51
|
Maffei C, Sarubbo S, Jovicich J. Diffusion-based tractography atlas of the human acoustic radiation. Sci Rep 2019; 9:4046. [PMID: 30858451 PMCID: PMC6411970 DOI: 10.1038/s41598-019-40666-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Diffusion MRI tractography allows in-vivo characterization of white matter architecture, including the localization and description of brain fibre bundles. However, some primary bundles are still only partially reconstructed, or not reconstructed at all. The acoustic radiation (AR) represents a primary sensory pathway that has been largely omitted in many tractography studies because its location and anatomical features make it challenging to reconstruct. In this study, we investigated the effects of acquisition and tractography parameters on the AR reconstruction using publicly available Human Connectome Project data. The aims of this study are: (i) using a subgroup of subjects and a reference AR for each subject, define an optimum set of parameters for AR reconstruction, and (ii) use the optimum parameters set on the full group to build a tractography-based atlas of the AR. Starting from the same data, the use of different acquisition and tractography parameters lead to very different AR reconstructions. Optimal results in terms of topographical accuracy and correspondence to the reference were obtained for probabilistic tractography, high b-values and default tractography parameters: these parameters were used to build an AR probabilistic tractography atlas. A significant left-hemispheric lateralization was found in the AR reconstruction of the 34 subjects.
Collapse
Affiliation(s)
- Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA.
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto (TN), Italy.
| | - Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity Lab (SFC-LSB) Project, "S.Chiara" Hospital, Trento APSS, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto (TN), Italy
- Department of Psychology and Cognitive Sciences, University of Trento, Trento, Italy
| |
Collapse
|
52
|
Alfandari D, Vriend C, Heslenfeld DJ, Versfeld NJ, Kramer SE, Zekveld AA. Brain Volume Differences Associated With Hearing Impairment in Adults. Trends Hear 2019; 22:2331216518763689. [PMID: 29557274 PMCID: PMC5863860 DOI: 10.1177/2331216518763689] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Speech comprehension depends on the successful operation of a network of brain regions. Processing of degraded speech is associated with different patterns of brain activity in comparison with that of high-quality speech. In this exploratory study, we studied whether processing degraded auditory input in daily life because of hearing impairment is associated with differences in brain volume. We compared T1-weighted structural magnetic resonance images of 17 hearing-impaired (HI) adults with those of 17 normal-hearing (NH) controls using a voxel-based morphometry analysis. HI adults were individually matched with NH adults based on age and educational level. Gray and white matter brain volumes were compared between the groups by region-of-interest analyses in structures associated with speech processing, and by whole-brain analyses. The results suggest increased gray matter volume in the right angular gyrus and decreased white matter volume in the left fusiform gyrus in HI listeners as compared with NH ones. In the HI group, there was a significant correlation between hearing acuity and cluster volume of the gray matter cluster in the right angular gyrus. This correlation supports the link between partial hearing loss and altered brain volume. The alterations in volume may reflect the operation of compensatory mechanisms that are related to decoding meaning from degraded auditory input.
Collapse
Affiliation(s)
- Defne Alfandari
- 1 Department of Otolaryngology-Head and Neck Surgery, Section Ear & Hearing, VU University Medical Center, Amsterdam, the Netherlands.,2 Amsterdam Public Health Research Institute, VU University Medical Center, the Netherlands
| | - Chris Vriend
- 3 Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, the Netherlands.,4 Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands.,5 Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Dirk J Heslenfeld
- 6 Department of Psychology, VU University, Amsterdam, the Netherlands
| | - Niek J Versfeld
- 1 Department of Otolaryngology-Head and Neck Surgery, Section Ear & Hearing, VU University Medical Center, Amsterdam, the Netherlands.,2 Amsterdam Public Health Research Institute, VU University Medical Center, the Netherlands
| | - Sophia E Kramer
- 1 Department of Otolaryngology-Head and Neck Surgery, Section Ear & Hearing, VU University Medical Center, Amsterdam, the Netherlands.,2 Amsterdam Public Health Research Institute, VU University Medical Center, the Netherlands
| | - Adriana A Zekveld
- 1 Department of Otolaryngology-Head and Neck Surgery, Section Ear & Hearing, VU University Medical Center, Amsterdam, the Netherlands.,2 Amsterdam Public Health Research Institute, VU University Medical Center, the Netherlands.,7 Department of Behavioural Sciences and Learning, Linnaeus Centre HEAD, The Swedish Institute for Disability Research, Linköping University, Sweden
| |
Collapse
|
53
|
ten Donkelaar HJ, Tzourio-Mazoyer N, Mai JK. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Front Neuroanat 2018; 12:93. [PMID: 30510504 PMCID: PMC6252390 DOI: 10.3389/fnana.2018.00093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/16/2018] [Indexed: 11/13/2022] Open
Abstract
The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925). Extensive discussions of the cerebral sulci and their variations were presented by Ono et al. (1990), Duvernoy (1992), Tamraz and Comair (2000), and Rhoton (2007). An anatomical parcellation of the spatially normalized single high resolution T1 volume provided by the Montreal Neurological Institute (MNI; Collins, 1994; Collins et al., 1998) was used for the macroscopical labeling of functional studies (Tzourio-Mazoyer et al., 2002; Rolls et al., 2015). In the standard atlas of the human brain by Mai et al. (2016), the terminology from Mai and Paxinos (2012) is used. It contains an extensively analyzed individual brain hemisphere in the MNI-space. A recent revision of the terminology on the central nervous system in the Terminologia Anatomica (TA, 1998) was made by the Working Group Neuroanatomy of the Federative International Programme for Anatomical Terminology (FIPAT) of the International Federation of Associations of Anatomists (IFAA), and posted online as the Terminologia Neuroanatomica (TNA, 2017: http://FIPAT.library.dal.ca) as the official FIPAT terminology. This review deals with the various terminologies for the cerebral gyri and sulci, aiming for a common terminology.
Collapse
Affiliation(s)
- Hans J. ten Donkelaar
- Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Jürgen K. Mai
- Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
54
|
Zoellner S, Benner J, Zeidler B, Seither-Preisler A, Christiner M, Seitz A, Goebel R, Heinecke A, Wengenroth M, Blatow M, Schneider P. Reduced cortical thickness in Heschl's gyrus as an in vivo marker for human primary auditory cortex. Hum Brain Mapp 2018; 40:1139-1154. [PMID: 30367737 DOI: 10.1002/hbm.24434] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/28/2022] Open
Abstract
The primary auditory cortex (PAC) is located in the region of Heschl's gyrus (HG), as confirmed by histological, cytoarchitectonical, and neurofunctional studies. Applying cortical thickness (CTH) analysis based on high-resolution magnetic resonance imaging (MRI) and magnetoencephalography (MEG) in 60 primary school children and 60 adults, we investigated the CTH distribution of left and right auditory cortex (AC) and primary auditory source activity at the group and individual level. Both groups showed contoured regions of reduced auditory cortex (redAC) along the mediolateral extension of HG, illustrating large inter-individual variability with respect to shape, localization, and lateralization. In the right hemisphere, redAC localized more within the medial portion of HG, extending typically across HG duplications. In the left hemisphere, redAC was distributed significantly more laterally, reaching toward the anterolateral portion of HG. In both hemispheres, redAC was found to be significantly thinner (mean CTH of 2.34 mm) as compared to surrounding areas (2.99 mm). This effect was more dominant in the right hemisphere rather than in the left one. Moreover, localization of the primary component of auditory evoked activity (P1), as measured by MEG in response to complex harmonic sounds, strictly co-localized with redAC. This structure-function link was found consistently at the group and individual level, suggesting PAC to be represented by areas of reduced cortex in HG. Thus, we propose reduced CTH as an in vivo marker for identifying shape and localization of PAC in the individual brain.
Collapse
Affiliation(s)
- Simeon Zoellner
- Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, Heidelberg, Germany.,Department of Neuroradiology, University of Heidelberg Medical School, Heidelberg, Germany
| | - Jan Benner
- Department of Neuroradiology, University of Heidelberg Medical School, Heidelberg, Germany
| | - Bettina Zeidler
- Department of Neuroradiology, University of Heidelberg Medical School, Heidelberg, Germany.,Institute of Systematic Musicology, University of Hamburg, Hamburg, Germany
| | | | - Markus Christiner
- Department of Linguistics, Unit for Language Learning and Teaching Research, University of Vienna, Vienna, Austria
| | - Angelika Seitz
- Department of Phoniatrics and Pedaudiology, University of Heidelberg Medical School, Heidelberg, Germany
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology, Universiteit Maastricht, Maastricht, The Netherlands
| | - Armin Heinecke
- Department of Cognitive Neuroscience, Faculty of Psychology, Universiteit Maastricht, Maastricht, The Netherlands
| | - Martina Wengenroth
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Maria Blatow
- Department of Neuroradiology and Clinical Neuroscience Center, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Peter Schneider
- Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, Heidelberg, Germany.,Department of Neuroradiology, University of Heidelberg Medical School, Heidelberg, Germany
| |
Collapse
|
55
|
Vingerhoets G, Gerrits R, Bogaert S. Atypical brain functional segregation is more frequent in situs inversus totalis. Cortex 2018; 106:12-25. [DOI: 10.1016/j.cortex.2018.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/20/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
|
56
|
Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc Natl Acad Sci U S A 2018; 115:E5154-E5163. [PMID: 29764998 DOI: 10.1073/pnas.1718418115] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here, the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium presents the largest-ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and intracranial volume. Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets (n = 1,443 and 1,113, respectively), we found several asymmetries showing significant, replicable heritability. The structural asymmetries identified and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders.
Collapse
|
57
|
Brain structural and functional asymmetry in human situs inversus totalis. Brain Struct Funct 2018; 223:1937-1952. [PMID: 29302744 DOI: 10.1007/s00429-017-1598-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
Magnetic resonance imaging was used to investigate brain structural and functional asymmetries in 15 participants with complete visceral reversal (situs inversus totalis, SIT). Language-related brain structural and functional lateralization of SIT participants, including peri-Sylvian gray and white matter asymmetries and hemispheric language dominance, was similar to those of 15 control participants individually matched for sex, age, education, and handedness. In contrast, the SIT cohort showed reversal of the brain (Yakovlevian) torque (occipital petalia and occipital bending) compared to the control group. Secondary findings suggested different asymmetry patterns between SIT participants with (n = 6) or without (n = 9) primary ciliary dyskinesia (PCD, also known as Kartagener syndrome) although the small sample sizes warrant cautious interpretation. In particular, reversed brain torque was mainly due to the subgroup with PCD-unrelated SIT and this group also included 55% left handers, a ratio close to a random allocation of handedness. We conclude that complete visceral reversal has no effect on the lateralization of brain structural and functional asymmetries associated with language, but seems to reverse the typical direction of the brain torque in particular in participants that have SIT unrelated to PCD. The observed differences in asymmetry patterns of SIT groups with and without PCD seem to suggest that symmetry breaking of visceral laterality, brain torque, and language dominance rely on different mechanisms.
Collapse
|
58
|
Monson BB, Eaton-Rosen Z, Kapur K, Liebenthal E, Brownell A, Smyser CD, Rogers CE, Inder TE, Warfield SK, Neil JJ. Differential Rates of Perinatal Maturation of Human Primary and Nonprimary Auditory Cortex. eNeuro 2018; 5:ENEURO.0380-17.2017. [PMID: 29354680 PMCID: PMC5773280 DOI: 10.1523/eneuro.0380-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022] Open
Abstract
Primary and nonprimary cerebral cortex mature along different timescales; however, the differences between the rates of maturation of primary and nonprimary cortex are unclear. Cortical maturation can be measured through changes in tissue microstructure detectable by diffusion magnetic resonance imaging (MRI). In this study, diffusion tensor imaging (DTI) was used to characterize the maturation of Heschl's gyrus (HG), which contains both primary auditory cortex (pAC) and nonprimary auditory cortex (nAC), in 90 preterm infants between 26 and 42 weeks postmenstrual age (PMA). The preterm infants were in different acoustical environments during their hospitalization: 46 in open ward beds and 44 in single rooms. A control group consisted of 15 term-born infants. Diffusion parameters revealed that (1) changes in cortical microstructure that accompany cortical maturation had largely already occurred in pAC by 28 weeks PMA, and (2) rapid changes were taking place in nAC between 26 and 42 weeks PMA. At term equivalent PMA, diffusion parameters for auditory cortex were different between preterm infants and term control infants, reflecting either delayed maturation or injury. No effect of room type was observed. For the preterm group, disturbed maturation of nonprimary (but not primary) auditory cortex was associated with poorer language performance at age two years.
Collapse
Affiliation(s)
- Brian B. Monson
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Zach Eaton-Rosen
- Translational Imaging Group, University College London, London, WC1E 7JE United Kingdom
| | - Kush Kapur
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Einat Liebenthal
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Abraham Brownell
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Christopher D. Smyser
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63130
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130
| | - Cynthia E. Rogers
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63130
| | - Terrie E. Inder
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Simon K. Warfield
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Jeffrey J. Neil
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
59
|
Is the planum temporale surface area a marker of hemispheric or regional language lateralization? Brain Struct Funct 2017; 223:1217-1228. [PMID: 29101522 DOI: 10.1007/s00429-017-1551-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022]
Abstract
We investigated the association between the left planum temporale (PT) surface area or asymmetry and the hemispheric or regional functional asymmetries during language production and perception tasks in 287 healthy adults (BIL&GIN) who were matched for sex and handedness. The measurements of the PT surface area were performed after manually delineating the region using brain magnetic resonance images (MRI) and considering the Heschl's gyrus (HG) duplication pattern; the measurements either included (PTtot) or did not include (PTpost) the second gyrus. A region encompassing both the PT and HG (HGPT) was also studied. Regardless of the ROI measured, 80% of the sample had a positive left minus right PT asymmetry. We first tested whether the PTtot, PTpost and HGPT surface areas in the left or right hemispheres or PT asymmetries differed in groups of individuals varying in language lateralization by assessing their hemispheric index during a sentence production minus word list production task. We then investigated the association between these different measures of the PT anatomy and the regional asymmetries measured during the task. Regardless of the anatomical definition used, we observed no correlations between the left surface areas or asymmetries and the hemispheric or regional functional asymmetries during the language production task. We then performed a similar analysis using the same sample measuring language functional lateralization during speech listening tasks (i.e., listening to sentences and lists of words). Although the hemispheric lateralization during speech listening was not correlated with the left PTtot, PTpost or HGPT surface areas or the PT asymmetries, significant positive correlations were observed between the asymmetries in these regions and the regional functional asymmetries measured in areas adjacent to the end of the Sylvian fissure while participants listened to the word lists or sentences. The PT asymmetry thus appears to be associated with the local functional asymmetries in auditory areas but is not a marker of inter-individual variability in language dominance.
Collapse
|
60
|
Rosch RE, Cowell PE, Gurd JM. Cerebellar Asymmetry and Cortical Connectivity in Monozygotic Twins with Discordant Handedness. THE CEREBELLUM 2017; 17:191-203. [PMID: 29063351 PMCID: PMC5849645 DOI: 10.1007/s12311-017-0889-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Handedness differentiates patterns of neural asymmetry and interhemispheric connectivity in cortical systems that underpin manual and language functions. Contemporary models of cerebellar function incorporate complex motor behaviour and higher-order cognition, expanding upon earlier, traditional associations between the cerebellum and motor control. Structural MRI defined cerebellar volume asymmetries and correlations with corpus callosum (CC) size were compared in 19 pairs of adult female monozygotic twins strongly discordant for handedness (MZHd). Volume and asymmetry of cerebellar lobules were obtained using automated parcellation.CC area and regional widths were obtained from midsagittal planimetric measurements. Within the cerebellum and CC, neurofunctional distinctions were drawn between motor and higher-order cognitive systems. Relationships amongst regional cerebellar asymmetry and cortical connectivity (as indicated by CC widths) were investigated. Interactions between hemisphere and handedness in the anterior cerebellum were due to a larger right-greater-than-left hemispheric asymmetry in right-handed (RH) compared to left-handed (LH) twins. In LH twins only, anterior cerebellar lobule volumes (IV, V) for motor control were associated with CC size, particularly in callosal regions associated with motor cortex connectivity. Superior posterior cerebellar lobule volumes (VI, Crus I, Crus II, VIIb) showed no correlation with CC size in either handedness group. These novel results reflected distinct patterns of cerebellar-cortical relationships delineated by specific CC regions and an anterior-posterior cerebellar topographical mapping. Hence, anterior cerebellar asymmetry may contribute to the greater degree of bilateral cortical organisation of frontal motor function in LH individuals.
Collapse
Affiliation(s)
- R E Rosch
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK.,Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - P E Cowell
- Department of Human Communication Sciences, University of Sheffield, 362 Mushroom Lane, Sheffield, S10 2TS, UK.
| | - J M Gurd
- Department of Human Communication Sciences, University of Sheffield, 362 Mushroom Lane, Sheffield, S10 2TS, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
61
|
Atilgan H, Collignon O, Hasson U. Structural neuroplasticity of the superior temporal plane in early and late blindness. BRAIN AND LANGUAGE 2017; 170:71-81. [PMID: 28426947 DOI: 10.1016/j.bandl.2017.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/06/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Blindness is associated with well-documented changes to the morphometry and function of the occipital cortex. By comparison, its impact on the perisylvian regions in the superior temporal plane (STP) is poorly understood, with many studies reporting null findings on this issue. Here we re-approach this question using a morphometric analysis that relied on fine-scale, manual annotation of 13 sub-regions within the STP and that quantified both univariate and multivariate differences in morphometry. We applied these analyses to both cortical thickness (CT) and surface area (SA) data from congenitally and late blind, as compared to two matched sighted control groups. The univariate analyses indicated that for CT, no region differentiated blind from sighted, and for SA, two regions showed lower values for congenitally blind. Moreover, the multivariate analyses identified more robust signatures of plasticity in blindness. Specifically, pairwise regional correlations of CT values between contralateral regions were significantly higher for both blind groups as compared to sighted controls. A similar pattern for SA data was found for congenitally blind alone. Our findings indicate that blindness strongly impacts STP, resulting in a more coordinated pattern of interhemispheric morphometric development. We discuss implications for theories of language plasticity and models of neuroplasticity in the blind.
Collapse
Affiliation(s)
- Hicret Atilgan
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Olivier Collignon
- Institute of research in Psychology (IPSY) & Institute of Neuroscience (IoNS), University of Louvain (UCL), Belgium
| | - Uri Hasson
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy.
| |
Collapse
|
62
|
EEG oscillatory power dissociates between distress- and depression-related psychopathology in subjective tinnitus. Brain Res 2017; 1663:194-204. [DOI: 10.1016/j.brainres.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 02/20/2017] [Accepted: 03/04/2017] [Indexed: 12/12/2022]
|
63
|
Nourski KV. Auditory processing in the human cortex: An intracranial electrophysiology perspective. Laryngoscope Investig Otolaryngol 2017; 2:147-156. [PMID: 28894834 PMCID: PMC5562943 DOI: 10.1002/lio2.73] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/22/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022] Open
Abstract
Objective Direct electrophysiological recordings in epilepsy patients offer an opportunity to study human auditory cortical processing with unprecedented spatiotemporal resolution. This review highlights recent intracranial studies of human auditory cortex and focuses on its basic response properties as well as modulation of cortical activity during the performance of active behavioral tasks. Data Sources: Literature review. Review Methods: A review of the literature was conducted to summarize the functional organization of human auditory and auditory‐related cortex as revealed using intracranial recordings. Results The tonotopically organized core auditory cortex within the posteromedial portion of Heschl's gyrus represents spectrotemporal features of sounds with high temporal precision and short response latencies. At this level of processing, high gamma (70–150 Hz) activity is minimally modulated by task demands. Non‐core cortex on the lateral surface of the superior temporal gyrus also maintains representation of stimulus acoustic features and, for speech, subserves transformation of acoustic inputs into phonemic representations. High gamma responses in this region are modulated by task requirements. Prefrontal cortex exhibits complex response patterns, related to stimulus intelligibility and task relevance. At this level of auditory processing, activity is strongly modulated by task requirements and reflects behavioral performance. Conclusions Direct recordings from the human brain reveal hierarchical organization of sound processing within auditory and auditory‐related cortex. Level of Evidence Level V
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery The University of Iowa Iowa City IA U.S.A
| |
Collapse
|
64
|
Benner J, Wengenroth M, Reinhardt J, Stippich C, Schneider P, Blatow M. Prevalence and function of Heschl's gyrus morphotypes in musicians. Brain Struct Funct 2017; 222:3587-3603. [PMID: 28397108 DOI: 10.1007/s00429-017-1419-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/31/2017] [Indexed: 12/29/2022]
Abstract
Morphological variations of the first transverse Heschl's gyrus (HG) in the human auditory cortex (AC) are common, yet little is known about their functional implication. We investigated individual morphology and function of HG variations in the AC of 41 musicians, using structural and functional magnetic resonance imaging (fMRI) as well as magnetoencephalography (MEG). Four main morphotypes of HG were (i) single HG, (ii) common stem duplication (CSD), (iii) complete posterior duplication (CPD), and (iv) multiple duplications (MD). The vast majority of musicians (90%) exhibited HG multiplications (type ii-iv) in either one (39%) or both (51%) hemispheres. In 27% of musicians, MD with up to four gyri were found. To probe the functional contribution of HG multiplications to auditory processing we performed fMRI and MEG with auditory stimulation using analogous instrumental tone paradigms. Both methods pointed to the recruitment of all parts of HG during auditory stimulation, including multiplications if present. FMRI activations extended with the degree of HG gyrification. MEG source waveform patterns were distinct for the different types of HG: (i) hemispheres with single HG and (ii) CSD exhibited dominant N1 responses, whereas hemispheres with (iii) CPD and (iv) MD exhibited dominant P1 responses. N1 dipole amplitudes correlated with the localization of the first complete Heschl's sulcus (cHS), designating the most posterior anatomical border of HG. P2 amplitudes were significantly higher in professional as compared to amateur musicians. The results suggest that HG multiplications occur much more frequently in musicians than in the general population and constitute a functional unit with HG.
Collapse
Affiliation(s)
- Jan Benner
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland.,Department of Neuroradiology, University of Heidelberg Medical School, INF 400, 69120, Heidelberg, Germany
| | - Martina Wengenroth
- Department of Neuroradiology, University of Heidelberg Medical School, INF 400, 69120, Heidelberg, Germany.,Department of Neurology, Institute of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Julia Reinhardt
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Christoph Stippich
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Peter Schneider
- Department of Neuroradiology, University of Heidelberg Medical School, INF 400, 69120, Heidelberg, Germany.,Section of Biomagnetism, Department of Neurology, University of Heidelberg Medical School, INF 400, 69120, Heidelberg, Germany
| | - Maria Blatow
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
65
|
High-Resolution fMRI of Auditory Cortical Map Changes in Unilateral Hearing Loss and Tinnitus. Brain Topogr 2017; 30:685-697. [DOI: 10.1007/s10548-017-0547-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/18/2017] [Indexed: 12/19/2022]
|
66
|
Tzourio-Mazoyer N, Mazoyer B. Variations of planum temporale asymmetries with Heschl's Gyri duplications and association with cognitive abilities: MRI investigation of 428 healthy volunteers. Brain Struct Funct 2017; 222:2711-2726. [PMID: 28164245 DOI: 10.1007/s00429-017-1367-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/08/2017] [Indexed: 12/11/2022]
Abstract
In a large sample of 428 healthy adults balanced for gender and manual preference (MP), we investigated planum temporale (PT) surface area variability in relation with Heschl's gyrus (HG) duplication pattern, MP, and familial sinistrality (FS), considering different PT definitions. In a sub-sample of 362 participants, we also investigated whether variability of PT asymmetry was associated with differences in verbal abilities. On each participant brain hemisphere MRI, we delineated a posterior PT area (PTpost), excluding the second Heschl gyrus in case of either complete posterior duplication (CPD) or common stem partial duplication (CSD). We then defined a total PT area (PTtot) as the union of PTpost and of the second HG when present, and a HGPT area as the union of PTtot and of the first HG. The HG duplication pattern of one hemisphere was found to significantly affect the PTpost surface area of the same hemisphere, a larger reduction being present in case of CPD than in case of CSD, leading to a strong impact of both left and right HG duplication patterns on PTpost asymmetry. The HG duplication pattern had no effect on PTtot surface areas, while a significant effect of the left HG duplication was present on PTtot asymmetry that was larger in case of a CSD as compared to a single HG. By contrast, the type of HG duplication did not affect HGPT and neither left nor right HG duplication pattern had an effect on HGPT asymmetry. Meanwhile, MP had no effect on PTpost, PTtot, HGPT, or their asymmetries. The absence of a left PTpost was associated with existence of FS (FS+) (7FS+ among nine without PTpost). Removing the nine individuals lacking PTpost, a lower left PTpost surface area was observed in FS+ participants with left CPD. In the sub-sample of 362 participants, we observed a significant interaction between PTpost asymmetry and cognitive abilities due to poorer lexical performances in individuals having a symmetric PTpost as compared to individuals having either a leftward or a rightward asymmetric PTpost. By contrast, there was no significant effect of PTtot or HGPT asymmetry on cognitive abilities. This study shows that HG duplication pattern mainly affects the surface area of the most posterior part of PT and its asymmetry, this PTpost area being specifically associated with variability in verbal performances. This study also shows, for the first time, an association between decreased performances and lack of PTpost anatomical asymmetry, being rightward asymmetrical having no deleterious effect on verbal abilities, thereby supporting the idea that anatomical lateralization is necessary for optimal verbal performances.
Collapse
Affiliation(s)
- Nathalie Tzourio-Mazoyer
- Univ. Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France. .,CNRS, IMN, UMR 5293, 33000, Bordeaux, France. .,CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France. .,IMN Institut des Maladies Neurodégénératives UMR 5293, Team 5: GIN Groupe d'Imagerie Neurofonctionnelle, CEA-CNRS-Université de Bordeaux, 146 rue Léo Saignat-CS 61292-Case 28, 33076, Bordeaux cedex, France.
| | - B Mazoyer
- Univ. Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France.,CNRS, IMN, UMR 5293, 33000, Bordeaux, France.,CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France.,IMN Institut des Maladies Neurodégénératives UMR 5293, Team 5: GIN Groupe d'Imagerie Neurofonctionnelle, CEA-CNRS-Université de Bordeaux, 146 rue Léo Saignat-CS 61292-Case 28, 33076, Bordeaux cedex, France
| |
Collapse
|
67
|
Multi-factorial modulation of hemispheric specialization and plasticity for language in healthy and pathological conditions: A review. Cortex 2017; 86:314-339. [DOI: 10.1016/j.cortex.2016.05.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/16/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022]
|
68
|
Ocklenburg S, Friedrich P, Güntürkün O, Genç E. Intrahemispheric white matter asymmetries: the missing link between brain structure and functional lateralization? Rev Neurosci 2016; 27:465-80. [DOI: 10.1515/revneuro-2015-0052] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/29/2015] [Indexed: 01/01/2023]
Abstract
AbstractHemispheric asymmetries are a central principle of nervous system architecture and shape the functional organization of most cognitive systems. Structural gray matter asymmetries and callosal interactions have been identified as contributing neural factors but always fell short to constitute a full explanans. Meanwhile, recent advances in in vivo white matter tractography have unrevealed the asymmetrical organization of many intrahemispheric white matter pathways, which might serve as the missing link to explain the substrate of functional lateralization. By taking into account callosal interactions, gray matter asymmetries and asymmetrical interhemispheric pathways, we opt for a new triadic model that has the potential to explain many observations which cannot be elucidated within the current frameworks of lateralized cognition.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- 1Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University of Bochum, D-44780 Bochum, Germany
| | - Patrick Friedrich
- 1Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University of Bochum, D-44780 Bochum, Germany
| | - Onur Güntürkün
- 1Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University of Bochum, D-44780 Bochum, Germany
| | - Erhan Genç
- 1Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University of Bochum, D-44780 Bochum, Germany
| |
Collapse
|
69
|
Marie D, Maingault S, Crivello F, Mazoyer B, Tzourio-Mazoyer N. Surface-Based Morphometry of Cortical Thickness and Surface Area Associated with Heschl's Gyri Duplications in 430 Healthy Volunteers. Front Hum Neurosci 2016; 10:69. [PMID: 27014013 PMCID: PMC4779901 DOI: 10.3389/fnhum.2016.00069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 02/11/2016] [Indexed: 01/31/2023] Open
Abstract
We applied Surface-Based Morphometry to assess the variations in cortical thickness (CT) and cortical surface area (CSA) in relation to the occurrence of Heschl's gyrus (HG) duplications in each hemisphere. 430 healthy brains that had previously been classified as having a single HG, Common Stem Duplication (CSD) or Complete Posterior Duplication (CPD) in each hemisphere were analyzed. To optimally align the HG area across the different groups of gyrification, we computed a specific surface-based template composed of 40 individuals with a symmetrical HG gyrification pattern (20 single HG, 10 CPD, 10 CSD). After normalizing the 430 participants' T1 images to this specific template, we separately compared the groups constituted of participants with a single HG, CPD, and CSD in each hemisphere. The occurrence of a duplication in either hemisphere was associated with an increase in CT posterior to the primary auditory cortex. This may be the neural support of expertise or great abilities in either speech or music processing domains that were related with duplications by previous studies. A decrease in CSA in the planum temporale was detected in cases with duplication in the left hemisphere. In the right hemisphere, a medial decrease in CSA and a lateral increase in CSA were present in HG when a CPD occurred together with an increase in CSA in the depth of the superior temporal sulcus (STS) in CSD compared to a single HG. These variations associated with duplication might be related to the functions that they process jointly within each hemisphere: temporal and speech processing in the left and spectral and music processing in the right.
Collapse
Affiliation(s)
- Damien Marie
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| | - Sophie Maingault
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| | - Nathalie Tzourio-Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| |
Collapse
|
70
|
Asymmetric Interhemispheric Transfer in the Auditory Network: Evidence from TMS, Resting-State fMRI, and Diffusion Imaging. J Neurosci 2016; 35:14602-11. [PMID: 26511249 DOI: 10.1523/jneurosci.2333-15.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hemispheric asymmetries in human auditory cortical function and structure are still highly debated. Brain stimulation approaches can complement correlational techniques by uncovering causal influences. Previous studies have shown asymmetrical effects of transcranial magnetic stimulation (TMS) on task performance, but it is unclear whether these effects are task-specific or reflect intrinsic network properties. To test how modulation of auditory cortex (AC) influences functional networks and whether this influence is asymmetrical, the present study measured resting-state fMRI connectivity networks in 17 healthy volunteers before and immediately after TMS (continuous theta burst stimulation) to the left or right AC, and the vertex as a control. We also examined the relationship between TMS-induced interhemispheric signal propagation and anatomical properties of callosal auditory fibers as measured with diffusion-weighted MRI. We found that TMS to the right AC, but not the left, resulted in widespread connectivity decreases in auditory- and motor-related networks in the resting state. Individual differences in the degree of change in functional connectivity between auditory cortices after TMS applied over the right AC were negatively related to the volume of callosal auditory fibers. The findings show that TMS-induced network modulation occurs, even in the absence of an explicit task, and that the magnitude of the effect differs across individuals as a function of callosal structure, supporting a role for the corpus callosum in mediating functional asymmetry. The findings support theoretical models emphasizing hemispheric differences in network organization and are of practical significance in showing that brain stimulation studies need to take network-level effects into account.
Collapse
|
71
|
Duffau H. A two-level model of interindividual anatomo-functional variability of the brain and its implications for neurosurgery. Cortex 2016; 86:303-313. [PMID: 26920729 DOI: 10.1016/j.cortex.2015.12.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/06/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
The classical dogma of localizationism implicitly resulted in the principle of a similar brain functional anatomy between individuals, as for example the pars opercularis of the left "dominant" hemisphere corresponding to the speech area. This fixed "single brain" model led neurosurgeons to define a set of "eloquent" areas, for which injury would induce severe and persistent neurological worsening, making their surgical resections impossible. Therefore, numerous patients with a cerebral lesion justifying surgery were a priori not selected for resection and lost a chance to be treated. In fact, advances in brain mapping showed a considerable inter-individual variability explained by a networking organization of the brain, in which one function is not underpinned by one specific region, but by interactions between dynamic large-scale delocalized sub-circuits. Indeed, using non-invasive neuroimaging, a variability of both structural and functional anatomy was demonstrated in healthy volunteers. Moreover, intraoperative electrical stimulation mapping of cortex and white matter tracts in awake patients who underwent surgery for tumor or epilepsy also showed an important anatomo-functional variability. However, a remarkable observation is that this variability is huge at the cortical level, while it is very low at the subcortical level. Based upon these intrasurgical findings, the goal of this review is to propose a two-level model of inter-individual variability (high cortical variation, low subcortical variation), breaking with the traditional rigid workframe, and making neurosurgery in traditionally presumed "eloquent" areas feasible without permanent deficits, on condition nonetheless to preserve the "invariant common core" of the brain.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; National Institute for Health and Medical Research (INSERM), U1051 Laboratory, Team "Brain Plasticity, Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier, Montpellier University Medical Center, Montpellier, France.
| |
Collapse
|
72
|
Chiarello C, Vazquez D, Felton A, McDowell A. Structural asymmetry of the human cerebral cortex: Regional and between-subject variability of surface area, cortical thickness, and local gyrification. Neuropsychologia 2016; 93:365-379. [PMID: 26792368 DOI: 10.1016/j.neuropsychologia.2016.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/07/2015] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Structural asymmetry varies across individuals, brain regions, and metrics of cortical organization. The current study investigated regional differences in asymmetry of cortical surface area, thickness, and local gyrification, and the extent of between-subject variability in these metrics, in a sample of healthy young adults (N=200). Between-subject variability in cortical structure may provide a means to assess the extent of biological flexibility or constraint of brain regions, and we explored the potential influence of this variability on the phenotypic expression of structural asymmetry. The findings demonstrate that structural asymmetries are nearly ubiquitous across the cortex, with differing regional organization for the three cortical metrics. This implies that there are multiple, only partially overlapping, maps of structural asymmetry. The results further indicate that the degree of asymmetry of a brain region can be predicted by the extent of the region's between-subject variability. These findings provide evidence that reduced biological constraint promotes the expression of strong structural asymmetry.
Collapse
|
73
|
Intra- and Inter-hemispheric Connectivity Supporting Hemispheric Specialization. MICRO-, MESO- AND MACRO-CONNECTOMICS OF THE BRAIN 2016. [DOI: 10.1007/978-3-319-27777-6_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
74
|
Da Costa S, Bourquin NMP, Knebel JF, Saenz M, van der Zwaag W, Clarke S. Representation of Sound Objects within Early-Stage Auditory Areas: A Repetition Effect Study Using 7T fMRI. PLoS One 2015; 10:e0124072. [PMID: 25938430 PMCID: PMC4418571 DOI: 10.1371/journal.pone.0124072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/25/2015] [Indexed: 11/26/2022] Open
Abstract
Environmental sounds are highly complex stimuli whose recognition depends on the interaction of top-down and bottom-up processes in the brain. Their semantic representations were shown to yield repetition suppression effects, i. e. a decrease in activity during exposure to a sound that is perceived as belonging to the same source as a preceding sound. Making use of the high spatial resolution of 7T fMRI we have investigated the representations of sound objects within early-stage auditory areas on the supratemporal plane. The primary auditory cortex was identified by means of tonotopic mapping and the non-primary areas by comparison with previous histological studies. Repeated presentations of different exemplars of the same sound source, as compared to the presentation of different sound sources, yielded significant repetition suppression effects within a subset of early-stage areas. This effect was found within the right hemisphere in primary areas A1 and R as well as two non-primary areas on the antero-medial part of the planum temporale, and within the left hemisphere in A1 and a non-primary area on the medial part of Heschl’s gyrus. Thus, several, but not all early-stage auditory areas encode the meaning of environmental sounds.
Collapse
Affiliation(s)
- Sandra Da Costa
- Service de Neuropsychologie et de Neuroréhabilitation, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Lausanne, Switzerland
- * E-mail:
| | - Nathalie M.-P. Bourquin
- Service de Neuropsychologie et de Neuroréhabilitation, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Lausanne, Switzerland
| | - Jean-François Knebel
- National Center of Competence in Research, SYNAPSY—The Synaptic Bases of Mental Diseases, Service de Neuropsychologie et de Neuroréhabilitation, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Lausanne, Switzerland
| | - Melissa Saenz
- Laboratoire de Recherche en Neuroimagerie, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Lausanne, Switzerland
| | - Wietske van der Zwaag
- Centre d’Imagerie BioMédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephanie Clarke
- Service de Neuropsychologie et de Neuroréhabilitation, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
75
|
Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children. J Neurosci 2014; 34:10937-49. [PMID: 25122894 DOI: 10.1523/jneurosci.5315-13.2014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered.
Collapse
|
76
|
Elmer S, Jäncke L. Intracerebral functional connectivity-guided neurofeedback as a putative rehabilitative intervention for ameliorating auditory-related dysfunctions. Front Psychol 2014; 5:1227. [PMID: 25400606 PMCID: PMC4212614 DOI: 10.3389/fpsyg.2014.01227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/09/2014] [Indexed: 01/25/2023] Open
Abstract
Electroencephalography (EEG) constitutes one of the most eligible candidates for neurofeedback applications, principally due to its excellent temporal resolution best reflecting the natural dynamics of brain processes. In addition, EEG is easy to use and provides the opportunity for mobile applications. In the present opinion article, we pinpoint the advantages of using intracerebral functional connectivity (IFC) instead of quantitative scalp EEG for interventional applications. In fact, due to the convergence of multiple signals originating from different spatial locations and electrophysiological interactions, miscellaneous scalp signals are too unspecific for therapeutic neurofeedback applications. Otherwise, IFC opens novel perspectives for influencing brain activity in specific dysfunctional small- and large-scale neuronal networks with a reasonable spatial resolution. In the present article, we propose concrete interventional IFC applications that may be used to ameliorate auditory-related dysfunctions such as developmental dyslexia.
Collapse
Affiliation(s)
- Stefan Elmer
- Division Neuropsychology, Institute of Psychology, University of ZurichZurich, Switzerland
| | - Lutz Jäncke
- Division Neuropsychology, Institute of Psychology, University of ZurichZurich, Switzerland
- Center for Integrative Human PhysiologyZurich, Switzerland
- International Normal Aging and Plasticity Imaging CenterZurich, Switzerland
- Research Unit for Plasticity and Learning of the Healthy Aging Brain, University of ZurichZurich, Switzerland
- Dynamic of Healthy Aging, University Research Priority Program University of ZurichSwitzerland
- Department of Special Education, King Abdulaziz UniversityJeddah, Saudi Arabia
| |
Collapse
|
77
|
Altarelli I, Leroy F, Monzalvo K, Fluss J, Billard C, Dehaene-Lambertz G, Galaburda AM, Ramus F. Planum temporale asymmetry in developmental dyslexia: Revisiting an old question. Hum Brain Mapp 2014; 35:5717-35. [PMID: 25044828 DOI: 10.1002/hbm.22579] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/10/2014] [Accepted: 06/25/2014] [Indexed: 11/06/2022] Open
Abstract
Among the various asymmetrical structures of the human brain, the planum temporale, an anatomical region associated with a variety of auditory and language-related processes, has received particular attention. While its surface area has been shown to be greater in the left hemisphere compared to the right in about two-thirds of the general population, altered patterns of asymmetry were revealed by post mortem analyses in individuals with developmental dyslexia. These findings have been inconsistently replicated in magnetic resonance imaging studies of this disorder. In this report, we attempt to resolve past inconsistencies by analyzing the T1-weighted MR images of 81 children (mean age: 11 years, sd: 17 months), including 46 control (25 boys) and 35 dyslexic children (20 boys). We manually outlined Heschl's gyri, the planum temporale and the posterior rami of the Sylvian fissure on participants' brain images, using the same anatomical criteria as in post mortem studies. Results revealed an altered pattern of asymmetry of the planum temporale surface area in dyslexic boys only, with a greater proportion of rightward asymmetrical cases among dyslexic boys compared to control boys. Additionally, analyses of cortical thickness showed no asymmetry differences between groups for any of the regions of interest. Finally, a greater number of Heschl's gyrus full duplications emerged for the right hemisphere of dyslexic boys compared to controls. The present findings confirm and extend early post mortem observations. They also stress the importance of taking gender into account in studies of developmental dyslexia.
Collapse
Affiliation(s)
- Irene Altarelli
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, Ecole Normale Supérieure, EHESS, CNRS, PSL Research University, 75230, Paris Cedex 05, France; Brain and Learning Laboratory, FPSE, University of Geneva, 1211, Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Guadalupe T, Willems RM, Zwiers MP, Arias Vasquez A, Hoogman M, Hagoort P, Fernandez G, Buitelaar J, Franke B, Fisher SE, Francks C. Differences in cerebral cortical anatomy of left- and right-handers. Front Psychol 2014; 5:261. [PMID: 24734025 PMCID: PMC3975119 DOI: 10.3389/fpsyg.2014.00261] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/11/2014] [Indexed: 11/17/2022] Open
Abstract
The left and right sides of the human brain are specialized for different kinds of information processing, and much of our cognition is lateralized to an extent toward one side or the other. Handedness is a reflection of nervous system lateralization. Roughly ten percent of people are mixed- or left-handed, and they show an elevated rate of reductions or reversals of some cerebral functional asymmetries compared to right-handers. Brain anatomical correlates of left-handedness have also been suggested. However, the relationships of left-handedness to brain structure and function remain far from clear. We carried out a comprehensive analysis of cortical surface area differences between 106 left-handed subjects and 1960 right-handed subjects, measured using an automated method of regional parcellation (FreeSurfer, Destrieux atlas). This is the largest study sample that has so far been used in relation to this issue. No individual cortical region showed an association with left-handedness that survived statistical correction for multiple testing, although there was a nominally significant association with the surface area of a previously implicated region: the left precentral sulcus. Identifying brain structural correlates of handedness may prove useful for genetic studies of cerebral asymmetries, as well as providing new avenues for the study of relations between handedness, cerebral lateralization and cognition.
Collapse
Affiliation(s)
- Tulio Guadalupe
- Language and Genetics Department, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands ; International Max Planck Research School for Language Sciences Nijmegen, Netherlands
| | - Roel M Willems
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands ; Neurobiology of Language Department, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands
| | - Marcel P Zwiers
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Alejandro Arias Vasquez
- Department of Human Genetics, Radboud University Medical Center Nijmegen, Netherlands ; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands ; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - Martine Hoogman
- Language and Genetics Department, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands ; Department of Human Genetics, Radboud University Medical Center Nijmegen, Netherlands
| | - Peter Hagoort
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands ; Neurobiology of Language Department, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands
| | - Guillen Fernandez
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands ; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - Jan Buitelaar
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands ; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center Nijmegen, Netherlands ; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands ; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands ; Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Nijmegen, Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands ; Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Nijmegen, Netherlands
| |
Collapse
|
79
|
Heschl’s gyrification pattern is related to speech-listening hemispheric lateralization: FMRI investigation in 281 healthy volunteers. Brain Struct Funct 2014; 220:1585-99. [PMID: 24638878 DOI: 10.1007/s00429-014-0746-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/28/2014] [Indexed: 11/27/2022]
|