51
|
Katsumata Y, Fardo DW, Shade LMP, Nelson PT. LATE-NC risk alleles (in TMEM106B, GRN, and ABCC9 genes) among persons with African ancestry. J Neuropathol Exp Neurol 2023; 82:760-768. [PMID: 37528055 PMCID: PMC10440720 DOI: 10.1093/jnen/nlad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy (LATE) affects approximately one-third of older individuals and is associated with cognitive impairment. However, there is a highly incomplete understanding of the genetic determinants of LATE neuropathologic changes (LATE-NC) in diverse populations. The defining neuropathologic feature of LATE-NC is TDP-43 proteinopathy, often with comorbid hippocampal sclerosis (HS). In terms of genetic risk factors, LATE-NC and/or HS are associated with single nucleotide variants (SNVs) in 3 genes-TMEM106B (rs1990622), GRN (rs5848), and ABCC9 (rs1914361 and rs701478). We evaluated these 3 genes in convenience samples of individuals of African ancestry. The allele frequencies of the LATE-associated alleles were significantly different between persons of primarily African (versus European) ancestry: In persons of African ancestry, the risk-associated alleles for TMEM106B and ABCC9 were less frequent, whereas the risk allele in GRN was more frequent. We performed an exploratory analysis of data from African-American subjects processed by the Alzheimer's Disease Genomics Consortium, with a subset of African-American participants (n = 166) having corroborating neuropathologic data through the National Alzheimer's Coordinating Center (NACC). In this limited-size sample, the ABCC9/rs1914361 SNV was associated with HS pathology. More work is required concerning the genetic factors influencing non-Alzheimer disease pathology such as LATE-NC in diverse cohorts.
Collapse
Affiliation(s)
- Yuriko Katsumata
- University of Kentucky Sanders-Brown Center on Aging, Lexington, Kentucky, USA
- University of Kentucky Department of Biostatistics, Lexington, Kentucky, USA
| | - David W Fardo
- University of Kentucky Sanders-Brown Center on Aging, Lexington, Kentucky, USA
- University of Kentucky Department of Biostatistics, Lexington, Kentucky, USA
| | - Lincoln M P Shade
- University of Kentucky Department of Biostatistics, Lexington, Kentucky, USA
| | - Peter T Nelson
- University of Kentucky Sanders-Brown Center on Aging, Lexington, Kentucky, USA
- University of Kentucky Department of Pathology and Laboratory Medicine, Lexington, Kentucky, USA
| |
Collapse
|
52
|
Wharton SB, Simpson JE, Ince PG, Richardson CD, Merrick R, Matthews FE, Brayne C. Insights into the pathological basis of dementia from population-based neuropathology studies. Neuropathol Appl Neurobiol 2023; 49:e12923. [PMID: 37462105 PMCID: PMC10946587 DOI: 10.1111/nan.12923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
The epidemiological neuropathology perspective of population and community-based studies allows unbiased assessment of the prevalence of various pathologies and their relationships to late-life dementia. In addition, this approach provides complementary insights to conventional case-control studies, which tend to be more representative of a younger clinical cohort. The Cognitive Function and Ageing Study (CFAS) is a longitudinal study of cognitive impairment and frailty in the general United Kingdom population. In this review, we provide an overview of the major findings from CFAS, alongside other studies, which have demonstrated a high prevalence of pathology in the ageing brain, particularly Alzheimer's disease neuropathological change and vascular pathology. Increasing burdens of these pathologies are the major correlates of dementia, especially neurofibrillary tangles, but there is substantial overlap in pathology between those with and without dementia, particularly at intermediate burdens of pathology and also at the oldest ages. Furthermore, additional pathologies such as limbic-predominant age-related TDP-43 encephalopathy, ageing-related tau astrogliopathy and primary age-related tauopathies contribute to late-life dementia. Findings from ageing population-representative studies have implications for the understanding of dementia pathology in the community. The high prevalence of pathology and variable relationship to dementia status has implications for disease definition and indicate a role for modulating factors on cognitive outcome. The complexity of late-life dementia, with mixed pathologies, indicates a need for a better understanding of these processes across the life-course to direct the best research for reducing risk in later life of avoidable clinical dementia syndromes.
Collapse
Affiliation(s)
- Stephen B. Wharton
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Julie E. Simpson
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Paul G. Ince
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | | | - Richard Merrick
- Cambridge Public Health, School of Clinical MedicineUniversity of CambridgeSheffieldUK
| | | | - Carol Brayne
- Cambridge Public Health, School of Clinical MedicineUniversity of CambridgeSheffieldUK
| | | |
Collapse
|
53
|
Nelson PT, Schneider JA, Jicha GA, Duong MT, Wolk DA. When Alzheimer's is LATE: Why Does it Matter? Ann Neurol 2023; 94:211-222. [PMID: 37245084 PMCID: PMC10516307 DOI: 10.1002/ana.26711] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/07/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Recent therapeutic advances provide heightened motivation for accurate diagnosis of the underlying biologic causes of dementia. This review focuses on the importance of clinical recognition of limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE affects approximately one-quarter of older adults and produces an amnestic syndrome that is commonly mistaken for Alzheimer's disease (AD). Although AD and LATE often co-occur in the same patients, these diseases differ in the protein aggregates driving neuropathology (Aβ amyloid/tau vs TDP-43). This review discusses signs and symptoms, relevant diagnostic testing, and potential treatment implications for LATE that may be helpful for physicians, patients, and families. ANN NEUROL 2023;94:211-222.
Collapse
Affiliation(s)
| | | | | | | | - David A. Wolk
- University of Pennsylvania Alzheimer’s Disease Research Center
| |
Collapse
|
54
|
Maioli H, Mittenzwei R, Shofer JB, Scherpelz KP, Marshall D, Nolan AL, Nelson PT, Keene CD, Latimer CS. Performance of a condensed protocol to assess limbic-predominant age-related TDP-43 encephalopathy neuropathologic change. J Neuropathol Exp Neurol 2023; 82:611-619. [PMID: 37195467 PMCID: PMC10280345 DOI: 10.1093/jnen/nlad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is a dementia-related proteinopathy common in the elderly population. LATE-NC stages 2 or 3 are consistently associated with cognitive impairment. A condensed protocol (CP) for the assessment of Alzheimer disease neuropathologic change and other disorders associated with cognitive impairment, recommended sampling of small brain portions from specific neuroanatomic regions that were consolidated, resulting in significant cost reduction. Formal evaluation of the CP for LATE-NC staging was not previously performed. Here, we determined the ability of the CP to identify LATE-NC stages 2 or 3. Forty brains donated to the University of Washington BioRepository and Integrated Neuropathology laboratory with known LATE-NC status were resampled. Slides containing brain regions required for LATE-NC staging were immunostained for phospho-TDP-43 and reviewed by 6 neuropathologists blinded to original LATE-NC diagnosis. Overall group performance distinguishing between LATE-NC stages 0-1 and 2-3 was 85% (confidence interval [CI]: 75%-92%). We also used the CP to evaluate LATE-NC in a hospital autopsy cohort, in which LATE-NC was more common in individuals with a history of cognitive impairment, older age, and/or comorbid hippocampal sclerosis. This study shows that the CP can effectively discriminate higher stages of LATE-NC from low or no LATE-NC and that it can be successfully applied in clinical practice using a single tissue block and immunostain.
Collapse
Affiliation(s)
- Heather Maioli
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Rhonda Mittenzwei
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jane B Shofer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
- Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Kathryn P Scherpelz
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Desiree Marshall
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Amber L Nolan
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - C Dirk Keene
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Caitlin S Latimer
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
55
|
Huang Z, Merrihew GE, Larson EB, Park J, Plubell D, Fox EJ, Montine KS, Latimer CS, Dirk Keene C, Zou JY, MacCoss MJ, Montine TJ. Brain proteomic analysis implicates actin filament processes and injury response in resilience to Alzheimer's disease. Nat Commun 2023; 14:2747. [PMID: 37173305 PMCID: PMC10182086 DOI: 10.1038/s41467-023-38376-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Resilience to Alzheimer's disease is an uncommon combination of high disease burden without dementia that offers valuable insights into limiting clinical impact. Here we assessed 43 research participants meeting stringent criteria, 11 healthy controls, 12 resilience to Alzheimer's disease and 20 Alzheimer's disease with dementia and analyzed matched isocortical regions, hippocampus, and caudate nucleus by mass spectrometry-based proteomics. Of 7115 differentially expressed soluble proteins, lower isocortical and hippocampal soluble Aβ levels is a significant feature of resilience when compared to healthy control and Alzheimer's disease dementia groups. Protein co-expression analysis reveals 181 densely-interacting proteins significantly associated with resilience that were enriched for actin filament-based processes, cellular detoxification, and wound healing in isocortex and hippocampus, further supported by four validation cohorts. Our results suggest that lowering soluble Aβ concentration may suppress severe cognitive impairment along the Alzheimer's disease continuum. The molecular basis of resilience likely holds important therapeutic insights.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gennifer E Merrihew
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jea Park
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Deanna Plubell
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Edward J Fox
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kathleen S Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - James Y Zou
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
| | - Thomas J Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
56
|
Butler Pagnotti RM, Pudumjee SB, Cross CL, Miller JB. Cognitive and Clinical Characteristics of Patients With Limbic-Predominant Age-Related TDP-43 Encephalopathy. Neurology 2023; 100:e2027-e2035. [PMID: 36941071 PMCID: PMC10186224 DOI: 10.1212/wnl.0000000000207159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/20/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Limbic-predominant age-related TDP-43 encephalopathy (LATE) affects similar neuroanatomical networks as Alzheimer disease (AD) and is often comorbid with AD, though frequently missed in clinical diagnosis. The primary aim of this study was to elucidate the clinical and cognitive differences at baseline between patients with autopsy-confirmed LATE and patients with AD and comorbid LATE + AD. METHODS Clinical and neuropathologic datasets were requested from the National Alzheimer Coordination Center. Baseline data from individuals older than 75 years during death without neuropathologic indication of frontotemporal lobar degeneration were included in analyses. Pathologically defined groups reflecting LATE, AD, and comorbid LATE + AD were identified. Group differences in clinical characteristics and cognition were explored through analysis of variance and the χ2 using measures from the Uniform Data Set measures. RESULTS Pathology groups included 31 individuals with LATE (mean age: 80.6 ± 5.4 years), 393 with AD (mean age: 77.8 ± 6.4 years), and 262 with LATE + AD (mean age: 77.8 ± 6.6 years) without significant differences in sex, education, or race. Compared with participants with AD and LATE + AD pathology, participants with LATE pathology lived significantly longer (mean visits: LATE = 7.3 ± 3.7; AD = 5.8 ± 3.0; and LATE + AD = 5.8 ± 3.0; F(2,683) = 3.7, p < 0.05), reported later onset of cognitive decline (mean onset: LATE = 78.8 ± 5.7; AD = 72.5 ± 7.0; and LATE + AD = 72.9 ± 7.0; F(2,516) = 6.2, p < 0.01), and were more likely to be diagnosed as cognitively normal at baseline (LATE = 41.9%; AD = 25.4%; and LATE + AD = 12%; χ2 = 38.7, p < 0.001). Individuals with LATE (45.2%) also reported fewer memory complaints than those with AD (74.4%) or LATE + AD (66.4%; χ2 = 13.3, p = 0.001) and were less likely to be classified as impaired on the Mini-Mental State Examination (LATE = 6.5%; AD = 24.2%; and LATE + AD = 40.1%; χ2 = 29.20, p < 0.001). Across all neuropsychological measures, participants with LATE + AD pathology performed significantly worse than the AD and LATE groups. DISCUSSION Those with LATE pathology were older when cognitive symptoms began and lived longer than participants with AD or LATE + AD pathology. Participants with LATE pathology were also more likely to be classified as "cognitively normal" based on objective screening and self-report measures, and they had higher scores on neuropsychological testing. Consistent with prior literature, comorbid pathologies led to more significant cognitive and functional impairment. Early disease characteristics based on clinical presentation alone were insufficient for differentiating LATE from AD, reiterating the need for a validated biomarker.
Collapse
Affiliation(s)
- Rachel M Butler Pagnotti
- From the Cleveland Clinic Lou Ruvo Center for Brain Health (R.M.B.P., S.B.P., J.B.M.), Las Vegas; and Department of Epidemiology & Biostatistics (C.L.C.), School of Public Health, University of Nevada, Las Vegas
| | - Shehroo B Pudumjee
- From the Cleveland Clinic Lou Ruvo Center for Brain Health (R.M.B.P., S.B.P., J.B.M.), Las Vegas; and Department of Epidemiology & Biostatistics (C.L.C.), School of Public Health, University of Nevada, Las Vegas
| | - Chad L Cross
- From the Cleveland Clinic Lou Ruvo Center for Brain Health (R.M.B.P., S.B.P., J.B.M.), Las Vegas; and Department of Epidemiology & Biostatistics (C.L.C.), School of Public Health, University of Nevada, Las Vegas
| | - Justin B Miller
- From the Cleveland Clinic Lou Ruvo Center for Brain Health (R.M.B.P., S.B.P., J.B.M.), Las Vegas; and Department of Epidemiology & Biostatistics (C.L.C.), School of Public Health, University of Nevada, Las Vegas.
| |
Collapse
|
57
|
Morrone CD, Raghuraman R, Hussaini SA, Yu WH. Proteostasis failure exacerbates neuronal circuit dysfunction and sleep impairments in Alzheimer's disease. Mol Neurodegener 2023; 18:27. [PMID: 37085942 PMCID: PMC10119020 DOI: 10.1186/s13024-023-00617-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Failed proteostasis is a well-documented feature of Alzheimer's disease, particularly, reduced protein degradation and clearance. However, the contribution of failed proteostasis to neuronal circuit dysfunction is an emerging concept in neurodegenerative research and will prove critical in understanding cognitive decline. Our objective is to convey Alzheimer's disease progression with the growing evidence for a bidirectional relationship of sleep disruption and proteostasis failure. Proteostasis dysfunction and tauopathy in Alzheimer's disease disrupts neurons that regulate the sleep-wake cycle, which presents behavior as impaired slow wave and rapid eye movement sleep patterns. Subsequent sleep loss further impairs protein clearance. Sleep loss is a defined feature seen early in many neurodegenerative disorders and contributes to memory impairments in Alzheimer's disease. Canonical pathological hallmarks, β-amyloid, and tau, directly disrupt sleep, and neurodegeneration of locus coeruleus, hippocampal and hypothalamic neurons from tau proteinopathy causes disruption of the neuronal circuitry of sleep. Acting in a positive-feedback-loop, sleep loss and circadian rhythm disruption then increase spread of β-amyloid and tau, through impairments of proteasome, autophagy, unfolded protein response and glymphatic clearance. This phenomenon extends beyond β-amyloid and tau, with interactions of sleep impairment with the homeostasis of TDP-43, α-synuclein, FUS, and huntingtin proteins, implicating sleep loss as an important consideration in an array of neurodegenerative diseases and in cases of mixed neuropathology. Critically, the dynamics of this interaction in the neurodegenerative environment are not fully elucidated and are deserving of further discussion and research. Finally, we propose sleep-enhancing therapeutics as potential interventions for promoting healthy proteostasis, including β-amyloid and tau clearance, mechanistically linking these processes. With further clinical and preclinical research, we propose this dynamic interaction as a diagnostic and therapeutic framework, informing precise single- and combinatorial-treatments for Alzheimer's disease and other brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
| | - Radha Raghuraman
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - S Abid Hussaini
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
58
|
Nicks R, Clement NF, Alvarez VE, Tripodis Y, Baucom ZH, Huber BR, Mez J, Alosco ML, Aytan N, Cherry JD, Cormier KA, Kubilius C, Mathias R, Svirsky SE, Pothast MJ, Hildebrandt AM, Chung J, Han X, Crary JF, McKee AC, Frosch MP, Stein TD. Repetitive head impacts and chronic traumatic encephalopathy are associated with TDP-43 inclusions and hippocampal sclerosis. Acta Neuropathol 2023; 145:395-408. [PMID: 36681782 PMCID: PMC11360224 DOI: 10.1007/s00401-023-02539-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Hippocampal sclerosis (HS) is associated with advanced age as well as transactive response DNA-binding protein with 43 kDa (TDP-43) deposits. Both hippocampal sclerosis and TDP-43 proteinopathy have also been described in chronic traumatic encephalopathy (CTE), a neurodegenerative disease linked to exposure to repetitive head impacts (RHI). However, the prevalence of HS in CTE, the pattern of TDP-43 pathology, and associations of HS and TDP-43 with RHI are unknown. A group of participants with a history of RHI and CTE at autopsy (n = 401) as well as a group with HS-aging without CTE (n = 33) was examined to determine the prevalence of HS and TDP-43 inclusions in CTE and to compare the clinical and pathological features of HS and TDP-43 inclusions in CTE to HS-aging. In CTE, HS was present in 23.4%, and TDP-43 inclusions were present in 43.3% of participants. HS in CTE occurred at a relatively young age (mean 77.0 years) and was associated with a greater number of years of RHI than CTE without HS adjusting for age (p = 0.029). In CTE, TDP-43 inclusions occurred frequently in the frontal cortex and occurred both with and without limbic TDP-43. Additionally, structural equation modeling demonstrated that RHI exposure years were associated with hippocampal TDP-43 inclusions (p < 0.001) through increased CTE stage (p < 0.001). Overall, RHI and the development of CTE pathology may contribute to TDP-43 deposition and hippocampal sclerosis.
Collapse
Affiliation(s)
- Raymond Nicks
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | - Nathan F Clement
- C.S. Kubik Laboratory for Neuropathology, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Services, Brooke Army Medical Center, Fort Sam Houston, San Antonio, TX, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Zachery H Baucom
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Nurgul Aytan
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Kerry A Cormier
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Carol Kubilius
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | - Rebecca Mathias
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | - Sarah E Svirsky
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | - Morgan J Pothast
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | | | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Xudong Han
- Boston University Bioinformatics Graduate Program, Boston, MA, USA
| | - John F Crary
- Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence and Human Health, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA.
- VA Boston Healthcare System, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
59
|
de Majo M, Koontz M, Marsan E, Salinas N, Ramsey A, Kuo YM, Seo K, Li H, Dräger N, Leng K, Gonzales SL, Kurnellas M, Miyaoka Y, Klim JR, Kampmann M, Ward ME, Huang EJ, Ullian EM. Granulin loss of function in human mature brain organoids implicates astrocytes in TDP-43 pathology. Stem Cell Reports 2023; 18:706-719. [PMID: 36827976 PMCID: PMC10031303 DOI: 10.1016/j.stemcr.2023.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
Loss of function (LoF) of TAR-DNA binding protein 43 (TDP-43) and mis-localization, together with TDP-43-positive and hyperphosphorylated inclusions, are found in post-mortem tissue of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, including those carrying LoF variants in the progranulin gene (GRN). Modeling TDP-43 pathology has been challenging in vivo and in vitro. We present a three-dimensional induced pluripotent stem cell (iPSC)-derived paradigm-mature brain organoids (mbOrg)-composed of cortical-like-astrocytes (iA) and neurons. When devoid of GRN, mbOrgs spontaneously recapitulate TDP-43 mis-localization, hyperphosphorylation, and LoF phenotypes. Mixing and matching genotypes in mbOrgs showed that GRN-/- iA are drivers for TDP-43 pathology. Finally, we rescued TDP-43 LoF by adding exogenous progranulin, demonstrating a link between TDP-43 LoF and progranulin expression. In conclusion, we present an iPSC-derived platform that shows striking features of human TDP-43 proteinopathy and provides a tool for the mechanistic modeling of TDP-43 pathology and patient-tailored therapeutic screening for FTD and ALS.
Collapse
Affiliation(s)
- Martina de Majo
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA; Synapticure Inc, Chicago, IL 60612, USA.
| | - Mark Koontz
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA; Synapticure Inc, Chicago, IL 60612, USA
| | - Elise Marsan
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nir Salinas
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Arren Ramsey
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kyounghee Seo
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Huinan Li
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nina Dräger
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Santiago L Gonzales
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Yuichiro Miyaoka
- Regenerative Medicine Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Erik M Ullian
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
60
|
Suemoto CK, Leite REP. Autopsy studies are key to identifying dementia cause. THE LANCET. HEALTHY LONGEVITY 2023; 4:e94-e95. [PMID: 36870340 DOI: 10.1016/s2666-7568(23)00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Affiliation(s)
- Claudia K Suemoto
- Division of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | - Renata E P Leite
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
61
|
Nichols E, Merrick R, Hay SI, Himali D, Himali JJ, Hunter S, Keage HAD, Latimer CS, Scott MR, Steinmetz JD, Walker JM, Wharton SB, Wiedner CD, Crane PK, Keene CD, Launer LJ, Matthews FE, Schneider J, Seshadri S, White L, Brayne C, Vos T. The prevalence, correlation, and co-occurrence of neuropathology in old age: harmonisation of 12 measures across six community-based autopsy studies of dementia. THE LANCET. HEALTHY LONGEVITY 2023; 4:e115-e125. [PMID: 36870337 PMCID: PMC9977689 DOI: 10.1016/s2666-7568(23)00019-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Population-based autopsy studies provide valuable insights into the causes of dementia but are limited by sample size and restriction to specific populations. Harmonisation across studies increases statistical power and allows meaningful comparisons between studies. We aimed to harmonise neuropathology measures across studies and assess the prevalence, correlation, and co-occurrence of neuropathologies in the ageing population. METHODS We combined data from six community-based autopsy cohorts in the US and the UK in a coordinated cross-sectional analysis. Among all decedents aged 80 years or older, we assessed 12 neuropathologies known to be associated with dementia: arteriolosclerosis, atherosclerosis, macroinfarcts, microinfarcts, lacunes, cerebral amyloid angiopathy, Braak neurofibrillary tangle stage, Consortium to Establish a Registry for Alzheimer's disease (CERAD) diffuse plaque score, CERAD neuritic plaque score, hippocampal sclerosis, limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and Lewy body pathology. We divided measures into three groups describing level of confidence (low, moderate, and high) in harmonisation. We described the prevalence, correlations, and co-occurrence of neuropathologies. FINDINGS The cohorts included 4354 decedents aged 80 years or older with autopsy data. All cohorts included more women than men, with the exception of one study that only included men, and all cohorts included decedents at older ages (range of mean age at death across cohorts 88·0-91·6 years). Measures of Alzheimer's disease neuropathological change, Braak stage and CERAD scores, were in the high confidence category, whereas measures of vascular neuropathologies were in the low (arterioloscerosis, atherosclerosis, cerebral amyloid angiopathy, and lacunes) or moderate (macroinfarcts and microinfarcts) categories. Neuropathology prevalence and co-occurrence was high (2443 [91%] of 2695 participants had more than one of six key neuropathologies and 1106 [41%] of 2695 had three or more). Co-occurrence was strongly but not deterministically associated with dementia status. Vascular and Alzheimer's disease features clustered separately in correlation analyses, and LATE-NC had moderate associations with Alzheimer's disease measures (eg, Braak stage ρ=0·31 [95% CI 0·20-0·42]). INTERPRETATION Higher variability and more inconsistency in the measurement of vascular neuropathologies compared with the measurement of Alzheimer's disease neuropathological change suggests the development of new frameworks for the measurement of vascular neuropathologies might be helpful. Results highlight the complexity and multi-morbidity of the brain pathologies that underlie dementia in older adults and suggest that prevention efforts and treatments should be multifaceted. FUNDING Gates Ventures.
Collapse
Affiliation(s)
- Emma Nichols
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.
| | - Richard Merrick
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | | | - Jayandra J Himali
- Framingham Heart Study, Framingham, MA, USA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sally Hunter
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Hannah A D Keage
- Cognitive Ageing and Impairment Neurosciences Lab, Justice and Society, University of South Australia, Adelaide, SA, Australia
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Matthew R Scott
- Framingham Heart Study, Framingham, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jaimie D Steinmetz
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mt Sinai, New York, NY, USA
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Crystal D Wiedner
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Fiona E Matthews
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Chicago, IL, USA; Rush University Medical Center, Chicago, IL, USA
| | - Sudha Seshadri
- Framingham Heart Study, Framingham, MA, USA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Lon White
- Pacific Health Research and Education Institute, Honolulu, HI, USA
| | - Carol Brayne
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Theo Vos
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| |
Collapse
|
62
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
63
|
Franco R, Serrano-Marín J. Can chronic therapeutic drug use by the elderly affect Alzheimer’s disease risk and rate of progression? EXPLORATION OF NEUROPROTECTIVE THERAPY 2023; 3:8-23. [DOI: 10.37349/ent.2023.00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/31/2023] [Indexed: 01/03/2025]
Abstract
There is no approved drug capable of halting the progression of the most prevalent neurodegenerative disorders, namely Alzheimer’s disease (AD) and Parkinson’s disease (PD). Current therapeutic strategies focus mainly on the inhibition of the formation of protein aggregates and their deposition in the central nervous system. However, after almost a hundred years, proper management of the disease is still lacking. The fact of not finding effective management tools in the various clinical trials already carried out suggests that new hypotheses and strategies should be explored. Although vast resources have been allocated to the investigation of protein aggregates and the pathophysiology is now better understood, clues to the actual etiology are lacking. It is well known that brain homeostasis is of paramount importance for the survival of neurons. Drugs that target the periphery are often not subject to evaluation for their potential effect on the central nervous system. While acute treatments may be irrelevant, pills used for chronic conditions can be detrimental to neurons, especially in terms of progressive damage leading to a long-term decline in neuronal survival. Due to the lack of advances in the search for a curative treatment for neurodegenerative diseases, and the lack of new hypotheses about their etiology, a novel hypothesis is here proposed. It consists of assuming that the effects of the drugs most commonly used by the elderly, such as antihypertensive, hypoglycemic, and hypocholesterolemic, could have a negative impact on neuronal survival.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; School of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
64
|
Nelson PT, Lee EB, Cykowski MD, Alafuzoff I, Arfanakis K, Attems J, Brayne C, Corrada MM, Dugger BN, Flanagan ME, Ghetti B, Grinberg LT, Grossman M, Grothe MJ, Halliday GM, Hasegawa M, Hokkanen SRK, Hunter S, Jellinger K, Kawas CH, Keene CD, Kouri N, Kovacs GG, Leverenz JB, Latimer CS, Mackenzie IR, Mao Q, McAleese KE, Merrick R, Montine TJ, Murray ME, Myllykangas L, Nag S, Neltner JH, Newell KL, Rissman RA, Saito Y, Sajjadi SA, Schwetye KE, Teich AF, Thal DR, Tomé SO, Troncoso JC, Wang SHJ, White CL, Wisniewski T, Yang HS, Schneider JA, Dickson DW, Neumann M. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol 2023; 145:159-173. [PMID: 36512061 PMCID: PMC9849315 DOI: 10.1007/s00401-022-02524-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA.
| | - Edward B Lee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Qinwen Mao
- University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Liisa Myllykangas
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | - Janna H Neltner
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA
| | | | | | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo, Japan
| | | | | | | | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, BostonBoston, MAMA, USA
| | | | | | | |
Collapse
|
65
|
Kawakatsu S, Kobayashi R, Morioka D, Hayashi H, Utsunomiya A, Kabasawa T, Ohe R, Futakuchi M, Otani K. Clinicopathological diversity of semantic dementia: Comparisons of patients with early-onset versus late-onset, left-sided versus right-sided temporal atrophy, and TDP-type A versus type C pathology. Neuropathology 2023; 43:5-26. [PMID: 36336915 DOI: 10.1111/neup.12859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
Semantic dementia (SD) is a unique clinicopathological entity associated with TDP-type C pathology. We present four cases of SD that illustrate the clinicopathological diversity of TDP-43 pathology, including early-onset cases of TDP-type C with corticospinal tract (CST) and motor neuron pathology and late-onset cases of TDP-type A with combined pathology. Case 1 was a 62-year-old man with semantic variant of primary progressive aphasia (svPPA) with left-predominant temporal atrophy and TDP-type C pathology with low Alzheimer's disease neuropathologic changes (ADNC). Case 2 was a 63-year-old woman with right-predominant temporal atrophy and TDP-type C pathology who had prosopagnosia and personality changes. Phosphorylated(p)-TDP-43-positive long dystrophic neurites (DNs) were observed throughout the cerebral cortex; they were more abundant in the relatively spared cortices and less so in the severely degenerated cortices. We observed CST degeneration with TDP-43 pathology in the upper and lower motor neurons, without apparent motor symptoms, in SD with TDP-type C pathology. Case 3 was a 76-year-old man who had svPPA and personality changes, with left-predominant temporal atrophy and TDP-type A pathology with high ADNC and argyrophilic grain (AG) stage 3. Case 4 was an 82-year-old man who had prosopagnosia and later developed symptoms of dementia with Lewy bodies (DLB) with right-predominant temporal atrophy and TDP-type A pathology with high ADNC, DLB of diffuse neocortical type, and AG stage 3. The distribution of p-TDP-43-positive NCIs and short DNs was localized in the anterior and inferior temporal cortices. An inverse relationship between the extent of TDP pathology and neuronal loss was also observed in SD with TDP-type A pathology. In contrast, the extent of AD, DLB, and AG pathology was greater in severely degenerated regions. CST degeneration was either absent or very mild in SD with TDP-type A. Understanding the clinicopathological diversity of SD will help improve its diagnosis and treatment.
Collapse
Affiliation(s)
- Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu City, Japan.,Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Daichi Morioka
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroshi Hayashi
- Department of Occupational Therapy, School of Health Sciences, Fukushima Medical University, Fukushima City, Japan
| | - Aya Utsunomiya
- Department of Pathology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takanobu Kabasawa
- Department of Pathology, Yamagata University School of Medicine, Yamagata, Japan
| | - Rintaro Ohe
- Department of Pathology, Yamagata University School of Medicine, Yamagata, Japan
| | - Mitsuru Futakuchi
- Department of Pathology, Yamagata University School of Medicine, Yamagata, Japan
| | - Koichi Otani
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
66
|
Irwin KE, Jasin P, Braunstein KE, Sinha I, Bowden KD, Moghekar A, Oh ES, Raitcheva D, Bartlett D, Berry JD, Traynor B, Ling JP, Wong PC. A fluid biomarker reveals loss of TDP-43 splicing repression in pre-symptomatic ALS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525202. [PMID: 36789434 PMCID: PMC9928052 DOI: 10.1101/2023.01.23.525202] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Loss of TAR DNA-binding protein 43 kDa (TDP-43) splicing repression is well-documented in postmortem tissues of amyotrophic lateral sclerosis (ALS), yet whether this abnormality occurs during early-stage disease remains unresolved. Cryptic exon inclusion reflects functional loss of TDP-43, and thus detection of cryptic exon-encoded peptides in cerebrospinal fluid (CSF) could reveal the earliest stages of TDP-43 dysregulation in patients. Here, we use a newly characterized monoclonal antibody specific to a TDP-43-dependent cryptic epitope (encoded by the cryptic exon found in HDGFL2) to show that loss of TDP-43 splicing repression occurs in C9ORF72-associated ALS, including pre-symptomatic mutation carriers. In contrast to neurofilament light and heavy chain proteins, cryptic HDGFL2 accumulates in CSF at higher levels during early stages of disease. Our findings indicate that loss of TDP-43 splicing repression occurs early in disease progression, even pre-symptomatically, and that detection of HDGFL2's cryptic neoepitope may serve as a prognostic test for ALS which should facilitate patient recruitment and measurement of target engagement in clinical trials.
Collapse
Affiliation(s)
- Katherine E. Irwin
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD 21205-2196, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD 21205-2196, USA
| | - Pei Jasin
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD 21205-2196, USA
| | | | - Irika Sinha
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD 21205-2196, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD 21205-2196, USA
| | - Kyra D. Bowden
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD 21205-2196, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD 21205-2196, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD 21205-2196, USA
| | - Esther S. Oh
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD 21205-2196, USA
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD 21205-2196, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD 21205-2196, USA
| | | | | | - James D. Berry
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bryan Traynor
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan P. Ling
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD 21205-2196, USA
| | - Philip C. Wong
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD 21205-2196, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD 21205-2196, USA
| |
Collapse
|
67
|
Walker JM, Richardson TE. Cognitive resistance to and resilience against multiple comorbid neurodegenerative pathologies and the impact of APOE status. J Neuropathol Exp Neurol 2023; 82:110-119. [PMID: 36458951 PMCID: PMC9852945 DOI: 10.1093/jnen/nlac115] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Alzheimer disease (AD) is currently the leading cause of cognitive decline and dementia worldwide. Recently, studies have suggested that other neurodegenerative comorbidities such as limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), Lewy body disease (LBD), and cerebrovascular disease frequently co-occur with Alzheimer disease neuropathologic change (ADNC) and may have significant cognitive effects both in isolation and synergistically with ADNC. Herein, we study the relative clinical impact of these multiple neurodegenerative pathologies in 704 subjects. Each of these pathologies is relatively common in the cognitively impaired population, while cerebrovascular pathology and ADNC are the most common in cognitively normal individuals. Moreover, while the number of concurrent neuropathologic entities rises with age and has a progressively deleterious effect on cognition, 44.3% of cognitively intact individuals are resistant to having any neurodegenerative proteinopathy (compared to 15.2% of cognitively impaired individuals) and 83.5% are resistant to having multiple concurrent proteinopathies (compared to 64.6% of cognitively impaired individuals). The presence of at least 1 APOE ε4 allele was associated with impaired cognition and the presence of multiple proteinopathies, while APOE ε2 was protective against cumulative proteinopathies. These results indicate that maintenance of normal cognition may depend on resistance to the development of multiple concurrent proteinopathies.
Collapse
Affiliation(s)
- Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
68
|
Paganini-Hill A, Montine TJ, Bukhari SA, Corrada MM, Kawas CH, Sajjadi SA. LATE and potential estrogen-related risk factors collected 30 years earlier: The 90+ Study. J Neuropathol Exp Neurol 2023; 82:120-126. [PMID: 36562637 PMCID: PMC9852944 DOI: 10.1093/jnen/nlac119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is a recently described neuropathological construct associated with dementia. This study aimed to investigate in an autopsy study, LATE-NC and its associations with potential estrogen-related risk factors collected about 30 years before death. Participants were part of The 90+ Study and had, as part of the Leisure World Cohort Study, provided information on menstrual and reproductive variables and details of use of estrogen replacement therapy (ERT). No menstrual and reproductive variable showed an association with LATE-NC. Use of ERT, especially long-term use (15+ years) and more recent use (within 1 year of completing the questionnaire), was associated with reduced risk. The odds were significantly lower for long-term (0.39, 95% confidence interval [CI]: 0.16-0.95) and recent use (0.39, 95% CI: 0.16-0.91) compared with no use. In conclusion, we found that women who reported long-term ERT in their 50s and 60s had a significantly reduced odds of harboring LATE-NC when they died in the 10th and 11th decades of their lives. Our study adds to the existing literature reporting seemingly protective effect of peri- and postmenopausal ERT against neurodegenerative dementia.
Collapse
Affiliation(s)
| | - Thomas J Montine
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - Syed A Bukhari
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - Maria M Corrada
- Department of Neurology, University of California, Irvine, California, USA
- Department of Epidemiology, University of California, Irvine, California, USA
| | - Claudia H Kawas
- Department of Neurology, University of California, Irvine, California, USA
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - S Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, California, USA
| |
Collapse
|
69
|
Multz RA, Spencer C, Matos A, Ajroud K, Zamudio C, Bigio E, Mao Q, Medeiros RA, Ahrendsen JT, Castellani RJ, Flanagan ME. What every neuropathologist needs to know: condensed protocol work-up for clinical dementia syndromes. J Neuropathol Exp Neurol 2023; 82:103-109. [PMID: 36458947 PMCID: PMC9852943 DOI: 10.1093/jnen/nlac114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Concerns about the costs associated with autopsy assessment of Alzheimer disease and related dementias according to 2012 NIA-AA Guidelines have been expressed since the publication of those guidelines. For this reason, we designed and validated a Condensed Protocol for the neuropathologic diagnoses of Alzheimer disease neuropathologic change, Lewy Body disease neuropathologic change, as well as chronic microvascular lesions, hippocampal sclerosis of aging, and cerebral amyloid angiopathy. In this study, the Condensed Protocol is updated to include frontotemporal lobar degeneration [FTLD] tau (corticobasal degeneration, progressive supranuclear palsy, and Pick disease), FTLD-TDP, and limbic-predominant, age-related TDP-43 encephalopathy. The same 20 brain regions are sampled and processed in 5 tissue cassettes, which reduces reagent costs by approximately 65%. Three board-certified neuropathologists were blinded to the original Northwestern University Alzheimer's Disease Research Center Original Protocol neuropathological diagnoses and all clinical history information. The results yielded near uniform agreement with the original comprehensive Alzheimer's Disease Research Center neuropathologic assessments. Diagnostic sensitivity was not impacted. In summary, our recent results show that our updated Condensed Protocol is also an accurate and less expensive alternative to the comprehensive protocols for the additional neuropathologic diagnoses of FTLD Tau and TDP43 proteinopathies.
Collapse
Affiliation(s)
- Rachel A Multz
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Callen Spencer
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arleen Matos
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kaouther Ajroud
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Carlos Zamudio
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Eileen Bigio
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Qinwen Mao
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | | | - Jared T Ahrendsen
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rudolph J Castellani
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Margaret E Flanagan
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
70
|
Ramírez-Salazar SA, MacRae C, Feany MB, Miller M, Yang HS, Meadows ME, McGinnis SM, Silbersweig D, Gale SA, Daffner KR. Case Study 6: The Diagnostic Challenge of a 75-Year-Old Man Who Had, Then Didn't Have, Then Did Have Alzheimer's Disease. J Neuropsychiatry Clin Neurosci 2023; 35:325-332. [PMID: 37840261 DOI: 10.1176/appi.neuropsych.20230097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Affiliation(s)
- Sergio A Ramírez-Salazar
- Departments of Neurology (Ramírez-Salazar, Yang, Meadows, McGinnis, Gale, Daffner) and Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (MacRae, Feany, Miller), Brigham and Women's Hospital, Harvard Medical School
| | - Cassie MacRae
- Departments of Neurology (Ramírez-Salazar, Yang, Meadows, McGinnis, Gale, Daffner) and Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (MacRae, Feany, Miller), Brigham and Women's Hospital, Harvard Medical School
| | - Mel B Feany
- Departments of Neurology (Ramírez-Salazar, Yang, Meadows, McGinnis, Gale, Daffner) and Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (MacRae, Feany, Miller), Brigham and Women's Hospital, Harvard Medical School
| | - Michael Miller
- Departments of Neurology (Ramírez-Salazar, Yang, Meadows, McGinnis, Gale, Daffner) and Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (MacRae, Feany, Miller), Brigham and Women's Hospital, Harvard Medical School
| | - Hyun-Sik Yang
- Departments of Neurology (Ramírez-Salazar, Yang, Meadows, McGinnis, Gale, Daffner) and Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (MacRae, Feany, Miller), Brigham and Women's Hospital, Harvard Medical School
| | - Mary-Ellen Meadows
- Departments of Neurology (Ramírez-Salazar, Yang, Meadows, McGinnis, Gale, Daffner) and Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (MacRae, Feany, Miller), Brigham and Women's Hospital, Harvard Medical School
| | - Scott M McGinnis
- Departments of Neurology (Ramírez-Salazar, Yang, Meadows, McGinnis, Gale, Daffner) and Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (MacRae, Feany, Miller), Brigham and Women's Hospital, Harvard Medical School
| | - David Silbersweig
- Departments of Neurology (Ramírez-Salazar, Yang, Meadows, McGinnis, Gale, Daffner) and Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (MacRae, Feany, Miller), Brigham and Women's Hospital, Harvard Medical School
| | - Seth A Gale
- Departments of Neurology (Ramírez-Salazar, Yang, Meadows, McGinnis, Gale, Daffner) and Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (MacRae, Feany, Miller), Brigham and Women's Hospital, Harvard Medical School
| | - Kirk R Daffner
- Departments of Neurology (Ramírez-Salazar, Yang, Meadows, McGinnis, Gale, Daffner) and Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (MacRae, Feany, Miller), Brigham and Women's Hospital, Harvard Medical School
| |
Collapse
|
71
|
Crary JF. Neurodegeneration: 2023 update. FREE NEUROPATHOLOGY 2023; 4:4-13. [PMID: 37694160 PMCID: PMC10484115 DOI: 10.17879/freeneuropathology-2023-4899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
This paper reviews ten highly impactful studies published in the previous year selected by the author from the neurodegenerative neuropathology literature. As in previous years, the focus is to highlight human tissue-based experimentation most relevant to neuropathologists. A concerted effort was made to balance the selected studies across disease categories, approaches, and methodologies to capture the breadth of the research landscape. Studies include an integrated proteomic and transcriptomic study of Alzheimer disease (AD) and new consensus diagnostic neuropathological criteria for progressive supranuclear palsy. A number of studies looking at TAR DNA-binding protein 43 (TDP-43) are highlighted. One examined interaction between AD and limbic age-related TDP-43 encephalopathy (LATE) and yet another demonstrated how TDP-43 represses cryptic exon inclusion in UNC13A, suggesting a novel pathogenic mechanism. Most surprisingly, three cryogenic electron microscopy (cryo-EM) studies showed that TMEM106B filaments form the core of TDP-43-positive inclusions. Cryo-EM revealed a prion protein amyloid structure from aggregates in Gerstmann-Sträussler-Scheinker disease. There was an elegant functional genomic study cataloging microglial gene expression in the human brain. A study shed light on how APOE influences chronic traumatic encephalopathy. A pathoanatomical study tested the dual hit hypothesis of Lewy body progression throughout the nervous system. And finally, deep learning continues to show its promise with application of a weakly supervised multiple instance learning paradigm to assess aging post-mortem brains.
Collapse
Affiliation(s)
- John F Crary
- Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
72
|
Calderón-Garcidueñas L, Torres-Jardón R, Greenough GP, Kulesza R, González-Maciel A, Reynoso-Robles R, García-Alonso G, Chávez-Franco DA, García-Rojas E, Brito-Aguilar R, Silva-Pereyra HG, Ayala A, Stommel EW, Mukherjee PS. Sleep matters: Neurodegeneration spectrum heterogeneity, combustion and friction ultrafine particles, industrial nanoparticle pollution, and sleep disorders-Denial is not an option. Front Neurol 2023; 14:1117695. [PMID: 36923490 PMCID: PMC10010440 DOI: 10.3389/fneur.2023.1117695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
Sustained exposures to ubiquitous outdoor/indoor fine particulate matter (PM2.5), including combustion and friction ultrafine PM (UFPM) and industrial nanoparticles (NPs) starting in utero, are linked to early pediatric and young adulthood aberrant neural protein accumulation, including hyperphosphorylated tau (p-tau), beta-amyloid (Aβ1 - 42), α-synuclein (α syn) and TAR DNA-binding protein 43 (TDP-43), hallmarks of Alzheimer's (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). UFPM from anthropogenic and natural sources and NPs enter the brain through the nasal/olfactory pathway, lung, gastrointestinal (GI) tract, skin, and placental barriers. On a global scale, the most important sources of outdoor UFPM are motor traffic emissions. This study focuses on the neuropathology heterogeneity and overlap of AD, PD, FTLD, and ALS in older adults, their similarities with the neuropathology of young, highly exposed urbanites, and their strong link with sleep disorders. Critical information includes how this UFPM and NPs cross all biological barriers, interact with brain soluble proteins and key organelles, and result in the oxidative, endoplasmic reticulum, and mitochondrial stress, neuroinflammation, DNA damage, protein aggregation and misfolding, and faulty complex protein quality control. The brain toxicity of UFPM and NPs makes them powerful candidates for early development and progression of fatal common neurodegenerative diseases, all having sleep disturbances. A detailed residential history, proximity to high-traffic roads, occupational histories, exposures to high-emission sources (i.e., factories, burning pits, forest fires, and airports), indoor PM sources (tobacco, wood burning in winter, cooking fumes, and microplastics in house dust), and consumption of industrial NPs, along with neurocognitive and neuropsychiatric histories, are critical. Environmental pollution is a ubiquitous, early, and cumulative risk factor for neurodegeneration and sleep disorders. Prevention of deadly neurological diseases associated with air pollution should be a public health priority.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT, United States.,Universidad del Valle de México, Mexico City, Mexico
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Glen P Greenough
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Randy Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | | | | | | | | | | | | | - Héctor G Silva-Pereyra
- Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosi, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA, United States.,Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
73
|
Leiby AMC, Scambray KA, Nguyen HL, Basith F, Fakhraee S, Melikyan ZA, Bukhari SA, Montine TJ, Corrada MM, Kawas CH, Sajjadi SA. Characterizing Limbic-Predominant Age-Related TDP-43 Encephalopathy Without Alzheimer's Disease and Lewy Body Dementia in the Oldest Old: A Case Series. J Alzheimers Dis 2023; 96:113-124. [PMID: 37742640 PMCID: PMC10615772 DOI: 10.3233/jad-230238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is a clinicopathological construct proposed to facilitate studying TDP-43 pathology in older individuals. OBJECTIVE Our aim was to describe clinical and cognitive characteristics of LATE-NC without Alzheimer's disease neuropathologic change (ADNC) and Lewy body (LB) and to compare this with ADNC and primary age related tauopathy (PART). METHODS In 364 autopsies of the oldest old of The 90+ Study, we identified those with LATE-NC without ADNC and LB. Control groups were participants with ADNC and PART. RESULTS Of 31% of participants who had LATE-NC, only 5 (1.4%) had LATE-NC without ADNC and LB, all of whom had tau. These participants had a gradual and progressive cognitive decline. Four (80%) had dementia at death, a rate that was higher than ADNC (50%) and PART (21.7%). Mean duration of cognitive impairment was twice as long in LATE-NC without ADNC and LB (6.2 years) compared to ADNC (2.9 years) and PART (3 years). LATE-NC without ADNC and LB group had a higher prevalence of syncope, depression, and extrapyramidal signs than the ADNC and PART groups. CONCLUSIONS Despite the high prevalence of LATE-NC, LATE-NC without ADNC and LB was rare in this large oldest-old cohort, highlighting the very high prevalence of multiple pathologic changes in the oldest old. Slowly progressive cognitive decline, ubiquitous memory impairment, history of syncope and depression, and extrapyramidal signs were prominent features among our LATE-NC without ADNC and LB group.
Collapse
Affiliation(s)
| | | | - Hannah L. Nguyen
- Department of Neurology, University of California, Irvine, CA, USA
| | - Farheen Basith
- Department of Neurology, University of California, Irvine, CA, USA
| | | | - Zarui A. Melikyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Syed A. Bukhari
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | | | - María M. Corrada
- Department of Neurology, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Claudia H. Kawas
- Department of Neurology, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Pathology, University of California, Irvine, CA, USA
| | - S. Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
74
|
Walker JM, Dehkordi SK, Schaffert J, Goette W, White CL, Richardson TE, Zare H. The Spectrum of Alzheimer-Type Pathology in Cognitively Normal Individuals. J Alzheimers Dis 2023; 91:683-695. [PMID: 36502330 PMCID: PMC11184733 DOI: 10.3233/jad-220898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The strongest risk factor for the development of Alzheimer's disease (AD) is age. The progression of Braak stage and Thal phase with age has been demonstrated. However, prior studies did not include cognitive status. OBJECTIVE We set out to define normative values for Alzheimer-type pathologic changes in individuals without cognitive decline, and then define levels that would qualify them to be resistant to or resilient against these changes. METHODS Utilizing neuropathology data obtained from the National Alzheimer's Coordinating Center (NACC), we demonstrate the age-related progression of Alzheimer-type pathologic changes in cognitively normal individuals (CDR = 0, n = 542). With plots generated from these data, we establish standard lines that may be utilized to measure the extent to which an individual's Alzheimer-type pathology varies from the estimated normal range of pathology. RESULTS Although Braak stage and Thal phase progressively increase with age in cognitively normal individuals, the Consortium to Establish a Registry for Alzheimer's Disease neuritic plaque score and Alzheimer's disease neuropathologic change remain at low levels. CONCLUSION These findings suggest that an increasing burden of neuritic plaques is a strong predictor of cognitive decline, whereas, neurofibrillary degeneration and amyloid-β (diffuse) plaque deposition, both to some degree, are normal pathologic changes of aging that occur in almost all individuals regardless of cognitive status. Furthermore, we have defined the amount of neuropathologic change in cognitively normal individuals that would qualify them to be "resilient" against the pathology (significantly above the normative values for age, but still cognitively normal) or "resistant" to the development of pathology (significantly below the normative values for age).
Collapse
Affiliation(s)
- Jamie M. Walker
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shiva Kazempour Dehkordi
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jeff Schaffert
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William Goette
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charles L. White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Timothy E. Richardson
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
75
|
Riku Y, Yoshida M, Iwasaki Y, Sobue G, Katsuno M, Ishigaki S. TDP-43 Proteinopathy and Tauopathy: Do They Have Pathomechanistic Links? Int J Mol Sci 2022; 23:ijms232415755. [PMID: 36555399 PMCID: PMC9779029 DOI: 10.3390/ijms232415755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Transactivation response DNA binding protein 43 kDa (TDP-43) and tau are major pathological proteins of neurodegenerative disorders, of which neuronal and glial aggregates are pathological hallmarks. Interestingly, accumulating evidence from neuropathological studies has shown that comorbid TDP-43 pathology is observed in a subset of patients with tauopathies, and vice versa. The concomitant pathology often spreads in a disease-specific manner and has morphological characteristics in each primary disorder. The findings from translational studies have suggested that comorbid TDP-43 or tau pathology has clinical impacts and that the comorbid pathology is not a bystander, but a part of the disease process. Shared genetic risk factors or molecular abnormalities between TDP-43 proteinopathies and tauopathies, and direct interactions between TDP-43 and tau aggregates, have been reported. Further investigations to clarify the pathogenetic factors that are shared by a broad spectrum of neurodegenerative disorders will establish key therapeutic targets.
Collapse
Affiliation(s)
- Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 744-8550, Japan
- Correspondence: or
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
| | - Yasushi Iwasaki
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
| | - Gen Sobue
- Graduate School of Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 744-8550, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya 744-8550, Japan
| | - Shinsuke Ishigaki
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan
| |
Collapse
|
76
|
Cho HJ, Schulz P, Venkataraman L, Caselli RJ, Sierks MR. Sex-Specific Multiparameter Blood Test for the Early Diagnosis of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232415670. [PMID: 36555310 PMCID: PMC9779188 DOI: 10.3390/ijms232415670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Blood-based biomarkers are needed for the early diagnosis of Alzheimer's disease (AD). We analyzed longitudinal human plasma samples from AD and control cases to identify biomarkers for the early diagnosis of AD. Plasma samples were grouped based on clinical diagnosis at the time of collection: AD, mild cognitive impairment (MCI), and pre-symptomatic (preMCI). Samples were analyzed by ELISA using a panel of reagents against nine different AD-related amyloid-β (Aβ), tau, or TDP-43 variants. Receiver operating characteristic (ROC) curves of different biomarker panels for different diagnostic sample groups were determined. Analysis of all of the samples gave a sensitivity of 92% and specificity of 76% for the diagnosis of AD. Early-stage diagnosis of AD, utilizing only the preMCI and MCI samples, identified 88% of AD cases. Using sex-biased biomarker panels, early diagnosis of AD cases improved to 96%. Using the sex-biased panels, we also identified 6 of the 25 control group cases as being at high risk of AD, which is consistent with what is expected given the advanced age of the control cases. Specific AD-associated protein variants are effective blood-based biomarkers for the early diagnosis of AD. Notably, significant differences were observed in biomarker profiles for the early detection of male and female AD cases.
Collapse
Affiliation(s)
- Hyung Joon Cho
- Department of Internal Medicine, The University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Philip Schulz
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Lalitha Venkataraman
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | | | - Michael R. Sierks
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
- Correspondence: ; Tel.: +1-480-965-2828; Fax: +1-480-727-9321
| |
Collapse
|
77
|
Gauthreaux K, Mock C, Teylan MA, Culhane JE, Chen YC, Chan KCG, Katsumata Y, Nelson PT, Kukull WA. Symptomatic Profile and Cognitive Performance in Autopsy-Confirmed Limbic-Predominant Age-Related TDP-43 Encephalopathy With Comorbid Alzheimer Disease. J Neuropathol Exp Neurol 2022; 81:975-987. [PMID: 36264254 PMCID: PMC9677237 DOI: 10.1093/jnen/nlac093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43) proteinopathy is the hallmark of limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC). LATE-NC is a common copathology with Alzheimer disease neuropathologic change (ADNC). Data from the National Alzheimer's Coordinating Center were analyzed to compare clinical features and copathologies of autopsy-confirmed ADNC with versus without comorbid LATE-NC. A total of 735 participants with ADNC alone and 365 with ADNC with LATE-NC were included. Consistent with prior work, brains with LATE-NC had more severe ADNC, more hippocampal sclerosis, and more brain arteriolosclerosis copathologies. Behavioral symptoms and cognitive performance on neuropsychological tests were compared, stratified by ADNC severity (low/intermediate vs high). Participants with ADNC and LATE-NC were older, had higher ADNC burden, and had worse cognitive performance than participants with ADNC alone. In the low/intermediate ADNC strata, participants with comorbid LATE-NC had higher prevalence of behavioral symptoms (apathy, disinhibition, agitation, personality change). They also had worsened performance in episodic memory and language/semantic memory. Differences narrowed in the high ADNC strata, with worsened performance in only episodic memory in the comorbid LATE-NC group. The co-occurrence of LATE-NC with ADNC is associated with a different pattern of behavioral and cognitive performance than ADNC alone, particularly in people with low/intermediate ADNC burden.
Collapse
Affiliation(s)
- Kathryn Gauthreaux
- From the Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Charles Mock
- From the Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Merilee A Teylan
- From the Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Jessica E Culhane
- From the Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Yen-Chi Chen
- From the Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Kwun C G Chan
- From the Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Division of Neuropathology, Department of Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Walter A Kukull
- From the Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
78
|
Nassif C, Kawles A, Ayala I, Minogue G, Gill NP, Shepard RA, Zouridakis A, Keszycki R, Zhang H, Mao Q, Flanagan ME, Bigio EH, Mesulam MM, Rogalski E, Geula C, Gefen T. Integrity of Neuronal Size in the Entorhinal Cortex Is a Biological Substrate of Exceptional Cognitive Aging. J Neurosci 2022; 42:8587-8594. [PMID: 36180225 PMCID: PMC9665923 DOI: 10.1523/jneurosci.0679-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Average aging is associated with a gradual decline of memory capacity. SuperAgers are humans ≥80 years of age who show exceptional episodic memory at least as good as individuals 20-30 years their junior. This study investigated whether neuronal integrity in the entorhinal cortex (ERC), an area critical for memory and selectively vulnerable to neurofibrillary degeneration, differentiated SuperAgers from cognitively healthy younger individuals, cognitively average peers ("Normal Elderly"), and individuals with amnestic mild cognitive impairment. Postmortem sections of the ERC were stained with cresyl violet to visualize neurons and immunostained with mouse monoclonal antibody PHF-1 to visualize neurofibrillary tangles. The cross-sectional area (i.e., size) of layer II and layer III/V ERC neurons were quantified. Two-thirds of total participants were female. Unbiased stereology was used to quantitate tangles in a subgroup of SuperAgers and Normal Elderly. Linear mixed-effect models were used to determine differences across groups. Quantitative measurements found that the soma size of layer II ERC neurons in postmortem brain specimens were significantly larger in SuperAgers compared with all groups (p < 0.05)-including younger individuals 20-30 years their junior (p < 0.005). SuperAgers had significantly fewer stereologically quantified Alzheimer's disease-related neurofibrillary tangles in layer II ERC than Normal Elderly (p < 0.05). This difference in tangle burden in layer II between SuperAgers and Normal Elderly suggests that tangle-bearing neurons may be prone to shrinkage during aging. The finding that SuperAgers show ERC layer II neurons that are substantially larger even compared with individuals 20-30 years younger is remarkable, suggesting that layer II ERC integrity is a biological substrate of exceptional memory in old age.SIGNIFICANCE STATEMENT Average aging is associated with a gradual decline of memory. Previous research shows that an area critical for memory, the entorhinal cortex (ERC), is susceptible to the early formation of Alzheimer's disease neuropathology, even during average (or typical) trajectories of aging. The Northwestern University SuperAging Research Program studies unique individuals known as SuperAgers, individuals ≥80 years old who show exceptional memory that is at least as good as individuals 20-30 years their junior. In this study, we show that SuperAgers harbor larger, healthier neurons in the ERC compared with their cognitively average same-aged peers, those with amnestic mild cognitive impairment, and - remarkably - even compared with individuals 20-30 years younger. We conclude that larger ERC neurons are a biological signature of the SuperAging trajectory.
Collapse
Affiliation(s)
- Caren Nassif
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Allegra Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Ivan Ayala
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Grace Minogue
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Nathan P Gill
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Robert A Shepard
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Antonia Zouridakis
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Rachel Keszycki
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Qinwen Mao
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - M-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
79
|
Katsumata Y, Shade LM, Hohman TJ, Schneider JA, Bennett DA, Farfel JM, Kukull WA, Fardo DW, Nelson PT. Multiple gene variants linked to Alzheimer's-type clinical dementia via GWAS are also associated with non-Alzheimer's neuropathologic entities. Neurobiol Dis 2022; 174:105880. [PMID: 36191742 PMCID: PMC9641973 DOI: 10.1016/j.nbd.2022.105880] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022] Open
Abstract
The classic pathologic hallmarks of Alzheimer's disease (AD) are amyloid plaques and neurofibrillary tangles (AD neuropathologic changes, or ADNC). However, brains from individuals clinically diagnosed with "AD-type" (amnestic) dementia usually harbor heterogeneous neuropathologies in addition to, or other than, ADNC. We hypothesized that some AD-type dementia associated genetic single nucleotide variants (SNVs) identified from large genomewide association studies (GWAS) were associated with non-ADNC neuropathologies. To test this hypothesis, we analyzed data from multiple studies with available genotype and neuropathologic phenotype information. Clinical AD/dementia risk alleles of interest were derived from the very large GWAS by Bellenguez et al. (2022) who reported 83 clinical AD/dementia-linked SNVs in addition to the APOE risk alleles. To query the pathologic phenotypes associated with variation of those SNVs, National Alzheimer's disease Coordinating Center (NACC) neuropathologic data were linked to AD Sequencing Project (ADSP) and AD Genomics Consortium (ADGC) data. Separate data were obtained from the harmonized Religious Orders Study and the Rush Memory and Aging Project (ROSMAP). A total of 4811 European participants had at least ADNC neuropathology data and also genotype data available; data were meta-analyzed across cohorts. As expected, a subset of dementia-associated SNVs were associated with ADNC risk in Europeans-e.g., BIN1, PICALM, CR1, MME, and COX7C. Other gene variants linked to (clinical) AD dementia were associated with non-ADNC pathologies. For example, the associations of GRN and TMEM106B SNVs with limbic-predominant age-related TDP-43 neuropathologic changes (LATE-NC) were replicated. In addition, SNVs in TNIP1 and WNT3 previously reported as AD-related were instead associated with hippocampal sclerosis pathology. Some genotype/neuropathology association trends were not statistically significant at P < 0.05 after correcting for multiple testing, but were intriguing. For example, variants in SORL1 and TPCN1 showed trends for association with LATE-NC whereas Lewy body pathology trended toward association with USP6NL and BIN1 gene variants. A smaller cohort of non-European subjects (n = 273, approximately one-half of whom were African-Americans) provided the basis for additional exploratory analyses. Overall, these findings were consistent with the hypothesis that some genetic variants linked to AD dementia risk exert their affect by influencing non-ADNC neuropathologies.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Lincoln M Shade
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie A Schneider
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jose M Farfel
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Walter A Kukull
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pathology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
80
|
Duong MT, Wolk DA. Limbic-Predominant Age-Related TDP-43 Encephalopathy: LATE-Breaking Updates in Clinicopathologic Features and Biomarkers. Curr Neurol Neurosci Rep 2022; 22:689-698. [PMID: 36190653 PMCID: PMC9633415 DOI: 10.1007/s11910-022-01232-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a recently defined neurodegenerative disease characterized by amnestic phenotype and pathological inclusions of TAR DNA-binding protein 43 (TDP-43). LATE is distinct from rarer forms of TDP-43 diseases such as frontotemporal lobar degeneration with TDP-43 but is also a common copathology with Alzheimer's disease (AD) and cerebrovascular disease and accelerates cognitive decline. LATE contributes to clinicopathologic heterogeneity in neurodegenerative diseases, so it is imperative to distinguish LATE from other etiologies. RECENT FINDINGS Novel biomarkers for LATE are being developed with magnetic resonance imaging (MRI) and positron emission tomography (PET). When cooccurring with AD, LATE exhibits identifiable patterns of limbic-predominant atrophy on MRI and hypometabolism on 18F-fluorodeoxyglucose PET that are greater than expected relative to levels of local AD pathology. Efforts are being made to develop TDP-43-specific radiotracers, molecularly specific biofluid measures, and genomic predictors of TDP-43. LATE is a highly prevalent neurodegenerative disease distinct from previously characterized cognitive disorders.
Collapse
Affiliation(s)
- Michael Tran Duong
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute On Aging, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
81
|
Stecker M. A Perspective: Challenges in Dementia Research. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1368. [PMID: 36295529 PMCID: PMC9609997 DOI: 10.3390/medicina58101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
Although dementia is a common and devastating disease that has been studied intensely for more than 100 years, no effective disease modifying treatment has been found. At this impasse, new approaches are important. The purpose of this paper is to provide, in the context of current research, one clinician's perspective regarding important challenges in the field in the form of specific challenges. These challenges not only illustrate the scope of the problems inherent in finding treatments for dementia, but can also be specific targets to foster discussion, criticism and new research. One common theme is the need to transform research activities from small projects in individual laboratories/clinics to larger multinational projects, in which each clinician and researcher works as an integral part. This transformation will require collaboration between researchers, large corporations, regulatory/governmental authorities and the general population, as well as significant financial investments. However, the costs of transforming the approach are small in comparison with the cost of dementia.
Collapse
Affiliation(s)
- Mark Stecker
- Fresno Institute of Neuroscience, Fresno, CA 93720, USA
| |
Collapse
|
82
|
Forrest SL, Wagner S, Kim A, Kovacs GG. Association of glial tau pathology and LATE-NC in the ageing brain. Neurobiol Aging 2022; 119:77-88. [DOI: 10.1016/j.neurobiolaging.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022]
|