to the observed sensitivity to neurodegeneration. The aim of this review is to outline the major components of dopamine homeostasis at neurotransmitter release sites and describe the regional differences most relevant to understanding why some, but not all, dopamine neurons exhibit heightened vulnerability to neurodegeneration.
Collapse
Affiliation(s)
- Joseph J Lebowitz
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
65
|
Neocortical Lewy bodies are associated with impaired odor identification in community-dwelling elders without clinical PD. J Neurol 2019; 266:3108-3118. [PMID: 31535271 DOI: 10.1007/s00415-019-09540-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND The association of Lewy bodies (LBs) with olfactory dysfunction was investigated in community-dwelling elders without clinical Parkinson's disease (PD) using the 12-item Brief Smell Identification Test (BSIT), a standard measure of odor identification. METHODS 280 participants in the Rush Memory and Aging Project completed the BSIT annually. Lewy bodies were detected in 13 brain regions by immunohistochemistry and were assigned to the Braak PD stages 1-6. RESULTS Of the 280 participants, 101 (36.1%) had LBs which were maximal in the olfactory bulb and tract (85.1%) and least in Heschl's cortex (21.8%). Due to the small number of cases in Braak PD stages 2, 3 and 5, the distribution of LBs in the 6 Braak PD stages was contracted into 3 main LB stages: (1) LBs in olfactory bulbs and dorsal motor nucleus of vagus, (2) further extension of LBs to limbic and other brainstem regions and (3) additional extension of LBs to neocortical areas. MMSE, global cognition and odor test scores were lower and frequency of dementia was higher at the time of the last valid BSIT, in cases with LBs as compared to those without LBs. Linear regression analyses showed that LBs were associated with impaired olfaction. However, on stratification of LBs into 3 stages, only the stage 3 cases were independently associated with impaired olfaction. CONCLUSION Although LB pathology was detected in olfactory bulbs in the early stage of LB progression (stage 1), the strongest association of LBs with olfactory dysfunction was observed in the late pathological stage (stage 3) when LBs extended to neocortical areas.
Collapse
|
66
|
Kon T, Tomiyama M, Wakabayashi K. Neuropathology of Lewy body disease: Clinicopathological crosstalk between typical and atypical cases. Neuropathology 2019; 40:30-39. [PMID: 31498507 DOI: 10.1111/neup.12597] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022]
Abstract
Lewy body disease (LBD) is characterized by the presence of Lewy bodies (LBs) and Lewy neurites and comprises a diagnostic spectrum that includes Parkinson's disease (PD), PD with dementia, and dementia with LBs. LBs and Lewy neurites are insoluble aggregates composed mainly of phosphorylated α-synuclein and can be widely distributed throughout the central and peripheral nervous systems. The distribution of LBs may determine the LBD phenotype. Braak hypothesized that Lewy pathology progresses ascendingly from the peripheral nervous system to the olfactory bulbs and brainstem and then to other brain regions. Braak's PD staging suggests that LBD is a prion-like disease. Most typical PD cases fit with Braak's PD staging, but the scheme fails in some cases. Alzheimer's disease, progressive supranuclear palsy, corticobasal syndrome, multiple system atrophy, frontotemporal lobar degeneration, Creutzfeldt-Jakob disease, cerebrovascular diseases, and essential tremor are common misdiagnoses for pathologically confirmed LBD. LBD exhibits considerable heterogeneity in both clinical and pathological settings, which makes clinical diagnosis challenging.
Collapse
Affiliation(s)
- Tomoya Kon
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
67
|
Mou L, Ding W, Fernandez-Funez P. Open questions on the nature of Parkinson's disease: from triggers to spreading pathology. J Med Genet 2019; 57:73-81. [PMID: 31484719 DOI: 10.1136/jmedgenet-2019-106210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/16/2019] [Accepted: 06/23/2019] [Indexed: 01/25/2023]
Abstract
Parkinson's disease (PD) is a movement disorder identified more than 200 years ago; today it is defined by specific motor symptoms that together receive the name of parkinsonism. PD diagnosis is reached with the full parkinsonian syndrome, but in recent years, a series of non-motor symptoms have arisen as intrinsic components of PD. These non-motor symptoms are variable, creating a widely heterogenous disease presentation. Some non-motor symptoms appear in late disease stages and are explained as the natural progression of PD pathology into other brain centres, including the frontal cortex. Other symptoms can appear a decade or earlier preceding PD diagnosis, particularly hyposmia (loss of smell) and constipation. These early symptoms and the accompanying protein pathology have stimulated a lively conversation about the origin and nature of PD and other related conditions: some authors propose that PD starts in the olfactory mucosa and the gut due to direct exposure to toxins or pathogens. This pathology then travels by anatomically interconnected networks to the midbrain to cause motor symptoms and the cortex to cause late complications. Other models propose that PD develops in multiple independent foci that do not require pathology spread. We will review these hypotheses in the context of recent developments regarding the spread of amyloids and propose a mixed model where a multifocal origin explains the variable presentation of PD, while cell-to-cell spread explains stereotypical disease progression.
Collapse
Affiliation(s)
- Lei Mou
- Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Wei Ding
- Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Pedro Fernandez-Funez
- Biomedical Sciences, University of Minnesota Medical School - Duluth Campus, Duluth, Minnesota, USA
| |
Collapse
|
68
|
Sorrentino ZA, Goodwin MS, Riffe CJ, Dhillon JKS, Xia Y, Gorion KM, Vijayaraghavan N, McFarland KN, Golbe LI, Yachnis AT, Giasson BI. Unique α-synuclein pathology within the amygdala in Lewy body dementia: implications for disease initiation and progression. Acta Neuropathol Commun 2019; 7:142. [PMID: 31477175 PMCID: PMC6718048 DOI: 10.1186/s40478-019-0787-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023] Open
Abstract
The protein α-synuclein (αsyn) forms pathologic aggregates in a number of neurodegenerative diseases including Lewy body dementia (LBD) and Parkinson's disease (PD). It is unclear why diseases such as LBD may develop widespread αsyn pathology, while in Alzheimer's disease with amygdala restricted Lewy bodies (AD/ALB) the αsyn aggregates remain localized. The amygdala contains αsyn aggregates in both LBD and in AD/ALB; to understand why αsyn pathology continues to progress in LBD but not in AD/ALB, tissue from the amygdala and other regions were obtained from 14 cases of LBD, 9 cases of AD/ALB, and 4 controls for immunohistochemical and biochemical characterization. Utilizing a panel of previously characterized αsyn antibodies, numerous unique pathologies differentiating LBD and AD/ALB were revealed; particularly the presence of dense neuropil αsyn aggregates, astrocytic αsyn, and αsyn-containing dystrophic neurites within senile plaques. Within LBD, these unique pathologies were predominantly present within the amygdala. Biochemically, the amygdala in LBD prominently contained specific carboxy-truncated forms of αsyn which are highly prone to aggregate, suggesting that the amygdala may be prone to initiate development of αsyn pathology. Similar to carboxy-truncated αsyn, it was demonstrated herein that the presence of aggregation prone A53T αsyn is sufficient to drive misfolding of wild-type αsyn in human disease. Overall, this study identifies within the amygdala in LBD the presence of unique strain-like variation in αsyn pathology that may be a determinant of disease progression.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Marshall S Goodwin
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Cara J Riffe
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jess-Karan S Dhillon
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kimberly-Marie Gorion
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Niran Vijayaraghavan
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Karen N McFarland
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, College of Medicine University of Florida, Gainesville, FL, 32610, USA
| | - Lawrence I Golbe
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Anthony T Yachnis
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
69
|
Betts MJ, Kirilina E, Otaduy MCG, Ivanov D, Acosta-Cabronero J, Callaghan MF, Lambert C, Cardenas-Blanco A, Pine K, Passamonti L, Loane C, Keuken MC, Trujillo P, Lüsebrink F, Mattern H, Liu KY, Priovoulos N, Fliessbach K, Dahl MJ, Maaß A, Madelung CF, Meder D, Ehrenberg AJ, Speck O, Weiskopf N, Dolan R, Inglis B, Tosun D, Morawski M, Zucca FA, Siebner HR, Mather M, Uludag K, Heinsen H, Poser BA, Howard R, Zecca L, Rowe JB, Grinberg LT, Jacobs HIL, Düzel E, Hämmerer D. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 2019; 142:2558-2571. [PMID: 31327002 PMCID: PMC6736046 DOI: 10.1093/brain/awz193] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.
Collapse
Affiliation(s)
- Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Center for Cognitive Neuroscience, Free University Berlin, Berlin, Germany
| | - Maria C G Otaduy
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, Medical School of the University of São Paulo, Brazil
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
| | | | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Christian Lambert
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Arturo Cardenas-Blanco
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Kerrin Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, UK
- Consiglio Nazionale delle Ricerche, Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Milan, Italy
| | - Clare Loane
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Max C Keuken
- University of Amsterdam, Integrative Model-based Cognitive Neuroscience research unit, Amsterdam, The Netherlands
- University of Leiden, Cognitive Psychology, Leiden, The Netherlands
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Falk Lüsebrink
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hendrik Mattern
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Nikos Priovoulos
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Klaus Fliessbach
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Anne Maaß
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Christopher F Madelung
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Raymond Dolan
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
- Max Planck Centre for Computational Psychiatry and Ageing, University College London, UK
| | - Ben Inglis
- Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, CA, USA
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Mara Mather
- Leonard Davis School of Gerontology and Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Kamil Uludag
- Centre for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Techna Institute and Koerner Scientist in MR Imaging, University Health Network, Toronto, Canada
| | - Helmut Heinsen
- University of São Paulo Medical School, São Paulo, Brazil
- Clinic of Psychiatry, University of Würzburg, Wurzburg, Germany
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, USA
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- University of São Paulo Medical School, São Paulo, Brazil
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Heidi I L Jacobs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
70
|
Goldstein DS, Pekker MJ, Eisenhofer G, Sharabi Y. Computational modeling reveals multiple abnormalities of myocardial noradrenergic function in Lewy body diseases. JCI Insight 2019; 5:130441. [PMID: 31335324 DOI: 10.1172/jci.insight.130441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Lewy body diseases, a family of aging-related neurodegenerative disorders, entail loss of the catecholamine dopamine in the nigrostriatal system and equally severe deficiency of the closely related catecholamine norepinephrine in the heart. The myocardial noradrenergic lesion is associated with major non-motor symptoms and decreased survival. Numerous mechanisms determine norepinephrine stores, and which of these are altered in Lewy body diseases has not been examined in an integrated way. We used a computational modeling approach to assess comprehensively pathways of cardiac norepinephrine synthesis, storage, release, reuptake, and metabolism in Lewy body diseases. Application of a novel kinetic model identified a pattern of dysfunctional steps contributing to norepinephrine deficiency. We then tested predictions from the model in a new cohort of Parkinson disease patients. METHODS Rate constants were calculated for 17 reactions determining intra-neuronal norepinephrine stores. Model predictions were tested by measuring post-mortem apical ventricular concentrations and concentration ratios of catechols in controls and patients with Parkinson disease. RESULTS The model identified low rate constants for three types of processes in the Lewy body group-catecholamine biosynthesis via tyrosine hydroxylase and L-aromatic-amino-acid decarboxylase, vesicular storage of dopamine and norepinephrine, and neuronal norepinephrine reuptake via the cell membrane norepinephrine transporter. Post-mortem catechols and catechol ratios confirmed this triad of model-predicted functional abnormalities. CONCLUSION Denervation-independent impairments of neurotransmitter biosynthesis, vesicular sequestration, and norepinephrine recycling contribute to the myocardial norepinephrine deficiency attending Lewy body diseases. A proportion of cardiac sympathetic nerves are "sick but not dead," suggesting targeted disease-modification strategies might retard clinical progression. TRIAL REGISTRATION This study was not a clinical trial. FUNDING The research reported here was supported by the Division of Intramural Research, NINDS.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section (formerly Clinical Neurocardiology Section), Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, USA
| | - Mark J Pekker
- Mathematical Sciences, University of Alabama at Huntsville, Huntsville, Alabama, USA
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Yehonatan Sharabi
- Tel Aviv University Sackler Faculty of Medicine and Chaim Sheba Medical Center, Tel HaShomer, Israel
| |
Collapse
|
71
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
72
|
Hansen D, Ling H, Lashley T, Holton JL, Warner TT. Review: Clinical, neuropathological and genetic features of Lewy body dementias. Neuropathol Appl Neurobiol 2019; 45:635-654. [PMID: 30977926 DOI: 10.1111/nan.12554] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
Abstract
Lewy body dementias are the second most common neurodegenerative dementias after Alzheimer's disease and include dementia with Lewy bodies and Parkinson's disease dementia. They share similar clinical and neuropathological features but differ in the time of dementia and parkinsonism onset. Although Lewy bodies are their main pathological hallmark, several studies have shown the emerging importance of Alzheimer's disease pathology. Clinical amyloid-β imaging using Pittsburgh Compound B (PiB) supports neuropathological studies which found that amyloid-β pathology is more common in dementia with Lewy bodies than in Parkinson's disease dementia. Nevertheless, other co-occurring pathologies, such as cerebral amyloid angiopathy, TDP-43 pathology and synaptic pathology may also influence the development of neurodegeneration and dementia. Recent genetic studies demonstrated an important role of APOE genotype and other genes such as GBA and SNCA which seem to be involved in the pathophysiology of Lewy body dementias. The aim of this article is to review the main clinical, neuropathological and genetic aspects of dementia with Lewy bodies and Parkinson's disease dementia. This is particularly relevant as future management for these two conditions may differ.
Collapse
Affiliation(s)
- D Hansen
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - H Ling
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - J L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
73
|
Geibl FF, Henrich MT, Oertel WH. Mesencephalic and extramesencephalic dopaminergic systems in Parkinson's disease. J Neural Transm (Vienna) 2019; 126:377-396. [PMID: 30643975 DOI: 10.1007/s00702-019-01970-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Neurodegeneration of the nigrostriatal dopaminergic system and concurrent dopamine (DA) deficiency in the basal ganglia represent core features of Parkinson's disease (PD). Despite the central role of DA in the pathogenesis of PD, dopaminergic systems outside of the midbrain have not been systematically investigated for Lewy body pathology or neurodegeneration. Dopaminergic neurons show a surprisingly rich neurobiological diversity, suggesting that there is not one general type of dopaminergic neuron, but rather a spectrum of different dopaminergic phenotypes. This heterogeneity on the cellular level could account for the observed differences in susceptibility of the dopaminergic systems to the PD disease process. In this review, we will summarize the long history from the first description of PD to the rationally derived DA replacement therapy, describe the basal neuroanatomical and neuropathological features of the different dopaminergic systems in health and PD, explore how neuroimaging techniques broadened our view of the dysfunctional dopaminergic systems in PD and discuss how dopaminergic replacement therapy ameliorates the classical motor symptoms but simultaneously induces a new set of hyperdopaminergic symptoms.
Collapse
Affiliation(s)
- Fanni F Geibl
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany.
| | - Martin T Henrich
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| |
Collapse
|
74
|
Goldstein DS, Sharabi Y. The heart of PD: Lewy body diseases as neurocardiologic disorders. Brain Res 2019; 1702:74-84. [PMID: 29030055 PMCID: PMC10712237 DOI: 10.1016/j.brainres.2017.09.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/01/2023]
Abstract
This review provides an update about cardiac sympathetic denervation in Lewy body diseases. The family of Lewy body diseases includes Parkinson's disease (PD), pure autonomic failure (PAF), and dementia with Lewy bodies (DLB). All three feature intra-neuronal cytoplasmic deposits of the protein, alpha-synuclein. Multiple system atrophy (MSA), the parkinsonian form of which can be difficult to distinguish from PD with orthostatic hypotension, involves glial cytoplasmic inclusions that contain alpha-synuclein. By now there is compelling neuroimaging, neuropathologic, and neurochemical evidence for cardiac sympathetic denervation in Lewy body diseases. In addition to denervation, there is decreased storage of catecholamines in the residual terminals. The degeneration develops in a centripetal, retrograde, "dying back" sequence. Across synucleinopathies the putamen and cardiac catecholaminergic lesions seem to occur independently of each other, whereas non-motor aspects of PD (e.g., anosmia, dementia, REM behavior disorder, OH) are associated with each other and with cardiac sympathetic denervation. Cardiac sympathetic denervation can be caused by synucleinopathy in inherited PD. According to the catecholaldehyde hypothesis, 3,4-dihydroxyphenylacetaldehyde (DOPAL), an intermediary metabolite of dopamine, causes or contributes to the death of catecholamine neurons, especially by interacting with proteins such as alpha-synuclein. DOPAL oxidizes spontaneously to DOPAL-quinone, which probably converts alpha-synuclein to its toxic oligomeric form. Decreasing DOPAL production and oxidation might slow the neurodegenerative process. Tracking cardiac sympathetic innervation over time could be the basis for a proof of principle experimental therapeutics trial targeting DOPAL.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1620, United States.
| | - Yehonatan Sharabi
- Chaim Sheba Medical Center and Tel Aviv University Sackler Faculty of Medicine, Israel.
| |
Collapse
|
75
|
Melli G, Vacchi E, Biemmi V, Galati S, Staedler C, Ambrosini R, Kaelin-Lang A. Cervical skin denervation associates with alpha-synuclein aggregates in Parkinson disease. Ann Clin Transl Neurol 2018; 5:1394-1407. [PMID: 30480033 PMCID: PMC6243385 DOI: 10.1002/acn3.669] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
Objective Autonomic nervous system is involved at the onset of Parkinson disease (PD), and alpha‐synuclein (α‐Syn) and its phosphorylated form (p‐αSyn) have been detected in dermal autonomic nerve fibers of PD. We assessed disease specific conformation variant of α‐Syn immunoreactivity in cutaneous nerves and characterized skin denervation patterns in PD and atypical parkinsonism (AP). Methods We enrolled 49 subjects, 19 with PD, 17 age‐matched healthy controls, and 13 with AP. The manifestations of disease were rated on clinical scales. Skin biopsies from ankle, thigh, and neck were analyzed by immunofluorescence for p‐αSyn, 5G4 as a conformation specific antibody to pathogenic α‐Syn and PGP9.5 as axonal marker. Intraepidermal nerve fiber density was measured in all anatomical sites as marker of neurodegeneration. Thirteen of the 19 PD underwent a 1 year follow‐up visit plus skin biopsies. Results PD subjects displayed more severe cervical skin denervation (P < 0.03), which correlated to disease duration and worsened between initial and follow‐up examination (P < 0.001). p‐αSyn and 5G4 were equally sensitive and specific for the diagnosis of PD (area under the ROC was 0.839 for p‐αSyn and 0.886 for 5G4). PD and AP with possible alpha‐synucleinopathies share the features of marked cervical denervation and the presence of 5G4. In contrast AP with possible tauopathies were normal. Interpretation Conformational specific forms of α‐Syn are detectable in skin biopsy by immunofluorescence in PD, with a promising diagnostic efficiency similar to p‐αSyn. Cervical cutaneous denervation correlates with disease duration and increases over time standing out as a potential biomarker of PD progression.
Collapse
Affiliation(s)
- Giorgia Melli
- Laboratory for Biomedical Neurosciences Neurocentre of Southern Switzerland Via ai Söi 24. CH-6807 Torricella-Taverne Switzerland.,Neurology Department Neurocentre of Southern Switzerland Via Tesserete 46 CH-6900 Lugano Switzerland
| | - Elena Vacchi
- Laboratory for Biomedical Neurosciences Neurocentre of Southern Switzerland Via ai Söi 24. CH-6807 Torricella-Taverne Switzerland
| | - Vanessa Biemmi
- Laboratory for Biomedical Neurosciences Neurocentre of Southern Switzerland Via ai Söi 24. CH-6807 Torricella-Taverne Switzerland
| | - Salvatore Galati
- Laboratory for Biomedical Neurosciences Neurocentre of Southern Switzerland Via ai Söi 24. CH-6807 Torricella-Taverne Switzerland.,Neurology Department Neurocentre of Southern Switzerland Via Tesserete 46 CH-6900 Lugano Switzerland
| | - Claudio Staedler
- Neurology Department Neurocentre of Southern Switzerland Via Tesserete 46 CH-6900 Lugano Switzerland
| | - Roberto Ambrosini
- Department of Environmental Science and Policy University of Milan Via Celoria 26, I-20133 Milan Italy
| | - Alain Kaelin-Lang
- Laboratory for Biomedical Neurosciences Neurocentre of Southern Switzerland Via ai Söi 24. CH-6807 Torricella-Taverne Switzerland.,Neurology Department Neurocentre of Southern Switzerland Via Tesserete 46 CH-6900 Lugano Switzerland.,Department of Neurology Inselspital Bern University Hospital University of Bern Freiburgstrasse 4,3010 Bern Switzerland
| |
Collapse
|
76
|
Bhasne K, Mukhopadhyay S. Formation of Heterotypic Amyloids: α-Synuclein in Co-Aggregation. Proteomics 2018; 18:e1800059. [PMID: 30216674 DOI: 10.1002/pmic.201800059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Indexed: 12/13/2022]
Abstract
Protein misfolding resulting in the formation of ordered amyloid aggregates is associated with a number of devastating human diseases. Intrinsically disordered proteins (IDPs) do not autonomously fold up into a unique stable conformation and remain as an ensemble of rapidly fluctuating conformers. Many IDPs are prone to convert into the β-rich amyloid state. One such amyloidogenic IDP is α-synuclein that is involved in Parkinson's disease. Recent studies have indicated that other neuronal proteins, especially IDPs, can co-aggregate with α-synuclein in many pathological ailments. This article describes several such observations highlighting the role of heterotypic protein-protein interactions in the formation of hetero-amyloids. It is believed that the characterizations of molecular cross talks between amyloidogenic proteins as well as the mechanistic studies of heterotypic protein aggregation will allow us to decipher the role of the interacting proteins in amyloid proteomics.
Collapse
Affiliation(s)
- Karishma Bhasne
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| |
Collapse
|
77
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
78
|
Butkovich LM, Houser MC, Tansey MG. α-Synuclein and Noradrenergic Modulation of Immune Cells in Parkinson's Disease Pathogenesis. Front Neurosci 2018; 12:626. [PMID: 30258347 PMCID: PMC6143806 DOI: 10.3389/fnins.2018.00626] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022] Open
Abstract
α-synuclein (α-syn) pathology and loss of noradrenergic neurons in the locus coeruleus (LC) are among the most ubiquitous features of Parkinson's disease (PD). While noradrenergic dysfunction is associated with non-motor symptoms of PD, preclinical research suggests that the loss of LC norepinephrine (NE), and subsequently its immune modulatory and neuroprotective actions, may exacerbate or even accelerate disease progression. In this review, we discuss the mechanisms by which α-syn pathology and loss of central NE may directly impact brain health by interrupting neurotrophic factor signaling, exacerbating neuroinflammation, and altering regulation of innate and adaptive immune cells.
Collapse
Affiliation(s)
| | | | - Malú G. Tansey
- Tansey Laboratory, Department of Physiology, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
79
|
Dickson DW, Heckman MG, Murray ME, Soto AI, Walton RL, Diehl NN, van Gerpen JA, Uitti RJ, Wszolek ZK, Ertekin-Taner N, Knopman DS, Petersen RC, Graff-Radford NR, Boeve BF, Bu G, Ferman TJ, Ross OA. APOE ε4 is associated with severity of Lewy body pathology independent of Alzheimer pathology. Neurology 2018; 91:e1182-e1195. [PMID: 30143564 DOI: 10.1212/wnl.0000000000006212] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/25/2018] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE To evaluate whether APOE ε4 is associated with severity of Lewy body (LB) pathology, independently of Alzheimer disease (AD) pathology. METHODS Six hundred fifty-two autopsy-confirmed LB disease (LBD) cases and 660 clinical controls were genotyped for APOE. In case-control analysis, LBD cases were classified into 9 different groups according to severity of both LB pathology (brainstem, transitional, diffuse) and AD pathology (low, moderate, high) to assess associations between APOE ε4 and risk of different neuropathologically defined LBD subgroups in comparison to controls. In LBD cases only, we also measured LB counts from 5 cortical regions and evaluated associations with ε4 according to severity of AD pathology. RESULTS As expected, APOE ε4 was associated with an increased risk of transitional and diffuse LBD in cases with moderate or high AD pathology (all odds ratios ≥3.42, all p ≤ 0.004). Of note, ε4 was also associated with an increased risk of diffuse LBD with low AD pathology (odds ratio = 3.46, p = 0.001). In the low AD pathology LBD subgroup, ε4 was associated with significantly more LB counts in the 5 cortical regions, independently of Braak stage and Thal phase (all p ≤ 0.002). CONCLUSIONS Our results indicate that APOE ε4 is independently associated with a greater severity of LB pathology. These findings increase our understanding of the mechanism behind reported associations of ε4 with risk of dementia with Lewy bodies and Parkinson disease with dementia, and suggest that ε4 may function as a modifier of processes that favor LB spread rather than acting directly to initiate LB pathology.
Collapse
Affiliation(s)
- Dennis W Dickson
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Michael G Heckman
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Melissa E Murray
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Alexandra I Soto
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Ronald L Walton
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Nancy N Diehl
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Jay A van Gerpen
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Ryan J Uitti
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Zbigniew K Wszolek
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Nilüfer Ertekin-Taner
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - David S Knopman
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Ronald C Petersen
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Neill R Graff-Radford
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Bradley F Boeve
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Guojun Bu
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Tanis J Ferman
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Owen A Ross
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
80
|
Abstract
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia following Alzheimer disease. It stems from the formation of Lewy bodies, which contain aggregates of the misfolded protein, α-synuclein. These deposit in areas of the nervous system and brain, leading to neuronal cell death and causing clinically apparent symptoms. Because of its clinical overlap with other forms of dementia, DLB is often underdiagnosed and misdiagnosed. There is currently no cure for DLB and treatments are aimed at ameliorating specific symptoms.
Collapse
Affiliation(s)
- Angela M Sanford
- Division of Geriatrics, Saint Louis University School of Medicine, 1402 South Grand Boulevard, M238, St Louis, MO 63104, USA.
| |
Collapse
|
81
|
Irwin DJ, Hurtig HI. The Contribution of Tau, Amyloid-Beta and Alpha-Synuclein Pathology to Dementia in Lewy Body Disorders. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2018; 8:444. [PMID: 30473927 PMCID: PMC6248323 DOI: 10.4172/2161-0460.1000444] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's Disease (PD) and the closely related Dementia with Lewy Bodies (DLB) are due to the accumulation of pathogenic alpha-synuclein protein in brain cells manifest by heterogeneous motor and non-motor symptoms, including cognitive impairment and dementia. The majority of patients with Parkinson's Disease develop Dementia (PDD) in late stages of the disease and have widespread neocortical distribution of alpha-synuclein pathology at autopsy, compared with PD without dementia, in which neocortical synuclein pathology is less prevalent. These three entities PD, DLB and PDD comprise a clinical spectrum, collectively known as Lewy Body Disorders (LBD). Recent investigations into the neuropathological basis of LBD have demonstrated that while synuclein pathology is the defining feature of these disorders, it is often accompanied by other age-related neurodegenerative pathologies. In particular, amyloid plaque and tau tangle pathology characteristic of Alzheimer's Disease (AD) (~50% of all LBD patients have sufficient pathology at autopsy for a secondary neuropathologic diagnosis of AD), appear to contribute to cognitive impairment in LBD, and the combination is associated with a shorter interval between onset of motor symptoms and development of dementia and a shorter life span. Further, the co-occurrence of neocortical alpha-synuclein, tau and amyloid pathologies found at end-stage disease suggests a potential synergistic interaction of these individual pathologies in humans during life, mirroring experimental observations in animal and cell model systems that show how pathogenic species of synuclein fibrils can promote trans-synaptic spread of both tauopathy and synucleinopathy with strain-like properties. Newer post-mortem studies using digital methods to measure pathologic burden have highlighted distinct neocortical patterns of areas with relative higher density of tau pathology in LBD compared to AD that support these model data. The emerging field of cerebrospinal fluid and molecular imaging biomarkers of synuclein, amyloid and tau pathologies in LBD is contributing to a greater understanding of how the different pathologies evolve and interact to produce clinical heterogeneity in LBD. Future work to elucidate biologically meaningful clinical subgroups of synucleinopathy and its co-pathology must focus on the full clinicopathological spectrum of LBD and use validated biomarkers, when available, to design clinical trials based on the precise selection of homogeneous patient subgroups to maximize statistical power for detecting the impact of treatment.
Collapse
Affiliation(s)
- David J. Irwin
- University of Pennsylvania Perelman School of Medicine, Department of Neurology Philadelphia PA, USA
| | - Howard I. Hurtig
- University of Pennsylvania Perelman School of Medicine, Department of Neurology Philadelphia PA, USA
| |
Collapse
|
82
|
Lee HJ, Jung KW, Chung SJ, Hong SM, Kim J, Lee JH, Hwang SW, Ryu HS, Kim MJ, Lee HS, Seo M, Park SH, Yang DH, Ye BD, Byeon JS, Choe J, Jung HY, Yang SK, Myung SJ. Relation of Enteric α-Synuclein to Gastrointestinal Dysfunction in Patients With Parkinson's Disease and in Neurologically Intact Subjects. J Neurogastroenterol Motil 2018; 24:469-478. [PMID: 29969861 PMCID: PMC6034677 DOI: 10.5056/jnm17141] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/19/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
Background/Aims α-Synucleinopathy in the brain is the neuropathological hallmark of Parkinson’s disease (PD). However, the functional impact of α-synucleinopathy in the enteric nervous system remains unknown. We aim to evaluate the association between gastrointestinal (GI) dysfunction and α-synuclein (αSYN) pathology in the stomach and colon of PD patients and controls, as well as to investigate the association between the αSYN pathology in GI tract and future PD risk. Methods A total of 35 PD patients and 52 neurologically intact subjects were enrolled in this study. Endoscopic biopsies were performed, and then immunohistochemical staining for αSYN was performed. All subjects completed the validated Rome III questionnaire for the assessment of GI symptoms. The association between GI symptoms and the αSYN pathology in GI mucosa was evaluated. Incident PD cases were assessed during a median follow-up of 46 months. Results The proportion of self-reported constipation and functional constipation through the Rome III questionnaire was significantly higher in PD patients than in controls (P < 0.001 and P = 0.015). However, no significant association was found between the αSYN pathology in the stomach and colon mucosa and constipation, as well as other GI symptoms including dyspepsia symptoms and abdominal discomfort or pain, regardless of the presence or absence of clinical PD (P > 0.05). No incident PD cases were diagnosed during study period. Conclusions Our present study suggests that the deposition of αSYN in the mucosal enteric nervous system may not be reflected by functional impairment of the affected segment of the gut.
Collapse
Affiliation(s)
- Hyo Jeong Lee
- Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kee Wook Jung
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Juyeon Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Hoon Lee
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho-Sung Ryu
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi Jung Kim
- Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho-Su Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Myeongsook Seo
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Hoon Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaewon Choe
- Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hwoon-Yong Jung
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Jae Myung
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| |
Collapse
|
83
|
Very old onset parkinsonism: A clinical-pathological study. Parkinsonism Relat Disord 2018; 57:39-43. [PMID: 30054179 DOI: 10.1016/j.parkreldis.2018.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND With increasing age of the world population, the number of parkinsonian patients with disease onset in very old age is expected to increase. Information about the clinical and morphological phenotype of very old age onset parkinsonism is poor, and only three autopsy-confirmed studies of parkinsonian patients of 80 years and older onset are available. METHODS A retrospective autopsy study of 345 patients clinically diagnosed as Parkinson disease (PD) included 90 cases with disease onset ≥80 years). RESULTS Clinically, the majority (60%) presented with a rigid-akinetic phenotype, 13.3% with mixed tremor, akinesia and rigidity, 8.9% tremor-dominant type, 7.8% with tremor + rigidity, 5.6% with tremor-akinesia, and 4.4% with pure akinesia or gait disorder. Additional 8.9% developed hemiparesis, and 80% were demented. In only about 49% of the patients, positive reaction to l-dopa therapy was reported. The progress of disease was accelerated, and survival time (4.34 ± 2.95 SD) was significantly shorter than in younger onset groups. At post mortem examination, only 21 cases (23.3%) revealed Lewy body disease of brainstem type (PD) alone, 44 cases (48.9%) had PD plus Alzheimer disease (AD) (including 6 cases of Lewy body variant of AD). 11% had PD plus cerebrovascular lesions, 6 cases (6.7%) were cerebrovascular disorders and 8 cases (8.9%) were other neurodegenerative diseases (AD, single cases of multiple system atrophy, progressive supranuclear palsy). CONCLUSION The present and other data confirm the clinical and morphological heterogeneity of parkinsonism with shorter survival in the octogenarian population.
Collapse
|
84
|
Iverson GL, Keene CD, Perry G, Castellani RJ. The Need to Separate Chronic Traumatic Encephalopathy Neuropathology from Clinical Features. J Alzheimers Dis 2018; 61:17-28. [PMID: 29103039 PMCID: PMC5734127 DOI: 10.3233/jad-170654] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is tremendous recent interest in chronic traumatic encephalopathy (CTE) in former collision sport athletes, civilians, and military veterans. This critical review places important recent research results into a historical context. In 2015, preliminary consensus criteria were developed for defining the neuropathology of CTE, which substantially narrowed the pathology previously reported to be characteristic. There are no agreed upon clinical criteria for diagnosis, although sets of criteria have been proposed for research purposes. A prevailing theory is that CTE is an inexorably progressive neurodegenerative disease within the molecular classification of the tauopathies. However, historical and recent evidence suggests that CTE, as it is presented in the literature, might not be pathologically or clinically progressive in a substantial percentage of people. At present, it is not known whether the emergence, course, or severity of clinical symptoms can be predicted by specific combinations of neuropathologies, thresholds for accumulation of pathology, or regional distributions of pathologies. More research is needed to determine the extent to which the neuropathology ascribed to long-term effects of neurotrauma is static, progressive, or both. Disambiguating the pathology from the broad array of clinical features that have been reported in recent studies might facilitate and accelerate research- and improve understanding of CTE.
Collapse
Affiliation(s)
- Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, MassGeneral Hospital for Children™ Sports Concussion Program, and Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, USA
| | - C Dirk Keene
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - George Perry
- College of Sciences, University of Texas, San Antonio, San Antonio, TX, USA
| | - Rudolph J Castellani
- Center for Neuropathology, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|
85
|
Spillantini MG, Goedert M. Neurodegeneration and the ordered assembly of α-synuclein. Cell Tissue Res 2018; 373:137-148. [PMID: 29119326 PMCID: PMC6015613 DOI: 10.1007/s00441-017-2706-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023]
Abstract
In 2017, it was 200 years since James Parkinson published 'An Essay on the Shaking Palsy' and 20 years since α-synuclein aggregation came to the fore. In 1998, multiple system atrophy joined Parkinson's disease and dementia with Lewy bodies as the third major synucleinopathy. Here, we describe the work that led to the identification of α-synuclein in Lewy bodies, Lewy neurites and Papp-Lantos bodies. We also review some of the findings reported since 1997.
Collapse
Affiliation(s)
- Maria Grazia Spillantini
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
86
|
Yan F, Chen Y, Li M, Wang Y, Zhang W, Chen X, Ye Q. Gastrointestinal nervous system α-synuclein as a potential biomarker of Parkinson disease. Medicine (Baltimore) 2018; 97:e11337. [PMID: 29995769 PMCID: PMC6076112 DOI: 10.1097/md.0000000000011337] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Lewy bodies (LB) play an essential role in the development, survival, and function maintenance of midbrain dopaminergic (DA) neurons in Parkinson disease (PD). Alpha-synuclein (α-synuclein) is the major component of Lewy bodies and is a potential target for Parkinson's disease (PD) therapies. α-synuclein can be detected in the gastrointestinal (GI) nervous system, but whether there is any association between altered α-synuclein expression in the GI nervous system and the onset of PD is not known. The answer to this question presents the opportunity for a promising biomarker in the pre-clinical diagnosis of PD. As such, this study aimed to measure the α-synuclein level in the GI nervous system of Parkinson's disease patients.The protein levels of α-synuclein in the GI nervous system of 31 PD patients (PD group) and 32 patients without PD or Parkinsonism-plus syndrome (control group) were evaluated via immunohistochemical staining. The χ test was performed to evaluate the differences between the PD group and control group. In addition to the distribution of α-synuclein positive protein, regional distribution of the protein in the stomach was also evaluated across groups.Alpha synuclein overexpression was found in the GI nervous tissue of PD patients. The PD group included 17 positive results and 14 negative results. The control group exhibited 7 positive results and 24 negative results. The χ test showed that χ = 7.255, P = .01. The distribution of these positive cases in the gastrointestinal system, the χ test showed that P = .949. The 21 stomach tissues had 7 α-synuclein positive protein tissues, while the body of stomach (4 α-synuclein positive protein) was higher than in other regions.Aberrant expression of α-synuclein was detected in the GI tissues of PD patients, though the distribution of α-synuclein in the gastrointestinal tract had no specificity. Gastrointestinal mucous biopsy could be regarded as a potential opportunity for the early-stage diagnostic exploration of PD, through the detection of α-synuclein inclusions.
Collapse
Affiliation(s)
- Fudong Yan
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital
- Hospital of Fujian Shunchang
| | - Ying Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital
| | - Min Li
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital
| | - Yingqing Wang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital
| | - Wenmin Zhang
- Department of Pathology, School of Basic Medical Sciences
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
87
|
Jellinger KA. Is Braak staging valid for all types of Parkinson's disease? J Neural Transm (Vienna) 2018; 126:423-431. [PMID: 29943229 DOI: 10.1007/s00702-018-1898-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/20/2018] [Indexed: 11/27/2022]
Abstract
Braak et al. proposed that cases with Lewy pathology in the peripheral nervous sytem, spinal cord and brain stem are prodromal Parkinson's disease (PD), suggesting a hypothesized progression of PD pathology. However, the putative potential of peripheral α-synuclein to promote brain pathology has been questioned recently. The Braak staging is a matter of vigorous debate, since < 100% of cases with Lewy pathology fitting the proposed PD staging scheme; however, most studies assessing typical PD cases show that the vast majority (80-100%) fit the Braak staging scheme. Incidental Lewy body disease and PD can show Lewy pathology in substantia nigra or other brain areas without involvement of dorsal motor nucleus of the vagus nerve. The Braak staging system is valid for PD patients with young onset, long duration with motor symptoms, but not for others, e.g., late onset and rapid course PD. The validity of Braak staging and its relationship to various subtypes of PD warrants further studies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
88
|
Abstract
PURPOSE OF REVIEW The sense of smell is today one of the focuses of interest in aging and neurodegenerative disease research. In several neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease, the olfactory dysfunction is one of the initial symptoms appearing years before motor symptoms and cognitive decline, being considered a clinical marker of these diseases' early stages and a marker of disease progression and cognitive decline. Overall and under the umbrella of precision medicine, attention to olfactory function may help to improve chances of success for neuroprotective and disease-modifying therapeutic strategies. RECENT FINDINGS The use of olfaction, as clinical marker for neurodegenerative diseases is helpful in the characterization of prodromal stages of these diseases, early diagnostic strategies, differential diagnosis, and potentially prediction of treatment success. Understanding the mechanisms underlying olfactory dysfunction is central to determine its association with neurodegenerative disorders. Several anatomical systems and environmental factors may underlie or contribute to olfactory loss associated with neurological diseases, although the direct biological link to each disorder remains unclear and, thus, requires further investigation. In this review, we describe the neurobiology of olfaction, and the most common olfactory function measurements in neurodegenerative diseases. We also highlight the evidence for the presence of olfactory dysfunction in several neurodegenerative diseases, its value as a clinical marker for early stages of the diseases when combined with other clinical, biological, and neuroimage markers, and its role as a useful symptom for the differential diagnosis and follow-up of disease. The neuropathological correlations and the changes in neurotransmitter systems related with olfactory dysfunction in the neurodegenerative diseases are also described.
Collapse
|
89
|
Chartier S, Duyckaerts C. Is Lewy pathology in the human nervous system chiefly an indicator of neuronal protection or of toxicity? Cell Tissue Res 2018; 373:149-160. [PMID: 29869713 DOI: 10.1007/s00441-018-2854-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/04/2018] [Indexed: 11/30/2022]
Abstract
Misfolded α-synuclein accumulates in histological inclusions constituting "Lewy pathology" found in idiopathic Parkinson disease, Parkinson disease dementia and dementia with Lewy body. The mechanism inducing α-synuclein misfolding is still unknown. The misfolded molecules form oligomers that organize into fibrils. α-Synuclein fibrils, in vitro, are capable of initiating an auto-replicating process, transforming normal molecules into misfolded molecules that aggregate. Fibrils can cross the neuronal membrane and recruit α-synuclein molecules in connected neurons. Such properties of seeding and propagation, shared with prion proteins, belong to "tissular propagons". Lewy bodies isolate harmful species from the cytoplasm and have been thought to be protective. In PRKN gene mutations, however, the absence of Lewy bodies is not associated with a more aggressive course. In idiopathic Parkinson disease, the proportion of neurons with Lewy bodies in the substantia nigra remains stable despite the progression of neuronal loss. This stable proportion suggests that Lewy bodies are eliminated at the rate at which neurons are lost because Lewy bodies cause, or invariably accompany, neuronal loss. Experimentally, cellular death selectively occurs in inclusion-bearing neurons. This set of data indicates that α-synuclein misfolding is the essential mechanism causing the lesions of Parkinson disease and dementia with Lewy body. Lewy pathology is a direct and visible evidence of α-synuclein misfolding and, as such, is an accurate marker for assessing the presence of α-synuclein misfolding even if the inclusions themselves may not be as directly causative as the molecules they accumulate.
Collapse
Affiliation(s)
- Suzanne Chartier
- Escourolle Neuropathology Department, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, 47 Boulevard de l'Hopital, 75651, Paris Cedex 13, France
| | - Charles Duyckaerts
- Escourolle Neuropathology Department, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, 47 Boulevard de l'Hopital, 75651, Paris Cedex 13, France.
- Alzheimer-Prions Team, Brain and Spinal Cord Institute (ICM), Paris, France.
| |
Collapse
|
90
|
Knudsen K, Fedorova TD, Hansen AK, Sommerauer M, Otto M, Svendsen KB, Nahimi A, Stokholm MG, Pavese N, Beier CP, Brooks DJ, Borghammer P. In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case-control study. Lancet Neurol 2018; 17:618-628. [PMID: 29866443 DOI: 10.1016/s1474-4422(18)30162-5] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/26/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Accumulating evidence suggests that α-synuclein aggregates-a defining pathology of Parkinson's disease-display cell-to-cell transmission. α-synuclein aggregation is hypothesised to start in autonomic nerve terminals years before the appearance of motor symptoms, and subsequently spread via autonomic nerves to the spinal cord and brainstem. To assess this hypothesis, we investigated sympathetic, parasympathetic, noradrenergic, and dopaminergic innervation in patients with idiopathic rapid eye movement (REM) sleep behaviour disorder, a prodromal phenotype of Parkinson's disease. METHODS In this prospective, case-control study, we recruited patients with idiopathic REM sleep behaviour disorder, confirmed by polysomnography, without clinical signs of parkinsonism or dementia, via advertisement and through sleep clinics in Denmark. We used 11C-donepezil PET and CT to assess cholinergic (parasympathetic) gut innervation, 123I-metaiodobenzylguanidine (MIBG) scintigraphy to measure cardiac sympathetic innervation, neuromelanin-sensitive MRI to measure integrity of pigmented neurons of the locus coeruleus, 11C-methylreboxetine (MeNER) PET to assess noradrenergic nerve terminals originating in the locus coeruleus, and 18F-dihydroxyphenylalanine (DOPA) PET to assess nigrostriatal dopamine storage capacity. For each imaging modality, we compared patients with idiopathic REM sleep behaviour disorder with previously published reference data of controls without neurological disorders or cognitive impairment and with symptomatic patients with Parkinson's disease. We assessed imaging data using one-way ANOVA corrected for multiple comparisons. FINDINGS Between June 3, 2016, and Dec 19, 2017, we recruited 22 consecutive patients with idiopathic REM sleep behaviour disorder to the study. Compared with controls, patients with idiopathic REM sleep behaviour disorder had decreased colonic 11C-donepezil uptake (-0·322, 95% CI -0·112 to -0·531; p=0·0020), 123I-MIBG heart:mediastinum ratio (-0·508, -0·353 to -0·664; p<0·0001), neuromelanin-sensitive MRI locus coeruleus:pons ratio (-0·059, -0·019 to -0·099; p=0·0028), and putaminal 18F-DOPA uptake (Ki; -0·0023, -0·0009 to -0·0037; p=0·0013). No between-group differences were detected between idiopathic REM sleep behaviour disorder and Parkinson's disease groups with respect to 11C-donepezil (p=0·39), 123I-MIBG (p>0·99), neuromelanin-sensitive MRI (p=0·96), and 11C-MeNER (p=0·56). By contrast, 15 (71%) of 21 patients with idiopathic REM sleep behaviour disorder had 18F-DOPA Ki values within normal limits, whereas all patients with Parkinson's disease had significantly decreased 18F-DOPA Ki values when compared with patients with idiopathic REM sleep behaviour disorder (p<0·0001). INTERPRETATION Patients with idiopathic REM sleep behaviour disorder had fully developed pathology in the peripheral autonomic nervous system and the locus coeruleus, equal to that in diagnosed Parkinson's disease. These patients also showed noradrenergic thalamic denervation, but most had normal putaminal dopaminergic storage capacity. This caudorostral gradient of dysfunction supports the hypothesis that α-synuclein pathology in Parkinson's disease initially targets peripheral autonomic nerves and then spreads rostrally to the brainstem. FUNDING Lundbeck Foundation, Jascha Foundation, and the Swiss National Foundation.
Collapse
Affiliation(s)
- Karoline Knudsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Sommerauer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Marit Otto
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Adjmal Nahimi
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Morten G Stokholm
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Nicola Pavese
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Division of Neuroscience, Department of Medicine, Imperial College London, London, UK; Division of Neuroscience, Newcastle University, Newcastle, UK
| | - Christoph P Beier
- Southern University of Denmark, Department of Neurology, Odense, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Division of Neuroscience, Department of Medicine, Imperial College London, London, UK; Division of Neuroscience, Newcastle University, Newcastle, UK
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
91
|
Saito Y. DJ-1 as a Biomarker of Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1037:149-171. [PMID: 29147908 DOI: 10.1007/978-981-10-6583-5_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease is a progressive, age-related, neurodegenerative disorder, and oxidative stress is an important mediator in its pathogenesis. DJ-1 has been identified as a causative gene of a familial form of Parkinson's disease, PARK7, and plays a significant role in antioxidative defense, protecting cells from oxidative stress. A cysteine residue of DJ-1 at position 106 (Cys-106) is preferentially oxidized under oxidative stress. This reactive Cys-106 plays a critical role in the biological function of DJ-1, which could act as a sensor of oxidative stress by regulating antioxidative defense depending on Cys-106 oxidation. Thus, the levels of Cys-106-oxidized DJ-1 (oxDJ-1) could be a possible biomarker of oxidative stress. This chapter focuses on the properties of DJ-1 and oxDJ-1 levels as a biomarker of Parkinson's disease. In particular, the usability of these biomarkers to prevent and treat this neurodegenerative disease is discussed. Further, this section deals with the importance of identifying a biomarker of early-phase Parkinson's disease. Finally, this chapter summarizes the features of oxDJ-1 levels in the brain and blood as a biomarker candidate for early-phase Parkinson's disease based on our results using oxDJ-1-specific antibodies.
Collapse
Affiliation(s)
- Yoshiro Saito
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
92
|
Leija-Salazar M, Piette C, Proukakis C. Review: Somatic mutations in neurodegeneration. Neuropathol Appl Neurobiol 2018; 44:267-285. [PMID: 29369391 DOI: 10.1111/nan.12465] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/13/2018] [Indexed: 12/22/2022]
Abstract
Somatic mutations are postzygotic mutations which may lead to mosaicism, the presence of cells with genetic differences in an organism. Their role in cancer is well established, but detailed investigation in health and other diseases has only been recently possible. This has been empowered by the improvements of sequencing techniques, including single-cell sequencing, which can still be error-prone but is rapidly improving. Mosaicism appears relatively common in the human body, including the normal brain, probably arising in early development, but also potentially during ageing. In this review, we first discuss theoretical considerations and current evidence relevant to somatic mutations in the brain. We present a framework to explain how they may be integrated with current views on neurodegeneration, focusing mainly on sporadic late-onset neurodegenerative diseases (Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis). We review the relevant studies so far, with the first evidence emerging in Alzheimer's in particular. We also discuss the role of mosaicism in inherited neurodegenerative disorders, particularly somatic instability of tandem repeats. We summarize existing views and data to present a model whereby the time of origin and spatial distribution of relevant somatic mutations, combined with any additional risk factors, may partly determine the development and onset age of sporadic neurodegenerative diseases.
Collapse
Affiliation(s)
- M Leija-Salazar
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| | - C Piette
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| | - C Proukakis
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| |
Collapse
|
93
|
Isonaka R, Sullivan P, Jinsmaa Y, Corrales A, Goldstein DS. Spectrum of abnormalities of sympathetic tyrosine hydroxylase and alpha-synuclein in chronic autonomic failure. Clin Auton Res 2018; 28:223-230. [PMID: 29396794 DOI: 10.1007/s10286-017-0495-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Lewy body forms of primary chronic autonomic failure (CAF) such as incidental Lewy body disease (ILBD), Parkinson's disease (PD), and pure autonomic failure evolving into dementia with Lewy bodies (PAF+DLB) feature cardiac sympathetic denervation, whereas multiple system atrophy (MSA) in most cases does not. What links Lewy bodies with cardiac sympathetic denervation in CAF? In familial PD, abnormalities of the alpha-synuclein (AS) gene cause CAF and cardiac sympathetic denervation; and in sporadic PD, brainstem Lewy bodies contain AS co-localized with tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Cytotoxicity from AS deposition within sympathetic neurons might explain noradrenergic denervation in Lewy body forms of CAF. We used immunofluorescence microscopy (IM) to explore this possibility in sympathetic ganglia obtained at autopsy from CAF patients. METHODS Immunoreactive AS and TH were imaged in sympathetic ganglion tissue from 6 control subjects (2 with ILBD), 5 PD patients (1 with concurrent PSP), and 3 patients with CAF (2 PAF + DLB, 1 MSA). RESULTS MSA involved normal ganglionic TH and no AS deposition. In ILBD TH was variably decreased, and TH and AS were co-localized in Lewy bodies. In PD TH was substantially decreased, and TH and AS were co-localized in Lewy bodies. In PAF + DLB TH was virtually absent, but AS was present in Lewy bodies. The PD + PSP patient had AS co-localized with tau but not TH. CONCLUSIONS Sympathetic denervation and intraneuronal AS deposition are correlated across CAF syndromes, consistent with a pathogenic contribution of synucleinopathy to cardiac noradrenergic deficiency in Lewy body diseases.
Collapse
Affiliation(s)
- Risa Isonaka
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA
| | - Patti Sullivan
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA
| | - Yunden Jinsmaa
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA
| | - Abraham Corrales
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA
| | - David S Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA.
| |
Collapse
|
94
|
Coon EA, Cutsforth-Gregory JK, Benarroch EE. Neuropathology of autonomic dysfunction in synucleinopathies. Mov Disord 2018; 33:349-358. [DOI: 10.1002/mds.27186] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/30/2017] [Accepted: 09/10/2017] [Indexed: 12/16/2022] Open
|
95
|
Coon EA, Low PA. Thermoregulation in Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:715-725. [DOI: 10.1016/b978-0-444-64074-1.00043-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
96
|
Genoud S, Roberts BR, Gunn AP, Halliday GM, Lewis SJG, Ball HJ, Hare DJ, Double KL. Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson's disease brain. Metallomics 2017; 9:1447-1455. [PMID: 28944802 PMCID: PMC5647261 DOI: 10.1039/c7mt00244k] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Elevated iron and decreased copper levels are cardinal features of the degenerating substantia nigra pars compacta in the Parkinson's disease brain. Both of these redox-active metals, and fellow transition metals manganese and zinc, are found at high concentrations within the midbrain and participate in a range of unique biological reactions. We examined the total metal content and cellular compartmentalisation of manganese, iron, copper and zinc in the degenerating substantia nigra, disease-affected but non-degenerating fusiform gyrus, and unaffected occipital cortex in the post mortem Parkinson's disease brain compared with age-matched controls. An expected increase in iron and a decrease in copper concentration was isolated to the soluble cellular fraction, encompassing both interstitial and cytosolic metals and metal-binding proteins, rather than the membrane-associated or insoluble fractions. Manganese and zinc levels did not differ between experimental groups. Altered Fe and Cu levels were unrelated to Braak pathological staging in our cases of late-stage (Braak stage V and VI) disease. The data supports our hypothesis that regional alterations in Fe and Cu, and in proteins that utilise these metals, contribute to the regional selectively of neuronal vulnerability in this disorder.
Collapse
Affiliation(s)
- Sian Genoud
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Blaine R Roberts
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Adam P Gunn
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Glenda M Halliday
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. and Neuroscience Research Australia, Randwick, NSW 2031, Australia and School of Medical Sciences, University of New South Wales, NSW 2052, Australia
| | - Simon J G Lewis
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. and Healthy Brain Ageing Program, University of Sydney, NSW 2006, Australia and Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Helen J Ball
- Bosch Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Dominic J Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia. and Elemental Bio-imaging Facility, University of Technology Sydney, Broadway, NSW 2007, Australia and Department of Pathology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kay L Double
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
97
|
Kasanuki K, Heckman MG, Diehl NN, Murray ME, Koga S, Soto A, Ross OA, Dickson DW. Regional analysis and genetic association of nigrostriatal degeneration in Lewy body disease. Mov Disord 2017; 32:1584-1593. [PMID: 28949048 DOI: 10.1002/mds.27184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/21/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A number of genetic loci are associated with risk for Parkinson's disease (PD) based on genome-wide association studies; however, the relationship between genetic variants and nigrostriatal degeneration, which is the structural correlate of parkinsonism, has not been reported. OBJECTIVES We quantified nigrostriatal dopaminergic integrity with image analysis of putaminal tyrosine hydroxylase immunoreactivity in 492 brains with Lewy body disease and used this pathologic endophenotype to explore possible association with PD genetic variants. METHODS The study cases had Lewy-related pathology and variable degrees of nigrostriatal degeneration. They were assigned to one of the following clinical subgroups according to their predominant clinical syndrome: parkinsonism-predominant, parkinsonism+dementia, and dementia-predominant. In addition to putaminal tyrosine hydroxylase immunoreactivity, semiquantitative scoring was used to assess substantia nigra neuronal loss. A total of 29 PD genetic risk variants were genotyped on each case. RESULTS When compared with controls, tyrosine hydroxylase immunoreactivity was reduced in Lewy body cases in the dorsolateral (79%) and ventromedial (57%) putamen. The dorsolateral region was better preserved in dementia-predominant cases than in cases with parkinsonism. Dorsolateral putaminal tyrosine hydroxylase immunoreactivity correlated with neuronal loss in the ventrolateral substantia nigra. Genetic analyses showed no significant association of PD risk variants with putaminal tyrosine hydroxylase immunoreactivity. CONCLUSIONS The results confirm regional differences in putaminal dopaminergic degeneration and vulnerability of nigrostriatal pathway in Lewy body disorders with parkinsonism. The lack of association with PD genetic risk variants suggests that they may not be associated with quantitative endophenotypes of nigrostriatal degeneration, but more likely related to the risk of disease per se. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Nancy N Diehl
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Alexandra Soto
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
98
|
Betts MJ, Cardenas-Blanco A, Kanowski M, Jessen F, Düzel E. In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults. Neuroimage 2017; 163:150-159. [PMID: 28943414 DOI: 10.1016/j.neuroimage.2017.09.042] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
The locus coeruleus (LC), a major origin of noradrenergic projections in the central nervous system (CNS), may serve a critical role in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). As such, there is considerable interest to develop magnetic resonance imaging (MRI) techniques to assess the integrity of the LC in vivo. The high neuromelanin content of the LC serves as an endogenous contrast for MRI but existing protocols suffer from low spatial resolution along the rostrocaudal axis of the LC rendering it difficult to differentiate its integrity in caudal and rostral portions. This study presents a novel approach to investigate the human LC in vivo using T1-weighted Fast Low Angle Shot (FLASH) MRI at 3 T (T). Using high-resolution isotropic imaging to minimise the effect of low spatial resolution in the slice direction, this study aimed to characterise the rostrocaudal distribution of LC signal intensity attributed to neuromelanin from 25 young (22-30) and 57 older (61-80) adults. We found a significant age-related increase in maximum but not median signal intensity, indicating age-related differences were not homogenous. Instead, they were confined to the rostral third of the LC with relative sparing of the caudal portion. The findings presented demonstrate in vivo T1-weighted FLASH imaging may be used to characterise signal intensity changes across the entire rostrocaudal length of the LC (a corresponding standardised LC map is available for download), which may help to identify how the human LC is differentially affected in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | - Arturo Cardenas-Blanco
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Kanowski
- Department of Neurology, University Hospital of Magdeburg, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK
| |
Collapse
|
99
|
Nishida N, Yoshida K, Hata Y. Sudden unexpected death in early Parkinson's disease: neurogenic or cardiac death? Cardiovasc Pathol 2017; 30:19-22. [DOI: 10.1016/j.carpath.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 01/29/2023] Open
|
100
|
Olfactory Dysfunction as an Early Biomarker in Parkinson's Disease. Neurosci Bull 2017; 33:515-525. [PMID: 28831680 DOI: 10.1007/s12264-017-0170-x] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022] Open
Abstract
Olfactory dysfunction is common in Parkinson's disease (PD) and often predates the diagnosis by years, reflecting early deposition of Lewy pathology, the histologic hallmark of PD, in the olfactory bulb. Clinical tests are available that allow for the rapid characterization of olfactory dysfunction, including tests of odor identification, discrimination, detection, and recognition thresholds, memory, and tests assessing the build-up of odor intensity across increasing suprathreshold stimulus concentrations. The high prevalence of olfactory impairment, along with the ease and low cost of assessment, has fostered great interest in olfaction as a potential biomarker for PD. Hyposmia may help differentiate PD from other causes of parkinsonism, and may also aid in the identification of "pre-motor" PD due to the early pathologic involvement of olfactory pathways. Olfactory function is also correlated with other non-motor features of PD and may serve as a predictor of cognitive decline. In this article, we summarize the existing literature on olfaction in PD, focusing on the potential for olfaction as a biomarker for early or differential diagnosis and prognosis.
Collapse
|