51
|
O'Brien B, Goodridge L, Ronholm J, Nasheri N. Exploring the potential of foodborne transmission of respiratory viruses. Food Microbiol 2021; 95:103709. [PMID: 33397626 PMCID: PMC8035669 DOI: 10.1016/j.fm.2020.103709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
The ongoing pandemic involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised the question whether this virus, which is known to be spread primarily though respiratory droplets, could be spread through the fecal-oral route or via contaminated food. In this article, we present a critical review of the literature exploring the potential foodborne transmission of several respiratory viruses including human coronaviruses, avian influenza virus (AVI), parainfluenza viruses, human respiratory syncytial virus, adenoviruses, rhinoviruses, and Nipah virus. Multiple lines of evidence, including documented expression of receptor proteins on gastrointestinal epithelial cells, in vivo viral replication in gastrointestinal epithelial cell lines, extended fecal shedding of respiratory viruses, and the ability to remain infectious in food environments for extended periods of time raises the theoretical ability of some human respiratory viruses, particularly human coronaviruses and AVI, to spread via food. However, to date, neither epidemiological data nor case reports of clear foodborne transmission of either viruses exist. Thus, foodborne transmission of human respiratory viruses remains only a theoretical possibility.
Collapse
Affiliation(s)
- Bridget O'Brien
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | | | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Neda Nasheri
- Food Virology Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada.
| |
Collapse
|
52
|
Adenovirus - a blueprint for gene delivery. Curr Opin Virol 2021; 48:49-56. [PMID: 33892224 DOI: 10.1016/j.coviro.2021.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 11/23/2022]
Abstract
A central quest in gene therapy and vaccination is to achieve effective and long-lasting gene expression at minimal dosage. Adenovirus vectors are widely used therapeutics and safely deliver genes into many cell types. Adenoviruses evolved to use elaborate trafficking and particle deconstruction processes, and efficient gene expression and progeny formation. Here, we discuss recent insights into how human adenoviruses deliver their double-stranded DNA genome into cell nuclei, and effect lytic cell killing, non-lytic persistent infection or vector gene expression. The mechanisms underlying adenovirus entry, uncoating, nuclear transport and gene expression provide a blueprint for the emerging field of synthetic virology, where artificial virus-like particles are evolved to deliver therapeutic payload into human cells without viral proteins and genomes.
Collapse
|
53
|
Tessarollo NG, Domingues ACM, Antunes F, da Luz JCDS, Rodrigues OA, Cerqueira OLD, Strauss BE. Nonreplicating Adenoviral Vectors: Improving Tropism and Delivery of Cancer Gene Therapy. Cancers (Basel) 2021; 13:1863. [PMID: 33919679 PMCID: PMC8069790 DOI: 10.3390/cancers13081863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent preclinical and clinical studies have used viral vectors in gene therapy research, especially nonreplicating adenovirus encoding strategic therapeutic genes for cancer treatment. Adenoviruses were the first DNA viruses to go into therapeutic development, mainly due to well-known biological features: stability in vivo, ease of manufacture, and efficient gene delivery to dividing and nondividing cells. However, there are some limitations for gene therapy using adenoviral vectors, such as nonspecific transduction of normal cells and liver sequestration and neutralization by antibodies, especially when administered systemically. On the other hand, adenoviral vectors are amenable to strategies for the modification of their biological structures, including genetic manipulation of viral proteins, pseudotyping, and conjugation with polymers or biological membranes. Such modifications provide greater specificity to the target cell and better safety in systemic administration; thus, a reduction of antiviral host responses would favor the use of adenoviral vectors in cancer immunotherapy. In this review, we describe the structural and molecular features of nonreplicating adenoviral vectors, the current limitations to their use, and strategies to modify adenoviral tropism, highlighting the approaches that may allow for the systemic administration of gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bryan E. Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM24, University of São Paulo School of Medicine, São Paulo 01246-000, Brazil; (N.G.T.); (A.C.M.D.); (F.A.); (J.C.d.S.d.L.); (O.A.R.); (O.L.D.C.)
| |
Collapse
|
54
|
Wang X, Zhong L, Zhao Y. Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review). Oncol Rep 2021; 45:49. [PMID: 33760203 PMCID: PMC7934214 DOI: 10.3892/or.2021.8000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Immunogene therapy can enhance the antitumor immune effect by introducing genes encoding co‑stimulation molecules, cytokines, chemokines and tumor‑associated antigens into treatment cells or human cells through genetic engineering techniques. Oncolytic viruses can specifically target tumor cells and replicate indefinitely until they kill tumor cells. If combined with immunogene therapy, oncolytic viruses can play a more powerful antitumor role. The high pressure, hypoxia and acidity in the tumor microenvironment (TME) provide suitable conditions for tumor cells to survive. To maximize the potency of oncolytic viruses, various methods are being developed to promote the reversal of the TME, thereby maximizing transmission of replication and immunogenicity. The aim of the present review was to discuss the basic mechanisms underlying the effects of oncolytic adenoviruses on the TME, and suggest how to combine the modification of the adenovirus with the TME to further combat malignant tumors.
Collapse
Affiliation(s)
- Xiaoxi Wang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Liping Zhong
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
55
|
Sender V, Hentrich K, Henriques-Normark B. Virus-Induced Changes of the Respiratory Tract Environment Promote Secondary Infections With Streptococcus pneumoniae. Front Cell Infect Microbiol 2021; 11:643326. [PMID: 33828999 PMCID: PMC8019817 DOI: 10.3389/fcimb.2021.643326] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Secondary bacterial infections enhance the disease burden of influenza infections substantially. Streptococcus pneumoniae (the pneumococcus) plays a major role in the synergism between bacterial and viral pathogens, which is based on complex interactions between the pathogen and the host immune response. Here, we discuss mechanisms that drive the pathogenesis of a secondary pneumococcal infection after an influenza infection with a focus on how pneumococci senses and adapts to the influenza-modified environment. We briefly summarize what is known regarding secondary bacterial infection in relation to COVID-19 and highlight the need to improve our current strategies to prevent and treat viral bacterial coinfections.
Collapse
Affiliation(s)
- Vicky Sender
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karina Hentrich
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
56
|
Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev 2021; 170:113-141. [PMID: 33422546 PMCID: PMC7789827 DOI: 10.1016/j.addr.2021.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 01/07/2023]
Abstract
The novel betacoronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has spread across the globe at an unprecedented rate since its first emergence in Wuhan City, China in December 2019. Scientific communities around the world have been rigorously working to develop a potent vaccine to combat COVID-19 (coronavirus disease 2019), employing conventional and novel vaccine strategies. Gene-based vaccine platforms based on viral vectors, DNA, and RNA, have shown promising results encompassing both humoral and cell-mediated immune responses in previous studies, supporting their implementation for COVID-19 vaccine development. In fact, the U.S. Food and Drug Administration (FDA) recently authorized the emergency use of two RNA-based COVID-19 vaccines. We review current gene-based vaccine candidates proceeding through clinical trials, including their antigenic targets, delivery vehicles, and route of administration. Important features of previous gene-based vaccine developments against other infectious diseases are discussed in guiding the design and development of effective vaccines against COVID-19 and future derivatives.
Collapse
Affiliation(s)
- Deborah Pushparajah
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Salma Jimenez
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Hibah Alattas
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Nafiseh Nafissi
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Roderick A Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada.
| |
Collapse
|
57
|
Zou X, Rong Y, Guo X, Hou W, Yan B, Hung T, Lu Z. Fiber1, but not fiber2, is the essential fiber gene for fowl adenovirus 4 (FAdV-4). J Gen Virol 2021; 102. [PMID: 33625352 DOI: 10.1099/jgv.0.001559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fibre is the viral protein that mediates the attachment and infection of adenovirus to the host cell. Fowl adenovirus 4 (FAdV-4) possesses two different fibre trimers on each penton capsomere, and roles of the separate fibres remain elusive. Here, we attempted to investigate the function of FAdV-4 fibres by using reverse genetics approaches. Adenoviral plasmids carrying fiber1 or fiber2 mutant genes were constructed and used to transfect chicken LMH cells. Fiber1-mutated recombinant virus could not be rescued. Such defective phenotype was complemented when a fiber1-bearing helper plasmid was included for co-transfection. The infection of fiber-intact FAdV-4 (FAdV4-GFP) to LMH cells could be blocked with purified fiber1 knob protein in a dose-dependent manner, while purifed fiber2 knob had no such function. On the contrary, fiber2-mutated FAdV-4, FAdV4XF2-GFP, was successfully rescued. The results of one-step growth curves showed that proliferative capacity of FAdV4XF2-GFP was 10 times lower than that of the control FAdV4-GFP. FAdV4XF2-GFP also caused fewer deaths of infected chicken embryos than FAdV4-GFP did, which resulted from poorer virus replication in vivo. These data illustrated that fiber1 mediated virus adsorption and was essential for FAdV-4, while fiber2 was dispensable although it significantly contributed to the virulence.
Collapse
Affiliation(s)
- Xiaohui Zou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, PR China
| | - Yejing Rong
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, PR China.,NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, PR China
| | - Xiaojuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, PR China
| | - Wenzhe Hou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, PR China
| | - Bingyu Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.,NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, PR China
| | - Tao Hung
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, PR China
| | - Zhuozhuang Lu
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.,Chinese Center for Disease Control and Prevention-Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Wuhan 430071, PR China.,NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, PR China
| |
Collapse
|
58
|
Adenovirus and the Cornea: More Than Meets the Eye. Viruses 2021; 13:v13020293. [PMID: 33668417 PMCID: PMC7917768 DOI: 10.3390/v13020293] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Human adenoviruses cause disease at multiple mucosal sites, including the respiratory, gastrointestinal, and genitourinary tracts, and are common agents of conjunctivitis. One site of infection that has received sparse attention is the cornea, a transparent tissue and the window of the eye. While most adenovirus infections are self-limited, corneal inflammation (keratitis) due to adenovirus can persist or recur for months to years after infection, leading to reduced vision, discomfort, and light sensitivity. Topical corticosteroids effectively suppress late adenovirus keratitis but are associated with vision-threatening side effects. In this short review, we summarize current knowledge on infection of the cornea by adenoviruses, including corneal epithelial cell receptors and determinants of corneal tropism. We briefly discuss mechanisms of stromal keratitis due to adenovirus infection, and review an emerging therapy to mitigate adenovirus corneal infections based on evolving knowledge of corneal epithelial receptor usage.
Collapse
|
59
|
Dodge MJ, MacNeil KM, Tessier TM, Weinberg JB, Mymryk JS. Emerging antiviral therapeutics for human adenovirus infection: Recent developments and novel strategies. Antiviral Res 2021; 188:105034. [PMID: 33577808 DOI: 10.1016/j.antiviral.2021.105034] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Human adenoviruses (HAdV) are ubiquitous human pathogens that cause a significant burden of respiratory, ocular, and gastrointestinal illnesses. Although HAdV infections are generally self-limiting, pediatric and immunocompromised individuals are at particular risk for developing severe disease. Currently, no approved antiviral therapies specific to HAdV exist. Recent outbreaks underscore the need for effective antiviral agents to treat life-threatening infections. In this review we will focus on recent developments in search of potential therapeutic agents for controlling HAdV infections, with a focus on those targeting post-entry stages of the virus replicative cycle.
Collapse
Affiliation(s)
- Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
60
|
O'Bryan SM, Mathis JM. CXCL12 Retargeting of an Oncolytic Adenovirus Vector to the Chemokine CXCR4 and CXCR7 Receptors in Breast Cancer. ACTA ACUST UNITED AC 2021; 12:311-336. [PMID: 34178415 DOI: 10.4236/jct.2021.126029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Breast cancer is the most frequently diagnosed cancer in women under 60, and the second most diagnosed cancer in women over 60. While significant progress has been made in developing targeted therapies for breast cancer, advanced breast cancer continues to have high mortality, with poor 5-year survival rates. Thus, current therapies are insufficient in treating advanced stages of breast cancer; new treatments are sorely needed to address the complexity of advanced-stage breast cancer. Oncolytic virotherapy has been explored as a therapeutic approach capable of systemic administration, targeting cancer cells, and sparing normal tissue. In particular, oncolytic adenoviruses have been exploited as viral vectors due to their ease of manipulation, production, and demonstrated clinical safety profile. In this study, we engineered an oncolytic adenovirus to target the chemokine receptors CXCR4 and CXCR7. The overexpression of CXCR4 and CXCR7 is implicated in the initiation, survival, progress, and metastasis of breast cancer. Both receptors bind to the ligand, CXCL12 (SDF-1), which has been identified to play a crucial role in the metastasis of breast cancer cells. This study incorporated a T4 fibritin protein fused to CXCL12 into the tail domain of an adenovirus fiber to retarget the vector to the CXCR4 and CXCR7 chemokine receptors. We showed that the modified virus targets and infects CXCR4- and CXCR7-overexpressing breast cancer cells more efficiently than a wild-type control vector. In addition, the substitution of the wild-type fiber and knob with the modified chimeric fiber did not interfere with oncolytic capability. Overall, the results of this study demonstrate the feasibility of retargeting adenovirus vectors to chemokine receptor-positive tumors.
Collapse
Affiliation(s)
- Samia M O'Bryan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana USA
| | - J Michael Mathis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana USA.,University of North Texas Health Science Center, Graduate School of Biomedical Sciences, Fort Worth, Texas, USA
| |
Collapse
|
61
|
Zittersteijn HA, Gonçalves MA, Hoeben RC. A primer to gene therapy: Progress, prospects, and problems. J Inherit Metab Dis 2021; 44:54-71. [PMID: 32510617 PMCID: PMC7891367 DOI: 10.1002/jimd.12270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Genetic therapies based on gene addition have witnessed a variety of clinical successes and the first therapeutic products have been approved for clinical use. Moreover, innovative gene editing techniques are starting to offer new opportunities in which the mutations that underlie genetic diseases can be directly corrected in afflicted somatic cells. The toolboxes underpinning these DNA modifying technologies are expanding with great pace. Concerning the ongoing efforts for their implementation, viral vector-based gene delivery systems have acquired center-stage, providing new hopes for patients with inherited and acquired disorders. Specifically, the application of genetic therapies using viral vectors for the treatment of inborn metabolic disorders is growing and clinical applications are starting to appear. While the field has matured from the technology perspective and has yielded efficacious products, it is the perception of many stakeholders that from the regulatory side further developments are urgently needed. In this review, we summarize the features of state-of-the-art viral vector systems and the corresponding gene-centered therapies they seek to deliver. Moreover, a brief summary is also given on emerging gene editing approaches built on CRISPR-Cas9 nucleases and, more recently, nickases, including base editors and prime editors. Finally, we will point at some regulatory aspects that may deserve further attention for translating these technological developments into actual advanced therapy medicinal products (ATMPs).
Collapse
Affiliation(s)
- Hidde A. Zittersteijn
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Manuel A.F.V. Gonçalves
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
62
|
Gong Y, Deng J, Wu X. Germline mutations and blood malignancy (Review). Oncol Rep 2020; 45:49-57. [PMID: 33200226 DOI: 10.3892/or.2020.7846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/01/2020] [Indexed: 02/05/2023] Open
Abstract
Germline mutations are congenital genetic mutations in germ cells that originate from sperm or ovum and are generally incorporated into every cell of the offspring's body. Somatic mutations are acquired genetic mutations that form under the influence of environmental factors during embryo formation and epigenetic development. Generally, only a portion of the cells in the human body have the same somatic mutations. Clinical detection of germline mutations is intended to determine inherited malignancies and identify high‑risk families, and detection of somatic mutation is proposed to find targeted drugs, monitor tumor loading for guided therapy, and evaluate prognosis. Large‑scale population cohort studies have shown that germline mutations are closely related to the occurrence, development, and prognosis of diseases. Patients with cancer‑predisposition germline mutations can be used as sentinels in high‑risk families. Traditional histopathology is no longer enough to identify types of cancers. Even within a particular type of tumor, there is great heterogeneity between internal molecules. The Pan‑Cancer Research Program as well as other projects seek to use large quantities of data from different types of tumor research databases to carry out integrated analysis in order to establish potential non‑tumor‑specific tumor markers and targets by increasing the sample size to identify more molecular mechanisms. This review intends to summarize some of the relevant mechanisms underlying germline mutations in blood disorders.
Collapse
Affiliation(s)
- Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jili Deng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
63
|
Adenovirus Receptor Expression in Cancer and Its Multifaceted Role in Oncolytic Adenovirus Therapy. Int J Mol Sci 2020; 21:ijms21186828. [PMID: 32957644 PMCID: PMC7554712 DOI: 10.3390/ijms21186828] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic adenovirus therapy is believed to be a promising way to treat cancer patients. To be able to target tumor cells with an oncolytic adenovirus, expression of the adenovirus receptor on the tumor cell is essential. Different adenovirus types bind to different receptors on the cell, of which the expression can vary between tumor types. Pre-existing neutralizing immunity to human adenovirus species C type 5 (HAdV-C5) has hampered its therapeutic efficacy in clinical trials, hence several adenoviral vectors from different species are currently being developed as a means to evade pre-existing immunity. Therefore, knowledge on the expression of appropriate adenovirus receptors on tumor cells is important. This could aid in determining which tumor types would benefit most from treatment with a certain oncolytic adenovirus type. This review provides an overview of the known receptors for human adenoviruses and how their expression on tumor cells might be differentially regulated compared to healthy tissue, before and after standardized anticancer treatments. Mechanisms behind the up- or downregulation of adenovirus receptor expression are discussed, which could be used to find new targets for combination therapy to enhance the efficacy of oncolytic adenovirus therapy. Additionally, the utility of the adenovirus receptors in oncolytic virotherapy is examined, including their role in viral spread, which might even surpass their function as primary entry receptors. Finally, future directions are offered regarding the selection of adenovirus types to be used in oncolytic adenovirus therapy in the fight against cancer.
Collapse
|
64
|
Bots ST, Hoeben RC. Non-Human Primate-Derived Adenoviruses for Future Use as Oncolytic Agents? Int J Mol Sci 2020; 21:ijms21144821. [PMID: 32650405 PMCID: PMC7404033 DOI: 10.3390/ijms21144821] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Non-human primate (NHP)-derived adenoviruses have formed a valuable alternative for the use of human adenoviruses in vaccine development and gene therapy strategies by virtue of the low seroprevalence of neutralizing immunity in the human population. The more recent use of several human adenoviruses as oncolytic agents has exhibited excellent safety profiles and firm evidence of clinical efficacy. This proffers the question whether NHP-derived adenoviruses could also be employed for viral oncolysis in human patients. While vaccine vectors are conventionally made as replication-defective vectors, in oncolytic applications replication-competent viruses are used. The data on NHP-derived adenoviral vectors obtained from vaccination studies can only partially support the suitability of NHP-derived adenoviruses for use in oncolytic virus therapy. In addition, the use of NHP-derived adenoviruses in humans might be received warily given the recent zoonotic infections with influenza viruses and coronaviruses. In this review, we discuss the similarities and differences between human- and NHP-derived adenoviruses in view of their use as oncolytic agents. These include their genome organization, receptor use, replication and cell lysis, modulation of the host’s immune responses, as well as their pathogenicity in humans. Together, the data should facilitate a rational and data-supported decision on the suitability of NHP-derived adenoviruses for prospective use in oncolytic virus therapy.
Collapse
|
65
|
Hanaoka N, Nojiri N, Takahashi K, Yoshida E, Fujimoto T. Evaluation of the Anti-Adenoviral Activity of ALTANT, an Ozonated Alcohol Disinfectant. Jpn J Infect Dis 2020; 73:349-353. [PMID: 32350225 DOI: 10.7883/yoken.jjid.2020.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Seven human mastadenovirus (HAdV) species (A-G) are known with more than 100 reported types. HAdV is highly resistant to common hand sanitizers. Epidemic keratoconjunctivitis and pharyngoconjunctival fever are caused by HAdV, which can be explosively transmitted in a confined space, resulting in outbreaks, such as nosocomial infections. Given the absence of an antiviral agent against the HAdV infection, it is important to prevent the spread of the infection by using disinfectants. Ozone has already been well-known for its bactericidal and virucidal effects. ALTANT is an ozonated alcohol preparation developed by E-TECH Co., Ltd. (Kobe, Hyogo, Japan). In this study, we mixed ALTANT with different HAdV types at a ratio of 9:1 and determined HAdV viability after instantaneous reactions for varying periods (flash to 5 minutes) using the TCID50 assay. The assay results demonstrated that the HAdV viability decreased by 1/10 to 1/100 within 1 minute after the reaction; additionally, slight differences in the reactivity were observed among the HAdV types. HAdV viability decreased by a factor of > 4log10, and the virus was eliminated within 3 minutes. This study demonstrated the potent HAdV disinfection effect of ALTANT.
Collapse
Affiliation(s)
- Nozomu Hanaoka
- Laboratory Diagnosis Division, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Japan
| | - Naomi Nojiri
- Laboratory Diagnosis Division, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Japan
| | - Kenichiro Takahashi
- Laboratory Diagnosis Division, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Japan
| | | | - Tsuguto Fujimoto
- Laboratory Diagnosis Division, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Japan
| |
Collapse
|