51
|
Wang X, Li L, Wang H, Xiao F, Ning Q. Epoxyeicosatrienoic acids alleviate methionine‐choline‐deficient diet–induced non‐alcoholic steatohepatitis in mice. Scand J Immunol 2019; 90:e12791. [PMID: 31132306 DOI: 10.1111/sji.12791] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaojing Wang
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Lan Li
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Hongwu Wang
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Fang Xiao
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Qin Ning
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
52
|
Abis G, Charles RL, Kopec J, Yue WW, Atkinson RA, Bui TTT, Lynham S, Popova S, Sun YB, Fraternali F, Eaton P, Conte MR. 15-deoxy-Δ 12,14-Prostaglandin J 2 inhibits human soluble epoxide hydrolase by a dual orthosteric and allosteric mechanism. Commun Biol 2019; 2:188. [PMID: 31123712 PMCID: PMC6525171 DOI: 10.1038/s42003-019-0426-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/12/2019] [Indexed: 01/01/2023] Open
Abstract
Human soluble epoxide hydrolase (hsEH) is an enzyme responsible for the inactivation of bioactive epoxy fatty acids, and its inhibition is emerging as a promising therapeutical strategy to target hypertension, cardiovascular disease, pain and insulin sensitivity. Here, we uncover the molecular bases of hsEH inhibition mediated by the endogenous 15-deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2). Our data reveal a dual inhibitory mechanism, whereby hsEH can be inhibited by reversible docking of 15d-PGJ2 in the catalytic pocket, as well as by covalent locking of the same compound onto cysteine residues C423 and C522, remote to the active site. Biophysical characterisations allied with in silico investigations indicate that the covalent modification of the reactive cysteines may be part of a hitherto undiscovered allosteric regulatory mechanism of the enzyme. This study provides insights into the molecular modes of inhibition of hsEH epoxy-hydrolytic activity and paves the way for the development of new allosteric inhibitors.
Collapse
Affiliation(s)
- Giancarlo Abis
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
| | - Rebecca L. Charles
- School of Cardiovascular Medicine & Science, The Rayne Institute, Lambeth Wing, St Thomas’ Hospital, King’s College London, London, SE1 7EH UK
| | - Jolanta Kopec
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| | - Wyatt W. Yue
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| | - R. Andrew Atkinson
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
- Centre for Biomolecular Spectroscopy, King’s College London, London, SE1 1UL UK
| | - Tam T. T. Bui
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
- Centre for Biomolecular Spectroscopy, King’s College London, London, SE1 1UL UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, The James Black Centre, King’s College London, London, SE5 9NU UK
| | - Simona Popova
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
| | - Philip Eaton
- School of Cardiovascular Medicine & Science, The Rayne Institute, Lambeth Wing, St Thomas’ Hospital, King’s College London, London, SE1 7EH UK
| | - Maria R. Conte
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL UK
- Centre for Biomolecular Spectroscopy, King’s College London, London, SE1 1UL UK
| |
Collapse
|
53
|
Pogoda K, Kameritsch P, Mannell H, Pohl U. Connexins in the control of vasomotor function. Acta Physiol (Oxf) 2019; 225:e13108. [PMID: 29858558 DOI: 10.1111/apha.13108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells, as well as smooth muscle cells, show heterogeneity with regard to their receptor expression and reactivity. For the vascular wall to act as a functional unit, the various cells' responses require integration. Such an integration is not only required for a homogeneous response of the vascular wall, but also for the vasomotor behaviour of consecutive segments of the microvascular arteriolar tree. As flow resistances of individual sections are connected in series, sections require synchronization and coordination to allow effective changes of conductivity and blood flow. A prerequisite for the local coordination of individual vascular cells and different sections of an arteriolar tree is intercellular communication. Connexins are involved in a dual manner in this coordination. (i) By forming gap junctions between cells, they allow an intercellular exchange of signalling molecules and electrical currents. In particular, the spread of electrical currents allows for coordination of cell responses over longer distances. (ii) Connexins are able to interact with other proteins to form signalling complexes. In this way, they can modulate and integrate individual cells' responses also in a channel-independent manner. This review outlines mechanisms allowing the vascular connexins to exert their coordinating function and to regulate the vasomotor reactions of blood vessels both locally, and in vascular networks. Wherever possible, we focus on the vasomotor behaviour of small vessels and arterioles which are the main vessels determining vascular resistance, blood pressure and local blood flow.
Collapse
Affiliation(s)
- K. Pogoda
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
| | - P. Kameritsch
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
| | - H. Mannell
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
| | - U. Pohl
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich Germany
| |
Collapse
|
54
|
Gilad D, Atiya S, Mozes-Autmazgin Z, Ben-Shushan RS, Ben-David R, Amram E, Tamir S, Chuyun D, Szuchman-Sapir A. Paraoxonase 1 in endothelial cells impairs vasodilation induced by arachidonic acid lactone metabolite. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:386-393. [PMID: 30572120 DOI: 10.1016/j.bbalip.2018.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Paraoxonase 1 (PON1) is a high density lipoprotein (HDL)-associated lactonase, which is known for its antiatherogenic properties. Previous studies in PON1 knockout (PON1KO) mice revealed that PON1KO mice have low blood pressure, which is inversely correlated with the renal levels of the cytochrome P450 -derived arachidonic acid metabolite 5,6-epoxyeicosatrienoic acid (5,6-EET). Our previous studies revealed that 5,6-EET is unstable, transforming to the δ-lactone isomer 5,6-δ-DHTL, an endothelium-derived hyperpolarizing factor (EDHF) that mediates vasodilation, and it is a potential substrate for PON1. AIM To elucidate the role of PON1 in the modulation of vascular resistance via the regulation of the lactone-containing metabolite 5,6-δ-DHTL. RESULTS In mouse resistance arteries, PON1 was found to be present and active in the endothelial layer. Vascular reactivity experiments revealed that 5,6-δ-DHTL dose-dependently dilates PON1KO mouse mesenteric arteries significantly more than wild type (w.t.) resistance arteries. Pre-incubation with HDL or rePON1 reduced 5,6-δ-DHTL-dependent vasodilation. FACS analyses and confocal microscopy experiments revealed that fluorescence-tagged rePON1 penetrates into human endothelial cells' (ECs') in both dose- and time- dependent manner, accumulate in the perinuclear compartment, and retains its lactonase activity in the cells. The presence of rePON1, but not the presence of PON1 loss-of-lactonase-activity mutant, reduced the Ca2+ influx in the ECs mediated by 5,6-δ-DHTL. CONCLUSION PON1 lactonase activity in the endothelium affects vascular dilation by regulating Ca2+ influx mediated by the lactone-containing EDHF 5,6-δ-DHTL.
Collapse
Affiliation(s)
- Dan Gilad
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Shahar Atiya
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Ziv Mozes-Autmazgin
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel
| | - Rotem Shelly Ben-Shushan
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel
| | - Raz Ben-David
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Eytan Amram
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Snait Tamir
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | | | - Andrea Szuchman-Sapir
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel.
| |
Collapse
|
55
|
Zhou K, Parker JD. The role of vascular endothelium in nitroglycerin-mediated vasodilation. Br J Clin Pharmacol 2018; 85:377-384. [PMID: 30378151 DOI: 10.1111/bcp.13804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/23/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS Nitroglycerin (or glyceryl trinitrate, GTN) has been long considered an endothelium-independent vasodilator because GTN vasodilation is intact in the absence of the endothelium and in the presence of endothelial dysfunction. However, in animal and in vitro models, GTN has been shown to stimulate the release of certain endothelium-derived vasodilators such as nitric oxide (NO) and prostacyclin (PGI2 ). In addition, chronic GTN therapy leads to endothelial dysfunction. In this series of experiments, we explored how GTN might interact with the vascular endothelium in normal humans, without cardiovascular disease or risk factors associated with abnormalities in vascular function. METHODS We examined the effect of inhibition of NO, PGI2 , and epoxyeicosatrienoic acids (EETs, a class of endothelium-derived hyperpolarizing factor) on GTN-mediated vasodilation. We measured arterial blood flow responses to brachial artery infusions of GTN in the absence and presence of L-NMMA (n = 13), ketorolac (n = 14) and fluconazole (n = 16), which are inhibitors of endothelium-derived NO, PGI2 and EETs, respectively, in healthy volunteers. RESULTS Our results demonstrate that inhibition of endothelium-dependent vasodilator mechanisms does not alter forearm resistance vessel responses to GTN. CONCLUSION We conclude that GTN-mediated dilation of forearm resistance vessels is largely independent of vascular endothelium.
Collapse
Affiliation(s)
- Kangbin Zhou
- Department Pharmacology and Toxicology, the University of Toronto
| | - John D Parker
- Department Pharmacology and Toxicology, the University of Toronto.,Division of Cardiology, Department of Medicine, Sinai Health System and the Peter Munk Cardiac Centre, University Health Network, Toronto.,The Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto
| |
Collapse
|
56
|
Abstract
Therapeutics for arachidonic acid pathways began with the development of non-steroidal anti-inflammatory drugs that inhibit cyclooxygenase (COX). The enzymatic pathways and arachidonic acid metabolites and respective receptors have been successfully targeted and therapeutics developed for pain, inflammation, pulmonary and cardiovascular diseases. These drugs target the COX and lipoxygenase pathways but not the third branch for arachidonic acid metabolism, the cytochrome P450 (CYP) pathway. Small molecule compounds targeting enzymes and CYP epoxy-fatty acid metabolites have evolved rapidly over the last two decades. These therapeutics have primarily focused on inhibiting soluble epoxide hydrolase (sEH) or agonist mimetics for epoxyeicosatrienoic acids (EET). Based on preclinical animal model studies and human studies, major therapeutic indications for these sEH inhibitors and EET mimics/analogs are renal and cardiovascular diseases. Novel small molecules that inhibit sEH have advanced to human clinical trials and demonstrate promise for cardiovascular diseases. Challenges remain for sEH inhibitor and EET analog drug development; however, there is a high likelihood that a drug that acts on this third branch of arachidonic acid metabolism will be utilized to treat a cardiovascular or kidney disease in the next decade.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
57
|
Aliwarga T, Evangelista EA, Sotoodehnia N, Lemaitre RN, Totah RA. Regulation of CYP2J2 and EET Levels in Cardiac Disease and Diabetes. Int J Mol Sci 2018; 19:E1916. [PMID: 29966295 PMCID: PMC6073148 DOI: 10.3390/ijms19071916] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Cytochrome P450 2J2 (CYP2J2) is a known arachidonic acid (AA) epoxygenase that mediates the formation of four bioactive regioisomers of cis-epoxyeicosatrienoic acids (EETs). Although its expression in the liver is low, CYP2J2 is mainly observed in extrahepatic tissues, including the small intestine, pancreas, lung, and heart. Changes in CYP2J2 levels or activity by xenobiotics, disease states, or polymorphisms are proposed to lead to various organ dysfunctions. Several studies have investigated the regulation of CYP2J2 and EET formation in various cell lines and have demonstrated that such regulation is tissue-dependent. In addition, studies linking CYP2J2 polymorphisms to the risk of developing cardiovascular disease (CVD) yielded contradictory results. This review will focus on the mechanisms of regulation of CYP2J2 by inducers, inhibitors, and oxidative stress modeling certain disease states in various cell lines and tissues. The implication of CYP2J2 expression, polymorphisms, activity and, as a result, EET levels in the pathophysiology of diabetes and CVD will also be discussed.
Collapse
Affiliation(s)
- Theresa Aliwarga
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| | - Eric A Evangelista
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA 98195, USA.
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
- Division of Cardiology, University of Washington, Seattle, WA 98195, USA.
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA 98195, USA.
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| |
Collapse
|
58
|
|
59
|
Park SK, Herrnreiter A, Pfister SL, Gauthier KM, Falck BA, Falck JR, Campbell WB. GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells. J Biol Chem 2018; 293:10675-10691. [PMID: 29777058 DOI: 10.1074/jbc.ra117.001297] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
Endothelium-derived epoxyeicosatrienoic acids (EETs) have numerous vascular activities mediated by G protein-coupled receptors. Long-chain free fatty acids and EETs activate GPR40, prompting us to investigate the role of GPR40 in some vascular EET activities. 14,15-EET, 11,12-EET, arachidonic acid, and the GPR40 agonist GW9508 increase intracellular calcium concentrations in human GPR40-overexpressing HEK293 cells (EC50 = 0.58 ± 0.08 μm, 0.91 ± 0.08 μm, 3.9 ± 0.06 μm, and 19 ± 0.37 nm, respectively). EETs with cis- and trans-epoxides had similar activities, whereas substitution of a thiirane sulfur for the epoxide oxygen decreased the activities. 8,9-EET, 5,6-EET, and the epoxide hydrolysis products 11,12- and 14,15-dihydroxyeicosatrienoic acids were less active than 11,12-EET. The GPR40 antagonist GW1100 and siRNA-mediated GPR40 silencing blocked the EET- and GW9508-induced calcium increases. EETs are weak GPR120 agonists. GPR40 expression was detected in human and bovine endothelial cells (ECs), smooth muscle cells, and arteries. 11,12-EET concentration-dependently relaxed preconstricted coronary arteries; however, these relaxations were not altered by GW1100. In human ECs, 11,12-EET increased MAP kinase (MAPK)-mediated ERK phosphorylation, phosphorylation and levels of connexin-43 (Cx43), and expression of cyclooxygenase-2 (COX-2), all of which were inhibited by GW1100 and the MAPK inhibitor U0126. Moreover, siRNA-mediated GPR40 silencing decreased 11,12-EET-induced ERK phosphorylation. These results indicated that GPR40 is a low-affinity EET receptor in vascular cells and arteries. We conclude that epoxidation of arachidonic acid to EETs enhances GPR40 agonist activity and that 11,12-EET stimulation of GPR40 increases Cx43 and COX-2 expression in ECs via ERK phosphorylation.
Collapse
Affiliation(s)
- Sang-Kyu Park
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Anja Herrnreiter
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Sandra L Pfister
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Kathryn M Gauthier
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Benjamin A Falck
- the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - John R Falck
- the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - William B Campbell
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| |
Collapse
|
60
|
Li H, Kan H, He C, Zhang X, Yang Z, Jin J, Zhang P, Ma X. TRPV4 activates cytosolic phospholipase A 2 via Ca 2+ -dependent PKC/ERK1/2 signalling in controlling hypertensive contraction. Clin Exp Pharmacol Physiol 2018; 45:908-915. [PMID: 29701904 DOI: 10.1111/1440-1681.12959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/30/2023]
Abstract
Activation of TRPV4 (transient receptor potential vanilloid 4) has been reported to result in endothelium-dependent contraction in the aortae of hypertensive mice. This contraction involved increased cPLA2 (cytosolic phospholipase A2 ) activity. The mechanism by which TRPV4 regulates cPLA2 activity to induce contraction in hypertension, however, is unknown. Through measurements of arterial tension and protein level, we showed that high-salt diet induced hypertension increases activity of PKC (protein kinase C) and ERK1/2 (extracellular signal-regulated kinase 1/2). GSK1016790A, a TRPV4 agonist and ACh (acetylcholine) induced contractions were suppressed by Go6983, a PKC inhibitor and PD98059, an ERK1/2 inhibitor. TRPV4 activation increased activity of PKC and ERK1/2 in endothelial cells from hypertensive mice and this response was suppressed by HC067047, a TRPV4 inhibitor and BAPTA/AM, a Ca2+ chelator. PLA2 assay and western blotting showed that blocking of PKC or ERK1/2 inhibited TRPV4 or ACh-induced cPLA2 activity. Enzyme immunoassay showed that GSK1016790A or ACh triggered the release of PGF2α (prostaglandin F2α ) was reduced by inhibition of PKC or ERK1/2. These data further suggest Ca2+ /PKC/ERK1/2 axis as a novel mechanism for TRPV4 in the activation of cPLA2 in hypertension.
Collapse
Affiliation(s)
- Hongjuan Li
- School of Pharmaceutical Sciences and School of Medicine, Jiangnan University, Wuxi, China
| | - Hao Kan
- School of Pharmaceutical Sciences and School of Medicine, Jiangnan University, Wuxi, China
| | - Chao He
- Department of Emergency and Critical Care, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaodong Zhang
- School of Pharmaceutical Sciences and School of Medicine, Jiangnan University, Wuxi, China
| | - Zhenyu Yang
- Heart Centre, Wuxi People's Hospital, Wuxi, China
| | - Jian Jin
- School of Pharmaceutical Sciences and School of Medicine, Jiangnan University, Wuxi, China
| | - Peng Zhang
- School of Pharmaceutical Sciences and School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Ma
- School of Pharmaceutical Sciences and School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
61
|
Solanki M, Pointon A, Jones B, Herbert K. Cytochrome P450 2J2: Potential Role in Drug Metabolism and Cardiotoxicity. Drug Metab Dispos 2018; 46:1053-1065. [DOI: 10.1124/dmd.117.078964] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
|
62
|
Kumar H, Lee SH, Kim KT, Zeng X, Han I. TRPV4: a Sensor for Homeostasis and Pathological Events in the CNS. Mol Neurobiol 2018; 55:8695-8708. [PMID: 29582401 DOI: 10.1007/s12035-018-0998-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/07/2018] [Indexed: 01/22/2023]
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) was originally described as a calcium-permeable nonselective cation channel. TRPV4 is now recognized as a polymodal ionotropic receptor: it is a broadly expressed, nonselective cation channel (permeable to calcium, potassium, magnesium, and sodium) that plays an important role in a multitude of physiological processes. TRPV4 is involved in maintaining homeostasis, serves as an osmosensor and thermosensor, can be activated directly by endogenous or exogenous chemical stimuli, and can be activated or sensitized indirectly via intracellular signaling pathways. Additionally, TRPV4 is upregulated in a variety of pathological conditions. In this review, we focus on the role of TRPV4 in mediating homeostasis and pathological events in the central nervous system (CNS). This review is composed of three parts. Section 1 describes the role of TRPV4 in maintaining homeostatic processes, including the volume of body water, ionic concentrations, volume, and the temperature. Section 2 describes the effects of activation and inhibition of TRPV4 in the CNS. Section 3 focuses on the role of TRPV4 during pathological events in CNS.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University Hospital, 130, Dongdeok-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Inbo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
63
|
Increased epoxyeicosatrienoic acids may be part of a protective mechanism in human ulcerative colitis, with increased CYP2J2 and reduced soluble epoxide hydrolase expression. Prostaglandins Other Lipid Mediat 2018; 136:9-14. [PMID: 29580941 DOI: 10.1016/j.prostaglandins.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/15/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous preclinical evidence has suggested that the elevation of epoxyeicosatrienoic acids (EETs) derived from the cytochrome P450 (CYP) epoxygenases-dependent metabolism of arachidonic acid has important anti-inflammatory effects. However, the levels of EETs and their synthetic and metabolic enzymes in human ulcerative colitis has not been evaluated. METHOD To evaluate EETs and the expression of relevant CYP isoforms and the metabolizing enzyme, soluble epoxide hydrolase (sEH), tissue biopsies were collected from 16 pairs of ulcerative colitis patients' tissues and matched with adjacent non-inflamed tissues. EETs were extracted from tissue homogenates and analyzed by liquid chromatography coupled with tandem mass spectrometry. RESULTS The concentration of EETs was higher in ulcerative colitis tissues compared with matched adjacent non-inflamed tissues (1.91 ± 0.98 ng/mg vs. 0.96 ± 0.77 ng/mg, mean ± SD, P < 0.01). As shown by immunohistochemistry, sEH was present in the cytoplasm and intestinal mucosa and showed a decline in ulcerative colitis tissues compared with matched adjacent non-inflamed tissues. Western blot analyses showed reduced sEH expression in ulcerative colitis tissues compared with matched adjacent non-inflamed tissues, whereas CYP2J2 increased in ulcerative colitis tissues (P < 0.05). However, there was no statistically significant difference observed in CYP2C8 and CYP2C9 protein expression between them (P > 0.05). CONCLUSION Our data suggest that the increase in EET levels may be part of a protective mechanism in ulcerative colitis. Furthermore, the concentration of EETs could be a key factor for drug therapy for ulcerative colitis.
Collapse
|
64
|
Al-Ayed MSZ. Relaxant effect of ghrelin on guinea pig isolated tracheal smooth muscle: role of epithelial NO and PGE2. Pflugers Arch 2018; 470:949-958. [DOI: 10.1007/s00424-018-2126-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/14/2018] [Indexed: 12/27/2022]
|
65
|
Bukhari IA, Almotrefi AA, Mohamed OY, Al-Masri AA, Sheikh SA. Protective effect of fenofibrate against ischemia-/reperfusion-induced cardiac arrhythmias in isolated rat hearts. Fundam Clin Pharmacol 2018; 32:141-146. [DOI: 10.1111/fcp.12342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/06/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Ishfaq A. Bukhari
- Department of Pharmacology; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| | - Abdulrahman A. Almotrefi
- Department of Pharmacology; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| | - Osama Y. Mohamed
- Department of Pharmacology; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| | - Abeer A. Al-Masri
- Department of Physiology; Cardiovascular Research Group; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| | - Saeed A. Sheikh
- Department of Pharmacology; College of Medicine; King Saud University P. O. BOX 2454; Riyadh 11451 Saudi Arabia
| |
Collapse
|
66
|
Goto K, Ohtsubo T, Kitazono T. Endothelium-Dependent Hyperpolarization (EDH) in Hypertension: The Role of Endothelial Ion Channels. Int J Mol Sci 2018; 19:E315. [PMID: 29361737 PMCID: PMC5796258 DOI: 10.3390/ijms19010315] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/28/2022] Open
Abstract
Upon stimulation with agonists and shear stress, the vascular endothelium of different vessels selectively releases several vasodilator factors such as nitric oxide and prostacyclin. In addition, vascular endothelial cells of many vessels regulate the contractility of the vascular smooth muscle cells through the generation of endothelium-dependent hyperpolarization (EDH). There is a general consensus that the opening of small- and intermediate-conductance Ca2+-activated K⁺ channels (SKCa and IKCa) is the initial mechanistic step for the generation of EDH. In animal models and humans, EDH and EDH-mediated relaxations are impaired during hypertension, and anti-hypertensive treatments restore such impairments. However, the underlying mechanisms of reduced EDH and its improvement by lowering blood pressure are poorly understood. Emerging evidence suggests that alterations of endothelial ion channels such as SKCa channels, inward rectifier K⁺ channels, Ca2+-activated Cl- channels, and transient receptor potential vanilloid type 4 channels contribute to the impaired EDH during hypertension. In this review, we attempt to summarize the accumulating evidence regarding the pathophysiological role of endothelial ion channels, focusing on their relationship with EDH during hypertension.
Collapse
Affiliation(s)
- Kenichi Goto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Toshio Ohtsubo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
67
|
Evangelista EA, Lemaitre RN, Sotoodehnia N, Gharib SA, Totah RA. CYP2J2 Expression in Adult Ventricular Myocytes Protects Against Reactive Oxygen Species Toxicity. Drug Metab Dispos 2018; 46:380-386. [PMID: 29343610 DOI: 10.1124/dmd.117.078840] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450 2J2 isoform (CYP2J2) is a drug-metabolizing enzyme that is highly expressed in adult ventricular myocytes. It is responsible for the bioactivation of arachidonic acid (AA) into epoxyeicosatrienoic acids (EETs). EETs are biologically active signaling compounds that protect against disease progression, particularly in cardiovascular diseases. As a drug-metabolizing enzyme, CYP2J2 is susceptible to drug interactions that could lead to cardiotoxicity. CYP2J2 has been shown to be resistant to induction by canonical CYP inducers such as phenytoin and rifampin. It is, however, unknown how cellular stresses augment CYP2J2 expression. Here, we determine the effects of oxidative stress on gene expression in adult ventricular myocytes. Further, we assess the consequences of CYP2J2 inhibition and CYP2J2 silencing on cells when levels of reactive oxygen species (ROS) are elevated. Findings indicate that CYP2J2 expression increases in response to external ROS or when internal ROS levels are elevated. In addition, cell survival decreases with ROS exposure when CYP2J2 is chemically inhibited or when CYP2J2 expression is reduced using small interfering RNA. These effects are mitigated with external addition of EETs to the cells. Finally, we determined the results of external EETs on gene expression and show that only two of the four regioisomers cause an increase in HMOX1 expression. This work is the first to determine the consequence of cellular stress, specifically high ROS levels, on CYP2J2 expression in human ventricular myocytes and discusses how this enzyme may play an important role in response to cardiac oxidative stress.
Collapse
Affiliation(s)
- Eric A Evangelista
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| | - Rozenn N Lemaitre
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| | - Nona Sotoodehnia
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| | - Sina A Gharib
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| | - Rheem A Totah
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| |
Collapse
|
68
|
Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases. Pharmacol Ther 2017; 183:177-204. [PMID: 29080699 DOI: 10.1016/j.pharmthera.2017.10.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Numerous benefits have been attributed to dietary long-chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFAs), including protection against cardiac arrhythmia, triglyceride-lowering, amelioration of inflammatory, and neurodegenerative disorders. This review covers recent findings indicating that a variety of these beneficial effects are mediated by "omega-3 epoxyeicosanoids", a class of novel n-3 LC-PUFA-derived lipid mediators, which are generated via the cytochrome P450 (CYP) epoxygenase pathway. CYP enzymes, previously identified as arachidonic acid (20:4n-6; AA) epoxygenases, accept eicosapentaenoic acid (20:5n-3; EPA) and docosahexaenoic acid (22:6n-3; DHA), the major fish oil n-3 LC-PUFAs, as efficient alternative substrates. In humans and rodents, dietary EPA/DHA supplementation causes a profound shift of the endogenous CYP-eicosanoid profile from AA- to EPA- and DHA-derived metabolites, increasing, in particular, the plasma and tissue levels of 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP). Based on preclinical studies, these omega-3 epoxyeicosanoids display cardioprotective, vasodilatory, anti-inflammatory, and anti-allergic properties that contribute to the beneficial effects of n-3 LC-PUFAs in diverse disease conditions ranging from cardiac disease, bronchial disorders, and intraocular neovascularization, to allergic intestinal inflammation and inflammatory pain. Increasing evidence also suggests that background nutrition as well as genetic and disease state-related factors could limit the response to EPA/DHA-supplementation by reducing the formation and/or enhancing the degradation of omega-3 epoxyeicosanoids. Recently, metabolically robust synthetic analogs mimicking the biological activities of 17,18-EEQ have been developed. These drug candidates may overcome limitations of dietary EPA/DHA supplementation and provide novel options for the treatment of cardiovascular and inflammatory diseases.
Collapse
|
69
|
Zhang P, Sun C, Li H, Tang C, Kan H, Yang Z, Mao A, Ma X. TRPV4 (Transient Receptor Potential Vanilloid 4) Mediates Endothelium-Dependent Contractions in the Aortas of Hypertensive Mice. Hypertension 2017; 71:134-142. [PMID: 29109190 DOI: 10.1161/hypertensionaha.117.09767] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/06/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
The role of TRPV4 (transient receptor potential vanilloid 4) in regulating vascular contraction in hypertensive mice is poorly established. We tested the hypothesis that TRPV4 regulates endothelium-dependent contractions in aortas from hypertensive mice through the activation of cytosolic cPLA2 (phospholipase A2) and COX2 (cyclooxygenase 2) and identified the possible endothelium-derived contracting factor generated by COX2. Using myography, we demonstrated that GSK1016790A (a TRPV4 agonist) and acetylcholine (ACh) trigger endothelium-dependent contractions in aortas from hypertensive mice, and the contractions were abolished with TRPV4 deletion. PLA2 assay and Western blotting showed that cPLA2 activity was higher in salt-induced hypertension and HC067047 or a Ca2+ chelator inhibited cPLA2 activity. Contractions induced by TRPV4 and ACh were inhibited by the cPLA2 inhibitor or removal of extracellular Ca2+ COX2 expression was enhanced in the endothelium from hypertensive mice and contractions induced by TRPV4 or ACh were inhibited by the COX2 inhibitor. Enzyme immunoassay showed that the release of prostaglandin F2α (PGF2α) was increased in hypertensive mice. GSK1016790A or ACh triggered the release of PGF2α and this was inhibited by HC067047, the cPLA2 inhibitor, and COX2 inhibitor. GSK1016790A, ACh, and PGF2α induced contractions were significantly reduced by S18886 in salt-induced hypertensive mice. The present study demonstrates that PGF2α generated by COX2 in the endothelium is the most likely endothelium-derived contracting factor underlying endothelium-dependent, TRPV4-mediated contraction in hypertensive mice. This contraction involved increased intracellular Ca2+ concentrations and cPLA2 activity. These results suggested an important role of TRPV4 in endothelium-dependent contraction in mice during hypertension.
Collapse
Affiliation(s)
- Peng Zhang
- From the School of Medicine (P.Z., A.M., X.M.) and School of Pharmaceutical Sciences (C.S., H.L., C.T., H.K.), Jiangnan University, Wuxi, China; and Heart Centre, Wuxi People's Hospital, China (Z.Y.)
| | - Chunyuan Sun
- From the School of Medicine (P.Z., A.M., X.M.) and School of Pharmaceutical Sciences (C.S., H.L., C.T., H.K.), Jiangnan University, Wuxi, China; and Heart Centre, Wuxi People's Hospital, China (Z.Y.)
| | - Hongjuan Li
- From the School of Medicine (P.Z., A.M., X.M.) and School of Pharmaceutical Sciences (C.S., H.L., C.T., H.K.), Jiangnan University, Wuxi, China; and Heart Centre, Wuxi People's Hospital, China (Z.Y.)
| | - Chunlei Tang
- From the School of Medicine (P.Z., A.M., X.M.) and School of Pharmaceutical Sciences (C.S., H.L., C.T., H.K.), Jiangnan University, Wuxi, China; and Heart Centre, Wuxi People's Hospital, China (Z.Y.)
| | - Hao Kan
- From the School of Medicine (P.Z., A.M., X.M.) and School of Pharmaceutical Sciences (C.S., H.L., C.T., H.K.), Jiangnan University, Wuxi, China; and Heart Centre, Wuxi People's Hospital, China (Z.Y.)
| | - Zhenyu Yang
- From the School of Medicine (P.Z., A.M., X.M.) and School of Pharmaceutical Sciences (C.S., H.L., C.T., H.K.), Jiangnan University, Wuxi, China; and Heart Centre, Wuxi People's Hospital, China (Z.Y.)
| | - Aiqin Mao
- From the School of Medicine (P.Z., A.M., X.M.) and School of Pharmaceutical Sciences (C.S., H.L., C.T., H.K.), Jiangnan University, Wuxi, China; and Heart Centre, Wuxi People's Hospital, China (Z.Y.)
| | - Xin Ma
- From the School of Medicine (P.Z., A.M., X.M.) and School of Pharmaceutical Sciences (C.S., H.L., C.T., H.K.), Jiangnan University, Wuxi, China; and Heart Centre, Wuxi People's Hospital, China (Z.Y.).
| |
Collapse
|
70
|
Khaddaj Mallat R, Mathew John C, Kendrick DJ, Braun AP. The vascular endothelium: A regulator of arterial tone and interface for the immune system. Crit Rev Clin Lab Sci 2017; 54:458-470. [PMID: 29084470 DOI: 10.1080/10408363.2017.1394267] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the primary interface between the blood and various tissues of the body, the vascular endothelium exhibits a diverse range of roles and activities, all of which contribute to the overall health and function of the cardiovascular system. In this focused review, we discuss several key aspects of endothelial function, how this may be compromised and subsequent consequences. Specifically, we examine the dynamic regulation of arterial contractility and distribution of blood flow through the generation of chemical and electrical signaling events that impinge upon vascular smooth muscle. The endothelium can generate a diverse range of vasoactive compounds and signals, most of which act locally to adjust blood flow in a dynamic fashion to match tissue metabolism. Disruption of these vascular signaling processes (e.g. reduced nitric oxide bioavailability) is typically referred to as endothelial dysfunction, which is a recognized risk factor for cardiovascular disease in patients and occurs early in the development and progression of hypertension, atherosclerosis and tissue ischemia. Endothelial dysfunction is also associated with type-2 Diabetes and aging and increased mechanistic knowledge of the cellular changes contributing to these effects may provide important clues for interventional strategies. The endothelium also serves as the initial site of interaction for immune cells entering tissues in response to damage and acts to facilitate the actions of both the innate and acquired immune systems to interact with the vascular wall. In addition to representing the main cell type responsible for the formation of new blood vessels (i.e. angiogenesis) within the vasculature, the endothelium is also emerging as a source of extracellular vesicle or microparticles for the transport of signaling molecules and other cellular materials to nearby, or remote, sites in the body. The characteristics of released microparticles appear to change with the functional status of the endothelium; thus, these microparticles may represent novel biomarkers of endothelial health and more serious cardiovascular disease.
Collapse
Affiliation(s)
- Rayan Khaddaj Mallat
- a Department of Physiology and Pharmacology, Cumming School of Medicine , University of Calgary, and Libin Cardiovascular Institute of Alberta , Calgary , Canada
| | - Cini Mathew John
- a Department of Physiology and Pharmacology, Cumming School of Medicine , University of Calgary, and Libin Cardiovascular Institute of Alberta , Calgary , Canada
| | - Dylan J Kendrick
- a Department of Physiology and Pharmacology, Cumming School of Medicine , University of Calgary, and Libin Cardiovascular Institute of Alberta , Calgary , Canada
| | - Andrew P Braun
- a Department of Physiology and Pharmacology, Cumming School of Medicine , University of Calgary, and Libin Cardiovascular Institute of Alberta , Calgary , Canada
| |
Collapse
|
71
|
Abstract
Biologically active epoxyeicosatrienoic acid (EET) regioisomers are synthesized from arachidonic acid by cytochrome P450 epoxygenases of endothelial, myocardial, and renal tubular cells. EETs relax vascular smooth muscle and decrease inflammatory cell adhesion and cytokine release. Renal EETs promote sodium excretion and vasodilation to decrease hypertension. Cardiac EETs reduce infarct size after ischemia-reperfusion injury and decrease fibrosis and inflammation in heart failure. In diabetes, EETs improve insulin sensitivity, increase glucose tolerance, and reduce the renal injury. These actions of EETs emphasize their therapeutic potential. To minimize metabolic inactivation, 14,15-EET agonist analogs with stable epoxide bioisosteres and carboxyl surrogates were developed. In preclinical rat models, a subset of agonist analogs, termed EET-A, EET-B, and EET-C22, are orally active with good pharmacokinetic properties. These orally active EET agonists lower blood pressure and reduce cardiac and renal injury in spontaneous and angiotensin hypertension. Other beneficial cardiovascular actions include improved endothelial function and cardiac antiremodeling actions. In rats, EET analogs effectively combat acute and chronic kidney disease including drug- and radiation-induced kidney damage, hypertension and cardiorenal syndrome kidney damage, and metabolic syndrome and diabetes nephropathy. The compelling preclinical efficacy supports the prospect of advancing EET analogs to human clinical trials for kidney and cardiovascular diseases.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/administration & dosage
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- Administration, Oral
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/physiopathology
- Fatty Acids, Monounsaturated/administration & dosage
- Fatty Acids, Monounsaturated/chemistry
- Humans
- Hypertension/drug therapy
- Hypertension/physiopathology
- Kidney Diseases/drug therapy
- Kidney Diseases/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Structure-Activity Relationship
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- William B Campbell
- *Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI; and †Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | | |
Collapse
|
72
|
Redina OE, Abramova TO, Klimov LO, Ryazanova MA, Fedoseeva LA, Smolenskaya SE, Ershov NI, Dubinina AD, Markel AL. Soluble epoxide hydrolase (sEH) as a potential target for arterial hypertension therapy. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417080063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
73
|
Faulkner JL, Plenty NL, Wallace K, Amaral LM, Cunningham MW, Murphy S, LaMarca B. Selective inhibition of 20-hydroxyeicosatetraenoic acid lowers blood pressure in a rat model of preeclampsia. Prostaglandins Other Lipid Mediat 2017; 134:108-113. [PMID: 28951260 DOI: 10.1016/j.prostaglandins.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/01/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022]
Abstract
Little is currently known of the role(s) of the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE) in hypertensive pregnancies. We hypothesized that specific inhibition of 20-HETE would attenuate increases in blood pressure in the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. Specific 20-HETE synthesis inhibitor HET0016 (1mg/kg) was administered daily to RUPP rats from gestational days 14-18. Blood pressure (BP) increased in RUPP rats and was decreased with HET0016 administration. BP was unchanged in NP+HET0016 rats. Fetal death greatly increased in RUPP rats and was reduced in RUPP+HET0016 rats. 20-HETE levels increased modestly in RUPP rats compared to NP and was reduced in both NP+HET0016 and RUPP+HET0016 rats. Furthermore, circulating levels of HETEs, EET, and DHETE were significantly altered between groups. HET0016 shifted CYP metabolism toward EETs, as indicated by a decrease in plasma 20-HETE:EETs in RUPP+HET0016 rats compared to RUPP. In conclusion, 20-HETE inhibition in RUPP rats reduces BP and fetal death, and is associated with an increase in EET/20-HETE ratio.
Collapse
Affiliation(s)
- Jessica L Faulkner
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Nicole L Plenty
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Kedra Wallace
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Lorena M Amaral
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Mark W Cunningham
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Sydney Murphy
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA; Department of Obstetrics and Gynecology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
74
|
Structural determinants of 5',6'-epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. Sci Rep 2017; 7:10522. [PMID: 28874838 PMCID: PMC5585255 DOI: 10.1038/s41598-017-11274-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/22/2017] [Indexed: 11/08/2022] Open
Abstract
TRPV4 cation channel activation by cytochrome P450-mediated derivatives of arachidonic acid (AA), epoxyeicosatrienoic acids (EETs), constitute a major mechanisms of endothelium-derived vasodilatation. Besides, TRPV4 mechano/osmosensitivity depends on phospholipase A2 (PLA2) activation and subsequent production of AA and EETs. However, the lack of evidence for a direct interaction of EETs with TRPV4 together with claims of EET-independent mechanical activation of TRPV4 has cast doubts on the validity of this mechanism. We now report: 1) The identification of an EET-binding pocket that specifically mediates TRPV4 activation by 5',6'-EET, AA and hypotonic cell swelling, thereby suggesting that all these stimuli shared a common structural target within the TRPV4 channel; and 2) A structural insight into the gating of TRPV4 by a natural agonist (5',6'-EET) in which K535 plays a crucial role, as mutant TRPV4-K535A losses binding of and gating by EET, without affecting GSK1016790A, 4α-phorbol 12,13-didecanoate and heat mediated channel activation. Together, our data demonstrates that the mechano- and osmotransducing messenger EET gates TRPV4 by a direct action on a site formed by residues from the S2-S3 linker, S4 and S4-S5 linker.
Collapse
|
75
|
Matin N, Fisher C, Jackson WF, Diaz-Otero JM, Dorrance AM. Carotid artery stenosis in hypertensive rats impairs dilatory pathways in parenchymal arterioles. Am J Physiol Heart Circ Physiol 2017; 314:H122-H130. [PMID: 28842441 DOI: 10.1152/ajpheart.00638.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypertension is a leading risk factor for vascular cognitive impairment and is strongly associated with carotid artery stenosis. In normotensive rats, chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS) leads to cognitive impairment that is associated with impaired endothelium-dependent dilation in parenchymal arterioles (PAs). The aim of this study was to assess the effects of BCAS on PA function and structure in stroke-prone spontaneously hypertensive rats, a model of human essential hypertension. Understanding the effects of hypoperfusion on PAs in a hypertensive model could lead to the identification of therapeutic targets for cognitive decline in a model that reflects the at-risk population. We hypothesized that BCAS would impair endothelium-dependent dilation in PAs and induce artery remodeling compared with sham rats. PAs from BCAS rats had endothelial dysfunction, as assessed using pressure myography. Inhibition of nitric oxide and prostaglandin production had no effect on PA dilation in sham or BCAS rats. Surprisingly, inhibition of epoxyeicosatrienoic acid production increased dilation in PAs from BCAS rats but not from sham rats. Similar results were observed in the presence of inhibitors for all three dilatory pathways, suggesting that epoxygenase inhibition may have restored a nitric oxide/prostaglandin-independent dilatory pathway in PAs from BCAS rats. PAs from BCAS rats underwent remodeling with a reduced wall thickness. These data suggest that marked endothelial dysfunction in PAs from stroke-prone spontaneously hypertensive rats with BCAS may be associated with the development of vascular cognitive impairment. NEW & NOTEWORTHY The present study assessed the structure and function of parenchymal arterioles in a model of chronic cerebral hypoperfusion and hypertension, both of which are risk factors for cognitive impairment. We observed that impaired dilation and artery remodeling in parenchymal arterioles and abolished cerebrovascular reserve capacity may mediate cognitive deficits.
Collapse
Affiliation(s)
- Nusrat Matin
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Courtney Fisher
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Janice M Diaz-Otero
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
76
|
Bihzad SM, Yousif MHM. 11,12-Epoxyeicosatrienoic acid induces vasodilator response in the rat perfused mesenteric vasculature. ACTA ACUST UNITED AC 2017; 37:3-12. [PMID: 28332266 PMCID: PMC5396318 DOI: 10.1111/aap.12052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/23/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are endogenous ligands that undergo hydrolysis by soluble epoxide hydrolase (sEH). The responses of 11, 12‐EET in comparison with other vasodilator agonists including carbachol and sodium nitroprusside (SNP) were investigated. The effect of 1‐cyclohexyl‐3‐dodecyl urea (CDU), a sEH, was tested on the vasodilator effect induced by 11, 12‐EET in the perfused mesenteric beds isolated from normo‐glycaemic and type‐1 STZ‐diabetic rats. In the perfused mesenteric beds of control and diabetic animals, 11, 12‐EET produced vasodilation in a dose‐dependent manner. The vasodilator response induced by 11, 12‐EET was significantly decreased in tissues obtained from diabetic animals, but this was significantly corrected through inhibition of sEH. The effects of nitric oxide synthase inhibitor, cyclo‐oxygenase inhibitor, specific potassium channel inhibitors, soluble guanylyl cyclase inhibitor and transient receptor potential channel V4 inhibitor, on vasodilator response to 11, 12‐EET were investigated. In tissues isolated from control animals, vasodilator responses to 11, 12‐EET were not inhibited by acute incubation with l‐NAME, l‐NAME with indomethacin, glibenclamide, iberiotoxin, charybdotoxin, apamin or ODQ. Incubation with the transient receptor potential channel V4 inhibitor ruthenium red caused significantly reduced vasodilator responses induced by 11, 12‐EET. In conclusion, results from this study indicate that 11, 12‐EET has a vasodilator effect in the perfused mesenteric bed, partly through activation of vanilloid receptor. A strategy to elevate the levels of EETs may have a significant impact in correcting microvascular abnormality associated with diabetes.
Collapse
Affiliation(s)
- S M Bihzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - M H M Yousif
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
77
|
Radu BM, Osculati AMM, Suku E, Banciu A, Tsenov G, Merigo F, Di Chio M, Banciu DD, Tognoli C, Kacer P, Giorgetti A, Radu M, Bertini G, Fabene PF. All muscarinic acetylcholine receptors (M 1-M 5) are expressed in murine brain microvascular endothelium. Sci Rep 2017; 7:5083. [PMID: 28698560 PMCID: PMC5506046 DOI: 10.1038/s41598-017-05384-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022] Open
Abstract
Clinical and experimental studies indicate that muscarinic acetylcholine receptors are potential pharmacological targets for the treatment of neurological diseases. Although these receptors have been described in human, bovine and rat cerebral microvascular tissue, a subtype functional characterization in mouse brain endothelium is lacking. Here, we show that all muscarinic acetylcholine receptors (M1-M5) are expressed in mouse brain microvascular endothelial cells. The mRNA expression of M2, M3, and M5 correlates with their respective protein abundance, but a mismatch exists for M1 and M4 mRNA versus protein levels. Acetylcholine activates calcium transients in brain endothelium via muscarinic, but not nicotinic, receptors. Moreover, although M1 and M3 are the most abundant receptors, only a small fraction of M1 is present in the plasma membrane and functions in ACh-induced Ca2+ signaling. Bioinformatic analyses performed on eukaryotic muscarinic receptors demonstrate a high degree of conservation of the orthosteric binding site and a great variability of the allosteric site. In line with previous studies, this result indicates muscarinic acetylcholine receptors as potential pharmacological targets in future translational studies. We argue that research on drug development should especially focus on the allosteric binding sites of the M1 and M3 receptors.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy.,Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania
| | | | - Eda Suku
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania.,Engineering Faculty, Constantin Brancusi' University, Calea Eroilor 30, Targu Jiu, 210135, Romania
| | - Grygoriy Tsenov
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Flavia Merigo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Marzia Di Chio
- Department of Public Health and Community Medicine, University of Verona, Verona, 37134, Italy
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania
| | - Cristina Tognoli
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Petr Kacer
- National Institute of Mental Health, Klecany, 25067, Czech Republic
| | | | - Mihai Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy. .,Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, Reactorului 30, Magurele, 077125, Romania.
| | - Giuseppe Bertini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Paolo Francesco Fabene
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| |
Collapse
|
78
|
N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells. Nutrients 2017; 9:nu9070654. [PMID: 28672788 PMCID: PMC5537774 DOI: 10.3390/nu9070654] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022] Open
Abstract
N-3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n-3 PUFAs, increased in n-3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n-3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n-3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n-3 PUFAs may contribute to their cardio-protective effect.
Collapse
|
79
|
Abramova TO, Ryazanova MA, Antonov EV, Redina OE, Markel AL. Increase in the concentration of sEH protein in renal medulla of ISIAH rats with inherited stress-induced arterial hypertension. Mol Biol 2017. [DOI: 10.1134/s0026893317020029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
80
|
Fenofibrate Attenuates Hypertension in Goldblatt Hypertensive Rats: Role of 20-Hydroxyeicosatetraenoic Acid in the Nonclipped Kidney. Am J Med Sci 2017. [DOI: 10.1016/j.amjms.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
81
|
Gangadhariah MH, Dieckmann BW, Lantier L, Kang L, Wasserman DH, Chiusa M, Caskey CF, Dickerson J, Luo P, Gamboa JL, Capdevila JH, Imig JD, Yu C, Pozzi A, Luther JM. Cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids contribute to insulin sensitivity in mice and in humans. Diabetologia 2017; 60:1066-1075. [PMID: 28352940 PMCID: PMC5921930 DOI: 10.1007/s00125-017-4260-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Insulin resistance is frequently associated with hypertension and type 2 diabetes. The cytochrome P450 (CYP) arachidonic acid epoxygenases (CYP2C, CYP2J) and their epoxyeicosatrienoic acid (EET) products lower blood pressure and may also improve glucose homeostasis. However, the direct contribution of endogenous EET production on insulin sensitivity has not been previously investigated. In this study, we tested the hypothesis that endogenous CYP2C-derived EETs alter insulin sensitivity by analysing mice lacking CYP2C44, a major EET producing enzyme, and by testing the association of plasma EETs with insulin sensitivity in humans. METHODS We assessed insulin sensitivity in wild-type (WT) and Cyp2c44 -/- mice using hyperinsulinaemic-euglycaemic clamps and isolated skeletal muscle. Insulin secretory function was assessed using hyperglycaemic clamps and isolated islets. Vascular function was tested in isolated perfused mesenteric vessels. Insulin sensitivity and secretion were assessed in humans using frequently sampled intravenous glucose tolerance tests and plasma EETs were measured by mass spectrometry. RESULTS Cyp2c44 -/- mice showed decreased glucose tolerance (639 ± 39.5 vs 808 ± 37.7 mmol/l × min for glucose tolerance tests, p = 0.004) and insulin sensitivity compared with WT controls (hyperinsulinaemic clamp glucose infusion rate average during terminal 30 min 0.22 ± 0.02 vs 0.33 ± 0.01 mmol kg-1 min-1 in WT and Cyp2c44 -/- mice respectively, p = 0.003). Although glucose uptake was diminished in Cyp2c44 -/- mice in vivo (gastrocnemius Rg 16.4 ± 2.0 vs 6.2 ± 1.7 μmol 100 g-1 min-1, p < 0.01) insulin-stimulated glucose uptake was unchanged ex vivo in isolated skeletal muscle. Capillary density was similar but vascular KATP-induced relaxation was impaired in isolated Cyp2c44 -/- vessels (maximal response 39.3 ± 6.5% of control, p < 0.001), suggesting that impaired vascular reactivity produces impaired insulin sensitivity in vivo. Similarly, plasma EETs positively correlated with insulin sensitivity in human participants. CONCLUSIONS/INTERPRETATION CYP2C-derived EETs contribute to insulin sensitivity in mice and in humans. Interventions to increase circulating EETs in humans could provide a novel approach to improve insulin sensitivity and treat hypertension.
Collapse
Affiliation(s)
- Mahesha H Gangadhariah
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA
| | - Blake W Dieckmann
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Li Kang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Manuel Chiusa
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA
| | - Charles F Caskey
- Department of Radiologic Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jaime Dickerson
- Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, USA
| | - Pengcheng Luo
- Huangshi Central Hospital, Hubei Province, People's Republic of China
| | - Jorge L Gamboa
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jorge H Capdevila
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA
| | - John D Imig
- Department of Pharmacology and Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA.
- Department of Veterans Affairs, Nashville, TN, USA.
| | - James M Luther
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA.
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
82
|
Muñoz M, López-Oliva ME, Pinilla E, Martínez MP, Sánchez A, Rodríguez C, García-Sacristán A, Hernández M, Rivera L, Prieto D. CYP epoxygenase-derived H 2O 2 is involved in the endothelium-derived hyperpolarization (EDH) and relaxation of intrarenal arteries. Free Radic Biol Med 2017; 106:168-183. [PMID: 28212823 DOI: 10.1016/j.freeradbiomed.2017.02.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Accepted: 02/13/2017] [Indexed: 01/03/2023]
Abstract
Reactive oxygen species (ROS) like hydrogen peroxide (H2O2) are involved in the in endothelium-derived hyperpolarization (EDH)-type relaxant responses of coronary and mesenteric arterioles. The role of ROS in kidney vascular function has mainly been investigated in the context of harmful ROS generation associated to kidney disease. The present study was sought to investigate whether H2O2 is involved in the endothelium-dependent relaxations of intrarenal arteries as well the possible endothelial sources of ROS generation involved in these responses. Under conditions of cyclooxygenase (COX) and nitric oxide (NO) synthase inhibition, acetylcholine (ACh) induced relaxations and stimulated H2O2 release that were reduced by catalase and by the glutathione peroxidase (GPx) mimetic ebselen in rat renal interlobar arteries, suggesting the involvement of H2O2 in the endothelium-dependent responses. ACh relaxations were also blunted by the CYP2C inhibitor sulfaphenazole and by the NADPH oxidase inhibitor apocynin. Acetylcholine stimulated both superoxide (O2•-) and H2O2 production that were reduced by sulfaphenazole and apocynin. Expression of the antioxidant enzyme CuZnSOD and of the H2O2 reducing enzymes catalase and GPx-1 was found in both intrarenal arteries and renal cortex. On the other hand, exogenous H2O2 relaxed renal arteries by decreasing vascular smooth muscle (VSM) intracellular calcium concentration [Ca2+]i and markedly enhanced endothelial KCa currents in freshly isolated renal endothelial cells. CYP2C11 and CYP2C23 epoxygenases were highly expressed in interlobar renal arteries and renal cortex, respectively, and were co-localized with eNOS in renal endothelial cells. These results demonstrate that H2O2 is involved in the EDH-type relaxant responses of renal arteries and that CYP 2C epoxygenases are physiologically relevant endothelial sources of vasodilator H2O2 in the kidney.
Collapse
Affiliation(s)
- Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Maria Elvira López-Oliva
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Estéfano Pinilla
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - María Pilar Martínez
- Departamento de Anatomía and Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain.
| |
Collapse
|
83
|
Gonzalez Bosc LV, Osmond JM, Giermakowska WK, Pace CE, Riggs JL, Jackson-Weaver O, Kanagy NL. NFAT regulation of cystathionine γ-lyase expression in endothelial cells is impaired in rats exposed to intermittent hypoxia. Am J Physiol Heart Circ Physiol 2017; 312:H791-H799. [PMID: 28130342 PMCID: PMC5407154 DOI: 10.1152/ajpheart.00952.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/26/2022]
Abstract
Sleep apnea is a risk factor for cardiovascular disease, and intermittent hypoxia (IH, 20 episodes/h of 5% O2-5% CO2 for 7 h/day) to mimic sleep apnea increases blood pressure and impairs hydrogen sulfide (H2S)-induced vasodilation in rats. The enzyme that produces H2S, cystathionine γ-lyase (CSE), is decreased in rat mesenteric artery endothelial cells (EC) following in vivo IH exposure. In silico analysis identified putative nuclear factor of activated T cell (NFAT) binding sites in the CSE promoter. Therefore, we hypothesized that IH exposure reduces Ca2+ concentration ([Ca2+]) activation of calcineurin/NFAT to lower CSE expression and impair vasodilation. In cultured rat aortic EC, inhibiting calcineurin with cyclosporine A reduced CSE mRNA, CSE protein, and luciferase activity driven by a full-length but not a truncated CSE promoter. In male rats exposed to sham or IH conditions for 2 wk, [Ca2+] in EC in small mesenteric arteries from IH rats was lower than in EC from sham rat arteries (Δfura 2 ratio of fluorescence at 340 to 380 nm from Ca2+ free: IH = 0.05 ± 0.02, sham = 0.17 ± 0.03, P < 0.05), and fewer EC were NFATc3 nuclear positive in IH rat arteries than in sham rat arteries (IH = 13 ± 3, sham = 59 ± 11%, P < 0.05). H2S production was also lower in mesenteric tissue from IH rats vs. sham rats. Endothelium-dependent vasodilation to acetylcholine (ACh) was lower in mesenteric arteries from IH rats than in arteries from sham rats, and inhibiting CSE with β-cyanoalanine diminished ACh-induced vasodilation in arteries from sham but not IH rats but did not affect dilation to the H2S donor NaHS. Thus, IH lowers EC [Ca2+], NFAT activity, CSE expression and activity, and H2S production while inhibiting NFAT activation lowers CSE expression. The observations that IH exposure decreases NFATc3 activation and CSE-dependent vasodilation support a role for NFAT in regulating endothelial H2S production.NEW & NOTEWORTHY This study identifies the calcium-regulated transcription factor nuclear factor of activated T cells as a novel regulator of cystathionine γ-lyase (CSE). This pathway is basally active in mesenteric artery endothelial cells, but, after exposure to intermittent hypoxia to mimic sleep apnea, nuclear factor of activated T cells c3 nuclear translocation and CSE expression are decreased, concomitant with decreased CSE-dependent vasodilation.
Collapse
Affiliation(s)
- Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jessica M Osmond
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Wieslawa K Giermakowska
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Carolyn E Pace
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jennifer L Riggs
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Olan Jackson-Weaver
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nancy L Kanagy
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
84
|
Abstract
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gregory M Dick
- California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, Lafayette, IN
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
85
|
Inhibition and inactivation of human CYP2J2: Implications in cardiac pathophysiology and opportunities in cancer therapy. Biochem Pharmacol 2017; 135:12-21. [PMID: 28237650 DOI: 10.1016/j.bcp.2017.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
Extrahepatic cytochrome P450 enzymes (CYP450) are pivotal in the metabolism of endogenous substrates and xenobiotics. CYP2J2 is a major cardiac CYP450 and primarily metabolizes polyunsaturated fatty acids such as arachidonic acid to cardioactive epoxyeicosatrienoic acids. Due to its role in endobiotic metabolism, CYP2J2 has been actively studied in recent years with the focus on its biological functions in cardiac pathophysiology. Additionally, CYP2J2 metabolizes a number of xenobiotics such as astemizole and terfenadine and is potently inhibited by danazol and telmisartan. Notably, CYP2J2 is found to be upregulated in multiple cancers. Hence a number of specific CYP2J2 inhibitors have been developed and their efficacy in inhibiting tumor progression has been actively studied. CYP2J2 inhibitor such as C26 (1-[4-(vinyl)phenyl]-4-[4-(diphenyl-hydroxymethyl)-piperidinyl]-butanone hydrochloride) caused marked reduction in tumor proliferation and migration as well as promoted apoptosis in cancer cells. In this review, we discuss the role of CYP2J2 in cardiac pathophysiology and cancer therapeutics. Additionally, we provide an update on the substrates, reversible inhibitors and irreversible inhibitors of CYP2J2. Finally, we discuss the current gaps and future directions in CYP2J2 research.
Collapse
|
86
|
Grace MS, Bonvini SJ, Belvisi MG, McIntyre P. Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacol Ther 2017; 177:9-22. [PMID: 28202366 DOI: 10.1016/j.pharmthera.2017.02.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a broadly expressed, polymodally gated ion channel that plays an important role in many physiological and pathophysiological processes. TRPV4 knockout mice and several synthetic pharmacological compounds that selectively target TRPV4 are now available, which has allowed detailed investigation in to the therapeutic potential of this ion channel. Results from animal studies suggest that TRPV4 antagonism has therapeutic potential in oedema, pain, gastrointestinal disorders, and lung diseases such as cough, bronchoconstriction, pulmonary hypertension, and acute lung injury. A lack of observed side-effects in vivo has prompted a first-in-human trial for a TRPV4 antagonist in healthy participants and stable heart failure patients. If successful, this would open up an exciting new area of research for a multitude of TRPV4-related pathologies. This review will discuss the known roles of TRPV4 in disease, and highlight the possible implications of targeting this important cation channel for therapy.
Collapse
Affiliation(s)
- Megan S Grace
- Baker Heart and Diabetes Institute, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia; Department of Physiology, School of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| | - Sara J Bonvini
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|
87
|
Levi-Rosenzvig R, Beyer AM, Hockenberry J, Ben-Shushan RS, Chuyun D, Atiya S, Tamir S, Gutterman DD, Szuchman-Sapir A. 5,6-δ-DHTL, a stable metabolite of arachidonic acid, is a potential EDHF that mediates microvascular dilation. Free Radic Biol Med 2017; 103:87-94. [PMID: 28007573 DOI: 10.1016/j.freeradbiomed.2016.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/25/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Prominent among the endothelium-derived hyperpolarizing factors (EDHFs) are the Cytochrome P450 (CYP) epoxygenase-derived arachidonic acid metabolites-the epoxyeicosatrienoic acids (EETs), that are known as vasodilators in the microcirculation. Among the EET isomers, 5,6-EET undergoes rapid lactonization in aqueous solution to the more stable 5,6-δ DHTL (5,6-dihydroxytrienoic lactone) isomer. It is unclear whether this metabolic transformation maintains its vasodilator potential and what is the mechanism of action. Thus, the aim of this study was to investigate the capacity of the lactone isomer, 5,6- δ DHTL, to induce dilation of arterioles and explore the endothelial Ca2+ response mechanism. APPROACH AND RESULTS In isolated human microvessels 5,6- δ DHTL induced a dose dependent vasodilation, that was inhibited by mechanical denudation of the endothelial layer. This 5,6- δ DHTL -dependent dilation was partially reduced in the presence of L-NAME (NOS inhibitor) or the NO-scavenger, cPTIO (by 19.7%, which was not statistically significantly). In human endothelial cells, 5,6- δ DHTL induced an increase in intracellular Ca2+([Ca2+]i) in a dose dependent manner. This increase in [Ca2+]i was similar to that induced by the 5,6-EET isomer, and significantly higher than observed by administering the hydrolytic dihydroxy isomer, 5,6-DHET. Further experiments aimed to investigate the mechanism of action revealed, that the 5,6-δ DHTL-mediated ([Ca2+]i elevation was reduced by IP3 and ryanodine antagonists, but not by antagonists to the TRPV4 membrane channel. Similar to their effect on the dilation response in the arteries, NO inhibitors reduced the 5,6-δ DHTL-mediated ([Ca2+]i elevation by 20%. Subsequent 5,6-δ DHTL -dependent K+ ion efflux from endothelial cells, was abolished by the inhibition of small and intermediate conductance KCa. CONCLUSIONS The present study shows that 5,6-δ DHTL is a potential EDHF, that dilates microvessels through a mechanism that involves endothelial dependent Ca2+ entry, requiring endothelial hyperpolarization. These results suggest the existence of additional lactone-containing metabolites that can be derived from the PUFA metabolism and which may function as novel EDHFs.
Collapse
Affiliation(s)
- Reut Levi-Rosenzvig
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Andreas M Beyer
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Hockenberry
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rotem Shelly Ben-Shushan
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel
| | | | - Shahar Atiya
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Snait Tamir
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - David D Gutterman
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andrea Szuchman-Sapir
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel.
| |
Collapse
|
88
|
Ellinsworth DC, Sandow SL, Shukla N, Liu Y, Jeremy JY, Gutterman DD. Endothelium-Derived Hyperpolarization and Coronary Vasodilation: Diverse and Integrated Roles of Epoxyeicosatrienoic Acids, Hydrogen Peroxide, and Gap Junctions. Microcirculation 2016; 23:15-32. [PMID: 26541094 DOI: 10.1111/micc.12255] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022]
Abstract
Myocardial perfusion and coronary vascular resistance are regulated by signaling metabolites released from the local myocardium that act either directly on the VSMC or indirectly via stimulation of the endothelium. A prominent mechanism of vasodilation is EDH of the arteriolar smooth muscle, with EETs and H(2)O(2) playing important roles in EDH in the coronary microcirculation. In some cases, EETs and H(2)O(2) are released as transferable hyperpolarizing factors (EDHFs) that act directly on the VSMCs. By contrast, EETs and H(2)O(2) can also promote endothelial KCa activity secondary to the amplification of extracellular Ca(2+) influx and Ca(2+) mobilization from intracellular stores, respectively. The resulting endothelial hyperpolarization may subsequently conduct to the media via myoendothelial gap junctions or potentially lead to the release of a chemically distinct factor(s). Furthermore, in human isolated coronary arterioles dilator signaling involving EETs and H(2)O(2) may be integrated, being either complimentary or inhibitory depending on the stimulus. With an emphasis on the human coronary microcirculation, this review addresses the diverse and integrated mechanisms by which EETs and H(2)O(2) regulate vessel tone and also examines the hypothesis that myoendothelial microdomain signaling facilitates EDH activity in the human heart.
Collapse
Affiliation(s)
| | - Shaun L Sandow
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nilima Shukla
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Yanping Liu
- Division of Research Infrastructure, National Center for Research Resources, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie Y Jeremy
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - David D Gutterman
- Division of Cardiovascular Medicine, Departments of Medicine, Physiology and Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
89
|
Naik JS, Osmond JM, Walker BR, Kanagy NL. Hydrogen sulfide-induced vasodilation mediated by endothelial TRPV4 channels. Am J Physiol Heart Circ Physiol 2016; 311:H1437-H1444. [PMID: 27765747 DOI: 10.1152/ajpheart.00465.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/30/2016] [Indexed: 01/03/2023]
Abstract
Hydrogen sulfide (H2S) is a recently described gaseous vasodilator produced within the vasculature by the enzymes cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase. Previous data demonstrate that endothelial cells (EC) are the source of endogenous H2S production and are required for H2S-induced dilation. However, the signal transduction pathway activated by H2S within EC has not been elucidated. TRPV4 and large-conductance Ca2+-activated K channels (BK channels) are expressed in EC. H2S-induced dilation is inhibited by luminal administration of iberiotoxin and disruption of the endothelium. Calcium influx through TRPV4 may activate these endothelial BK channels (eBK). We hypothesized that H2S-mediated vasodilation involves activation of TRPV4 within the endothelium. In pressurized, phenylephrine-constricted mesenteric arteries, H2S elicited a dose-dependent vasodilation blocked by inhibition of TRPV4 channels (GSK2193874A, 300 nM). H2S (1 μM) increased TRPV4-dependent (1.8-fold) localized calcium events in EC of pressurized arteries loaded with fluo-4 and Oregon Green. In pressurized EC tubes, H2S (1 μM) and the TRPV4 activator, GSK101679A (30 nM), increased calcium events 1.8- and 1.5-fold, respectively. H2S-induced an iberiotoxin-sensitive outward current measured using whole cell patch-clamp techniques in freshly dispersed EC. H2S increased K+ currents from 10 to 30 pA/pF at +150 mV. Treatment with Na2S increased the level of sulfhydration of TRPV4 channels in aortic ECs. These results demonstrate that H2S-mediated vasodilation involves activation of TRPV4-dependent Ca2+ influx and BK channel activation within EC. Activation of TRPV4 channels appears to cause calcium events that result in the opening of eBK channels, endothelial hyperpolarization, and subsequent vasodilation.
Collapse
Affiliation(s)
- Jay S Naik
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Jessica M Osmond
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Benjimen R Walker
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
90
|
Schunck WH. EPA and/or DHA? A test question on the principles and opportunities in utilizing the therapeutic potential of omega-3 fatty acids. J Lipid Res 2016; 57:1608-11. [PMID: 27436589 DOI: 10.1194/jlr.c071084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
91
|
Darby WG, Grace MS, Baratchi S, McIntyre P. Modulation of TRPV4 by diverse mechanisms. Int J Biochem Cell Biol 2016; 78:217-228. [PMID: 27425399 DOI: 10.1016/j.biocel.2016.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 01/25/2023]
Abstract
Transient receptor potential ion channels (TRP) are a superfamily of non-selective ion channels which are opened in response to a diverse range of stimuli. The TRP vanilloid 4 (TRPV4) ion channel is opened in response to heat, mechanical stimuli, hypo-osmolarity and arachidonic acid metabolites. However, recently TRPV4 has been identified as an ion channel that is modulated by, and opened by intracellular signalling cascades from other receptors and signalling pathways. Although TRPV4 knockout mice show relatively mild phenotypes, some mutations in TRPV4 cause severe developmental abnormalities, such as the skeletal dyplasia and arthropathy. Regulated TRPV4 function is also essential for healthy cardiovascular system function as a potent agonist compromises endothelial cell function, leading to vascular collapse. A better understanding of the signalling mechanisms that modulate TRPV4 function is necessary to understand its physiological roles. Post translational modification of TRPV4 by kinases and other signalling molecules can modulate TRPV4 opening in response to stimuli such as mechanical and hyposmolarity and there is an emerging area of research implicating TRPV4 as a transducer of these signals as opposed to a direct sensor of the stimuli. Due to its wide expression profile, TRPV4 is implicated in multiple pathophysiological states. TRPV4 contributes to the sensation of pain due to hypo-osmotic stimuli and inflammatory mechanical hyperalsgesia, where TRPV4 sensitizaton by intracellular signalling leads to pain behaviors in mice. In the vasculature, TRPV4 is a regulator of vessel tone and is implicated in hypertension and diabetes due to endothelial dysfunction. TRPV4 is a key regulator of epithelial and endothelial barrier function and signalling to and opening of TRPV4 can disrupt these critical protective barriers. In respiratory function, TRPV4 is involved in cystic fibrosis, cilary beat frequency, bronchoconstriction, chronic obstructive pulmonary disease, pulmonary hypertension, acute lung injury, acute respiratory distress syndrome and cough.In this review we highlight how modulation of TRPV4 opening is a vital signalling component in a range of tissues and why understanding of TRPV4 regulation in the body may lead to novel therapeutic approaches to treating a range of disease states.
Collapse
Affiliation(s)
- W G Darby
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - M S Grace
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; Baker IDI, Melbourne, Australia
| | - S Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - P McIntyre
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| |
Collapse
|
92
|
|
93
|
Abstract
Resolution of inflammation has emerged as an active process in immunobiology, with cells of the mononuclear phagocyte system being critical in mediating efferocytosis and wound debridement and bridging the gap between innate and adaptive immunity. Here we investigated the roles of cytochrome P450 (CYP)-derived epoxy-oxylipins in a well-characterized model of sterile resolving peritonitis in the mouse. Epoxy-oxylipins were produced in a biphasic manner during the peaks of acute (4 h) and resolution phases (24-48 h) of the response. The epoxygenase inhibitor SKF525A (epoxI) given at 24 h selectively inhibited arachidonic acid- and linoleic acid-derived CYP450-epoxy-oxlipins and resulted in a dramatic influx in monocytes. The epoxI-recruited monocytes were strongly GR1(+), Ly6c(hi), CCR2(hi), CCL2(hi), and CX3CR1(lo) In addition, expression of F4/80 and the recruitment of T cells, B cells, and dendritic cells were suppressed. sEH (Ephx2)(-/-) mice, which have elevated epoxy-oxylipins, demonstrated opposing effects to epoxI-treated mice: reduced Ly6c(hi) monocytes and elevated F4/80(hi) macrophages and B, T, and dendritic cells. Ly6c(hi) and Ly6c(lo) monocytes, resident macrophages, and recruited dendritic cells all showed a dramatic change in their resolution signature following in vivo epoxI treatment. Markers of macrophage differentiation CD11b, MerTK, and CD103 were reduced, and monocyte-derived macrophages and resident macrophages ex vivo showed greatly impaired phagocytosis of zymosan and efferocytosis of apoptotic thymocytes following epoxI treatment. These findings demonstrate that epoxy-oxylipins have a critical role in monocyte lineage recruitment and activity to promote inflammatory resolution and represent a previously unidentified internal regulatory system governing the establishment of adaptive immunity.
Collapse
|
94
|
Imig JD. Epoxyeicosatrienoic Acids and 20-Hydroxyeicosatetraenoic Acid on Endothelial and Vascular Function. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 77:105-41. [PMID: 27451096 DOI: 10.1016/bs.apha.2016.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial and vascular smooth cells generate cytochrome P450 (CYP) arachidonic acid metabolites that can impact endothelial cell function and vascular homeostasis. The objective of this review is to focus on the physiology and pharmacology of endothelial CYP metabolites. The CYP pathway produces two types of eicosanoid products: epoxyeicosatrienoic acids (EETs), formed by CYP epoxygenases, and hydroxyeicosatetraenoic acids (HETEs), formed by CYP hydroxylases. Advances in CYP enzymes, EETs, and 20-HETE by pharmacological and genetic means have led to a more complete understanding of how these eicosanoids impact on endothelial cell function. Endothelial-derived EETs were initially described as endothelial-derived hyperpolarizing factors. It is now well recognized that EETs importantly contribute to numerous endothelial cell functions. On the other hand, 20-HETE is the predominant CYP hydroxylase synthesized by vascular smooth muscle cells. Like EETs, 20-HETE acts on endothelial cells and impacts importantly on endothelial and vascular function. An important aspect for EETs and 20-HETE endothelial actions is their interactions with hormonal and paracrine factors. These include interactions with the renin-angiotensin system, adrenergic system, puringeric system, and endothelin. Alterations in CYP enzymes, 20-HETE, or EETs contribute to endothelial dysfunction and cardiovascular diseases such as ischemic injury, hypertension, and atherosclerosis. Recent advances have led to the development of potential therapeutics that target CYP enzymes, 20-HETE, or EETs. Thus, future investigation is required to obtain a more complete understanding of how CYP enzymes, 20-HETE, and EETs regulate endothelial cell function.
Collapse
Affiliation(s)
- J D Imig
- Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
95
|
Froogh G, Qin J, Kandhi S, Le Y, Jiang H, Luo M, Sun D, Huang A. Female-favorable attenuation of coronary myogenic constriction via reciprocal activations of epoxyeicosatrienoic acids and nitric oxide. Am J Physiol Heart Circ Physiol 2016; 310:H1448-54. [PMID: 27016584 DOI: 10.1152/ajpheart.00906.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/20/2016] [Indexed: 11/22/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid via CYP/epoxygenases, which are catabolized by soluble epoxide hydrolase (sEH) and known to possess cardioprotective properties. To date, the role of sEH in the modulation of pressure-induced myogenic response/constriction in coronary arteries, an important regulatory mechanism in the coronary circulation, and the issue as to whether the disruption of the sEH gene affects the myogenic response sex differentially have never been addressed. To this end, experiments were conducted on male (M) and female (F) wild-type (WT) and sEH-knockout (KO) mice. Pressure-diameter relationships were assessed in isolated and cannulated coronary arteries. All vessels constricted in response to increases in intraluminal pressure from 60 to 120 mmHg. Myogenic vasoconstriction was significantly attenuated, expressed as an upward shift in the pressure-diameter curve of vessels, associated with higher cardiac EETs in M-KO, F-WT, and F-KO mice compared with M-WT controls. Blockade of EETs via exposure of vessels to 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) prevented the attenuated myogenic constriction in sEH-KO mice. In the presence of 14,15-EEZE, pressure-diameter curves of females presented an upward shift from those of males, exhibiting a sex-different phenotype. Additional administration of N(ω)-nitro-l-arginine methyl ester eliminated the sex difference in myogenic responses, leading to four overlapped pressure-diameter curves. Cardiac sEH was downregulated in F-WT compared with M-WT mice, whereas expression of endothelial nitric oxide synthase and CYP4A (20-HETE synthase) was comparable among all groups. In summary, in combination with NO, the increased EET bioavailability as a function of genetic deletion and/or downregulation of sEH accounts for the female-favorable attenuation of pressure-induced vasoconstriction.
Collapse
Affiliation(s)
- Ghezal Froogh
- Department of Physiology and Pharmacology, New York Medical College, Valhalla, New York
| | - Jun Qin
- Department of Physiology and Pharmacology, New York Medical College, Valhalla, New York; Department of Gastrointestinal Surgery of Renji Hospital, Shanghai Jiaotong University School of Medicine, People's Republic of China; and
| | - Sharath Kandhi
- Department of Physiology and Pharmacology, New York Medical College, Valhalla, New York
| | - Yicong Le
- Department of Physiology and Pharmacology, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Meng Luo
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, People's Republic of China
| | - Dong Sun
- Department of Physiology and Pharmacology, New York Medical College, Valhalla, New York
| | - An Huang
- Department of Physiology and Pharmacology, New York Medical College, Valhalla, New York;
| |
Collapse
|
96
|
Uehara S, Uno Y, Inoue T, Okamoto E, Sasaki E, Yamazaki H. Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine. Xenobiotica 2016; 46:977-85. [PMID: 26899760 DOI: 10.3109/00498254.2016.1146366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Common marmoset (Callithrix jacchus), a New World Monkey, has potential to be a useful animal model in preclinical studies. However, drug metabolizing properties have not been fully understood due to insufficient information on cytochrome P450 (P450), major drug metabolizing enzymes. 2. Marmoset P450 2J2 cDNA was isolated from marmoset livers. The deduced amino acid sequence showed a high-sequence identity (91%) with cynomolgus monkey and human P450 2J2 enzymes. A phylogenetic tree revealed that marmoset P450 2J2 was evolutionarily closer to cynomolgus monkey and human P450 2J2 enzymes, than P450 2J forms in pigs, rabbits, rats or mice. 3. Marmoset P450 2J2 mRNA was abundantly expressed in the small intestine and liver, and to a lesser extent in the brain, lung and kidney. Immunoblot analysis also showed expression of marmoset P450 2J2 protein in the small intestine and liver. 4. Enzyme assays using marmoset P450 2J2 protein heterologously expressed in Escherichia coli indicated that marmoset P450 2J2 effectively catalyzed astemizole O-demethylation and terfenadine t-butyl hydroxylation, similar to human and cynomolgus monkey P450 2J2 enzymes. 5. These results suggest the functional characteristics of P450 2J2 enzymes are similar among marmosets, cynomolgus monkeys and humans.
Collapse
Affiliation(s)
- Shotaro Uehara
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Yasuhiro Uno
- b Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd , Kainan , Wakayama , Japan
| | - Takashi Inoue
- c Department of Applied Developmental Biology , Central Institute for Experimental Animals , Kawasaki , Japan , and
| | - Eriko Okamoto
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Erika Sasaki
- c Department of Applied Developmental Biology , Central Institute for Experimental Animals , Kawasaki , Japan , and.,d Keio Advanced Research Center, Keio University , Minato-Ku, Tokyo , Japan
| | - Hiroshi Yamazaki
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| |
Collapse
|
97
|
Marowsky A, Haenel K, Bockamp E, Heck R, Rutishauser S, Mule N, Kindler D, Rudin M, Arand M. Genetic enhancement of microsomal epoxide hydrolase improves metabolic detoxification but impairs cerebral blood flow regulation. Arch Toxicol 2016; 90:3017-3027. [PMID: 26838043 PMCID: PMC5104800 DOI: 10.1007/s00204-016-1666-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/06/2016] [Indexed: 01/05/2023]
Abstract
Microsomal epoxide hydrolase (mEH) is a detoxifying enzyme for xenobiotic compounds. Enzymatic activity of mEH can be greatly increased by a point mutation, leading to an E404D amino acid exchange in its catalytic triad. Surprisingly, this variant is not found in any vertebrate species, despite the obvious advantage of accelerated detoxification. We hypothesized that this evolutionary avoidance is due to the fact that the mEH plays a dualistic role in detoxification and control of endogenous vascular signaling molecules. To test this, we generated mEH E404D mice and assessed them for detoxification capacity and vascular dynamics. In liver microsomes from these mice, turnover of the xenobiotic compound phenanthrene-9,10-oxide was four times faster compared to WT liver microsomes, confirming accelerated detoxification. mEH E404D animals also showed faster metabolization of a specific class of endogenous eicosanoids, arachidonic acid-derived epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs). Significantly higher DHETs/EETs ratios were found in mEH E404D liver, urine, plasma, brain and cerebral endothelial cells compared to WT controls, suggesting a broad impact of the mEH mutant on endogenous EETs metabolism. Because EETs are strong vasodilators in cerebral vasculature, hemodynamics were assessed in mEH E404D and WT cerebral cortex and hippocampus using cerebral blood volume (CBV)-based functional magnetic resonance imaging (fMRI). Basal CBV0 levels were similar between mEH E404D and control mice in both brain areas. But vascular reactivity and vasodilation in response to the vasodilatory drug acetazolamide were reduced in mEH E404D forebrain compared to WT controls by factor 3 and 2.6, respectively. These results demonstrate a critical role for mEH E404D in vasodynamics and suggest that deregulation of endogenous signaling pathways is the undesirable gain of function associated with the E404D variant.
Collapse
Affiliation(s)
- Anne Marowsky
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Karen Haenel
- Institute of Complex Systems (ICS-6), Research Center Julich, Wilhelm-Johnen-Straße, 52425, Julich, Germany
| | - Ernesto Bockamp
- Institute of Translational Immunology, University of Mainz, Obere Zahlbacherstrasse 63, 55131, Mainz, Germany
| | - Rosario Heck
- Institute of Translational Immunology, University of Mainz, Obere Zahlbacherstrasse 63, 55131, Mainz, Germany
| | - Sibylle Rutishauser
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nandkishor Mule
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Diana Kindler
- Institute for Biomedical Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zurich, Switzerland
| | - Markus Rudin
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute for Biomedical Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zurich, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
98
|
Blum-Johnston C, Thorpe RB, Wee C, Romero M, Brunelle A, Blood Q, Wilson R, Blood AB, Francis M, Taylor MS, Longo LD, Pearce WJ, Wilson SM. Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth. Am J Physiol Lung Cell Mol Physiol 2015; 310:L271-86. [PMID: 26637638 DOI: 10.1152/ajplung.00340.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022] Open
Abstract
Bradykinin-induced activation of the pulmonary endothelium triggers nitric oxide production and other signals that cause vasorelaxation, including stimulation of large-conductance Ca(2+)-activated K(+) (BKCa) channels in myocytes that hyperpolarize the plasma membrane and decrease intracellular Ca(2+). Intrauterine chronic hypoxia (CH) may reduce vasorelaxation in the fetal-to-newborn transition and contribute to pulmonary hypertension of the newborn. Thus we examined the effects of maturation and CH on the role of BKCa channels during bradykinin-induced vasorelaxation by examining endothelial Ca(2+) signals, wire myography, and Western immunoblots on pulmonary arteries isolated from near-term fetal (∼ 140 days gestation) and newborn, 10- to 20-day-old, sheep that lived in normoxia at 700 m or in CH at high altitude (3,801 m) for >100 days. CH enhanced bradykinin-induced relaxation of fetal vessels but decreased relaxation in newborns. Endothelial Ca(2+) responses decreased with maturation but increased with CH. Bradykinin-dependent relaxation was sensitive to 100 μM nitro-L-arginine methyl ester or 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, supporting roles for endothelial nitric oxide synthase and soluble guanylate cyclase activation. Indomethacin blocked relaxation in CH vessels, suggesting upregulation of PLA2 pathways. BKCa channel inhibition with 1 mM tetraethylammonium reduced bradykinin-induced vasorelaxation in the normoxic newborn and fetal CH vessels. Maturation reduced whole cell BKCa channel α1-subunit expression but increased β1-subunit expression. These results suggest that CH amplifies the contribution of BKCa channels to bradykinin-induced vasorelaxation in fetal sheep but stunts further development of this vasodilatory pathway in newborns. This involves complex changes in multiple components of the bradykinin-signaling axes.
Collapse
Affiliation(s)
- Carla Blum-Johnston
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
| | - Richard B Thorpe
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Chelsea Wee
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Monica Romero
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, California
| | - Alexander Brunelle
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Quintin Blood
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Rachael Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California;
| | - Arlin B Blood
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California; and
| | - Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Birmingham, Alabama
| | - Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Birmingham, Alabama
| | - Lawrence D Longo
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean M Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
99
|
Zhou Y, Falck JR, Rothe M, Schunck WH, Menzel R. Role of CYP eicosanoids in the regulation of pharyngeal pumping and food uptake in Caenorhabditis elegans. J Lipid Res 2015; 56:2110-23. [PMID: 26399467 PMCID: PMC4617398 DOI: 10.1194/jlr.m061887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/15/2015] [Indexed: 11/20/2022] Open
Abstract
Cytochrome P450 (CYP)-dependent eicosanoids comprise epoxy- and hydroxy-metabolites of long-chain PUFAs (LC-PUFAs). In mammals, CYP eicosanoids contribute to the regulation of cardiovascular and renal function. Caenorhabditis elegans produces a large set of CYP eicosanoids; however, their role in worm's physiology is widely unknown. Mutant strains deficient in LC-PUFA/eicosanoid biosynthesis displayed reduced pharyngeal pumping frequencies. This impairment was rescued by long-term eicosapentaenoic and/or arachidonic acid supplementation, but not with a nonmetabolizable LC-PUFA analog. Short-term treatment with 17,18-epoxyeicosatetraenoic acid (17,18-EEQ), the most abundant CYP eicosanoid in C. elegans, was as effective as long-term LC-PUFA supplementation in the mutant strains. In contrast, 20-HETE caused decreased pumping frequencies. The opposite effects of 17,18-EEQ and 20-HETE were mirrored by the actions of neurohormones. 17,18-EEQ mimicked the stimulating effect of serotonin when added to starved worms, whereas 20-HETE shared the inhibitory effect of octopamine in the presence of abundant food. In wild-type worms, serotonin increased free 17,18-EEQ levels, whereas octopamine selectively induced the synthesis of hydroxy-metabolites. These results suggest that CYP eicosanoids may serve as second messengers in the regulation of pharyngeal pumping and food uptake in C. elegans.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Biology, Ecology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern, Dallas, TX 75390
| | | | | | - Ralph Menzel
- Department of Biology, Ecology, Humboldt University of Berlin, 10115 Berlin, Germany
| |
Collapse
|
100
|
Kandhi S, Qin J, Froogh G, Jiang H, Luo M, Wolin MS, Huang A, Sun D. EET-dependent potentiation of pulmonary arterial pressure: sex-different regulation of soluble epoxide hydrolase. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1478-86. [PMID: 26498250 DOI: 10.1152/ajplung.00208.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/17/2015] [Indexed: 01/24/2023] Open
Abstract
We tested the hypothesis that suppression of epoxyeicosatrienoic acid (EET) metabolism via genetic knockout of the gene for soluble epoxide hydrolase (sEH-KO), or female-specific downregulation of sEH expression, plays a role in the potentiation of pulmonary hypertension. We used male (M) and female (F) wild-type (WT) and sEH-KO mice; the latter have high pulmonary EETs. Right ventricular systolic pressure (RVSP) and mean arterial blood pressure (MABP) in control and in response to in vivo administration of U46619 (thromboxane analog), 14,15-EET, and 14,15-EEZE [14,15-epoxyeicosa-5(z)-enoic acid; antagonist of EETs] were recorded. Basal RVSP was comparable among all groups of mice, whereas MABP was significantly lower in F-WT than M-WT mice and further reduced predominantly in F-KO compared with M-KO mice. U46619 dose dependently increased RVSP and MABP in all groups of mice. The increase in RVSP was significantly greater and coincided with smaller increases in MABP in M-KO and F-WT mice compared with M-WT mice. In F-KO mice, the elevation of RVSP by U46619 was even higher than in M-KO and F-WT mice, associated with the least increase in MABP. 14,15-EEZE prevented the augmentation of U46619-induced elevation of RVSP in sEH-KO mice, whereas 14,15-EET-induced pulmonary vasoconstriction was comparable in all groups of mice. sEH expression in the lungs was reduced, paralleled with higher levels of EETs in F-WT compared with M-WT mice. In summary, EETs initiate pulmonary vasoconstriction but act as vasodilators systemically. High pulmonary EETs, as a function of downregulation or deletion of sEH, potentiate U46619-induced increases in RVSP in a female-susceptible manner.
Collapse
Affiliation(s)
- Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York; Department of Surgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, People's Republic of China; and
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Meng Luo
- Department of Surgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, People's Republic of China; and Shanghai 9th Hospital, Shanghai Jiaotong University, School of Medicine, People's Republic of China
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York;
| |
Collapse
|