51
|
Abstract
Bardet-Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy characterised by retinal dystrophy, obesity, post-axial polydactyly, renal dysfunction, learning difficulties and hypogonadism. Many associated minor features can be helpful in making a diagnosis and are important in the clinical management of BBS. The diagnosis is based on clinical findings and can be confirmed by sequencing of known disease-causing genes in 80% of patients. BBS genes encode proteins that localise to the cilia and basal body and are involved in cilia biogenesis and function. Mutations lead to defective cilia accounting in part for the pleiotropic effects observed in BBS. We provide an overview of BBS including the clinical findings, current understanding of cilia biology, and a practical approach to diagnosis, genetic counselling and up-to-date management.
Collapse
Affiliation(s)
- Elizabeth Forsythe
- Molecular Medicine Unit, Institute of Child Health, University College London, London, UK
| | | |
Collapse
|
52
|
Hsiao YC, Tuz K, Ferland RJ. Trafficking in and to the primary cilium. Cilia 2012; 1:4. [PMID: 23351793 PMCID: PMC3541539 DOI: 10.1186/2046-2530-1-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 04/25/2012] [Indexed: 01/08/2023] Open
Abstract
Polarized vesicle trafficking is mediated by small GTPase proteins, such as Rabs and Arls/Arfs. These proteins have essential roles in maintaining normal cellular function, in part, through regulating intracellular trafficking. Moreover, these families of proteins have recently been implicated in the formation and function of the primary cilium. The primary cilium, which is found on almost every cell type in vertebrates, is an organelle that protrudes from the surface of the cell and functions as a signaling center. Interestingly, it has recently been linked to a variety of human diseases, collectively referred to as ciliopathies. The primary cilium has an exceptionally high density of receptors on its membrane that are important for sensing and transducing extracellular stimuli. Moreover, the primary cilium serves as a separate cellular compartment from the cytosol, providing for unique spatial and temporal regulation of signaling molecules to initiate downstream events. Thus, functional primary cilia are essential for normal signal transduction. Rabs and Arls/Arfs play critical roles in early cilia formation but are also needed for maintenance of ciliary function through their coordination with intraflagellar transport (IFT), a specialized trafficking system in primary cilia. IFT in cilia is pivotal for the proper movement of proteins into and out of this highly regulated organelle. In this review article, we explore the involvement of polarized vesicular trafficking in cilia formation and function, and discuss how defects in these processes could subsequently lead to the abnormalities observed in ciliopathies.
Collapse
Affiliation(s)
- Yi-Chun Hsiao
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.,Albany Medical College, Center for Neuropharmacology and Neuroscience, Albany, NY 12208, USA
| | - Karina Tuz
- Albany Medical College, Center for Neuropharmacology and Neuroscience, Albany, NY 12208, USA
| | - Russell J Ferland
- Albany Medical College, Center for Neuropharmacology and Neuroscience, Albany, NY 12208, USA.,Department of Neurology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
53
|
Bahceci M, Dolek D, Tutuncuoglu P, Gorgel A, Oruk G, Yenen I. A case series of Bardet-Biedl syndrome in a large Turkish family and review of the literature. Eat Weight Disord 2012; 17:e66-9. [PMID: 22751275 DOI: 10.1007/bf03325331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND AIM Bardet-Biedl syndrome (BBS) is a rare autosomal recessive genetic disorder. We aimed to report a case series of Bardet-Biedl syndrome in a Turkish family and review the literature. PATIENTS AND METHODS This family had 3 females and 4 males, totally 7 alive; 2 children (1 female and 1 male) had died. Parents were consanguineous. The first was a birth of twins and female sibling of these twins had congenital anal atresia and died when she was three-month old. Third (30 yr), 4th (28 yr) and 9th (19 yr) alive siblings were obese, blind and diabetic. We detected truncal obesity, postaxial polydactyly, cognitive impairment and hypogonadism. Rod-cone dystrophy was detected in ophthalmic examination. With these typical clinical findings, BBS was diagnosed. There was also a male member of the family which shared the same features of his affected brothers but he had died while he was eight months old. Marked glycosuria was determined and urine density was 1021 g/cm3. There was not any further endocrinological abnormality. Fasting blood glucose levels were changing between 290 and 452 mg/dl and the last glycated hemoglobine levels (A1c) were 9.3%, 11.2% and 12.8%, respectively. Diabetes mellitus and obesity were treated with diet, exercise, multiple daily insulin injections and metformine at the dose of 2000 mg/d. CONCLUSIONS Although it is an infrequent condition due to autosomal recessive transmission, consanguineous marriage may increase the risk of emergence of BBS. Genetic counseling is a very important issue in the family of patients with BBS, in order to prevent new cases.
Collapse
Affiliation(s)
- M Bahceci
- Department of Endocrionology and Metabolism, Atatürk Training and Research Hospital, Izmir, Turkey.
| | | | | | | | | | | |
Collapse
|
54
|
Ferkol TW, Leigh MW. Ciliopathies: the central role of cilia in a spectrum of pediatric disorders. J Pediatr 2012; 160:366-71. [PMID: 22177992 PMCID: PMC3282141 DOI: 10.1016/j.jpeds.2011.11.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 09/19/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Affiliation(s)
- Thomas W Ferkol
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Margaret W Leigh
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
55
|
Putoux A, Attie-Bitach T, Martinovic J, Gubler MC. Phenotypic variability of Bardet-Biedl syndrome: focusing on the kidney. Pediatr Nephrol 2012; 27:7-15. [PMID: 21246219 DOI: 10.1007/s00467-010-1751-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 12/12/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a multisystemic developmental disorder diagnosed on the basis of the presence of obesity, retinal defects, polydactyly, hypogonadism, renal dysfunction, and learning disabilities. The syndrome is genetically heterogeneous with 14 BBS genes identified to date. Since the cloning of the first gene in 2000, a combination of genetic, in vitro, and in vivo studies have highlighted ciliary dysfunction as a primary cause of BBS pathology. Pleiotropy of ciliopathy phenotypes and complex genetic interactions between causal and modifying alleles of ciliary genes contribute to phenotypic variability. In particular, kidney disease in BBS is clinically heterogeneous, but is now recognized as a cardinal feature and a major cause of mortality in BBS.
Collapse
Affiliation(s)
- Audrey Putoux
- INSERM U-781, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | |
Collapse
|
56
|
Wang H, Chen X, Dudinsky L, Patenia C, Chen Y, Li Y, Wei Y, Abboud EB, Al-Rajhi AA, Lewis RA, Lupski JR, Mardon G, Gibbs RA, Perkins BD, Chen R. Exome capture sequencing identifies a novel mutation in BBS4. Mol Vis 2011; 17:3529-40. [PMID: 22219648 PMCID: PMC3250376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 12/26/2011] [Indexed: 11/02/2022] Open
Abstract
PURPOSE Leber congenital amaurosis (LCA) is one of the most severe eye dystrophies characterized by severe vision loss at an early stage and accounts for approximately 5% of all retinal dystrophies. The purpose of this study was to identify a novel LCA disease allele or gene and to develop an approach combining genetic mapping with whole exome sequencing. METHODS Three patients from King Khaled Eye Specialist Hospital (KKESH205) underwent whole genome single nucleotide polymorphism genotyping, and a single candidate region was identified. Taking advantage of next-generation high-throughput DNA sequencing technologies, whole exome capture sequencing was performed on patient KKESH205#7. Sanger direct sequencing was used during the validation step. The zebrafish model was used to examine the function of the mutant allele. RESULTS A novel missense mutation in Bardet-Biedl syndrome 4 protein (BBS4) was identified in a consanguineous family from Saudi Arabia. This missense mutation in the fifth exon (c.253G>C;p.E85Q) of BBS4 is likely a disease-causing mutation as it segregates with the disease. The mutation is not found in the single nucleotide polymorphism (SNP) database, the 1000 Genomes Project, or matching normal controls. Functional analysis of this mutation in zebrafish indicates that the G253C allele is pathogenic. Coinjection of the G253C allele cannot rescue the mislocalization of rhodopsin in the retina when BBS4 is knocked down by morpholino injection. Immunofluorescence analysis in cell culture shows that this missense mutation in BBS4 does not cause obvious defects in protein expression or pericentriolar localization. CONCLUSIONS This mutation likely mainly reduces or abolishes BBS4 function in the retina. Further studies of this allele will provide important insights concerning the pleiotropic nature of BBS4 function.
Collapse
Affiliation(s)
- Hui Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Xianfeng Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lynn Dudinsky
- Department of Biology, Texas A&M University, College Station, TX
| | - Claire Patenia
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Yiyun Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yue Wei
- Leukemia Department, University of Texas, M. D. Anderson Cancer Center, Houston, TX
| | - Emad B. Abboud
- King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Ali A. Al-Rajhi
- King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Richard Alan Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX
- Department of Neurology, Baylor College of Medicine, Houston, TX
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Neurology, Baylor College of Medicine, Houston, TX
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
- Department of Pathology, Baylor College of Medicine, Houston, TX
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Brian D. Perkins
- Department of Biology, Texas A&M University, College Station, TX
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
57
|
Katsika E, Aslanidis T, Charitidou S. Renal transplantation in a patient with Bardet-Biedl syndrome, situs inversus totalis and bifid epiglottis: Anesthetic management. Hippokratia 2011; 15:376. [PMID: 24391427 PMCID: PMC3876861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- E Katsika
- First Department of Anesthesia, G.H. "Hippokration", Thessaloniki, Greece
| | - T Aslanidis
- First Department of Anesthesia, G.H. "Hippokration", Thessaloniki, Greece
| | - S Charitidou
- First Department of Anesthesia, G.H. "Hippokration", Thessaloniki, Greece
| |
Collapse
|
58
|
Genuis SJ, Lobo RA. Potential amelioration of morbidity in patients with chromosomal anomalies: relevance to Bardet-Biedl syndrome. Clin Genet 2011; 79:482-8. [PMID: 20573159 DOI: 10.1111/j.1399-0004.2010.01475.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Given the genetic basis of their disease, children with major chromosomal abnormalities including Bardet-Biedl syndrome (BBS) are generally considered to have a guarded prognosis with persistence or progression of disease manifestations. Although various therapeutic interventions are commonly used to control signs and symptoms of illness, parents of BBS children are usually cautioned against hoping for sustained improvement. A case of a 21-month-old girl, diagnosed with BBS, manifesting signs of worsening visual impairment, obesity, irascible and disordered behaviour, as well as developmental delay, is presented. After initial evaluation suggested specific biochemical deficiencies, nutritional status correction was undertaken and the patient's signs and symptoms subsequently resolved over the course of several months. To the authors' knowledge, this is the first case report of sustained resolution of all disease manifestations in the face of previously deteriorating health in a young child with this major chromosomal abnormality. It appears that biochemical imbalances and insufficiencies resulting from abnormal metabolism and excretion are potentially amenable to extraordinary dietary supplementation, with partial or complete resolution of clinical abnormalities. It is recommended that all children with chromosomal abnormalities have biochemical and nutritional status evaluation with correction of disordered biochemistry as is possible.
Collapse
Affiliation(s)
- S J Genuis
- School of Human Development, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
59
|
Ramachandrappa S, Farooqi IS. Genetic approaches to understanding human obesity. J Clin Invest 2011; 121:2080-6. [PMID: 21633175 DOI: 10.1172/jci46044] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Obesity and its associated comorbidities represent one of the biggest public health challenges facing the world today. The heritability of body weight is high, and genetic variation plays a major role in determining the interindividual differences in susceptibility or resistance to the obesogenic environment. Here we discuss how genetic studies in humans have contributed to our understanding of the central pathways that govern energy homeostasis. We discuss how the arrival of technological advances such as next-generation sequencing will result in a major acceleration in the pace of gene discovery. The study of patients harboring these genetic variants has informed our understanding of the molecular and physiological pathways involved in energy homeostasis. We anticipate that future studies will provide the framework for the development of a more rational targeted approach to the prevention and treatment of genetically susceptible individuals.
Collapse
Affiliation(s)
- Shwetha Ramachandrappa
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
60
|
Happé H, de Heer E, Peters DJM. Polycystic kidney disease: the complexity of planar cell polarity and signaling during tissue regeneration and cyst formation. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1249-55. [PMID: 21640821 DOI: 10.1016/j.bbadis.2011.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/13/2011] [Accepted: 05/19/2011] [Indexed: 12/30/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is an inherited systemic disease with intrarenal cystogenesis as its primary characteristic. A variety of mouse models provided information on the requirement of loss of balanced polycystin levels for initiation of cyst formation, the role of proliferation in cystogenesis and the signaling pathways involved in cyst growth and expansion. Here we will review the involvement of different signaling pathways during renal development, renal epithelial regeneration and cyst formation in ADPKD, focusing on planar cell polarity (PCP) and oriented cell division (OCD). This will be discussed in context of the hypothesis that aberrant PCP signaling causes cyst formation. In addition, the role of the Hippo pathway, which was recently found to be involved in cyst growth and tissue regeneration, and well-known for regulating organ size control, will be reviewed. The fact that Hippo signaling is linked to PCP signaling makes the Hippo pathway a novel cascade in cystogenesis. The newly gained understanding of the complex signaling network involved in cystogenesis and disease progression, not only necessitates refining of the current hypothesis regarding initiation of cystogenesis, but also has implications for therapeutic intervention strategies. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Hester Happé
- Department of Human Genetics, Leiden University Medical Center, RC Leiden, The Netherlands
| | | | | |
Collapse
|
61
|
Bhogaraju S, Taschner M, Morawetz M, Basquin C, Lorentzen E. Crystal structure of the intraflagellar transport complex 25/27. EMBO J 2011; 30:1907-18. [PMID: 21505417 DOI: 10.1038/emboj.2011.110] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/14/2011] [Indexed: 01/12/2023] Open
Abstract
The cilium is an important organelle that is found on many eukaryotic cells, where it serves essential functions in motility, sensory reception and signalling. Intraflagellar transport (IFT) is a vital process for the formation and maintenance of cilia. We have determined the crystal structure of Chlamydomonas reinhardtii IFT25/27, an IFT sub-complex, at 2.6 Å resolution. IFT25 and IFT27 interact via a conserved interface that we verify biochemically using structure-guided mutagenesis. IFT27 displays the fold of Rab-like small guanosine triphosphate hydrolases (GTPases), binds GTP and GDP with micromolar affinity and has very low intrinsic GTPase activity, suggesting that it likely requires a GTPase-activating protein (GAP) for robust GTP turnover. A patch of conserved surface residues contributed by both IFT25 and IFT27 is found adjacent to the GTP-binding site and could mediate the binding to other IFT proteins as well as to a potential GAP. These results provide the first step towards a high-resolution structural understanding of the IFT complex.
Collapse
Affiliation(s)
- Sagar Bhogaraju
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | |
Collapse
|
62
|
Dervisoglu E, Isgoren S, Kasgari D, Demir H, Yilmaz A. Obesity control and low protein diet preserve or even improve renal functions in Bardet-Biedl syndrome: a report of two cases. Med Sci Monit 2011; 17:CS12-14. [PMID: 21169913 PMCID: PMC3524693 DOI: 10.12659/msm.881320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Bardet-Biedl syndrome (BBS) is a rare autosomal-recessive disorder characterized by abdominal obesity, mental retardation, dysmorphic extremities, retinal dystrophy, hypogonadism, and kidney structural abnormalities or functional impairment. It is now considered a significant cause of chronic and end-stage renal disease in children. To the best of our knowledge there have been no previous studies on the role of diet in the management of renal functions in patients with BBS. Case Reports Two siblings, aged 32 and 27 years, with BBS are presented. On admission both patients were obese, with body mass indexes (BMI) of 40 and 39 kg/m2. Their creatinine clearances (CrCl) were 41 and 24 mL/min. After 2 years of follow-up with a diet consisting of 0.6 g/kg/day protein and 1400 kcal/day energy, their BMI’s were decreased to 29 and 27 kg/m2, whereas their CrCl’s were increased to 44 and 32 mL/min, respectively. 99mTc-MAG3 scintigraphy also revealed improved renal function. Conclusions Since this syndrome most likely results in end-stage renal disease, follow-up of renal dysfunction is essential. Low protein diet and/or obesity control may slow the progression of renal failure in patients with BBS.
Collapse
Affiliation(s)
- Erkan Dervisoglu
- Department of Nephrology, School of Medicine, Kocaeli University, Kocaeli, Turkey.
| | | | | | | | | |
Collapse
|
63
|
Wirschell M, Yamamoto R, Alford L, Gokhale A, Gaillard A, Sale WS. Regulation of ciliary motility: conserved protein kinases and phosphatases are targeted and anchored in the ciliary axoneme. Arch Biochem Biophys 2011; 510:93-100. [PMID: 21513695 DOI: 10.1016/j.abb.2011.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Recent evidence has revealed that the dynein motors and highly conserved signaling proteins are localized within the ciliary 9+2 axoneme. One key mechanism for regulation of motility is phosphorylation. Here, we review diverse evidence, from multiple experimental organisms, that ciliary motility is regulated by phosphorylation/dephosphorylation of the dynein arms through kinases and phosphatases that are anchored immediately adjacent to their axonemal substrates.
Collapse
Affiliation(s)
- Maureen Wirschell
- Emory University School of Medicine, Department of Cell Biology, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
64
|
Mockel A, Perdomo Y, Stutzmann F, Letsch J, Marion V, Dollfus H. Retinal dystrophy in Bardet-Biedl syndrome and related syndromic ciliopathies. Prog Retin Eye Res 2011; 30:258-74. [PMID: 21477661 DOI: 10.1016/j.preteyeres.2011.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 01/26/2023]
Abstract
Primary cilia are almost ubiquitously expressed in eukaryotic cells where they function as sensors relaying information either from the extracellular environment or between two compartments of the same cell, such as in the photoreceptor cell. In ciliopathies, a continuously growing class of genetic disorders related to ciliary defects, the modified primary cilium of the photoreceptor, also known as the connecting cilium, is frequently defective. Ciliary dysfunction involves disturbances in the trafficking and docking of specific proteins involved in its biogenesis or maintenance. The main well-conserved ciliary process, intraflagellar transport (IFT), is a complex process carried out by multimeric ciliary particles and molecular motors of major importance in the photoreceptor cell. It is defective in a growing number of ciliopathies leading to retinal degeneration. Retinitis pigmentosa related to ciliary dysfunction can be an isolated feature or a part of a syndrome such as Bardet-Biedl syndrome (BBS). Research on ciliopathies and BBS has led to the discovery of several major cellular processes carried out by the primary cilium structure and has highlighted their genetic heterogeneity.
Collapse
Affiliation(s)
- A Mockel
- Laboratoire de physiopathologie des syndromes rares et héréditaires, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
65
|
Iwanaga T, Miki T, Takahashi-Iwanaga H. Restricted expression of somatostatin receptor 3 to primary cilia in the pancreatic islets and adenohypophysis of mice. Biomed Res 2011; 32:73-81. [DOI: 10.2220/biomedres.32.73] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Imhoff O, Marion V, Stoetzel C, Durand M, Holder M, Sigaudy S, Sarda P, Hamel CP, Brandt C, Dollfus H, Moulin B. Bardet-Biedl syndrome: a study of the renal and cardiovascular phenotypes in a French cohort. Clin J Am Soc Nephrol 2011; 6:22-9. [PMID: 20876674 PMCID: PMC3022245 DOI: 10.2215/cjn.03320410] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 08/24/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Bardet-Biedl Syndrome (BBS) is a rare autosomal recessive ciliopathy with a wide spectrum of clinical features including obesity, retinitis pigmentosa, polydactyly, mental retardation, hypogonadism, and renal abnormalities. The molecular genetic profile of BBS is currently being investigated after the recent identification of 14 BBS genes involved in primary cilia-linked disease. This study aims to characterize the renal and cardiovascular presentations and to analyze possible relationships between genotypes and clinical phenotypes. DESIGN, SETTING, PARTICIPANTS & MEASUREMENTS This clinical study was performed in a national cohort of 33 BBS patients, 22 men and 11 women, all aged >16 years (mean age 26.3 years). RESULTS Renal abnormalities, including impairment of renal function and signs of chronic interstitial nephropathy of dysplastic nature, were documented in 82% of the patients. Cardiovascular evaluations revealed that this group of young patients had significant cardiovascular risk factors. Hypertension was found in >30% of the patients and hyperlipidemia in >60%, and almost 50% had other metabolic abnormalities. Overt diabetes was present in only 6%. With regard to genotype-phenotype correlation, patients with a mutation in the BBS6, BBS10, or BBS12 gene (10 of 33 patients) had more severe renal disease. CONCLUSIONS Our study results confirm the frequent occurrence of renal involvement in patients with BBS, underscore the high risk of cardiovascular disease in these patients, and provide new information on a possible genotype-phenotype correlation.
Collapse
Affiliation(s)
| | - Vincent Marion
- Laboratoire de Physiopathologie et Épidémiologie des Syndromes Génétiques Rares, EA 3944, Avenir INSERM, Faculté de Médecine de Strasbourg, Strasbourg, France
| | - Corinne Stoetzel
- Laboratoire de Physiopathologie et Épidémiologie des Syndromes Génétiques Rares, EA 3944, Avenir INSERM, Faculté de Médecine de Strasbourg, Strasbourg, France
| | - Myriam Durand
- Service de Génétique Médicale, Fédération de Génétique
| | - Muriel Holder
- Service de Génétique Médicale, Hôpitaux Universitaires de Lille, Lille, France
| | - Sabine Sigaudy
- Département de Génétique Médicale, Hôpital Timone Enfant, Marseille, France; and
| | | | - Christian P. Hamel
- Service d'Ophtalmologie, Hôpitaux Universitaires de Montpellier, Montpellier, France
| | - Christian Brandt
- Service de Cardiologie, and
- Centre d'Investigation et de Recherche Clinique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Hélène Dollfus
- Service de Génétique Médicale, Fédération de Génétique
- Laboratoire de Physiopathologie et Épidémiologie des Syndromes Génétiques Rares, EA 3944, Avenir INSERM, Faculté de Médecine de Strasbourg, Strasbourg, France
| | - Bruno Moulin
- Service de Néphrologie et Transplantation Rénale
| |
Collapse
|
67
|
Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins. Cell Mol Life Sci 2010; 68:2951-60. [PMID: 21152952 DOI: 10.1007/s00018-010-0603-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 10/25/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
Primary cilia are nearly ubiquitous cellular appendages that provide important sensory and signaling functions. Ciliary dysfunction underlies numerous human diseases, collectively termed ciliopathies. Primary cilia have distinct functions on different cell types and these functions are defined by the signaling proteins that localize to the ciliary membrane. Neurons throughout the mammalian brain possess primary cilia upon which certain G protein-coupled receptors localize. Yet, the precise signaling proteins present on the vast majority of neuronal cilia are unknown. Here, we report that dopamine receptor 1 (D1) localizes to cilia on mouse central neurons, thereby implicating neuronal cilia in dopamine signaling. Interestingly, ciliary localization of D1 is dynamic, and the receptor rapidly translocates to and from cilia in response to environmental cues. Notably, the translocation of D1 from cilia requires proteins mutated in the ciliopathy Bardet-Biedl syndrome (BBS), and we find that one of the BBS proteins, Bbs5, specifically interacts with D1.
Collapse
|
68
|
Ravanelli AM, Klingensmith J. The actin nucleator Cordon-bleu is required for development of motile cilia in zebrafish. Dev Biol 2010; 350:101-11. [PMID: 21129373 DOI: 10.1016/j.ydbio.2010.11.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/15/2010] [Accepted: 11/19/2010] [Indexed: 11/19/2022]
Abstract
The cordon-bleu (Cobl) gene is widely conserved in vertebrates, with developmentally regulated axial and epithelial expression in mouse and chick embryos. In vitro, Cobl can bind monomeric actin and nucleate formation of unbranched actin filaments, while in cultured cells it can modulate the actin cytoskeleton. However, an essential role for Cobl in vivo has yet to be determined. We have used zebrafish as a model to assess the requirements for Cobl in embryogenesis. We find that cobl shows enriched expression in ciliated epithelial tissues during zebrafish organogenesis. Cobl protein is enriched in the apical domain of ciliated cells, in close proximity to the apical actin cap. Reduction of Cobl by antisense morpholinos reveals an essential role in development of motile cilia in organs such as Kupffer's vesicle and the pronephros. In Kupffer's vesicle, the reduction in Cobl coincides with a reduction in the amount of apical F-actin. Thus, Cobl represents a molecular activity that couples developmental patterning signals with local intracellular cytoskeletal dynamics to support morphogenesis of motile cilia.
Collapse
Affiliation(s)
- Andrew M Ravanelli
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
69
|
Baker K, Northam GB, Chong WK, Banks T, Beales P, Baldeweg T. Neocortical and hippocampal volume loss in a human ciliopathy: A quantitative MRI study in Bardet-Biedl syndrome. Am J Med Genet A 2010; 155A:1-8. [PMID: 21204204 DOI: 10.1002/ajmg.a.33773] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/11/2010] [Indexed: 11/08/2022]
Abstract
Cilia are ubiquitous cell surface organelles with diverse roles from embryogenesis to adult life. The neurodevelopmental functions of the cilium are currently under investigation in animal systems, but relevance to human brain development remains uncertain. We present the first systematic investigation of structural neuroanatomy in a ciliopathy-Bardet-Biedl syndrome (BBS). Qualitative and quantitative aspects of brain structure were evaluated via magnetic resonance imaging in 10 patients with BBS (ages 14-28 years). In comparison to age and gender-matched healthy controls, BBS patients had significantly reduced total gray matter (GM) volume but no total white matter (WM) or cerebrospinal fluid volume changes. Voxel-based morphometric analysis indicated regional GM volume loss bilaterally in the anterior temporal lobes and in the medial orbitofrontal cortex, and WM volume loss in the right inferior longitudinal fasciculus. Region-of-interest measurements revealed reduced volume of the hippocampus. Two patients were found to have ventriculomegaly. Global GM reduction and regional volume reductions in the temporal lobe may underlie the learning disabilities and behavioral problems experienced by some patients with BBS. These findings are consistent with previous observations in mouse models of BBS, and further implicate the cilium in neurodevelopmental processes relevant to human cognitive function.
Collapse
Affiliation(s)
- Kate Baker
- UCL Institute of Child Health, London, UK.
| | | | | | | | | | | |
Collapse
|
70
|
Sacconi S, Baillif-Gostoli S, Desnuelle C. [Retinal involvement and genetic myopathy]. Rev Neurol (Paris) 2010; 166:998-1009. [PMID: 21071050 DOI: 10.1016/j.neurol.2010.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/25/2010] [Accepted: 09/22/2010] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In genetic diseases, association between retinal and muscular involvement is uncommon, quite specific and frequently allows the diagnosis. In this context, three types of retinal involvement have been described: retinitis pigmentosa (RP), pattern retinal dystrophy (PRD) and exudative retinitis resembling Coats disease (CD). STATE OF THE ART The association between RP, PRD and muscle weakness is highly evocative of a mitochondrial disorder. Extra ocular muscles may be affected, but limb girdle or distal weakness can also be present in association or not with symptoms and signs of multisystemic involvement. In a large number of patients suffering from facioscapulohumeral muscular dystrophy (FSHD), retinal vessels telangectasia can be found at the fundoscopic examination. This finding, which corresponds to a developmental abnormality of peripheral retinal blood vessels, is not progressive and remains clinically asymptomatic. Nevertheless, a few patients with FSHD can develop an exsudative retinopathy resembling Coats disease with the risk of the major complication, recurrent retinal detachments. PERSPECTIVES AND CONCLUSIONS Considering the diagnostic interest and the deleterious consequences that may follow retinal involvement, close collaboration between the neurologist and ophthalmologist is needed in order to establish the diagnosis, detect complications early, and set up appropriate therapies.
Collapse
Affiliation(s)
- S Sacconi
- Centre de référence des maladies neuromusculaires et SLA, hôpital Archet 1, CHU de Nice, 151, route de Saint-Antoine-de-Ginestière, 06202 Nice, France.
| | | | | |
Collapse
|
71
|
Bonsib SM. The classification of renal cystic diseases and other congenital malformations of the kidney and urinary tract. Arch Pathol Lab Med 2010; 134:554-68. [PMID: 20367308 DOI: 10.5858/134.4.554] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Renal cystic diseases and congenital abnormalities of the kidney and urinary tract comprise a heterogeneous group of lesions whose pathogenesis has eluded physicians for centuries. Recent advances in molecular and genetic understanding of these diseases may provide the solution to this riddle. OBJECTIVE The formulation of an effective classification system for these disorders has been elusive but is needed to introduce order while providing a conceptual framework for diagnosis. DATA SOURCES This review discusses the evolution, beginning in the 19th century, of postulates regarding the pathogenesis of cystic and developmental renal diseases. Selected classification systems proffered during this period are discussed in pursuit of an ideal classification schema that would account for morphologic features and their clinical importance, with logical links to pathogenesis and treatment. Although this remains an elusive target, its general outline is becoming clearer. A classification approach favored by the author is presented, which incorporates many of the strengths contained in several previous classifications. CONCLUSIONS Genetic-and molecular-based postulates regarding the pathogenesis of the renal cystic and developmental diseases have implicated mutated master genes and the modification of genes that are crucial in renal development and genes that are central to the sensory effects of the renal tubular primary cilium on cell physiology. These scientific advances provide pathogenetic links between morphologically and genetically distinct entities and certain cystic and neoplastic entities, associations that seemed implausible not long ago. These advances may eventually provide the basis for future classification systems while suggesting targets for therapeutic approaches in the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Stephen M Bonsib
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, 71130-3932, USA.
| |
Collapse
|
72
|
Wiens CJ, Tong Y, Esmail MA, Oh E, Gerdes JM, Wang J, Tempel W, Rattner JB, Katsanis N, Park HW, Leroux MR. Bardet-Biedl syndrome-associated small GTPase ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signaling. J Biol Chem 2010; 285:16218-30. [PMID: 20207729 PMCID: PMC2871489 DOI: 10.1074/jbc.m109.070953] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The expansive family of metazoan ADP-ribosylation factor and ADP-ribosylation factor-like small GTPases is known to play essential roles in modulating membrane trafficking and cytoskeletal functions. Here, we present the crystal structure of ARL6, mutations in which cause Bardet-Biedl syndrome (BBS3), and reveal its unique ring-like localization at the distal end of basal bodies, in proximity to the so-called ciliary gate where vesicles carrying ciliary cargo fuse with the membrane. Overproduction of GDP- or GTP-locked variants of ARL6/BBS3 in vivo influences primary cilium length and abundance. ARL6/BBS3 also modulates Wnt signaling, a signal transduction pathway whose association with cilia in vertebrates is just emerging. Importantly, this signaling function is lost in ARL6 variants containing BBS-associated point mutations. By determining the structure of GTP-bound ARL6/BBS3, coupled with functional assays, we provide a mechanistic explanation for such pathogenic alterations, namely altered nucleotide binding. Our findings therefore establish a previously unknown role for ARL6/BBS3 in mammalian ciliary (dis)assembly and Wnt signaling and provide the first structural information for a BBS protein.
Collapse
Affiliation(s)
- Cheryl J Wiens
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Zaucke F, Boehnlein JM, Steffens S, Polishchuk RS, Rampoldi L, Fischer A, Pasch A, Boehm CWA, Baasner A, Attanasio M, Hoppe B, Hopfer H, Beck BB, Sayer JA, Hildebrandt F, Wolf MTF. Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression. Hum Mol Genet 2010; 19:1985-97. [PMID: 20172860 DOI: 10.1093/hmg/ddq077] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Uromodulin (UMOD) mutations are responsible for three autosomal dominant tubulo-interstitial nephropathies including medullary cystic kidney disease type 2 (MCKD2), familial juvenile hyperuricemic nephropathy and glomerulocystic kidney disease. Symptoms include renal salt wasting, hyperuricemia, gout, hypertension and end-stage renal disease. MCKD is part of the 'nephronophthisis-MCKD complex', a group of cystic kidney diseases. Both disorders have an indistinguishable histology and renal cysts are observed in either. For most genes mutated in cystic kidney disease, their proteins are expressed in the primary cilia/basal body complex. We identified seven novel UMOD mutations and were interested if UMOD protein was expressed in the primary renal cilia of human renal biopsies and if mutant UMOD would show a different expression pattern compared with that seen in control individuals. We demonstrate that UMOD is expressed in the primary cilia of renal tubules, using immunofluorescent studies in human kidney biopsy samples. The number of UMOD-positive primary cilia in UMOD patients is significantly decreased when compared with control samples. Additional immunofluorescence studies confirm ciliary expression of UMOD in cell culture. Ciliary expression of UMOD is also confirmed by electron microscopy. UMOD localization at the mitotic spindle poles and colocalization with other ciliary proteins such as nephrocystin-1 and kinesin family member 3A is demonstrated. Our data add UMOD to the group of proteins expressed in primary cilia, where mutations of the gene lead to cystic kidney disease.
Collapse
Affiliation(s)
- Frank Zaucke
- Center for Biochemistry, Medical Faculty, University Children's Hospital, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Lechtreck KF, Johnson EC, Sakai T, Cochran D, Ballif BA, Rush J, Pazour GJ, Ikebe M, Witman GB. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. ACTA ACUST UNITED AC 2010; 187:1117-32. [PMID: 20038682 PMCID: PMC2806276 DOI: 10.1083/jcb.200909183] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Bardet-Biedl syndrome protein complex (BBSome) is a cargo adapter rather than an essential part of the intraflagellar transport (IFT) machinery. In humans, seven evolutionarily conserved genes that cause the cilia-related disorder Bardet-Biedl syndrome (BBS) encode proteins that form a complex termed the BBSome. The function of the BBSome in the cilium is not well understood. We purified a BBSome-like complex from Chlamydomonas reinhardtii flagella and found that it contains at least BBS1, -4, -5, -7, and -8 and undergoes intraflagellar transport (IFT) in association with a subset of IFT particles. C. reinhardtii insertional mutants defective in BBS1, -4, and -7 assemble motile, full-length flagella but lack the ability to phototax. In the bbs4 mutant, the assembly and transport of IFT particles are unaffected, but the flagella abnormally accumulate several signaling proteins that may disrupt phototaxis. We conclude that the BBSome is carried by IFT but is an adapter rather than an integral component of the IFT machinery. C. reinhardtii BBS4 may be required for the export of signaling proteins from the flagellum via IFT.
Collapse
|
75
|
Pereiro I, Valverde D, Piñeiro-Gallego T, Baiget M, Borrego S, Ayuso C, Searby C, Nishimura D. New mutations in BBS genes in small consanguineous families with Bardet-Biedl syndrome: detection of candidate regions by homozygosity mapping. Mol Vis 2010; 16:137-43. [PMID: 20142850 PMCID: PMC2817015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 01/27/2010] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Bardet-Biedl syndrome (BBS, OMIM 209900) is a rare multi-organ disorder in which BBS patients manifest a variable phenotype that includes retinal dystrophy, polydactyly, mental delay, obesity, and also reproductive tract and renal abnormalities. Mutations in 14 genes (BBS1-BBS14) are found in 70% of the patients, indicating that additional mutations in known and new BBS genes remain to be identified. Therefore, the molecular diagnosis of this complex disorder is a challenging task. METHODS In this study we show the use of the genome-wide homozygosity mapping strategy in the mutation detection of nine Caucasian BBS families, eight of them consanguineous and one from the same geographic area with no proven consanguinity. RESULTS We identified the disease-causing mutation in six of the families studied, five of which had novel sequence variants in BBS3, BBS6, and BBS12. This is the first null mutation reported in BBS3. Furthermore, this approach defined homozygous candidate regions that could harbor potential candidate genes for BBS in three of the families. CONCLUSIONS These findings further underline the importance of homozygosity mapping as a useful technology for diagnosis in small consanguineous families with a complex disease like BBS.
Collapse
Affiliation(s)
- Ines Pereiro
- Facultad de Biología, Universidad de Vigo, Spain
| | | | | | | | | | | | - Charles Searby
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA
| | | |
Collapse
|
76
|
Pawlik B, Mir A, Iqbal H, Li Y, Nürnberg G, Becker C, Qamar R, Nürnberg P, Wollnik B. A Novel Familial BBS12 Mutation Associated with a Mild Phenotype: Implications for Clinical and Molecular Diagnostic Strategies. Mol Syndromol 2010; 1:27-34. [PMID: 20648243 DOI: 10.1159/000276763] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 11/20/2009] [Indexed: 01/24/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessively inherited ciliopathy mainly characterized by rod-cone dystrophy, postaxial polydactyly, obesity, renal tract anomalies, and hypogonadism. To date, 14 BBS genes, BBS1 to BBS14, have been identified, accounting for over 75% of mutations in BBS families. In this study, we present a consanguineous family from Pakistan with postaxial polydactyly and late-onset retinal dysfunction. Adult affected individuals did not show any renal or genital anomalies, obesity, mental retardation or learning difficulties and did thus not fulfill the proposed clinical diagnostic criteria for BBS. We mapped the disease in this family to the BBS12 locus on chromosome 4q27 and identified the novel homozygous p.S701X nonsense mutation in BBS12 in all three affected individuals of this family. We conclude that BBS12 mutations might cause a very mild phenotype, which is clinically not diagnosed by the current diagnostic criteria for BBS. Consequently, we suggest the use of less strict diagnostic criteria in familial BBS families with mild phenotypic expression.
Collapse
Affiliation(s)
- B Pawlik
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Goetz SC, Ocbina PJR, Anderson KV. The primary cilium as a Hedgehog signal transduction machine. Methods Cell Biol 2009; 94:199-222. [PMID: 20362092 DOI: 10.1016/s0091-679x(08)94010-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Hedgehog (Hh) signal transduction pathway is essential for the development and patterning of numerous organ systems, and has important roles in a variety of human cancers. Genetic screens for mouse embryonic patterning mutants first showed a connection between mammalian Hh signaling and intraflagellar transport (IFT), a process required for construction of the primary cilium, a small cellular projection found on most vertebrate cells. Additional genetic and cell biological studies have provided very strong evidence that mammalian Hh signaling depends on the primary cilium. Here, we review the evidence that defines the integral roles that IFT proteins and cilia play in the regulation of the Hh signal transduction pathway in vertebrates. We discuss the mechanisms that control localization of Hh pathway proteins to the cilium, focusing on the transmembrane protein Smoothened (Smo), which moves into the cilium in response to Hh ligand. The phenotypes caused by loss of cilia-associated proteins are complex, which suggests that cilia and IFT play active roles in mediating Hh signaling rather than serving simply as a compartment in which pathway components are concentrated. Hh signaling in Drosophila does not depend on cilia, but there appear to be ancient links between cilia and components of the Hh pathway that may reveal how this fundamental difference between the Drosophila and mammalian Hh pathways arose in evolution.
Collapse
Affiliation(s)
- Sarah C Goetz
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
78
|
Abstract
Primary cilia are microtubule-rich hair-like extensions protruding from the surface of most post-mitotic cells. They act as sensory organelles that help interpret various environmental cues. Mutations in genes encoding proteins involved in ciliogenesis or protein transport to the primary cilia lead to a wide variety of diseases commonly referred to as ciliopathies,which include primary ciliary dyskinesia, situs invertus, hydrocephalus, kidney diseases, respiratory diseases, and retinal degenerations. In the retina, the photoreceptor cells have a highly specialized primary cilium called the outer segment (OS), which is essential for photosensation. Development of the photoreceptor OS shares key regulatory mechanisms with ciliogenesis in other cell types. Accumulating evidence indicates that mutations that affect OS development and/or protein transport to the OS generally lead to photoreceptor degeneration, which can be accompanied by a range of other clinical manifestations due to the dysfunction of primary cilia in different cell types. Here, we review the general mechanisms regulating ciliogenesis, and present different examples of mutations affecting OS ciliogenesis and protein transport that lead to photoreceptor degeneration. Overall, we conclude that the genetic and molecular evidence accumulated in recent years suggest a clear link between the development and function of the primary cilium and various clinical conditions. Future studies aimed at uncovering the cellular and molecular mechanisms implicated in ciliogenesis in a wide variety of animal models should greatly increase our understanding of the pathophysiology of many human diseases, including retinal degenerations.
Collapse
Affiliation(s)
- V Ramamurthy
- Institut de Recherches Cliniques de Montréal (IRCM), Cellular Neurobiology Research Unit, QC, Canada
| | | |
Collapse
|
79
|
Abstract
Abnormalities in the central nervous system and renal function are seen together in a variety of congenital syndromes. This Review examines the clinical presentation and the genetic basis of several such syndromes. The X-linked oculocerebrorenal syndrome of Lowe is characterized by developmental delay, blindness, renal tubular dysfunction, and progressive renal failure. This syndrome results from mutations in the OCRL gene, which encodes a phosphatase involved in endosomal trafficking. Mutations in OCRL also occur in Dent disease, which has a milder disease phenotype than Lowe syndrome. Patients with Joubert syndrome have cerebellar ataxia, pigmentary retinopathy, and nephronophthisis. Joubert syndrome is a genetically heterogeneous condition associated with mutations in at least five genes that encode ciliary proteins. Bardet-Biedl syndrome is a clinically variable condition associated with learning disabilities, progressive visual loss, obesity, polydactyly, hypogonadism, and cystic and fibrotic renal changes that can lead to renal failure. Most of the 12 genes mutated in Bardet-Biedl syndrome are also involved in ciliary function, as are the genes implicated in other 'ciliopathies' with similar phenotypes, including Meckel syndrome.
Collapse
Affiliation(s)
- Scott J Schurman
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
80
|
Abstract
The association between renal dysplasia and minor malformations of the external ear is weak. However, there is a remarkable list of syndromes that link the kidney to the inner ear. To organize these seemingly disparate syndromes, we cluster representative examples into three groups: (a) syndromes that share pathways regulating development; (b) syndromes involving dysfunction of the primary cilium, which normally provides critical information to epithelial cells about the fluid in which they are bathed; (c) syndromes arising from dysfunction of specialized proteins that transport ions and drugs in and out of the extracellular fluid or provide structural support.
Collapse
Affiliation(s)
- Elena Torban
- Departments of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
81
|
Abou Alaiwi WA, Lo ST, Nauli SM. Primary cilia: highly sophisticated biological sensors. SENSORS 2009; 9:7003-20. [PMID: 22423203 PMCID: PMC3290460 DOI: 10.3390/s90907003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 07/31/2009] [Accepted: 09/01/2009] [Indexed: 12/18/2022]
Abstract
Primary cilia, thin hair-like structures protruding from the apical surface of most mammalian cells, have gained the attention of many researchers over the past decade. Primary cilia are microtubule-filled sensory organelles that are enclosed within the ciliary membrane. They originate at the cell surface from the mother centriole that becomes the mature basal body. In this review, we will discuss recent literatures on the roles of cilia as sophisticated sensory organelles. With particular emphasis on vascular endothelia and renal epithelia, the mechanosensory role of cilia in sensing fluid shear stress will be discussed. Also highlighted is the ciliary involvement in cell cycle regulation, development, cell signaling and cancer. Finally, primary cilia-related disorders will be briefly described.
Collapse
Affiliation(s)
- Wissam A. Abou Alaiwi
- Author to whom correspondence may be addressed; E-Mails: (W.A.A.); (S.M.N.); Tel.: +1-419-530-1921 (W.A.A); +1-419-530-1910 (S.M.N.); Fax: +1-419-530-1909
| | | | - Surya M. Nauli
- Author to whom correspondence may be addressed; E-Mails: (W.A.A.); (S.M.N.); Tel.: +1-419-530-1921 (W.A.A); +1-419-530-1910 (S.M.N.); Fax: +1-419-530-1909
| |
Collapse
|
82
|
Doherty D. Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol 2009; 16:143-54. [PMID: 19778711 PMCID: PMC2804071 DOI: 10.1016/j.spen.2009.06.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Joubert syndrome (JS) is a primarily autosomal recessive condition characterized by hypotonia, ataxia, abnormal eye movements, and intellectual disability with a distinctive mid-hindbrain malformation (the "molar tooth sign"). Variable features include retinal dystrophy, cystic kidney disease, liver fibrosis and polydactyly. Recently, substantial progress has been made in our understanding of the genetic basis of JS, including identification of seven causal genes (NPHP1, AHI1, CEP290, RPGRIP1L, TMEM67/MKS3, ARL13B and CC2D2A). Despite this progress, the known genes account for <50% of cases and few strong genotype-phenotype correlations exist in JS; however, genetic testing can be prioritized based on clinical features. While all seven JS genes have been implicated in the function of the primary cilium/basal body organelle (PC/BB), little is known about how the PC/BB is required for brain, kidney, retina and liver development/function, nor how disruption of PC/BB function leads to diseases of these organs. Recent work on the function of the PC/BB indicates that the organelle is required for multiple signaling pathways including sonic hedgehog, WNT and platelet derived growth factor. Due to shared clinical features and underlying molecular pathophysiology, JS is included in the rapidly expanding group of disorders called ciliopathies. The ciliopathies are emerging as models for more complex diseases, where sequence variants in multiple genes contribute to the phenotype expressed in any given patient.
Collapse
Affiliation(s)
- Dan Doherty
- University of Washington and Seattle Children's Hospital, Seattle, WA, USA.
| |
Collapse
|
83
|
Tallila J, Salonen R, Kohlschmidt N, Peltonen L, Kestilä M. Mutation spectrum of Meckel syndrome genes: one group of syndromes or several distinct groups? Hum Mutat 2009; 30:E813-30. [PMID: 19466712 PMCID: PMC2718326 DOI: 10.1002/humu.21057] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Meckel syndrome (MKS) is a lethal malformation syndrome that belongs to the group of disorders that are associated with primary cilia dysfunction. Total of five genes are known to be involved in the molecular background of MKS. Here we have systematically analyzed all these genes in a total of 29 MKS families. Seven of the families were Finnish and the rest originated from elsewhere in Europe. We found 12 novel mutations in 13 families. Mutations in the MKS genes are also found in other syndromes and it seems reasonable to assume that there is a correlation between the syndromes and the mutations. To obtain some supportive information, we collected all the previously published mutations in the genes to see whether the different syndromes are dictated by the nature of the mutations. Based on this study, mutations play a role in the clinical phenotype, given that the same allelic combination of mutations has never been reported in two clinically distinct syndromes.
Collapse
Affiliation(s)
- Jonna Tallila
- National Institute of Health and Welfare, Public Health Genomics Unit and FIMM, Institute for Molecular Medicine Finland, Helsinki 00290, Finland
| | - Riitta Salonen
- Department of Medical Genetics, Väestöliitto, Helsinki 00100, Finland
| | | | - Leena Peltonen
- National Institute of Health and Welfare, Public Health Genomics Unit and FIMM, Institute for Molecular Medicine Finland, Helsinki 00290, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki 00290, Finland
- The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Marjo Kestilä
- National Institute of Health and Welfare, Public Health Genomics Unit and FIMM, Institute for Molecular Medicine Finland, Helsinki 00290, Finland
| |
Collapse
|
84
|
Hashimoto H, Miyamoto R, Watanabe N, Shiba D, Ozato K, Inoue C, Kubo Y, Koga A, Jindo T, Narita T, Naruse K, Ohishi K, Nogata K, Shin-I T, Asakawa S, Shimizu N, Miyamoto T, Mochizuki T, Yokoyama T, Hori H, Takeda H, Kohara Y, Wakamatsu Y. Polycystic kidney disease in the medaka (Oryzias latipes) pc mutant caused by a mutation in the Gli-Similar3 (glis3) gene. PLoS One 2009; 4:e6299. [PMID: 19609364 PMCID: PMC2706989 DOI: 10.1371/journal.pone.0006299] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 06/09/2009] [Indexed: 11/24/2022] Open
Abstract
Polycystic kidney disease (PKD) is a common hereditary disease in humans. Recent studies have shown an increasing number of ciliary genes that are involved in the pathogenesis of PKD. In this study, the Gli-similar3 (glis3) gene was identified as the causal gene of the medaka pc mutant, a model of PKD. In the pc mutant, a transposon was found to be inserted into the fourth intron of the pc/glis3 gene, causing aberrant splicing of the pc/glis3 mRNA and thus a putatively truncated protein with a defective zinc finger domain. pc/glis3 mRNA is expressed in the epithelial cells of the renal tubules and ducts of the pronephros and mesonephros, and also in the pancreas. Antisense oligonucleotide-mediated knockdown of pc/glis3 resulted in cyst formation in the pronephric tubules of medaka fry. Although three other glis family members, glis1a, glis1b and glis2, were found in the medaka genome, none were expressed in the embryonic or larval kidney. In the pc mutant, the urine flow rate in the pronephros was significantly reduced, which was considered to be a direct cause of renal cyst formation. The cilia on the surface of the renal tubular epithelium were significantly shorter in the pc mutant than in wild-type, suggesting that shortened cilia resulted in a decrease in driving force and, in turn, a reduction in urine flow rate. Most importantly, EGFP-tagged pc/glis3 protein localized in primary cilia as well as in the nucleus when expressed in mouse renal epithelial cells, indicating a strong connection between pc/glis3 and ciliary function. Unlike human patients with GLIS3 mutations, the medaka pc mutant shows none of the symptoms of a pancreatic phenotype, such as impaired insulin expression and/or diabetes, suggesting that the pc mutant may be suitable for use as a kidney-specific model for human GLIS3 patients.
Collapse
Affiliation(s)
- Hisashi Hashimoto
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Daskalakis M, Till H, Kiess W, Weiner RA. Roux-en-Y gastric bypass in an adolescent patient with Bardet-Biedl syndrome, a monogenic obesity disorder. Obes Surg 2009; 20:121-5. [PMID: 19847573 DOI: 10.1007/s11695-009-9915-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a rare genetic disorder characterized by a wide range of phenotypic variability and associated with the development of life-threatening obesity. Birth weight tends to be normal, but rapid weight gain begins after the first year, probably due to polyphagia rather than abnormalities in energy metabolism. A morbidly obese 16-year-old male patient with BBS was referred to our institution, after nonsurgical methods of weight control had failed, for surgical treatment of his obesity. His preoperative body mass index (BMI) was 52.28 kg/m(2) (height, 1.84 m; weight, 177 kg) and was above the 99th centile for age and gender. The patient underwent laparoscopic Roux-en-Y gastric bypass (RYGBP). The postoperative period was uneventful. Three and a half years after the operation, the patient's weight has decreased to 118 kg (BMI, 34.85 kg/m(2)), while significant improvement in his hypertension, hyperuricemia, and mobility has been noted. In our BBS patient, RYGBP proved to be safe and effective; nevertheless, longer follow-up is required to evaluate the weight loss durability and to assess the lasting beneficial effect of surgical intervention on genetically determined co-morbidities.
Collapse
Affiliation(s)
- Markos Daskalakis
- Department of General and Bariatric Surgery, Center for Minimal-Invasive Surgery, Krankenhaus Sachsenhausen, Frankfurt/M, Germany
| | | | | | | |
Collapse
|
86
|
Dale RM, Sisson BE, Topczewski J. The emerging role of Wnt/PCP signaling in organ formation. Zebrafish 2009; 6:9-14. [PMID: 19250029 DOI: 10.1089/zeb.2008.0563] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the last two decades zebrafish has been an excellent model organism to study vertebrate development. Mutant analysis combined with gene knockdown and other manipulations revealed an essential role of Wnt signaling, independent of beta-catenin, during development. Especially well characterized is the function of Wnt/planar cell polarity (PCP) signaling in the regulation of gastrulation movements and neurulation, described in other reviews within this special issue. Here, we set out to highlight some of the new and exciting research that is being carried out in zebrafish to elucidate the role that Wnt/PCP signaling plays in the formation of specific organs, including the lateral line, craniofacial development, and regeneration. We also summarized the emerging connection of the Wnt/PCP pathway with primary cilia function, an essential organelle in several organ activities.
Collapse
Affiliation(s)
- Rodney M Dale
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Children's Memorial Research Center, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
87
|
May-Simera HL, Ross A, Rix S, Forge A, Beales PL, Jagger DJ. Patterns of expression of Bardet-Biedl syndrome proteins in the mammalian cochlea suggest noncentrosomal functions. J Comp Neurol 2009; 514:174-88. [PMID: 19396898 DOI: 10.1002/cne.22001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bardet-Biedl syndrome is a heterogeneous disorder causing a spectrum of symptoms, including visual impairment, kidney disease, and hearing impairment. Evidence suggests that BBS gene mutations cause defective ciliogenesis and/or cilium dysfunction. Cochlear development is affected by BBS gene deletion, and adult Bbs6(-/-) and Bbs4(-/-) mice are hearing impaired. This study addresses BBS protein expression in the rodent cochlea, to gain a better understanding of its function in vivo. As predicted by in vitro studies, Bbs6 immunofluorescence was localized to the basal bodies of supporting cells and sensory hair cells prior to the onset of hearing. In adult tissue, Bbs6 expression persisted in afferent neurons, including within the dendrites that innervate hair cells, implicating Bbs6 in a sensory neuronal function. Bbs2, which interacts with Bbs6, was also localized to hair cell basal bodies and stereociliary bundles. Additionally, Bbs2 was expressed in supporting cells at their intercellular boundaries, in a spatiotemporal pattern mirroring the development of the microtubule network. Bbs4 localized to cilia and developing cytoplasmic microtubule arrays. Pcm-1, a microtubular protein that interacts with Bbs4 in vitro, showed a comparable expression. Depolymerization of microtubules in slice preparations of the living cochlea resulted in Bbs4 and Pcm-1 mislocalization. Pcm-1 was also mislocalized in Bbs4(-/-) mice. This suggests that Bbs4/Pcm-1 interactions may be important in microtubule-dependent cytoplasmic trafficking in vivo. In summary, our findings indicate that BBS proteins adopt a range of cellular distributions in vivo, not restricted to the centrosome or cilium, and so broaden the possible underlying pathomechanisms of the disease.
Collapse
Affiliation(s)
- Helen L May-Simera
- Institute of Child Health, University College London, London WC1N1EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
88
|
Lancaster MA, Gleeson JG. The primary cilium as a cellular signaling center: lessons from disease. Curr Opin Genet Dev 2009; 19:220-9. [PMID: 19477114 DOI: 10.1016/j.gde.2009.04.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 01/18/2023]
Abstract
Genetic diseases known as ciliopathies have recently entered the limelight, placing new importance on a previously mysterious organelle: the primary cilium. Mutations affecting the primary cilium in both humans and animal models can lead to a plethora of distinct phenotypes including retinal degeneration, kidney cysts, and brain malformations. New findings are quickly lending insight into the functions of this cellular extension that seems to be especially important in modulation of subcellular signaling cascades at various stages of development and adult homeostasis.
Collapse
Affiliation(s)
- Madeline A Lancaster
- Biomedical Sciences Program, Department of Neurosciences, University of California, San Diego, United States
| | | |
Collapse
|
89
|
Abstract
Consistent left-right (LR) patterning is a clinically important embryonic process. However, key questions remain about the origin of asymmetry and its amplification across cell fields. Planar cell polarity (PCP) solves a similar morphogenetic problem, and although core PCP proteins have yet to be implicated in embryonic LR asymmetry, studies of mutations affecting planar polarity, together with exciting new data in cell and developmental biology, provide a new perspective on LR patterning. Here we propose testable models for the hypothesis that LR asymmetry propagates as a type of PCP that imposes coherent orientation onto cell fields, and that the cue that orients this polarization is a chiral intracellular structure.
Collapse
Affiliation(s)
- Sherry Aw
- Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave., Suite 4600, Boston, MA 02155, USA
| | | |
Collapse
|
90
|
Ermakov A, Stevens JL, Whitehill E, Robson JE, Pieles G, Brooker D, Goggolidou P, Powles-Glover N, Hacker T, Young SR, Dear N, Hirst E, Tymowska-Lalanne Z, Briscoe J, Bhattacharya S, Norris DP. Mouse mutagenesis identifies novel roles for left-right patterning genes in pulmonary, craniofacial, ocular, and limb development. Dev Dyn 2009; 238:581-94. [PMID: 19235720 DOI: 10.1002/dvdy.21874] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Vertebrate organs show consistent left-right (L-R) asymmetry in placement and patterning. To identify genes involved in this process we performed an ENU-based genetic screen. Of 135 lines analyzed 11 showed clear single gene defects affecting L-R patterning, including 3 new alleles of known L-R genes and mutants in novel L-R loci. We identified six lines (termed "gasping") that, in addition to abnormal L-R patterning and associated cardiovascular defects, had complex phenotypes including pulmonary agenesis, exencephaly, polydactyly, ocular and craniofacial malformations. These complex abnormalities are present in certain human disease syndromes (e.g., HYLS, SRPS, VACTERL). Gasping embryos also show defects in ciliogenesis, suggesting a role for cilia in these human congenital malformation syndromes. Our results indicate that genes controlling ciliogenesis and left-right asymmetry have, in addition to their known roles in cardiac patterning, major and unexpected roles in pulmonary, craniofacial, ocular and limb development with implications for human congenital malformation syndromes.
Collapse
Affiliation(s)
- Alexander Ermakov
- Molecular Embryology Programme, MRC Mammalian Genetics Unit, Harwell, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
|
92
|
Simms RJ, Eley L, Sayer JA. Nephronophthisis. Eur J Hum Genet 2009; 17:406-16. [PMID: 19066617 PMCID: PMC2986221 DOI: 10.1038/ejhg.2008.238] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 11/04/2008] [Accepted: 11/13/2008] [Indexed: 11/08/2022] Open
Abstract
Nephronophthisis (NPHP) is an autosomal recessive kidney disorder characterized by chronic tubulointerstitial nephritis and leading to end-stage renal failure. NPHP as a renal entity is often part of a multisystem disorder and has been associated with many syndromes including Joubert syndrome (and related disorders) and Senior-Loken syndrome. Recent molecular genetic advances have allowed identification of several genes underlying NPHP. Most of these genes express their protein products, named nephrocystins, in primary cilial/basal body structures. Some nephrocystins are part of adherens junction and focal adhesion kinase protein complexes. This shared localization suggests that common pathogenic mechanisms within the kidney underlie this disease. Functional studies implicate nephrocystins in planar cell polarity pathways, which may be crucial for renal development and maintenance of tubular architecture.
Collapse
Affiliation(s)
- Roslyn J Simms
- Institute of Human Genetics, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
- Renal Services, The Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lorraine Eley
- Institute of Human Genetics, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - John A Sayer
- Institute of Human Genetics, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
- Renal Services, The Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
93
|
Zaghloul NA, Katsanis N. Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest 2009; 119:428-37. [PMID: 19252258 PMCID: PMC2648685 DOI: 10.1172/jci37041] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a multisystemic disorder typified by developmental and progressive degenerative defects. A combination of genetic, in vitro, and in vivo studies have highlighted ciliary dysfunction as a primary cause of BBS pathology, which has in turn contributed to the improved understanding of the functions of the primary cilium in humans and other vertebrates. Here we discuss the evidence linking the clinical BBS phenotype to ciliary defects, highlight how the genetic and cellular characteristics of BBS overlap with and inform other ciliary disorders, and explore the possible mechanistic underpinnings of ciliary dysfunction.
Collapse
Affiliation(s)
- Norann A. Zaghloul
- McKusick-Nathans Institute of Genetic Medicine, Wilmer
Eye Institute, and Department of Molecular Biology and Genetics, Johns
Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Katsanis
- McKusick-Nathans Institute of Genetic Medicine, Wilmer
Eye Institute, and Department of Molecular Biology and Genetics, Johns
Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
94
|
Kobayashi T, Hori Y, Ueda N, Kajiho H, Muraoka S, Shima F, Kataoka T, Kontani K, Katada T. Biochemical characterization of missense mutations in the Arf/Arl-family small GTPase Arl6 causing Bardet-Biedl syndrome. Biochem Biophys Res Commun 2009; 381:439-42. [PMID: 19236846 DOI: 10.1016/j.bbrc.2009.02.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 11/19/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a pleiotropically genetic disorder, whose etiology is linked to cilia. Mutations in the Arf/Arl-family GTPase Arl6 have been recently shown to be responsible for BBS type 3. Here we show that BBS mutations alter the guanine nucleotide-binding properties of Arl6. Specifically, substitution of 31st Threonine to Arginine selectively abrogates the GTP-binding ability of Arl6 without affecting GDP-binding/dissociating properties. Furthermore, all the BBS mutations in Arl6 result in low expression of the mutant proteins, which can be restored by the inhibition of the proteasome. These findings implicate that Arl6 mutants are destabilized and eliminated by the proteasome in cells, probably due to the altered nucleotide-binding properties.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Mouse models for dissecting vertebrate planar cell polarity signaling in the inner ear. Brain Res 2009; 1277:130-40. [PMID: 19232327 DOI: 10.1016/j.brainres.2009.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 02/05/2023]
Abstract
Planar cell polarity (PCP) refers to coordinated polarization of cells in the plane of a cell sheet. In Drosophila, the stereotypical arrangement of the eight photoreceptor cells in each of the ommatidia of the fly compound eye and the uniform orientation of the hairs in all the wing cells are two representative forms of PCP. Using these powerful Drosophila model systems, a set of genes was identified to constitute the invertebrate PCP signaling pathway. In vertebrates, the inner ear sensory organs display distinctive forms of PCP. In particular, the auditory sensory organ in the cochlea, adorned with precisely patterned sensory hair cell arrays and uniformly oriented hair bundles, has served as an excellent model system to complement other vertebrate PCP models and has illustrated a genetic pathway that consists of genes conserved from the Drosophila model as well as genes uniquely required for vertebrate PCP regulation. This review will focus on the mouse models that have made valuable contributions to our current understanding of PCP signaling in the vertebrates.
Collapse
|
96
|
Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc Natl Acad Sci U S A 2009; 106:1820-5. [PMID: 19190184 DOI: 10.1073/pnas.0812518106] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is an inherited ciliopathy generally associated with severe obesity, but the underlying mechanism remains hypothetical and is generally proposed to be of neuroendocrine origin. In this study, we show that while the proliferating preadipocytes or mature adipocytes are nonciliated in culture, a typical primary cilium is present in differentiating preadipocytes. This transient cilium carries receptors for Wnt and Hedgehog pathways, linking this organelle to previously described regulatory pathways of adipogenesis. We also show that the BBS10 and BBS12 proteins are located within the basal body of this primary cilium and inhibition of their expression impairs ciliogenesis, activates the glycogen synthase kinase 3 pathway, and induces peroxisome proliferator-activated receptor nuclear accumulation, hence favoring adipogenesis. Moreover, adipocytes derived from BBS-patients' dermal fibroblasts in culture exhibit higher propensity for fat accumulation when compared to controls. This strongly suggests that a peripheral primary dysfunction of adipogenesis participates to the pathogenesis of obesity in BBS.
Collapse
|
97
|
Kudryashova E, Wu J, Havton LA, Spencer MJ. Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Hum Mol Genet 2009; 18:1353-67. [PMID: 19155210 DOI: 10.1093/hmg/ddp036] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Limb-girdle muscular dystrophy type 2H (LGMD2H) and sarcotubular myopathy are hereditary skeletal muscle disorders caused by mutations in TRIM32. We previously identified TRIM32 as an E3 ubiquitin ligase that binds to myosin and ubiquitinates actin. To date four TRIM32 mutations have been linked to LGMD2H, all of which occur in the C-terminal NHL domains. Unexpectedly, a fifth mutation in the B-box of TRIM32 causes a completely different, multisystemic disorder, Bardet-Biedl syndrome type 11. It is not understood how allelic mutations in TRIM32 can create such diverse phenotypic outcomes. To generate a tool for elucidating the complex in vivo functions of TRIM32, we created the first murine Trim32 knock-out model (T32KO). Histological analysis of T32KO skeletal muscles revealed mild myopathic changes. Electron microscopy showed areas with Z-line streaming and a dilated sarcotubular system with vacuoles -- the latter being a prominent feature of sarcotubular myopathy. Therefore, our model replicates phenotypes of LGMD2H and sarcotubular myopathy. The level of Trim32 expression in normal mouse brain exceeds that observed in skeletal muscle by more than 100 times, as we demonstrated by real-time PCR. Intriguingly, analysis of T32KO neural tissue revealed a decreased concentration of neurofilaments and a reduction in myelinated motoraxon diameters. The axonal changes suggest a shift toward a slower motor unit type. Not surprisingly, T32KO soleus muscle expressed an elevated type I slow myosin isotype with a concomitant reduction in the type II fast myosin. These data suggest that muscular dystrophy due to TRIM32 mutations involves both neurogenic and myogenic characteristics.
Collapse
Affiliation(s)
- Elena Kudryashova
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7334, USA
| | | | | | | |
Collapse
|
98
|
Seo S, Guo DF, Bugge K, Morgan DA, Rahmouni K, Sheffield VC. Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet 2009; 18:1323-31. [PMID: 19150989 PMCID: PMC2655773 DOI: 10.1093/hmg/ddp031] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Obesity is a major public health problem in most developed countries and a major risk factor for diabetes and cardiovascular disease. Emerging evidence indicates that ciliary dysfunction can contribute to human obesity but the underlying molecular and cellular mechanisms are unknown. Bardet-Biedl syndrome (BBS) is a genetically heterogeneous human obesity syndrome associated with ciliary dysfunction. BBS proteins are thought to play a role in cilia function and intracellular protein/vesicle trafficking. Here, we show that BBS proteins are required for leptin receptor (LepR) signaling in the hypothalamus. We found that Bbs2−/−, Bbs4−/− and Bbs6−/− mice are resistant to the action of leptin to reduce body weight and food intake regardless of serum leptin levels and obesity. In addition, activation of hypothalamic STAT3 by leptin is significantly decreased in Bbs2−/−, Bbs4−/− and Bbs6−/− mice. In contrast, downstream melanocortin receptor signaling is unaffected, indicating that LepR signaling is specifically impaired in Bbs2−/−, Bbs4−/− and Bbs6−/− mice. Impaired LepR signaling in BBS mice was associated with decreased Pomc gene expression. Furthermore, we found that BBS1 protein physically interacts with the LepR and that loss of BBS proteins perturbs LepR trafficking. Our data indicate that BBS proteins mediate LepR trafficking and that impaired LepR signaling underlies energy imbalance in BBS. These findings represent a novel mechanism for leptin resistance and obesity.
Collapse
Affiliation(s)
- Seongjin Seo
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
99
|
Yin Y, Bangs F, Paton IR, Prescott A, James J, Davey MG, Whitley P, Genikhovich G, Technau U, Burt DW, Tickle C. The Talpid3 gene (KIAA0586) encodes a centrosomal protein that is essential for primary cilia formation. Development 2009; 136:655-64. [PMID: 19144723 DOI: 10.1242/dev.028464] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chicken talpid(3) mutant, with polydactyly and defects in other embryonic regions that depend on hedgehog (Hh) signalling (e.g. the neural tube), has a mutation in KIAA0568. Similar phenotypes are seen in mice and in human syndromes with mutations in genes that encode centrosomal or intraflagella transport proteins. Such mutations lead to defects in primary cilia, sites where Hh signalling occurs. Here, we show that cells of talpid(3) mutant embryos lack primary cilia and that primary cilia can be rescued with constructs encoding Talpid3. talpid(3) mutant embryos also develop polycystic kidneys, consistent with widespread failure of ciliogenesis. Ultrastructural studies of talpid(3) mutant neural tube show that basal bodies mature but fail to dock with the apical cell membrane, are misorientated and almost completely lack ciliary axonemes. We also detected marked changes in actin organisation in talpid(3) mutant cells, which may explain misorientation of basal bodies. KIAA0586 was identified in the human centrosomal proteome and, using an antibody against chicken Talpid3, we detected Talpid3 in the centrosome of wild-type chicken cells but not in mutant cells. Cloning and bioinformatic analysis of the Talpid3 homolog from the sea anemone Nematostella vectensis identified a highly conserved region in the Talpid3 protein, including a predicted coiled-coil domain. We show that this region is required to rescue primary cilia formation and neural tube patterning in talpid(3) mutant embryos, and is sufficient for centrosomal localisation. Thus, Talpid3 is one of a growing number of centrosomal proteins that affect both ciliogenesis and Hh signalling.
Collapse
Affiliation(s)
- Yili Yin
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre, The University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Tonomura Y, Hirano M, Shimada K, Asai H, Ikeda M, Kataoka H, Tanaka I, Konishi N, Ueno S. Treatable fluctuating mental impairment in a patient with Bardet–Biedl syndrome. Clin Neurol Neurosurg 2009; 111:102-4. [DOI: 10.1016/j.clineuro.2008.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 05/26/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
|