51
|
Nolting N, Bernhards Y, Pöggeler S. SmATG7 is required for viability in the homothallic ascomycete Sordaria macrospora. Fungal Genet Biol 2009; 46:531-42. [DOI: 10.1016/j.fgb.2009.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 03/14/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
|
52
|
da Silva CC, Cruz RC, Bucciarelli-Rodriguez M, Vilas-Boas A. Neurospora crassa mat A-2 and mat A-3 proteins weakly interact in the yeast two-hybrid system and affect yeast growth. Genet Mol Biol 2009; 32:354-61. [PMID: 21637691 PMCID: PMC3036917 DOI: 10.1590/s1415-47572009000200023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/03/2009] [Indexed: 11/22/2022] Open
Abstract
Mating-type genes control the entry into the sexual cycle, mating identity and sexual development in fungi. The mat A-2 and mat A-3 genes, present in the mat A idiomorph of the filamentous fungus Neurospora crassa, are required for post-fertilization functions but are not essential for mating identity. Their putative roles as transcription factors are based on the similarity of mat A-2 with the Podospora anserina SMR1 gene and an HMG motif present in the mat A-3 gene. In this work the yeast two-hybrid system was used to identify transcriptional activity and protein-protein interaction of N. crassamat A-2 and mat A-3 genes. We observed that the mat A-3 protein alone is capable of weakly activating transcription of yeast reporter genes; it also binds with low specificity to the GAL1 promoter sequence, possibly due to its HMG domain. Our results also indicate that mat A-3 is capable to form homodimers, and interact with mat A-2. Interference on yeast growth was observed on some transformants suggesting a toxic action of the mat A-2 protein. Our data on pattern of interactions of mat proteins contributes towards understanding the control of vegetative and sexual cycles in filamentous fungi.
Collapse
Affiliation(s)
- Carla C da Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | | | | | | |
Collapse
|
53
|
A novel polyketide biosynthesis gene cluster is involved in fruiting body morphogenesis in the filamentous fungi Sordaria macrospora and Neurospora crassa. Curr Genet 2009; 55:185-98. [PMID: 19277664 DOI: 10.1007/s00294-009-0236-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
During fungal fruiting body development, hyphae aggregate to form multicellular structures that protect and disperse the sexual spores. Analysis of microarray data revealed a gene cluster strongly upregulated during fruiting body development in the ascomycete Sordaria macrospora. Real time PCR analysis showed that the genes from the orthologous cluster in Neurospora crassa are also upregulated during development. The cluster encodes putative polyketide biosynthesis enzymes, including a reducing polyketide synthase. Analysis of knockout strains of a predicted dehydrogenase gene from the cluster showed that mutants in N. crassa and S. macrospora are delayed in fruiting body formation. In addition to the upregulated cluster, the N. crassa genome comprises another cluster containing a polyketide synthase gene, and five additional reducing polyketide synthase (rpks) genes that are not part of clusters. To study the role of these genes in sexual development, expression of the predicted rpks genes in S. macrospora (five genes) and N. crassa (six genes) was analyzed; all but one are upregulated during sexual development. Analysis of knockout strains for the N. crassa rpks genes showed that one of them is essential for fruiting body formation. These data indicate that polyketides produced by RPKSs are involved in sexual development in filamentous ascomycetes.
Collapse
|
54
|
Three alpha-subunits of heterotrimeric G proteins and an adenylyl cyclase have distinct roles in fruiting body development in the homothallic fungus Sordaria macrospora. Genetics 2008; 180:191-206. [PMID: 18723884 DOI: 10.1534/genetics.108.091603] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different alpha-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Deltagsa1, Deltagsa2, and Deltagsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Galpha-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Deltagsa1Deltagsa2 and Deltagsa1Deltagsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Galpha-subunits, two recently generated Deltapre strains were crossed with all Deltagsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three DeltagsaDeltasac1 double mutants and one Deltagsa2Deltagsa3Deltasac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1-GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Galpha-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora.
Collapse
|
55
|
Asexual cephalosporin C producer Acremonium chrysogenum carries a functional mating type locus. Appl Environ Microbiol 2008; 74:6006-16. [PMID: 18689517 DOI: 10.1128/aem.01188-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acremonium chrysogenum, the fungal producer of the pharmaceutically relevant beta-lactam antibiotic cephalosporin C, is classified as asexual because no direct observation of mating or meiosis has yet been reported. To assess the potential of A. chrysogenum for sexual reproduction, we screened an expressed sequence tag library from A. chrysogenum for the expression of mating type (MAT) genes, which are the key regulators of sexual reproduction. We identified two putative mating type genes that are homologues of the alpha-box domain gene, MAT1-1-1 and MAT1-1-2, encoding an HPG domain protein defined by the presence of the three invariant amino acids histidine, proline, and glycine. In addition, cDNAs encoding a putative pheromone receptor and pheromone-processing enzymes, as well as components of a pheromone response pathway, were found. Moreover, the entire A. chrysogenum MAT1-1 (AcMAT1-1) gene and regions flanking the MAT region were obtained from a genomic cosmid library, and sequence analysis revealed that in addition to AcMAT1-1-1 and AcMAT1-1-2, the AcMAT1-1 locus comprises a third mating type gene, AcMAT1-1-3, encoding a high-mobility-group domain protein. The alpha-box domain sequence of AcMAT1-1-1 was used to determine the phylogenetic relationships of A. chrysogenum to other ascomycetes. To determine the functionality of the AcMAT1-1 locus, the entire MAT locus was transferred into a MAT deletion strain of the heterothallic ascomycete Podospora anserina (the PaDeltaMAT strain). After fertilization with a P. anserina MAT1-2 (MAT(+)) strain, the corresponding transformants developed fruiting bodies with mature ascospores. Thus, the results of our functional analysis of the AcMAT1-1 locus provide strong evidence to hypothesize a sexual cycle in A. chrysogenum.
Collapse
|
56
|
Cross-species hybridization with Fusarium verticillioides microarrays reveals new insights into Fusarium fujikuroi nitrogen regulation and the role of AreA and NMR. EUKARYOTIC CELL 2008; 7:1831-46. [PMID: 18689524 DOI: 10.1128/ec.00130-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In filamentous fungi, the GATA-type transcription factor AreA plays a major role in the transcriptional activation of genes needed to utilize poor nitrogen sources. In Fusarium fujikuroi, AreA also controls genes involved in the biosynthesis of gibberellins, a family of diterpenoid plant hormones. To identify more genes responding to nitrogen limitation or sufficiency in an AreA-dependent or -independent manner, we examined changes in gene expression of F. fujikuroi wild-type and DeltaareA strains by use of a Fusarium verticillioides microarray representing approximately 9,300 genes. Analysis of the array data revealed sets of genes significantly down- and upregulated in the areA mutant under both N starvation and N-sufficient conditions. Among the downregulated genes are those involved in nitrogen metabolism, e.g., those encoding glutamine synthetase and nitrogen permeases, but also those involved in secondary metabolism. Besides AreA-dependent genes, we found an even larger set of genes responding to N starvation and N-sufficient conditions in an AreA-independent manner. To study the impact of NMR on AreA activity, we examined the expression of several AreA target genes in the wild type and in areA and nmr deletion and overexpression mutants. We show that NMR interacts with AreA as expected but affects gene expression only in early growth stages. This is the first report on genome-wide expression studies examining the influence of AreA on nitrogen-responsive gene expression in a genome-wide manner in filamentous fungi.
Collapse
|
57
|
Kothe E. Sexual attraction: on the role of fungal pheromone/receptor systems (A review). Acta Microbiol Immunol Hung 2008; 55:125-43. [PMID: 18595318 DOI: 10.1556/amicr.55.2008.2.5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pheromones have been detected in all fungal phylogenetic lineages. This came as a surprise, as the general role of pheromones in mate attraction was not envisioned for some fungi. Pheromones and pheromone receptor genes have been identified, however, in members of all true fungal lineages, and even for mycelia forming organisms of plant and amoeba lineages, like oomycetes and myxomycetes. The mating systems and genes governing the mating type are different in fungi, ranging from bipolar with two opposite mating types to tetrapolar mating systems (with four possible mating outcomes, only one of which leads to fertile sexual development) in homobasidioymcetes with more than 23,000 mating types occurring in nature. Pheromones and receptors specifically recognizing these pheromones have evolved with slightly different functions in these different systems. This review is dedicated to follow the evolution of pheromone/receptor systems from simple, biallelic bipolar systems to multiallelic, tetrapolar versions and to explain the slightly different functions the pheromone recognition and subsequent signal transduction cascades within the fungal kingdom. The biotechnological implications of a detailed understanding of mating systems for biological control and plant protection, in medicine, and in mushroom breeding are discussed.
Collapse
Affiliation(s)
- Erika Kothe
- Institute of Microbiology, Friedrich-Schiller-Universität, Neugasse 25, D-07743 Jena, Germany.
| |
Collapse
|
58
|
Jones S, Pfister-Genskow M, Cirelli C, Benca RM. Changes in brain gene expression during migration in the white-crowned sparrow. Brain Res Bull 2008; 76:536-44. [PMID: 18534263 DOI: 10.1016/j.brainresbull.2008.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/17/2008] [Accepted: 03/17/2008] [Indexed: 01/25/2023]
Abstract
Long-term recordings of seasonal sleep patterns in captive white-crowned sparrows (Zonotrichia leucophrys gambelii) have shown that these birds markedly reduce sleep time during the migratory period relative to the non-migratory period. It was also found that, despite this sleep reduction, sparrows showed no evidence of neurobehavioral deficits in a standard operant task used to assess the effects of sleep loss. In this study, we performed an extensive microarray analysis of gene expression in the sparrow telencephalon during the migratory season (M), relative to a 78-h period of enforced sleep restriction during the non-migratory season (SR), and a 6-h period of normal wakefulness during the non-migratory season (W). Of the estimated 17,100 transcripts that were reliably detected, only 0.17% changed expression as a function of M (relative to both SR and W), and 0.11% as a function of SR (relative to both M and W). Brain transcripts whose expression increased during M include the facilitated glucose transporter GLUT1, the presenilin associated rhomboid-like protein PARL, and several members of the heat shock protein family, such as HSP70, HSP90, GRP78 and BiP. These data suggest that migration is associated with brain cellular stress and enhanced energetic demands.
Collapse
Affiliation(s)
- Stephany Jones
- Neuroscience Training Program, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719, USA
| | | | | | | |
Collapse
|
59
|
Hoff B, Pöggeler S, Kück U. Eighty years after its discovery, Fleming's Penicillium strain discloses the secret of its sex. EUKARYOTIC CELL 2008; 7:465-70. [PMID: 18223118 PMCID: PMC2268512 DOI: 10.1128/ec.00430-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/16/2008] [Indexed: 12/29/2022]
Abstract
Eighty years ago, Alexander Fleming discovered antibacterial activity in the asexual mold Penicillium, and the strain he studied later was replaced by an overproducing isolate still used for penicillin production today. Using a heterologous PCR approach, we show that these strains are of opposite mating types and that both have retained transcriptionally expressed pheromone and pheromone receptor genes required for sexual reproduction. This discovery extends options for industrial strain improvement programs using conventional genetical approaches.
Collapse
Affiliation(s)
- Birgit Hoff
- Ruhr-Universität Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Universitätsstr. 150, 44780 Bochum, Germany
| | | | | |
Collapse
|
60
|
Nowrousian M, Frank S, Koers S, Strauch P, Weitner T, Ringelberg C, Dunlap JC, Loros JJ, Kück U. The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol Microbiol 2007; 64:923-37. [PMID: 17501918 PMCID: PMC3694341 DOI: 10.1111/j.1365-2958.2007.05694.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The filamentous fungus Sordaria macrospora develops complex fruiting bodies (perithecia) to propagate its sexual spores. Here, we present an analysis of the sterile mutant pro41 that is unable to produce mature fruiting bodies. The mutant carries a deletion of 4 kb and is complemented by the pro41 open reading frame that is contained within the region deleted in the mutant. In silico analyses predict PRO41 to be an endoplasmic reticulum (ER) membrane protein, and a PRO41-EGFP fusion protein colocalizes with ER-targeted DsRED. Furthermore, Western blot analysis shows that the PRO41-EGFP fusion protein is present in the membrane fraction. A fusion of the predicted N-terminal signal sequence of PRO41 with EGFP is secreted out of the cell, indicating that the signal sequence is functional. pro41 transcript levels are upregulated during sexual development. This increase in transcript levels was not observed in the sterile mutant pro1 that lacks a transcription factor gene. Moreover, microarray analysis of gene expression in the mutants pro1, pro41 and the pro1/41 double mutant showed that pro41 is partly epistatic to pro1. Taken together, these data show that PRO41 is a novel ER membrane protein essential for fruiting body formation in filamentous fungi.
Collapse
Affiliation(s)
- Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sandra Frank
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sandra Koers
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Peter Strauch
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Thomas Weitner
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Carol Ringelberg
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Jay C. Dunlap
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Jennifer J. Loros
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Ulrich Kück
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
- For correspondence. ; Tel. (+49) 0 234 3226212; Fax (+49) 0 234 3214184
| |
Collapse
|
61
|
Jones S, Pfister-Genskow M, Benca RM, Cirelli C. Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. J Neurochem 2007; 105:46-62. [PMID: 18028333 DOI: 10.1111/j.1471-4159.2007.05089.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the mammalian brain, sleep and wakefulness are associated with widespread changes in gene expression. The extent to which the molecular correlates of vigilance state are conserved across phylogeny, however, is only beginning to be explored. The goal of this study was to determine whether sleep and wakefulness affect gene expression in the avian brain. To achieve this end we performed an extensive microarray analysis of gene expression during sleep, wakefulness, and short-term sleep deprivation in the telencephalon of the white-crowned sparrow (Zonotrichia leucophrys gambelii). We found that, as in the rodent cerebral cortex, behavioral state, independent of time of day, has widespread effects on avian brain gene expression, affecting the transcript levels of 255 genes (1.4% of all tested transcripts). Wakefulness-related transcripts (n = 114) code for proteins involved in energy metabolism and oxidative phosphorylation, immediate early genes and transcription factors associated with activity-dependent neural plasticity, as well as heat-shock proteins and molecular chaperones associated with the unfolded protein response. Sleep-related transcripts (n = 141) code for proteins involved in membrane trafficking, lipid/cholesterol synthesis, translational regulation, cellular adhesion, and cytoskeletal organization. Remarkably, despite the considerable differences in morphology and cytology between the mammalian neocortex and the avian telencephalon, the functional categories of transcripts identified in this study exhibit a significant degree of overlap with those identified in the rodent cortex.
Collapse
Affiliation(s)
- Stephany Jones
- Neuroscience Training Program, and Department of Psychiatry, University of Wisconsin, Madison, Wisconsin 53719, USA
| | | | | | | |
Collapse
|
62
|
Engh I, Nowrousian M, Kück U. Regulation of melanin biosynthesis via the dihydroxynaphthalene pathway is dependent on sexual development in the ascomyceteSordaria macrospora. FEMS Microbiol Lett 2007; 275:62-70. [PMID: 17681008 DOI: 10.1111/j.1574-6968.2007.00867.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The filamentous ascomycete Sordaria macrospora accumulates melanin during sexual development. The four melanin biosynthesis genes pks, teh, sdh and tih were isolated and their homology to genes involved in 1,8 dihydroxynaphthalene (DHN) melanin biosynthesis was shown. The presence of DHN melanin in S. macrospora was further confirmed by disrupting the pks gene encoding a putative polyketide synthase and by RNA interference-mediated silencing of the sdh gene encoding a putative scytalone dehydratase. Because melanin occurs in fruiting bodies that develop through several intermediate stages within 7 days of growth, a Northern analysis of a developmental time-course was conducted. These data revealed a time-dependent regulation of teh and sdh transcript levels. Comparing the transcriptional expression by real-time PCR of melanin biosynthesis genes in the wild type under conditions allowing or repressing sexual development, a significant downregulation during vegetative growth was detected. Quantitative real-time PCR and Northern blot analysis of melanin biosynthesis gene expression in different developmental mutants confirmed that melanin biosynthesis is linked to fruiting body development and is under the control of specific regulatory genes that participate in sexual differentiation.
Collapse
Affiliation(s)
- Ines Engh
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
63
|
Hornok L, Waalwijk C, Leslie JF. Genetic factors affecting sexual reproduction in toxigenic Fusarium species. Int J Food Microbiol 2007; 119:54-8. [DOI: 10.1016/j.ijfoodmicro.2007.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
64
|
Kassahn KS, Caley MJ, Ward AC, Connolly AR, Stone G, Crozier RH. Heterologous microarray experiments used to identify the early gene response to heat stress in a coral reef fish. Mol Ecol 2007; 16:1749-63. [PMID: 17402988 DOI: 10.1111/j.1365-294x.2006.03178.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coral reef fishes are expected to experience rising sea surface temperatures due to climate change. How well tropical reef fishes will respond to these increased temperatures and which genes are important in the response to elevated temperatures is not known. Microarray technology provides a powerful tool for gene discovery studies, but the development of microarrays for individual species can be expensive and time-consuming. In this study, we tested the suitability of a Danio rerio oligonucleotide microarray for application in a species with few genomic resources, the coral reef fish Pomacentrus moluccensis. Results from a comparative genomic hybridization experiment and direct sequence comparisons indicate that for most genes there is considerable sequence similarity between the two species, suggesting that the D. rerio array is useful for genomic studies of P. moluccensis. We employed this heterologous microarray approach to characterize the early transcriptional response to heat stress in P. moluccensis. A total of 111 gene loci, many of which are involved in protein processing, transcription, and cell growth, showed significant changes in transcript abundance following exposure to elevated temperatures. Changes in transcript abundance were validated for a selection of candidate genes using quantitative real-time polymerase chain reaction. This study demonstrates that heterologous microarrays can be successfully employed to study species for which specific microarrays have not yet been developed, and so have the potential to greatly enhance the utility of microarray technology to the field of environmental and functional genomics.
Collapse
Affiliation(s)
- Karin S Kassahn
- School of Tropical Biology, James Cook University, Townsville, Qld 4811, Australia.
| | | | | | | | | | | |
Collapse
|
65
|
Vontas J, David JP, Nikou D, Hemingway J, Christophides GK, Louis C, Ranson H. Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross-species microarray hybridization. INSECT MOLECULAR BIOLOGY 2007; 16:315-24. [PMID: 17433071 DOI: 10.1111/j.1365-2583.2007.00728.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A large scale microarray (20k MMC1) from the African malaria vector Anopheles gambiae was used to monitor gene expression in insecticide resistant and susceptible strains of the Asian mosquito Anopheles stephensi. Heterologous hybridization at slightly reduced stringency yielded approximately 7000 significant signals. Thirty-six putative genes were differentially transcribed between the pyrethroid-resistant (DUB-R) and the susceptible (BEECH) strains. The expression profiles of selected transcripts were verified by real-time PCR. A gene putatively involved in the thickening of the adult cuticle showed the most striking up-regulation in DUB-R. A more specialized microarray containing 231 An. gambiae genes putatively involved in insecticide detoxification was used to further analyse classical insecticide resistance genes. Three glutathione S-transferase (GST) transcripts, one esterase and a cytochrome P450 were up-regulated in the resistant strain, while two peroxidases were down-regulated.
Collapse
Affiliation(s)
- J Vontas
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
66
|
Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB. Using genomics to study legume seed development. PLANT PHYSIOLOGY 2007; 144:562-74. [PMID: 17556519 PMCID: PMC1914191 DOI: 10.1104/pp.107.100362] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 04/18/2007] [Indexed: 05/15/2023]
Affiliation(s)
- Brandon H Le
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
67
|
Bar-Or C, Czosnek H, Koltai H. Cross-species microarray hybridizations: a developing tool for studying species diversity. Trends Genet 2007; 23:200-7. [PMID: 17313995 DOI: 10.1016/j.tig.2007.02.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2006] [Revised: 12/14/2006] [Accepted: 02/06/2007] [Indexed: 11/29/2022]
Abstract
The use of cross-species hybridization (CSH) to DNA microarrays, in which the target RNA and microarray probe are from different species, has increased in the past few years. CSH is used in comparative, evolutionary and ecological studies of closely related species, and for gene-expression profiling of many species that lack a representative microarray platform. However, unlike species-specific hybridization, CSH is still considered a non-standard use of microarrays. Here, we present the recent developments in the field of CSH for cDNA and oligomer microarray platforms. We discuss issues that influence the quality of CSH results, including platform choice, experiment design and data analysis, and suggest strategies that can lead to improvement of CSH studies to investigate species diversity.
Collapse
Affiliation(s)
- Carmiya Bar-Or
- Department of Ornamental Horticulture, ARO Volcani Center, Bet Dagan, Israel
| | | | | |
Collapse
|
68
|
Engh I, Würtz C, Witzel-Schlömp K, Zhang HY, Hoff B, Nowrousian M, Rottensteiner H, Kück U. The WW domain protein PRO40 is required for fungal fertility and associates with Woronin bodies. EUKARYOTIC CELL 2007; 6:831-43. [PMID: 17351077 PMCID: PMC1899833 DOI: 10.1128/ec.00269-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fruiting body formation in ascomycetes is a highly complex process that is under polygenic control and is a fundamental part of the fungal sexual life cycle. However, the molecular determinants regulating this cellular process are largely unknown. Here we show that the sterile pro40 mutant is defective in a 120-kDa WW domain protein that plays a pivotal role in fruiting body maturation of the homothallic ascomycete Sordaria macrospora. Although WW domains occur in many eukaryotic proteins, homologs of PRO40 are present only in filamentous ascomycetes. Complementation analysis with different pro40 mutant strains, using full-sized or truncated versions of the wild-type pro40 gene, revealed that the C terminus of PRO40 is crucial for restoring the fertile phenotype. Using differential centrifugation and protease protection assays, we determined that a PRO40-FLAG fusion protein is located within organelles. Further microscopic investigations of fusion proteins with DsRed or green fluorescent protein polypeptides showed a colocalization of PRO40 with HEX-1, a Woronin body-specific protein. However, the integrity of Woronin bodies is not affected in mutant strains of S. macrospora and Neurospora crassa, as shown by fluorescence microscopy, sedimentation, and immunoblot analyses. We discuss the function of PRO40 in fruiting body formation.
Collapse
Affiliation(s)
- Ines Engh
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Microarray studies have examined global gene expression in over 20 species of filamentous fungi encompassing a wide variety of research areas. The majority have addressed aspects of metabolism or pathogenicity. Metabolic studies have revealed important differences in the transcriptional regulation of genes for primary metabolic pathways between filamentous fungi and yeast. Transcriptional profiles for genes involved in secondary metabolism have also been established. Genes required for the biosynthesis of both useful and detrimental secondary metabolites have been identified. Due to the economic, ecological and medical implications, it is not surprising that many studies have used microarray analysis to examine gene expression in pathogenic filamentous fungi. Genes involved in various stages of pathogenicity have been identified, including those thought to be important for adaptation to the host environment. While most of the studies have simulated pathogenic conditions in vitro, a small number have also reported fungal gene expression within their plant hosts. This review summarizes the first 50 microarray studies in filamentous fungi and highlights areas for future investigation.
Collapse
Affiliation(s)
- Andrew Breakspear
- Department of Plant Biology, The University of Georgia, 1505 Miller Plant Sciences, Athens, GA 30602, USA
| | | |
Collapse
|
70
|
Janus D, Hoff B, Hofmann E, Kück U. An efficient fungal RNA-silencing system using the DsRed reporter gene. Appl Environ Microbiol 2006; 73:962-70. [PMID: 17142377 PMCID: PMC1800780 DOI: 10.1128/aem.02127-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In filamentous fungi, RNA silencing is an attractive alternative to disruption experiments for the functional analysis of genes. We adapted the gene encoding the autofluorescent DsRed protein as a reporter to monitor the silencing process in fungal transformants. Using the cephalosporin C producer Acremonium chrysogenum, strains showing a high level of expression of the DsRed gene were constructed, resulting in red fungal colonies. Transfer of a hairpin-expressing vector carrying fragments of the DsRed gene allowed efficient silencing of DsRed expression. Monitoring of this process by Northern hybridization, real-time PCR quantification, and spectrofluorometric measurement of the DsRed protein confirmed that downregulation of gene expression can be observed at different expression levels. The usefulness of the DsRed silencing system was demonstrated by investigating cosilencing of DsRed together with pcbC, encoding the isopenicillin N synthase, an enzyme involved in cephalosporin C biosynthesis. Downregulation of pcbC can be detected easily by a bioassay measuring the antibiotic activity of individual strains. In addition, the presence of the isopenicillin N synthase was investigated by Western blot hybridization. All transformants having a colorless phenotype showed simultaneous downregulation of the pcbC gene, albeit at different levels. The RNA-silencing system presented here should be a powerful genetic tool for strain improvement and genome-wide analysis of this biotechnologically important filamentous fungus.
Collapse
Affiliation(s)
- Danielle Janus
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Universitätsstr. 150, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
71
|
Keszthelyi A, Jeney A, Kerényi Z, Mendes O, Waalwijk C, Hornok L. Tagging target genes of the MAT1-2-1 transcription factor in Fusarium verticillioides (Gibberella fujikuroi MP-A). Antonie van Leeuwenhoek 2006; 91:373-91. [PMID: 17124547 DOI: 10.1007/s10482-006-9123-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 10/09/2006] [Indexed: 11/27/2022]
Abstract
Mating type in filamentous ascomycetes is controlled by idiomorphic alleles, named MAT1-1 and MAT1-2, which contain 1-3 genes. Of these genes MAT1-1-1 and MAT1-2-1 encode putative transcription factors and are thus considered to be the major regulators of sexual communication and mating. Fungi with no known sexual stage may also have fully functional mating type genes and therefore it was plausible to hypothesize that the MAT products may also regulate other types of genes not involved directly in the mating process. To identify putative target genes of these transcription factors in Fusarium verticillioides, DeltaMAT1-2-1 knock out mutants were produced and transcript profiles of mutant and wild type were compared by means of differential cDNA hybridization. Clones, either up- or down-regulated in the DeltaMAT1-2-1 mutant were sequenced and a total of 248 sequences were blasted against the NCBI database as well as the Gibberella zeae and Gibberella moniliformis genomes. Fifty-five percent of the clones were down-regulated in the mutant, indicating that the MAT1-2-1 product positively affected these tagged sequences. On the other hand, 45% were found to be up-regulated in the mutant, suggesting that the MAT1-2-1 product also exerted a negative regulatory function on this set of genes. Sequences involved in protein synthesis and metabolism occurred more frequently among the clones up-regulated in the mutant, whereas genes belonging to cell signalling and communication were especially frequently tagged among the sequences down-regulated in the mutant.
Collapse
Affiliation(s)
- Anita Keszthelyi
- Agricultural Biotechnology Center, Szent-Györgyi A. u. 4, H-2100, Gödöllo, Hungary
| | | | | | | | | | | |
Collapse
|
72
|
Nowrousian M, Piotrowski M, Kück U. Multiple layers of temporal and spatial control regulate accumulation of the fruiting body-specific protein APP in Sordaria macrospora and Neurospora crassa. Fungal Genet Biol 2006; 44:602-14. [PMID: 17092746 DOI: 10.1016/j.fgb.2006.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 09/13/2006] [Accepted: 09/25/2006] [Indexed: 11/29/2022]
Abstract
During fungal fruiting body development, specialized cell types differentiate from vegetative mycelium. We have isolated a protein from the ascomycete Sordaria macrospora that is not present during vegetative growth but accumulates in perithecia. The protein was sequenced by mass spectrometry and the corresponding gene was termed app (abundant perithecial protein). app transcript occurs only after the onset of sexual development; however, the formation of ascospores is not a prerequisite for APP accumulation. The transcript of the Neurospora crassa ortholog is present prior to fertilization, but the protein accumulates only after fertilization. In crosses of N. crassa Deltaapp strains with the wild type, APP accumulates when the wild type serves as female parent, but not in the reciprocal cross; thus, the presence of a functional female app allele is necessary and sufficient for APP accumulation. These findings highlight multiple layers of temporal and spatial control of gene expression during fungal development.
Collapse
Affiliation(s)
- Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum ND 7/130, Universitätsstr. 150, 44780 Bochum, Germany
| | | | | |
Collapse
|
73
|
Anatskaya OV, Vinogradov AE. Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver. Genomics 2006; 89:70-80. [PMID: 17029690 DOI: 10.1016/j.ygeno.2006.08.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/11/2006] [Accepted: 08/28/2006] [Indexed: 12/13/2022]
Abstract
To elucidate the functional significance of genome multiplication in somatic tissues, we performed a large-scale analysis of ploidy-associated changes in expression of non-tissue-specific (i.e., broadly expressed) genes in the heart and liver of human and mouse (6585 homologous genes were analyzed). These species have inverse patterns of polyploidization in cardiomyocytes and hepatocytes. The between-species comparison of two pairs of homologous tissues with crisscross contrast in ploidy levels allows the removal of the effects of species and tissue specificity on the profile of gene activity. The different tests performed from the standpoint of modular biology revealed a consistent picture of ploidy-associated alteration in a wide range of functional gene groups. The major effects consisted of hypoxia-inducible factor-triggered changes in main cellular processes and signaling pathways, activation of defense against DNA lesions, acceleration of protein turnover and transcription, and the impairment of apoptosis, the immune response, and cytoskeleton maintenance. We also found a severe decline in aerobic respiration and stimulation of sugar and fatty acid metabolism. These metabolic rearrangements create a special type of metabolism that can be considered intermediate between aerobic and anaerobic. The metabolic and physiological changes revealed (reflected in the alteration of gene expression) help explain the unique ability of polyploid tissues to combine proliferation and differentiation, which are separated in diploid tissues. We argue that genome multiplication promotes cell survival and tissue regeneration under stressful conditions.
Collapse
Affiliation(s)
- Olga V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, St. Petersburg 194064, Russia
| | | |
Collapse
|
74
|
Vienken K, Fischer R. The Zn(II)2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans. Mol Microbiol 2006; 61:544-54. [PMID: 16780567 DOI: 10.1111/j.1365-2958.2006.05257.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The filamentous fungus Aspergillus nidulans reproduces asexually with conidiospores and sexually with ascospores, both of which are the result of complex morphogenetic pathways. The developmental decisions for both ways of reproduction largely depend on the action of stage-specific transcription factors. Here we have characterized the putative Zn(II)(2)Cys(6) transcription factor NosA (number of sexual spores), a protein of 675 aa, which shares 44% sequence identity to Pro1 from Sordaria macrospora and 43% identity to A. nidulans RosA, a second protein of that class. The nosA gene was constitutively expressed during the life cycle of A. nidulans and was upregulated during late asexual development and upon carbon starvation. The NosA protein localized to nuclei. Both, NosA and RosA, regulate sexual development. Whereas RosA plays a role in early decisions and represses sexual development, NosA activity is required for primordium maturation. Interestingly, the two factors are genetically linked, because RosA repressed NosA expression. This illustrates that the balance of these two Zn(II)(2)Cys(6) proteins determines the fate of vegetative hyphae to undergo sexual development.
Collapse
Affiliation(s)
- Kay Vienken
- Max-Planck Institute for terrestrial Microbiology, Karl-von-Frisch-Str., D-35043 Marburg, Germany
| | | |
Collapse
|
75
|
Nowrousian M, Kück U. Comparative gene expression analysis of fruiting body development in two filamentous fungi. FEMS Microbiol Lett 2006; 257:328-35. [PMID: 16553871 DOI: 10.1111/j.1574-6968.2006.00192.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The ascomycete Pyronema confluens is a member of the Pezizales and readily forms fruiting bodies under laboratory conditions. Here, we report the first molecular analysis of fruiting body development in this filamentous fungus. Two P. confluens cDNA libraries were generated, one derived from mycelium undergoing sexual development, and the other from vegetative mycelium. From each library, 96 clones were end-sequenced, resulting in the identification of 132 different genes. Expression studies of 10 P. confluens genes by quantitative real-time PCR identified seven genes that are transcriptionally up- or down regulated during sexual development when compared with vegetative growth. As a first step towards a comparison of gene expression during fruiting body development in different filamentous fungi, transcript levels of the corresponding homologs from the distantly related ascomycete Sordaria macrospora were analyzed by quantitative real-time PCR. The analyses revealed similar expression patterns during sexual development for several of the S. macrospora genes when compared with P. confluens.
Collapse
Affiliation(s)
- Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany.
| | | |
Collapse
|
76
|
Qi W, Kwon C, Trail F. Microarray analysis of transcript accumulation during perithecium development in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Mol Genet Genomics 2006; 276:87-100. [PMID: 16741730 DOI: 10.1007/s00438-006-0125-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 03/27/2006] [Indexed: 02/03/2023]
Abstract
Gibberella zeae (anamorph Fusarium graminearum) is the causal agent of Fusarium head blight (FHB) of wheat and barley in the United States. Ascospores forcibly discharged from mature fruiting bodies, the perithecia, serve as the primary inoculum for FHB epidemics. To identify genes important for perithecium development and function, a cDNA microarray that covered 11% of the G. zeae genome was constructed. The microarray was used to measure changes in transcription levels of genes expressed during three successive stages of perithecium development. When compared with vegetative mycelia, 651 (31%) cDNA clones showed changes in transcript levels in at least one of the three developmental stages. During perithecium development, 263 (13%) cDNA clones showed temporal changes in transcript profiles. Transcripts that showed the greatest changes in levels in maturing perithecia belonged to genes in the FunCat main functional categories of cell rescue, metabolism, cell type differentiation, energy, and cellular transport. For genes related to metabolism and cell type differentiation, transcripts showed the highest levels in immature perithecia, whereas for cellular transport-related genes, transcripts showed the highest levels in mature perithecia. This study represents the first large-scale investigation of both spatial and temporal changes in transcript levels during perithecium development. It provides clear evidence that the sexual development in fungi is a complex, multigenic process and identifies genes involved in sexual development of this agriculturally important fungus.
Collapse
Affiliation(s)
- Weihong Qi
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
77
|
Bar-Or C, Bar-Eyal M, Gal TZ, Kapulnik Y, Czosnek H, Koltai H. Derivation of species-specific hybridization-like knowledge out of cross-species hybridization results. BMC Genomics 2006; 7:110. [PMID: 16677401 PMCID: PMC1482311 DOI: 10.1186/1471-2164-7-110] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 05/08/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the approaches for conducting genomics research in organisms without extant microarray platforms is to profile their expression patterns by using Cross-Species Hybridization (CSH). Several different studies using spotted microarray and CSH produced contradicting conclusions in the ability of CSH to reflect biological processes described by species-specific hybridization (SSH). RESULTS We used a tomato-spotted cDNA microarray to examine the ability of CSH to reflect SSH data. Potato RNA was hybridized to spotted cDNA tomato and potato microarrays to generate CSH and SSH data, respectively. Difficulties arose in obtaining transcriptomic data from CSH that reflected those obtained from SSH. Nevertheless, once the data was filtered for those corresponding to matching probe sets, by restricting proper cutoffs of probe homology, the CSH transcriptome data showed improved reflection of those of the SSH. CONCLUSIONS This study evaluated the relative performance of CSH compared to SSH, and proposes methods to ensure that CSH closely reflects the biological process analyzed by SSH.
Collapse
Affiliation(s)
- Carmiya Bar-Or
- Department of Ornamental Horticulture, ARO Volcani Center, Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture of the Hebrew University of Jerusalem, Rehovot, Israel
| | - Meira Bar-Eyal
- Department of Nematology, ARO Volcani Center, Bet Dagan, Israel
| | - Tali Z Gal
- Department of Ornamental Horticulture, ARO Volcani Center, Bet Dagan, Israel
| | - Yoram Kapulnik
- Depatment of Agronomy & Natural Resources, ARO Volcani Center, Bet Dagan, Israel
| | - Henryk Czosnek
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture of the Hebrew University of Jerusalem, Rehovot, Israel
| | - Hinanit Koltai
- Department of Ornamental Horticulture, ARO Volcani Center, Bet Dagan, Israel
| |
Collapse
|
78
|
Pöggeler S, Nowrousian M, Ringelberg C, Loros JJ, Dunlap JC, Kück U. Microarray and real-time PCR analyses reveal mating type-dependent gene expression in a homothallic fungus. Mol Genet Genomics 2006; 275:492-503. [PMID: 16482473 DOI: 10.1007/s00438-006-0107-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 01/20/2006] [Indexed: 11/26/2022]
Abstract
Sordaria macrospora is a homothallic ascomycete which is able to form fertile fruiting bodies without a mating partner. To analyze the molecular basis of homothallism and the role of mating products during fruiting body development, we have deleted the mating type gene Smta-1 encoding a high-mobility group domain (HMG) protein. The DeltaSmta-1 deletion strain is morphologically wild type during vegetative growth, but it is unable to produce perithecia or ascospores. To identify genes expressed under control of Smta-1, we performed a cross-species microarray analysis using Neurospora crassa cDNA microarrays hybridized with S. macrospora targets. We identified 107 genes that are more than twofold up- or down-regulated in the mutant. Functional classification revealed that 81 genes have homologues with known or putative functions. Comparison of array data from DeltaSmta-1 with those from three phenotypically similar mutants revealed that only a limited set of ten genes is deregulated in all mutants. Remarkably, the ppg2 gene encoding a putative lipopeptide pheromone is 500-fold down-regulated in the DeltaSmta-1 mutant while in all other sterile mutants this gene is up-regulated.
Collapse
Affiliation(s)
- S Pöggeler
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
79
|
Balczun C, Bunse A, Nowrousian M, Korbel A, Glanz S, Kück U. DNA macroarray and real-time PCR analysis of two nuclear photosystem I mutants from Chlamydomonas reinhardtii reveal downregulation of Lhcb genes but different regulation of Lhca genes. ACTA ACUST UNITED AC 2005; 1732:62-8. [PMID: 16414130 DOI: 10.1016/j.bbaexp.2005.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/04/2005] [Accepted: 11/08/2005] [Indexed: 11/28/2022]
Abstract
In photoautotrophic organisms, the expression of nuclear genes encoding plastid proteins is known to be regulated at various levels. In this study, we present the analysis of two non-photosynthetic mutants (CC1051 and TR72) from the unicellular green alga Chlamydomonas reinhardtii. Both mutant strains show a defect in the processing of chloroplast psaA mRNA, and therefore they are assumed to be defective in photosystem I (PSI) assembly. We have performed macroarray experiments with trans-splicing mutants CC1051 and TR72 in order to analyse putative pleiotropic effects of nuclear-located mutations leading to a non-functional PSI. To the best of our knowledge, this is the first example of Chlamydomonas cDNA macroarray analysis comparing the transcriptional regulation of nuclear genes in wild-type and photosystem I mutants. The macroarray results demonstrated a transcriptional downregulation of members of the Lhcb gene family more than 2-fold in both mutant strains. In addition, real-time RT-PCR experiments found a 4- to 16-fold reduction in transcript levels of several Lhca genes in TR72; whereas in CC1051, no significant change in transcript levels was observed. Taken together, our data suggest that a signal is transmitted from the chloroplast to the nucleus that serves to regulate the level of light harvesting polypeptides in the organelle.
Collapse
Affiliation(s)
- Carsten Balczun
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
80
|
Nowrousian M, Cebula P. The gene for a lectin-like protein is transcriptionally activated during sexual development, but is not essential for fruiting body formation in the filamentous fungus Sordaria macrospora. BMC Microbiol 2005; 5:64. [PMID: 16266439 PMCID: PMC1298301 DOI: 10.1186/1471-2180-5-64] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Accepted: 11/03/2005] [Indexed: 11/17/2022] Open
Abstract
Background The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies called perithecia that protect the developing ascospores and ensure their proper discharge. In previous microarray analyses, several genes have been identified that are downregulated in sterile mutants compared to the wild type. Among these genes was tap1 (transcript associated with perithecial development), a gene encoding a putative lectin homolog. Results Analysis of tap1 transcript levels in the wild type under conditions allowing only vegetative growth compared to conditions that lead to fruiting body development showed that tap1 is not only downregulated in developmental mutants but is also upregulated in the wild type during fruiting body development. We have cloned and sequenced a 3.2 kb fragment of genomic DNA containing the tap1 open reading frame and adjoining sequences. The genomic region comprising tap1 is syntenic to its homologous region in the closely related filamentous fungus Neurospora crassa. To determine whether tap1 is involved in fruiting body development in S. macrospora, a knockout construct was generated in which the tap1 open reading frame was replaced by the hygromycin B resistance gene hph under the control of fungal regulatory regions. Transformation of the S. macrospora wild type with this construct resulted in a tap1 deletion strain where tap1 had been replaced by the hph cassette. The knockout strain displayed no phenotypic differences under conditions of vegetative growth and sexual development when compared to the wild type. Double mutants carrying the Δtap1 allele in several developmental mutant backgrounds were phenotypically similar to the corresponding developmental mutant strains. Conclusion The tap1 transcript is strongly upregulated during sexual development in S. macrospora; however, analysis of a tap1 knockout strain shows that tap1 is not essential for fruiting body formation in S. macrospora.
Collapse
Affiliation(s)
- Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Patricia Cebula
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
81
|
Kück U. A Sordaria macrospora mutant lacking the leu1 gene shows a developmental arrest during fruiting body formation. Mol Genet Genomics 2005; 274:307-15. [PMID: 16133166 DOI: 10.1007/s00438-005-0021-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Developmental mutants with defects in fruiting body formation are excellent resources for the identification of genetic components that control cellular differentiation processes in filamentous fungi. The mutant pro4 of the ascomycete Sordaria macrospora is characterized by a developmental arrest during the sexual life cycle. This mutant generates only pre-fruiting bodies (protoperithecia), and is unable to form ascospores. Besides being sterile, pro4 is auxotrophic for leucine. Ascospore analysis revealed that the two phenotypes are genetically linked. After isolation of the wild-type leu1 gene from S. macrospora, complementation experiments demonstrated that the gene was able to restore both prototrophy and fertility in pro4. To investigate the control of leu1 expression, other genes involved in leucine biosynthesis specifically and in the general control of amino acid biosynthesis ("cross-pathway control") have been analysed using Northern hybridization and quantitative RT-PCR. These analyses demonstrated that genes of leucine biosynthesis are transcribed at higher levels under conditions of amino acid starvation. In addition, the expression data for the cpc1 and cpc2 genes indicate that cross-pathway control is superimposed on leucine-specific regulation of fruiting body development in the leu1 mutant. This was further substantiated by growth experiments in which the wild-type strain was found to show a sterile phenotype when grown on a medium containing the amino acid analogue 5-methyl-tryptophan. Taken together, these data show that pro4 represents a novel mutant type in S. macrospora, in which amino acid starvation acts as a signal that interrupts the development of the fruiting body.
Collapse
Affiliation(s)
- Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany.
| |
Collapse
|
82
|
Mayrhofer S, Pöggeler S. Functional characterization of an alpha-factor-like Sordaria macrospora peptide pheromone and analysis of its interaction with its cognate receptor in Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 4:661-72. [PMID: 15821126 PMCID: PMC1087823 DOI: 10.1128/ec.4.4.661-672.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 02/12/2005] [Indexed: 11/20/2022]
Abstract
The homothallic filamentous ascomycete Sordaria macrospora possesses genes which are thought to encode two pheromone precursors and two seven-transmembrane pheromone receptors. The pheromone precursor genes are termed ppg1 and ppg2. The putative products derived from the gene sequence show structural similarity to the alpha-factor precursors and a-factor precursors of the yeast Saccharomyces cerevisiae. Likewise, sequence similarity has been found between the putative products of the pheromone receptor genes pre2 and pre1 and the S. cerevisiae Ste2p alpha-factor receptor and Ste3p a-factor receptor, respectively. To investigate whether the alpha-factor-like pheromone-receptor pair of S. macrospora is functional, a heterologous yeast assay was used. Our results show that the S. macrospora alpha-factor-like pheromone precursor PPG1 is processed into an active pheromone by yeast MATalpha cells. The S. macrospora PRE2 protein was demonstrated to be a peptide pheromone receptor. In yeast MATa cells lacking the endogenous Ste2p receptor, the S. macrospora PRE2 receptor facilitated all aspects of the pheromone response. Using a synthetic peptide, we can now predict the sequence of one active form of the S. macrospora peptide pheromone. We proved that S. macrospora wild-type strains secrete an active pheromone into the culture medium and that disruption of the ppg1 gene in S. macrospora prevents pheromone production. However, loss of the ppg1 gene does not affect vegetative growth or fertility. Finally, we established the yeast assay as an easy and useful system for analyzing pheromone production in developmental mutants of S. macrospora.
Collapse
Affiliation(s)
- Severine Mayrhofer
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | | |
Collapse
|