51
|
Sarrouilhe D, Mesnil M, Dejean C. Targeting Gap Junctions: New Insights into the Treatment of Major Depressive Disorder. Curr Med Chem 2019; 26:3775-3791. [DOI: 10.2174/0929867325666180327103530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 01/05/2023]
Abstract
Background:Major depressive disorder (MDD) is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and associated with excess mortality. Treatments for this disease are not effective in all patients showing the need to find new therapeutic targets.Objective:This review aims to update our knowledge on the involvement of astroglial gap junctions and hemichannels in MDD and to show how they have become potential targets for the treatment of this pathology.Methods:The method applied in this review includes a systematic compilation of the relevant literature.Results and Conclusion:The use of rodent models of depression, gene analysis of hippocampal tissues of MDD patients and post-mortem studies on the brains from MDD patients suggest that astrocytic gap junction dysfunction may be a part of MDD etiologies. Chronic antidepressant treatments of rats, rat cultured cortical astrocytes and human astrocytoma cell lines support the hypothesis that the up-regulation of gap junctional coupling between astrocytes could be an underlying mechanism for the therapeutic effect of antidepressants. However, two recent functional studies suggest that connexin43 hemichannel activity is a part of several antidepressants’ mode of action and that astrocyte gap junctional intercellular communication and hemichannels exert different effects on antidepressant drug response. Even if they emerge as new therapeutic targets for new and more active treatments, further studies are needed to decipher the sophisticated and respective role of astrocytic gap junctions and hemichannels in MDD.
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculte de Medecine et Pharmacie, Universite de Poitiers, 6 rue de la Miletrie, Bat D1, TSA 51115, 86073 Poitiers, Cedex 9, France
| | - Marc Mesnil
- STIM, ERL 7003, CNRS-Universite de Poitiers, Pole Biologie Sante, Bat B36, TSA 51106, 1 rue Georges Bonnet, 86073 Poitiers, Cedex 9, France
| | - Catherine Dejean
- Service Pharmacie, Pavillon Janet, Centre Hospitalier Henri Laborit, 370 avenue Jacques Coeur, 86021 Poitiers Cedex, France
| |
Collapse
|
52
|
Nugent AC, Ballard ED, Gould TD, Park LT, Moaddel R, Brutsche NE, Zarate CA. Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects. Mol Psychiatry 2019; 24:1040-1052. [PMID: 29487402 PMCID: PMC6111001 DOI: 10.1038/s41380-018-0028-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/13/2017] [Accepted: 11/03/2017] [Indexed: 01/19/2023]
Abstract
Ketamine's mechanism of action was assessed using gamma power from magnetoencephalography (MEG) as a proxy measure for homeostatic balance in 35 unmedicated subjects with major depressive disorder (MDD) and 25 healthy controls enrolled in a double-blind, placebo-controlled, randomized cross-over trial of 0.5 mg/kg ketamine. MDD subjects showed significant improvements in depressive symptoms, and healthy control subjects exhibited modest but significant increases in depressive symptoms for up to 1 day after ketamine administration. Both groups showed increased resting gamma power following ketamine. In MDD subjects, gamma power was not associated with the magnitude of the antidepressant effect. However, baseline gamma power was found to moderate the relationship between post-ketamine gamma power and antidepressant response; specifically, higher post-ketamine gamma power was associated with better response in MDD subjects with lower baseline gamma, with an inverted relationship in MDD subjects with higher baseline gamma. This relationship was observed in multiple regions involved in networks hypothesized to be involved in the pathophysiology of MDD. This finding suggests biological subtypes based on the direction of homeostatic dysregulation and has important implications for inferring ketamine's mechanism of action from studies of healthy controls alone.
Collapse
Affiliation(s)
- Allison C Nugent
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Elizabeth D Ballard
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Nancy E Brutsche
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
53
|
Systems Approach to Identify Common Genes and Pathways Associated with Response to Selective Serotonin Reuptake Inhibitors and Major Depression Risk. Int J Mol Sci 2019; 20:ijms20081993. [PMID: 31018568 PMCID: PMC6514561 DOI: 10.3390/ijms20081993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 12/27/2022] Open
Abstract
Despite numerous studies on major depressive disorder (MDD) susceptibility, the precise underlying molecular mechanism has not been elucidated which restricts the development of etiology-based disease-modifying drug. Major depressive disorder treatment is still symptomatic and is the leading cause of (~30%) failure of the current antidepressant therapy. Here we comprehended the probable genes and pathways commonly associated with antidepressant response and MDD. A systematic review was conducted, and candidate genes/pathways associated with antidepressant response and MDD were identified using an integrative genetics approach. Initially, single nucleotide polymorphisms (SNPs)/genes found to be significantly associated with antidepressant response were systematically reviewed and retrieved from the candidate studies and genome-wide association studies (GWAS). Also, significant variations concerning MDD susceptibility were extracted from GWAS only. We found 245 (Set A) and 800 (Set B) significantly associated genes with antidepressant response and MDD, respectively. Further, gene set enrichment analysis revealed the top five co-occurring molecular pathways (p ≤ 0.05) among the two sets of genes: Cushing syndrome, Axon guidance, cAMP signaling pathway, Insulin secretion, and Glutamatergic synapse, wherein all show a very close relation to synaptic plasticity. Integrative analyses of candidate gene and genome-wide association studies would enable us to investigate the putative targets for the development of disease etiology-based antidepressant that might be more promising than current ones.
Collapse
|
54
|
Chaki S, Koike H, Fukumoto K. Targeting of Metabotropic Glutamate Receptors for the Development of Novel Antidepressants. CHRONIC STRESS 2019; 3:2470547019837712. [PMID: 32500107 PMCID: PMC7243201 DOI: 10.1177/2470547019837712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/21/2019] [Indexed: 12/22/2022]
Abstract
Since discovering that ketamine has robust antidepressant effects, the
glutamatergic system has been proposed as an attractive target for the
development of novel antidepressants. Among the glutamatergic system,
metabotropic glutamate (mGlu) receptors are of interest because mGlu receptors
play modulatory roles in glutamatergic transmission, consequently, agents acting
on mGlu receptors might not exert the adverse effects associated with ketamine.
mGlu receptors have eight subtypes that are classified into three groups, and
the roles of each mGlu receptor subtype in depression are being investigated. To
date, the potential use of mGlu5 receptor antagonists and mGlu2/3 receptor
antagonists as antidepressants has been actively investigated, and the
mechanisms underlying these antidepressant effects are being delineated.
Although the outcomes of clinical trials using an mGlu5 receptor negative
allosteric modulator and an mGlu2/3 receptor negative allosteric modulator have
not been encouraging, these trials have been inconclusive, and additional trials
using other compounds with more appropriate profiles are needed. In contrast,
the roles of group III mGlu receptors have not yet been fully elucidated because
of a lack of suitable pharmacological tools. Nonetheless, investigations of the
use of mGlu4 and mGlu7 receptors as drug targets for the development of
antidepressants have been ongoing, and some interesting evidence has been
obtained.
Collapse
|
55
|
MacDonald K, Krishnan A, Cervenka E, Hu G, Guadagno E, Trakadis Y. Biomarkers for major depressive and bipolar disorders using metabolomics: A systematic review. Am J Med Genet B Neuropsychiatr Genet 2019; 180:122-137. [PMID: 30411484 DOI: 10.1002/ajmg.b.32680] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/10/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) lack robust biomarkers useful for screening purposes in a clinical setting. A systematic review of the literature was conducted on metabolomic studies of patients with MDD or BD through the use of analytical platforms such as in vivo brain imaging, mass spectrometry, and nuclear magnetic resonance. Our search identified a total of 7,590 articles, of which 266 articles remained for full-text revision. Overall, 249 metabolites were found to be dysregulated with 122 of these metabolites being reported in two or more of the studies included. A list of biomarkers for MDD and BD established from metabolites found to be abnormal, along with the number of studies supporting each metabolite and a comparison of which biological fluids they were reported in, is provided. Metabolic pathways that may be important in the pathophysiology of MDD and BD were identified and predominantly center on glutamatergic metabolism, energy metabolism, and neurotransmission. Using online drug registries, we also illustrate how metabolomics can facilitate the discovery of novel candidate drug targets.
Collapse
Affiliation(s)
- Kellie MacDonald
- Department of Human Genetics, McGill University, Montreal, Quebec
| | - Ankur Krishnan
- Department of Human Genetics, McGill University, Montreal, Quebec
| | - Emily Cervenka
- Department of Human Genetics, McGill University, Montreal, Quebec
| | - Grace Hu
- Department of Human Genetics, McGill University, Montreal, Quebec
| | - Elena Guadagno
- McConnell Resource Centre, McGill University Health Centre, Montreal, Quebec
| | - Yannis Trakadis
- Department of Human Genetics, McGill University, Montreal, Quebec.,Department of Medical Genetics, McGill University Health Centre, Montreal, Quebec
| |
Collapse
|
56
|
Mahan VL. Neurointegrity and neurophysiology: astrocyte, glutamate, and carbon monoxide interactions. Med Gas Res 2019; 9:24-45. [PMID: 30950417 PMCID: PMC6463446 DOI: 10.4103/2045-9912.254639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Astrocyte contributions to brain function and prevention of neuropathologies are as extensive as that of neurons. Astroglial regulation of glutamate, a primary neurotransmitter, is through uptake, release through vesicular and non-vesicular pathways, and catabolism to intermediates. Homeostasis by astrocytes is considered to be of primary importance in determining normal central nervous system health and central nervous system physiology - glutamate is central to dynamic physiologic changes and central nervous system stability. Gasotransmitters may affect diverse glutamate interactions positively or negatively. The effect of carbon monoxide, an intrinsic central nervous system gasotransmitter, in the complex astrocyte homeostasis of glutamate may offer insights to normal brain development, protection, and its use as a neuromodulator and neurotherapeutic. In this article, we will review the effects of carbon monoxide on astrocyte homeostasis of glutamate.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Division of Pediatric Cardiothoracic Surgery in the Department of Surgery, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
57
|
Losenkov IS, Boiko AS, Levchuk LA, Simutkin GG, Bokhan NA, Ivanova SA. Blood-Serum Glutamate in Patients with Depressive Disorders as a Potential Peripheral Marker of the Prognosis of the Effectiveness of Therapy. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418030066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
58
|
Zaika TO, Evdokimov DV, Abramets II. Studies of the effect of cerebroprotective substances on the course of stress-induced behavioral depression. RESEARCH RESULTS IN PHARMACOLOGY 2018. [DOI: 10.3897/rrpharmacology.4.29946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction. Atrophic disturbances of neurons of the limbic structures of the brain, which lead to insufficient regulation of emotions and mood, cause depression. Substances with cerebroprotective activity have the ability to inhibit further development and even reverse atrophic damage to neurons.
Materials and methods. Using electrophysiological techniques, the cerebroprotective activity of piracetam, diacamf – (±)-cis-3-(2-benzimidazolyl)-1,2,2-trimethylcyclopentanone-carboxylic acid hydrochloride and the compound R-86, or 3,2’-spiro-pyrrolo-2-oxindole, was investigated in rat hippocampal slices. In behavioral experiments, there was studied the influence of the above substances, which had been administered for 20 days, on the most important manifestations of behavioral depression in rats caused by a five-day swim stress, such as the time of immobilization in the forced swim test and the indicator of preference for consuming sucrose solution. In addition, the influence of piracetam and diacamf was studied on the effects of the classic antidepressant imipramine.
Results and discussion. It was found that piracetam, diacamf and the compound R-86 in in vitro studies reduced the damage to the pyramidal hippocampal neurons caused by anoxia and aglycemia, the excitotoxic activity of N-methyl-D-aspartate and oxidative stress when hydrogen peroxide was applied to the slices. Cerebroprotective activity of the test substances, when they are systemically administered for 20 days, is linked with their antidepressant-like effect, which was manifested in a decrease in the immobilization time in the swim test and an increase in the sucrose solution consumption indicator. Co-administration of piracetam in rats potentiated antidepressant activity of imipramine, and diacamf showed additive synergism with the antidepressant.
Conclusion. Substances with cerebroprotective activity in their chronic administration may show an antidepressant-like effect. Those that potentiate the action of classical anidepressants can be used in conjunction with antidepressants during episodes of exacerbation of the disease. Less active cerebroprotective drugs can be recommended during remission for its prolongation.
Collapse
|
59
|
Oh JY, Kim YK, Kim SN, Lee B, Jang JH, Kwon S, Park HJ. Acupuncture modulates stress response by the mTOR signaling pathway in a rat post-traumatic stress disorder model. Sci Rep 2018; 8:11864. [PMID: 30089868 PMCID: PMC6082850 DOI: 10.1038/s41598-018-30337-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/25/2018] [Indexed: 01/02/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disease that can form following exposure to a traumatic event. Acupuncture has been proposed as a beneficial treatment for PTSD, but the underlying mechanisms remain unclear. The present study investigated whether acupuncture improves depression- and anxiety-like behaviors induced using a single prolonged stress (SPS) as a PTSD rat model. In addition, we investigated whether the effects were mediated by increased mTOR activity and its downstream signaling components, which contribute to protein synthesis required for synaptic plasticity in the hippocampus. We found that acupuncture at HT8 significantly alleviated both depression- and anxiety-like behaviors induced by SPS in rats, as assessed by the forced swimming, elevated plus maze, and open field tests; this alleviation was blocked by rapamycin. The effects of acupuncture were equivalent to those exerted by fluoxetine. Acupuncture regulated protein translation in the mTOR signaling pathway and enhanced the activation of synaptic proteins, PSD95, Syn1, and GluR1 in the hippocampus. These results suggest that acupuncture exerts antidepressant and anxiolytic effects on PTSD-related symptoms by increasing protein synthesis required for synaptic plasticity via the mTOR pathway in the hippocampus. Acupuncture may be a promising treatment for patients with PTSD and play a role as an alternative PTSD treatment.
Collapse
Affiliation(s)
- Ju-Young Oh
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Yu-Kang Kim
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jae-Hwan Jang
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Sunoh Kwon
- Korean Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea. .,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea. .,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
60
|
Esterlis I, Holmes SE, Sharma P, Krystal JH, DeLorenzo C. Metabotropic Glutamatergic Receptor 5 and Stress Disorders: Knowledge Gained From Receptor Imaging Studies. Biol Psychiatry 2018; 84:95-105. [PMID: 29100629 PMCID: PMC5858955 DOI: 10.1016/j.biopsych.2017.08.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022]
Abstract
The metabotropic glutamatergic receptor subtype 5 (mGluR5) may represent a promising therapeutic target for stress-related psychiatric disorders. Here, we describe mGluR5 findings in stress disorders, particularly major depressive disorder (MDD), highlighting insights from positron emission tomography studies. Positron emission tomography studies report either no differences or lower mGluR5 in MDD, potentially reflecting MDD heterogeneity. Unlike the rapidly acting glutamatergic agent ketamine, mGluR5-specific modulation has not yet shown antidepressant efficacy in MDD and bipolar disorder. Although we recently showed that ketamine may work, in part, through significant mGluR5 modulation, the specific role of mGluR5 downregulation in ketamine's antidepressant response is unclear. In contrast to MDD, there has been much less investigation of mGluR5 in bipolar disorder, yet initial studies indicate that mGluR5-specific treatments may aid in both depressed and manic mood states. The direction of modulation needed may be state dependent, however, limiting clinical feasibility. There has been relatively little study of posttraumatic stress disorder or obsessive-compulsive disorder to date, although there is evidence for the upregulation of mGluR5 in these disorders. However, while antagonism of mGluR5 may reduce fear conditioning, it may also reduce fear extinction. Therefore, studies are needed to determine the role mGluR5 modulation might play in the treatment of these conditions. Further challenges in modulating this prevalent neurotransmitter system include potential induction of significant side effects. As such, more research is needed to identify level and type (positive/negative allosteric modulation or full antagonism) of mGluR5 modulation required to translate existing knowledge into improved therapies.
Collapse
Affiliation(s)
- Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, Connecticut; US Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veteran's Affairs Connecticut Healthcare System, West Haven, Connecticut.
| | | | - Priya Sharma
- Department of Psychiatry, Schulich School of Medicine and Dentistry; Western University- London, Ontario, Canada; London Health Sciences Centre- Victoria Hospital
| | - John H. Krystal
- Yale University, Department of Psychiatry,Yale University, Department of Neuroscience,U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System
| | - Christine DeLorenzo
- Stony Brook University, Department of Psychiatry,Stony Brook University, Department of Biomedical Engineering
| |
Collapse
|
61
|
Reed JL, Nugent AC, Furey ML, Szczepanik JE, Evans JW, Zarate CA. Ketamine normalizes brain activity during emotionally valenced attentional processing in depression. NEUROIMAGE-CLINICAL 2018; 20:92-101. [PMID: 30094160 PMCID: PMC6070691 DOI: 10.1016/j.nicl.2018.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/15/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023]
Abstract
Background An urgent need exists for faster-acting pharmacological treatments in major depressive disorder (MDD). The glutamatergic modulator ketamine has been shown to have rapid antidepressant effects, but much remains unknown about its mechanism of action. Functional MRI (fMRI) can be used to investigate how ketamine impacts brain activity during cognitive and emotional processing. Methods This double-blind, placebo-controlled, crossover study of 33 unmedicated participants with MDD and 26 healthy controls (HCs) examined how ketamine affected fMRI activation during an attentional bias dot probe task with emotional face stimuli across multiple time points. A whole brain analysis was conducted to find regions with differential activation associated with group, drug session, or dot probe task-specific factors (emotional valence and congruency of stimuli). Results A drug session by group interaction was observed in several brain regions, such that ketamine had opposite effects on brain activation in MDD versus HC participants. Additionally, there was a similar finding related to emotional valence (a drug session by group by emotion interaction) in a large cluster in the anterior cingulate and medial frontal cortex. Conclusions The findings show a pattern of brain activity in MDD participants following ketamine infusion that is similar to activity observed in HCs after placebo. This suggests that ketamine may act as an antidepressant by normalizing brain function during emotionally valenced attentional processing. Clinical trial NCT#00088699: https://www.clinicaltrials.gov/ct2/show/NCT00088699 The effects of ketamine versus placebo on brain activation were studied using fMRI. MDD and healthy participants were tested on an fMRI emotion-based attentional task. Ketamine had opposite effects on brain activity in MDD versus healthy participants. In MDD, brain activity post-ketamine was similar to healthy controls post-placebo. These findings suggest that ketamine may act by normalizing brain function.
Collapse
Affiliation(s)
- Jessica L Reed
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| | - Allison C Nugent
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| | - Maura L Furey
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; Janssen Pharmaceuticals of Johnson and Johnson Inc., San Diego, CA, United States.
| | - Joanna E Szczepanik
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| | - Jennifer W Evans
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| | - Carlos A Zarate
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
62
|
Kirkland AE, Sarlo GL, Holton KF. The Role of Magnesium in Neurological Disorders. Nutrients 2018; 10:E730. [PMID: 29882776 PMCID: PMC6024559 DOI: 10.3390/nu10060730] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Magnesium is well known for its diverse actions within the human body. From a neurological standpoint, magnesium plays an essential role in nerve transmission and neuromuscular conduction. It also functions in a protective role against excessive excitation that can lead to neuronal cell death (excitotoxicity), and has been implicated in multiple neurological disorders. Due to these important functions within the nervous system, magnesium is a mineral of intense interest for the potential prevention and treatment of neurological disorders. Current literature is reviewed for migraine, chronic pain, epilepsy, Alzheimer’s, Parkinson’s, and stroke, as well as the commonly comorbid conditions of anxiety and depression. Previous reviews and meta-analyses are used to set the scene for magnesium research across neurological conditions, while current research is reviewed in greater detail to update the literature and demonstrate the progress (or lack thereof) in the field. There is strong data to suggest a role for magnesium in migraine and depression, and emerging data to suggest a protective effect of magnesium for chronic pain, anxiety, and stroke. More research is needed on magnesium as an adjunct treatment in epilepsy, and to further clarify its role in Alzheimer’s and Parkinson’s. Overall, the mechanistic attributes of magnesium in neurological diseases connote the macromineral as a potential target for neurological disease prevention and treatment.
Collapse
Affiliation(s)
- Anna E Kirkland
- Department of Psychology, Behavior, Cognition and Neuroscience Program, American University, Washington, DC 20016, USA.
| | - Gabrielle L Sarlo
- Department of Psychology, Behavior, Cognition and Neuroscience Program, American University, Washington, DC 20016, USA.
| | - Kathleen F Holton
- Department of Health Studies, American University, Washington, DC 20016, USA.
- Center for Behavioral Neuroscience, American University, Washington, DC 20016, USA.
| |
Collapse
|
63
|
Abstract
OBJECTIVE The objective of this review is to investigate existing literature in order to delineate whether the use of anaesthesia and timing of seizure induction in a new and optimised way may improve the efficacy of electroconvulsive therapy (ECT). METHODS PubMed/MEDLINE was searched for existing literature, last search on 24 June 2015. Relevant clinical studies on human subjects involving choice of anaesthetic, ventilation and bispectral index (BIS) monitoring in the ECT setting were considered. The references of relevant studies were likewise considered. RESULTS Propofol yields the shortest seizures, etomidate and ketamine the longest. Etomidate and ketamine+propofol 1 : 1 seems to yield the seizures with best quality. Seizure quality is improved when induction of ECT is delayed until the effect of the anaesthetic has waned - possibly monitored with BIS values. Manual hyperventilation with 100% O2 may increase the pO2/pCO2-ratio, which may be correlated with better seizure quality. CONCLUSION Etomidate or a 1 : 1 ketamine and propofol combination may be the best method to achieve general anaesthesia in the ECT setting. There is a need for large randomised prospective studies comparing the effect of methohexital, thiopental, propofol, ketamine, propofol+ketamine 1 : 1 and etomidate in the ECT treatment of major depressed patients. These studies should investigate safety and side effects, and most importantly have antidepressant efficacy and cognitive side effects as outcome measures instead of seizure quality.
Collapse
|
64
|
Investigating the metabolic alterations in a depressive-like rat model of chronic forced swim stress: An in vivo proton magnetic resonance spectroscopy study at 7T. Neurochem Int 2018. [PMID: 29530754 DOI: 10.1016/j.neuint.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although recent investigations of major depressive disorder (MDD) have focused on the monoaminergic system, accumulating evidences suggest that alternative pathophysiological models of MDD and treatment options for patients with MDD are needed. Animals subjected to chronic forced swim stress (CFSS) develop behavioral despair. The purpose of this study was to investigate the in vivo effects of CFSS on systems other than the monoamine system in the rat prefrontal cortex (PFC) with 7T and short-echo-time (16.3 ms) proton magnetic resonance spectroscopy (1H MRS). Ten male Wistar rats underwent 14 days of CFSS, and in vivo1H MRS and forced swim tests were performed before and after CFSS. Point-resolved spectroscopy was used to quantify metabolite levels in the rat PFC. To investigate spectral overlap in glutamate and glutamine, spectral analyses in the spectra obtained in the in vivo1H MRS, parametrically matched spectral simulation, and in vitro experiments were performed. The results of the spectral analyses showed that the glutamate/glutamine spectral overlap was not critical, which suggested that in vivo1H MRS can be used to reliably assess the glutamate system. The rats showed significantly increased immobility times and decreased climbing times in the FST after CFSS, which suggested that the rats developed behavioral despair. The pre-CFSS and post-CFSS glutamate and glutamine levels did not significantly differ (p > 0.050). The levels of myo-inositol, total choline, and N-acetylaspartate, myo-inositol/creatine, and total choline/creatine increased significantly (p < 0.050). Similar findings have been reported in patients with MDD. Taken together, these results suggest that the CFSS-induced metabolic alterations were similar to those found in patients and that high-field and short-echo-time in vivo1H MRS can be used to investigate depression-induced metabolic alterations. Such investigations might provide alternative insights into the nonmonoaminergic pathophysiology and treatment of depression.
Collapse
|
65
|
Opposing Roles of Estradiol and Testosterone on Stress-Induced Visceral Hypersensitivity in Rats. THE JOURNAL OF PAIN 2018; 19:764-776. [PMID: 29496640 DOI: 10.1016/j.jpain.2018.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/30/2018] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
Abstract
Chronic stress produces maladaptive pain responses, manifested as alterations in pain processing and exacerbation of chronic pain conditions including irritable bowel syndrome. Female predominance, especially during reproductive years, strongly suggests a role of gonadal hormones. However, gonadal hormone modulation of stress-induced pain hypersensitivity is not well understood. In the present study, we tested the hypothesis that estradiol is pronociceptive and testosterone is antinociceptive in a model of stress-induced visceral hypersensitivity (SIVH) in rats by recording the visceromotor response to colorectal distention after a 3-day forced swim (FS) stress paradigm. FS induced visceral hypersensitivity that persisted at least 2 weeks in female, but only 2 days in male rats. Ovariectomy blocked and orchiectomy facilitated SIVH. Furthermore, estradiol injection in intact male rats increased SIVH and testosterone in intact female rats attenuated SIVH. Western blot analyses indicated estradiol increased excitatory glutamate ionotropic receptor NMDA type subunit 1 expression and decreased inhibitory metabotropic glutamate receptor 2 expression after FS in male thoracolumbar spinal cord. In addition, the presence of estradiol during stress increased spinal brain-derived neurotrophic factor (BDNF) expression independent of sex. In contrast, testosterone blocked the stress-induced increase in BDNF expression in female rats. These data suggest that estradiol facilitates and testosterone attenuates SIVH by modulating spinal excitatory and inhibitory glutamatergic receptor expression. PERSPECTIVE SIVH is more robust in female rats. Estradiol facilitates whereas testosterone dampens the development of SIVH. This could partially explain the greater prevalence of certain chronic visceral pain conditions in women. An increase in spinal BDNF is concomitant with increased stress-induced pain. Pharmaceutical interventions targeting this molecule could provide promising alleviation of SIVH in women.
Collapse
|
66
|
Gerhard DM, Duman RS. Rapid-Acting Antidepressants: Mechanistic Insights and Future Directions. Curr Behav Neurosci Rep 2018; 5:36-47. [PMID: 30034992 PMCID: PMC6051539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE OF REVIEW Ketamine produces rapid (within hours) antidepressant actions, even in patients considered treatment resistant, and even shows promise for suicidal ideation. Here, we review current research on the molecular and cellular mechanisms of ketamine and other novel rapid-acting antidepressants, and briefly explore gender differences in the pathophysiology and treatment of MDD. RECENT FINDINGS Ketamine, an NMDA receptor antagonist, increases BDNF release and synaptic connectivity, opposing the deficits caused by chronic stress and depression. Efforts are focused on the development of novel rapid agents that produce similar synaptic and rapid antidepressant actions, but without the side effects of ketamine. The impact of gender on the response to ketamine and other rapid-acting antidepressants is in early stages of investigation. SUMMARY The discovery that ketamine produces rapid therapeutic actions for depression and suicidal ideation represents a major breakthrough and much needed alternative to currently available medications. However, novel fast acting agents with fewer side effects are needed, as well as elucidation of the efficacy of these rapid-acting antidepressants for depression in women.
Collapse
Affiliation(s)
- Danielle M Gerhard
- Department of Psychiatry, Laboratory of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA
| | - Ronald S Duman
- Department of Psychiatry, Laboratory of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA
| |
Collapse
|
67
|
|
68
|
Madeira C, Vargas-Lopes C, Brandão CO, Reis T, Laks J, Panizzutti R, Ferreira ST. Elevated Glutamate and Glutamine Levels in the Cerebrospinal Fluid of Patients With Probable Alzheimer's Disease and Depression. Front Psychiatry 2018; 9:561. [PMID: 30459657 PMCID: PMC6232456 DOI: 10.3389/fpsyt.2018.00561] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/17/2018] [Indexed: 12/05/2022] Open
Abstract
Recent evidence suggests that Alzheimer's disease (AD) and depression share common mechanisms of pathogenesis. In particular, deregulation of glutamate-mediated excitatory signaling may play a role in brain dysfunction in both AD and depression. We have investigated levels of glutamate and its precursor glutamine in the cerebrospinal fluid (CSF) of patients with a diagnosis of probable AD or major depression compared to healthy controls and patients with hydrocephalus. Patients with probable AD or major depression showed significantly increased CSF levels of glutamate and glutamine compared to healthy controls or hydrocephalus patients. Furthermore, CSF glutamate and glutamine levels were inversely correlated to the amyloid tau index, a biomarker for AD. Results suggest that glutamate and glutamine should be further explored as potential CSF biomarkers for AD and depression.
Collapse
Affiliation(s)
- Caroline Madeira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Charles Vargas-Lopes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Otávio Brandão
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taylor Reis
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson Laks
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rogerio Panizzutti
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
69
|
Engaging homeostatic plasticity to treat depression. Mol Psychiatry 2018; 23:26-35. [PMID: 29133952 DOI: 10.1038/mp.2017.225] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/11/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
Abstract
Major depressive disorder (MDD) is a complex and heterogeneous mood disorder, making it difficult to develop a generalized, pharmacological therapy that is effective for all who suffer from MDD. Through the fortuitous discovery of N-methyl-D-aspartate receptor (NMDAR) antagonists as effective antidepressants, we have gained key insights into how antidepressant effects can be produced at the circuit and molecular levels. NMDAR antagonists act as rapid-acting antidepressants such that relief from depressive symptoms occurs within hours of a single injection. The mode of action of NMDAR antagonists seemingly relies on their ability to activate protein-synthesis-dependent homeostatic mechanisms that restore top-down excitatory connections. Recent evidence suggests that NMDAR antagonists relieve depressive symptoms by forming new synapses resulting in increased excitatory drive. This event requires the mammalian target of rapamycin complex 1 (mTORC1), a signaling pathway that regulates synaptic protein synthesis. Herein, we review critical studies that shed light on the action of NMDAR antagonists as rapid-acting antidepressants and how they engage a neuron's or neural network's homeostatic mechanisms to self-correct. Recent studies notably demonstrate that a shift in γ-amino-butyric acid receptor B (GABABR) function, from inhibitory to excitatory, is required for mTORC1-dependent translation with NMDAR antagonists. Finally, we discuss how GABABR activation of mTORC1 helps resolve key discrepancies between rapid-acting antidepressants and local homeostatic mechanisms.
Collapse
|
70
|
Lu Y, Zhang J, Zhang L, Dang S, Su Q, Zhang H, Lin T, Zhang X, Zhang Y, Sun H, Zhu Z, Li H. Hippocampal Acetylation may Improve Prenatal-Stress-Induced Depression-Like Behavior of Male Offspring Rats Through Regulating AMPARs Expression. Neurochem Res 2017; 42:3456-3464. [PMID: 29019029 DOI: 10.1007/s11064-017-2393-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/03/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022]
Abstract
This study is to determine the role and mechanism of hippocampal acetylation in prenatal stress (PS) induced depression-like behavior of male offspring rats. PS-induced depression rat model was established. Sucrose preference and forced swim test were used to observe the behavior changes of male offspring rats. Hippocampal acetylation was induced by Trichostatin A injection. Quantitative real-time PCR and Western blot were used to determine the changes of AMPARs in acetylated hippocampus. The behavioral tests proved that AMPA was involved in the PS-induced depression-like behavior in offspring rats. Hippocampal acetylation significantly increased the preference to sucrose of PS-induced offspring rats and reduced the immobile time in forced swimming test, suggesting that acetylation could improve PS-induced depression-like behaviors. In addition, PS inhibited the expression levels of GluA1-3 subunits of AMPARs in the offspring hippocampus, while Hippocampal acetylation could reverse this effect by increasing GluA1-3 expression. PS-induced reduction of GluA1-3 subunits of AMPARs may be an important potential mechanism of offspring depression. Hippocampal acetylation may improve PS-induced offspring depression-like behavior through the enhanced expression of AMPARs (GluA1-3 subunits).
Collapse
Affiliation(s)
- Yong Lu
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China.,Center Laboratory, Heze Medical College, Heze, 274000, Shandong, China
| | - Junli Zhang
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Lin Zhang
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Shaokang Dang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China
| | - Qian Su
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China
| | - Huiping Zhang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China
| | - Tianwei Lin
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Xiaoxiao Zhang
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Yurong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical College, Xi'an, 710077, Shanxi, China
| | - Hongli Sun
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China
| | - Zhongliang Zhu
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
71
|
Nguyen L, Scandinaro AL, Matsumoto RR. Deuterated (d6)-dextromethorphan elicits antidepressant-like effects in mice. Pharmacol Biochem Behav 2017; 161:30-37. [DOI: 10.1016/j.pbb.2017.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022]
|
72
|
Prefrontal Connectivity and Glutamate Transmission: Relevance to Depression Pathophysiology and Ketamine Treatment. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:566-574. [PMID: 29034354 DOI: 10.1016/j.bpsc.2017.04.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Prefrontal global brain connectivity with global signal regression (GBCr) was proposed as a robust biomarker of depression, and was associated with ketamine's mechanism of action. Here, we investigated prefrontal GBCr in treatment-resistant depression (TRD) at baseline and following treatment. Then, we conducted a set of pharmacological challenges in healthy subjects to investigate the glutamate neurotransmission correlates of GBCr. METHODS In study A, we used functional magnetic resonance imaging (fMRI) to compare GBCr between 22 TRD and 29 healthy control. Then, we examined the effects of ketamine and midazolam on GBCr in TRD patients 24h post-treatment. In study B, we acquired repeated fMRI in 18 healthy subjects to determine the effects of lamotrigine (a glutamate release inhibitor), ketamine, and lamotrigine-by-ketamine interaction. RESULTS In study A, TRD patients showed significant reduction in dorsomedial and dorsolateral prefrontal GBCr compared to healthy control. In TRD patients, GBCr in the altered clusters significantly increased 24h following ketamine (effect size = 1.0 [0.3 1.8]), but not midazolam (effect size = 0.5 [-0.6 1.3]). In study B, oral lamotrigine reduced GBCr 2h post-administration, while ketamine increased medial prefrontal GBCr during infusion. Lamotrigine significantly reduced the ketamine-induced GBCr surge. Exploratory analyses showed elevated ventral prefrontal GBCr in TRD and significant reduction of ventral prefrontal GBCr during ketamine infusion in healthy subjects. CONCLUSIONS This study provides first replication of the ability of ketamine to normalize depression-related prefrontal dysconnectivity. It also provides indirect evidence that these effects may be triggered by the capacity of ketamine to enhance glutamate neurotransmission.
Collapse
|
73
|
Baeken C, Lefaucheur JP, Van Schuerbeek P. The impact of accelerated high frequency rTMS on brain neurochemicals in treatment-resistant depression: Insights from 1 H MR spectroscopy. Clin Neurophysiol 2017; 128:1664-1672. [DOI: 10.1016/j.clinph.2017.06.243] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/21/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022]
|
74
|
Mendez-David I, Guilloux JP, Papp M, Tritschler L, Mocaer E, Gardier AM, Bretin S, David DJ. S 47445 Produces Antidepressant- and Anxiolytic-Like Effects through Neurogenesis Dependent and Independent Mechanisms. Front Pharmacol 2017; 8:462. [PMID: 28769796 PMCID: PMC5515821 DOI: 10.3389/fphar.2017.00462] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
Glutamatergic dysfunctions are observed in the pathophysiology of depression. The glutamatergic synapse as well as the AMPA receptor’s (AMPAR) activation may represent new potential targets for therapeutic intervention in the context of major depressive disorders. S 47445 is a novel AMPARs positive allosteric modulator (AMPA-PAM) possessing procognitive, neurotrophic properties and enhancing synaptic plasticity. Here, we investigated the antidepressant/anxiolytic-like effects of S 47445 in a mouse model of anxiety/depression based on chronic corticosterone administration (CORT) and in the Chronic Mild Stress (CMS) model in rats. Four doses of S 47445 (0.3 to 10 mg/kg, oral route, 4 and 5 weeks, respectively) were assessed in both models. In mouse, behavioral effects were tested in various anxiety-and depression-related behaviors : the elevated plus maze (EPM), open field (OF), splash test (ST), forced swim test (FST), tail suspension test (TST), fur coat state and novelty suppressed feeding (NSF) as well as on hippocampal neurogenesis and dendritic arborization in comparison to chronic fluoxetine treatment (18 mg/kg, p.o.). In rats, behavioral effects of S 47445 were monitored using sucrose consumption and compared to those of imipramine or venlafaxine (10 mg/kg, i.p.) during the whole treatment period and after withdrawal of treatments. In a mouse model of genetic ablation of hippocampal neurogenesis (GFAP-Tk model), neurogenesis dependent/independent effects of chronic S 47445 treatment were tested, as well as BDNF hippocampal expression. S 47445 reversed CORT-induced depressive-like state by increasing grooming duration and reversing coat state’s deterioration. S 47445 also decreased the immobility duration in TST and FST. The highest doses (3 and 10 mg/kg) seem the most effective for antidepressant-like activity in CORT mice. Furthermore, S 47445 significantly reversed the anxiety phenotype observed in OF (at 1 mg/kg) and EPM (from 1 mg/kg). In the CMS rat model, S 47445 (from 1 mg/kg) demonstrated a rapid onset of effect on anhedonia compared to venlafaxine and imipramine. In the CORT model, S 47445 demonstrated significant neurogenic effects on proliferation, survival and maturation of hippocampal newborn neurons at doses inducing an antidepressant-like effect. It also corrected CORT-induced deficits of growth and arborization of dendrites. Finally, the antidepressant/anxiolytic-like activities of S 47445 required adult hippocampal neurogenesis in the novelty suppressed feeding test contrary to OF, EPM and ST. The observed increase in hippocampal BDNF levels could be one of the mechanisms of S 47445 responsible for the adult hippocampal neurogenesis increase. Altogether, S 47445 displays robust antidepressant-anxiolytic-like properties after chronic administration through neurogenesis dependent/independent mechanisms and neuroplastic activities. The AMPA-PAM S 47445 could have promising therapeutic potential for the treatment of major depressive disorders or generalized anxiety disorders.
Collapse
Affiliation(s)
- Indira Mendez-David
- CESP/UMRS-1178, Faculté de Pharmacie, Institut National de la Santé et de la Recherche Médicale, Université Paris-Sud - Université Paris-SaclayChatenay-Malabry, France
| | - Jean-Philippe Guilloux
- CESP/UMRS-1178, Faculté de Pharmacie, Institut National de la Santé et de la Recherche Médicale, Université Paris-Sud - Université Paris-SaclayChatenay-Malabry, France
| | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of SciencesKrakow, Poland
| | - Laurent Tritschler
- CESP/UMRS-1178, Faculté de Pharmacie, Institut National de la Santé et de la Recherche Médicale, Université Paris-Sud - Université Paris-SaclayChatenay-Malabry, France
| | | | - Alain M Gardier
- CESP/UMRS-1178, Faculté de Pharmacie, Institut National de la Santé et de la Recherche Médicale, Université Paris-Sud - Université Paris-SaclayChatenay-Malabry, France
| | - Sylvie Bretin
- Institut de Recherches Internationales ServierSuresnes, France
| | - Denis J David
- CESP/UMRS-1178, Faculté de Pharmacie, Institut National de la Santé et de la Recherche Médicale, Université Paris-Sud - Université Paris-SaclayChatenay-Malabry, France
| |
Collapse
|
75
|
Rakesh G, Pae CU, Masand PS. Beyond serotonin: newer antidepressants in the future. Expert Rev Neurother 2017; 17:777-790. [DOI: 10.1080/14737175.2017.1341310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gopalkumar Rakesh
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Chi-Un Pae
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Prakash S. Masand
- Academic Medicine Education Institute, Duke-NUS Medical School, Singapore, Singapore
- Global Medical Education, New York, NY, USA
| |
Collapse
|
76
|
Lener MS, Niciu MJ, Ballard ED, Park M, Park LT, Nugent AC, Zarate CA. Glutamate and Gamma-Aminobutyric Acid Systems in the Pathophysiology of Major Depression and Antidepressant Response to Ketamine. Biol Psychiatry 2017; 81:886-897. [PMID: 27449797 PMCID: PMC5107161 DOI: 10.1016/j.biopsych.2016.05.005] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/12/2022]
Abstract
In patients with major depressive disorder or bipolar disorder, abnormalities in excitatory and/or inhibitory neurotransmission and neuronal plasticity may lead to aberrant functional connectivity patterns within large brain networks. Network dysfunction in association with altered brain levels of glutamate and gamma-aminobutyric acid have been identified in both animal and human studies of depression. In addition, evidence of an antidepressant response to subanesthetic-dose ketamine has led to a collection of studies that have examined neurochemical (e.g., glutamatergic and gamma-aminobutyric acidergic) and functional imaging correlates associated with such an effect. Results from these studies suggest that an antidepressant response in association with ketamine occurs, in part, by reversing these neurochemical/physiological disturbances. Future studies in depression will require a combination of neuroimaging approaches from which more biologically homogeneous subgroups can be identified, particularly with respect to treatment response biomarkers of glutamatergic modulation.
Collapse
Affiliation(s)
- Marc S Lener
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.
| | - Mark J Niciu
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth D Ballard
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Minkyung Park
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Allison C Nugent
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
77
|
Brodie MJ, Besag F, Ettinger AB, Mula M, Gobbi G, Comai S, Aldenkamp AP, Steinhoff BJ. Epilepsy, Antiepileptic Drugs, and Aggression: An Evidence-Based Review. Pharmacol Rev 2017; 68:563-602. [PMID: 27255267 PMCID: PMC4931873 DOI: 10.1124/pr.115.012021] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antiepileptic drugs (AEDs) have many benefits but also many side effects, including aggression, agitation, and irritability, in some patients with epilepsy. This article offers a comprehensive summary of current understanding of aggressive behaviors in patients with epilepsy, including an evidence-based review of aggression during AED treatment. Aggression is seen in a minority of people with epilepsy. It is rarely seizure related but is interictal, sometimes occurring as part of complex psychiatric and behavioral comorbidities, and it is sometimes associated with AED treatment. We review the common neurotransmitter systems and brain regions implicated in both epilepsy and aggression, including the GABA, glutamate, serotonin, dopamine, and noradrenaline systems and the hippocampus, amygdala, prefrontal cortex, anterior cingulate cortex, and temporal lobes. Few controlled clinical studies have used behavioral measures to specifically examine aggression with AEDs, and most evidence comes from adverse event reporting from clinical and observational studies. A systematic approach was used to identify relevant publications, and we present a comprehensive, evidence-based summary of available data surrounding aggression-related behaviors with each of the currently available AEDs in both adults and in children/adolescents with epilepsy. A psychiatric history and history of a propensity toward aggression/anger should routinely be sought from patients, family members, and carers; its presence does not preclude the use of any specific AEDs, but those most likely to be implicated in these behaviors should be used with caution in such cases.
Collapse
Affiliation(s)
- Martin J Brodie
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Frank Besag
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Alan B Ettinger
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Marco Mula
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Gabriella Gobbi
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Stefano Comai
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Albert P Aldenkamp
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| | - Bernhard J Steinhoff
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, Scotland (M.J.B.); East London National Health Service Foundation Trust, Bedford, United Kingdom (F.B.); University College London School of Pharmacy, London, United Kingdom (F.B.); Winthrop University Hospital, Mineola, New York (A.B.E.); Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals National Health Service Foundation Trust, London, United Kingdom (M.M.); Institute of Medical and Biomedical Sciences, St. George's, University of London, London, United Kingdom (M.M.); Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (G.G., S.C.); McGill University Health Center, McGill University, Montreal, Quebec, Canada (G.G., S.C.); Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.); Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands (A.P.A.); Maastricht University Medical Centre, Maastricht, The Netherlands (A.P.A.); and Kork Epilepsy Centre, Kehl-Kork, Germany (B.J.S.)
| |
Collapse
|
78
|
New Treatment Strategies of Depression: Based on Mechanisms Related to Neuroplasticity. Neural Plast 2017; 2017:4605971. [PMID: 28491480 PMCID: PMC5405587 DOI: 10.1155/2017/4605971] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder is a severe and complex mental disorder. Impaired neurotransmission and disrupted signalling pathways may influence neuroplasticity, which is involved in the brain dysfunction in depression. Traditional neurobiological theories of depression, such as monoamine hypothesis, cannot fully explain the whole picture of depressive disorders. In this review, we discussed new treatment directions of depression, including modulation of glutamatergic system and noninvasive brain stimulation. Dysfunction of glutamatergic neurotransmission plays an important role in the pathophysiology of depression. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has rapid and lasting antidepressive effects in previous studies. In addition to ketamine, other glutamatergic modulators, such as sarcosine, also show potential antidepressant effect in animal models or clinical trials. Noninvasive brain stimulation is another new treatment strategy beyond pharmacotherapy. Growing evidence has demonstrated that superficial brain stimulations, such as transcranial magnetic stimulation, transcranial direct current stimulation, cranial electrotherapy stimulation, and magnetic seizure therapy, can improve depressive symptoms. The antidepressive effect of these brain stimulations may be through modulating neuroplasticity. In conclusion, drugs that modulate neurotransmission via NMDA receptor and noninvasive brain stimulation may provide new directions of treatment for depression. Furthermore, exploring the underlying mechanisms will help in developing novel therapies for depression in the future.
Collapse
|
79
|
Metabotropic Glutamate Receptor 5 and Glutamate Involvement in Major Depressive Disorder: A Multimodal Imaging Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:449-456. [PMID: 28993818 DOI: 10.1016/j.bpsc.2017.03.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Preclinical and postmortem studies have implicated the metabotropic glutamate receptor 5 (mGluR5) in the pathophysiology of major depressive disorder (MDD). The goal of the present study was to determine the role of mGluR5 in a large group of individuals with MDD compared to healthy controls (HC) in vivo with [18F]FPEB and positron emission tomography (PET). Furthermore, we sought to determine the role glutamate plays on mGluR5 availability in MDD. METHODS Sixty-five participants (30 MDD and 35 HC) completed [18F]FPEB PET to estimate the primary outcome measure - mGluR5 volume of distribution (VT), and the secondary outcome measure - mGluR5 distribution volume ratio (DVR). A subgroup of 39 participants (16 MDD and 23 HC) completed proton magnetic resonance spectroscopy (1H MRS) to estimate anterior cingulate (ACC) glutamate, glutamine, and Glx (glutamate + glutamine) levels relative to creatine (Cr). RESULTS No significant between-group differences were observed in mGluR5 VT or DVR. Compared to HC, individuals with MDD had higher ACC glutamate, glutamine, and Glx levels. Importantly, the ACC mGluR5 DVR negatively correlated with glutamate/Cr and Glx/Cr levels. CONCLUSIONS In this novel in vivo examination, we show an inverse relationship between mGluR5 availability and glutamate levels. These data highlight the need to further investigate the role of glutamatergic system in depression.
Collapse
|
80
|
Lener MS, Kadriu B, Zarate CA. Ketamine and Beyond: Investigations into the Potential of Glutamatergic Agents to Treat Depression. Drugs 2017; 77:381-401. [PMID: 28194724 PMCID: PMC5342919 DOI: 10.1007/s40265-017-0702-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clinical and preclinical studies suggest that dysfunction of the glutamatergic system is implicated in mood disorders such as major depressive disorder and bipolar depression. In clinical studies of individuals with major depressive disorder and bipolar depression, rapid reductions in depressive symptoms have been observed in response to subanesthetic-dose ketamine, an agent whose mechanism of action involves the modulation of glutamatergic signaling. The findings from these studies have prompted the repurposing and/or development of other glutamatergic modulators for antidepressant efficacy, both as monotherapy or as an adjunct to conventional monoaminergic antidepressants. This review highlights the evidence supporting the antidepressant effects of subanesthetic-dose ketamine as well as other glutamatergic modulators, such as D-cycloserine, riluzole, CP-101,606, CERC-301 (previously known as MK-0657), basimglurant, JNJ-40411813, dextromethorphan, nitrous oxide, GLYX-13, and esketamine.
Collapse
Affiliation(s)
- Marc S Lener
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Building 10/CRC, Room 7-5545, Bethesda, MD, USA.
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Building 10/CRC, Room 7-5545, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Building 10/CRC, Room 7-5545, Bethesda, MD, USA
| |
Collapse
|
81
|
Berridge MJ. Vitamin D and Depression: Cellular and Regulatory Mechanisms. Pharmacol Rev 2017; 69:80-92. [DOI: 10.1124/pr.116.013227] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
82
|
Pennybaker SJ, Niciu MJ, Luckenbaugh DA, Zarate CA. Symptomatology and predictors of antidepressant efficacy in extended responders to a single ketamine infusion. J Affect Disord 2017; 208:560-566. [PMID: 27839782 PMCID: PMC5154889 DOI: 10.1016/j.jad.2016.10.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/13/2016] [Accepted: 10/22/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Antidepressant response to a single subanesthetic dose infusion of the glutamatergic modulator ketamine is transient in most depressed patients; however, a minority continue to experience an extended response. This study examined depressive symptoms and potential clinical predictors of extended response to ketamine in subjects with mood disorders. METHODS Subjects were diagnosed with either major depressive disorder (MDD) or bipolar depression. All subjects were treatment-resistant and experiencing a major depressive episode of at least moderate severity. MDD subjects were unmedicated and those with bipolar depression were receiving therapeutic-dose lithium or valproate. All subjects received a single 0.5mg/kg ketamine infusion. Data were collected pre-infusion (baseline) and at days one, 14, and 28 post-infusion. RESULTS Twelve of 93 (12.9%) participants continued to meet response criteria (50% reduction in Montgomery-Asberg Depression Rating Scale (MADRS) score) at two weeks. All depressive symptoms assessed by the MADRS were improved at two weeks in ketamine responders except for sleep duration/depth. A positive family history of alcohol use disorder in a first-degree relative (FHP) and greater dissociation during the infusion were associated with better antidepressant response at two weeks. Improved measures of apparent sadness, reported sadness, inability to feel, and difficulty concentrating at day 1 correlated most strongly with antidepressant effects at two weeks. LIMITATIONS Post-hoc design, small sample size, diagnostic heterogeneity. CONCLUSIONS Static (FHP) and dynamic (improved depressive symptoms) factors may be clinically useful in predicting whether a patient will have an extended response to ketamine.
Collapse
Affiliation(s)
- Steven J Pennybaker
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Bethesda, MD 20892, USA; The Johns Hopkins University School of Medicine, 600 N Wolfe St., Baltimore, MD 21287, USA
| | - Mark J Niciu
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Bethesda, MD 20892, USA
| | - David A Luckenbaugh
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Bethesda, MD 20892, USA
| | - Carlos A Zarate
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Bethesda, MD 20892, USA.
| |
Collapse
|
83
|
Haroon E, Miller AH, Sanacora G. Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology 2017; 42:193-215. [PMID: 27629368 PMCID: PMC5143501 DOI: 10.1038/npp.2016.199] [Citation(s) in RCA: 348] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
Increasing data indicate that inflammation and alterations in glutamate neurotransmission are two novel pathways to pathophysiology in mood disorders. The primary goal of this review is to illustrate how these two pathways may converge at the level of the glia to contribute to neuropsychiatric disease. We propose that a combination of failed clearance and exaggerated release of glutamate by glial cells during immune activation leads to glutamate increases and promotes aberrant extrasynaptic signaling through ionotropic and metabotropic glutamate receptors, ultimately resulting in synaptic dysfunction and loss. Furthermore, glutamate diffusion outside the synapse can lead to the loss of synaptic fidelity and specificity of neurotransmission, contributing to circuit dysfunction and behavioral pathology. This review examines the fundamental role of glia in the regulation of glutamate, followed by a description of the impact of inflammation on glial glutamate regulation at the cellular, molecular, and metabolic level. In addition, the role of these effects of inflammation on glia and glutamate in mood disorders will be discussed along with their translational implications.
Collapse
Affiliation(s)
- Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
84
|
Haroon E, Miller AH. Inflammation Effects on Brain Glutamate in Depression: Mechanistic Considerations and Treatment Implications. Curr Top Behav Neurosci 2017; 31:173-198. [PMID: 27830574 DOI: 10.1007/7854_2016_40] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There has been increasing interest in the role of glutamate in mood disorders, especially given the profound effect of the glutamate receptor antagonist ketamine in improving depressive symptoms in patients with treatment-resistant depression. One pathway by which glutamate alterations may occur in mood disorders involves inflammation. Increased inflammation has been observed in a significant subgroup of patients with mood disorders, and inflammatory cytokines have been shown to influence glutamate metabolism through effects on astrocytes and microglia. In addition, the administration of the inflammatory cytokine interferon-alpha has been shown to increase brain glutamate in the basal ganglia and dorsal anterior cingulate cortex as measured by magnetic resonance spectroscopy (MRS). Moreover, MRS studies in patients with major depressive disorder have revealed that increased markers of inflammation including C-reactive protein correlate with increased basal ganglia glutamate, which in turn was associated with anhedonia and psychomotor retardation. Finally, human and laboratory animal studies have shown that the response to glutamate antagonists such as ketamine is predicted by increased inflammatory cytokines. Taken together, these data make a strong case that inflammation may influence glutamate metabolism to alter behavior, leading to depressive symptoms including anhedonia and psychomotor slowing.
Collapse
Affiliation(s)
- Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1365-B Clifton Road., 5th Floor, B5101, Atlanta, GA, 30322, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1365-B Clifton Road., 5th Floor, B5101, Atlanta, GA, 30322, USA.
| |
Collapse
|
85
|
Du Jardin KG, Müller HK, Sanchez C, Wegener G, Elfving B. Gene expression related to serotonergic and glutamatergic neurotransmission is altered in the flinders sensitive line rat model of depression: Effect of ketamine. Synapse 2016; 71:37-45. [PMID: 27589698 DOI: 10.1002/syn.21940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 11/11/2022]
Abstract
Major depressive disorder (MDD) is associated with dysfunctional serotonergic and glutamatergic neurotransmission, and the genetic animal model of depression Flinders Sensitive Line (FSL) rats display alterations in these systems relatively to their control strain Flinders Resistant Line (FRL). However, changes on transcript level related to serotonergic and glutamatergic signaling have only been sparsely studied in this model. The non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine has fast-onset antidepressant properties, and recent data implicate serotonergic neurotransmission in ketamine's antidepressant-like activities in rodents. Here, we investigated the transcript levels of 40 genes involved in serotonergic and glutamatergic neurotransmission in FSL and FRL rats in response to a single dose of ketamine (15 mg/kg; 90 min prior to euthanization). Using real-time quantitative polymerase chain reaction, we studied the effect of ketamine in the hippocampus, whereas strain differences were investigated in both hippocampus and frontal cortex. The expression of genes involved in serotonergic and glutamatergic neurotransmission were unaffected by a single dose of ketamine in the hippocampus. Relative to FRL rats, FSL rats displayed enhanced hippocampal transcript levels of 5-ht2c , and P11, whereas the expression was reduced for 5-ht2a , Nr2a, and Mglur2. In the frontal cortex, we found higher transcript levels of 5-ht2c and Mglur2, whereas the expression of 5-ht2a was reduced in FSL rats. Thus, ketamine is not associated with hippocampal alterations in serotonergic or glutamatergic genes at 90 min after an antidepressant dose. Furthermore, FSL rats display serotonergic and glutamatergic abnormalities on gene expression level that partly may resemble findings in MDD patients.
Collapse
Affiliation(s)
- Kristian Gaarn Du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark.,Lundbeck US LLC, 215 College Rd, Paramus, New Jersey
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| |
Collapse
|
86
|
Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:117-26. [PMID: 27046518 DOI: 10.1016/j.pnpbp.2016.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/27/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
Abstract
Treatment-resistant depression (TRD) causes substantial socioeconomic burden. Although a consensus on the definition of TRD has not yet been reached, it is certain that classic monoaminergic antidepressants are ineffective for TRD. One decade ago, many researchers found ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, to be an alternative to classic monoaminergic antidepressants. The major mechanisms of action of ketamine rapidly induce synaptogenesis in the brain-derived neurotrophic factor (BDNF) pathway. Although excessive glutamatergic neurotransmission and consequent excitotoxicity were considered a major cause of TRD, recent evidence suggests that the extrasynaptic glutamatergic receptor signal pathway mainly contributes to the detrimental effects of TRD. Glial cells such as microglia and astrocytes, early life adversity, and glucocorticoid receptor dysfunction participate in complex cross-talk. An appropriate reuptake of glutamate at the astrocyte is crucial for preventing 'spill-over' of synaptic glutamate and binding to the extrasynaptic NMDA receptor. Excessive microglial activation and the inflammatory process cause astrocyte glutamatergic dysfunction, which in turn activates microglial function. Early life adversity and glucocorticoid receptor dysfunction result in vulnerability to stress in adulthood. A maladaptive response to stress leads to increased glutamatergic release and pro-inflammatory cytokines, which then activate microglia. However, since the role of inflammatory mediators such as pro-inflammatory cytokines is not specific for depression, more disease-specific mechanisms should be identified. Last, although much research has focused on ketamine as an alternative antidepressant for TRD, its long-lasting effectiveness and adverse events have not been rigorously demonstrated. Additionally, evidence suggests that substantial brain abnormalities develop in ketamine abusers. Thus, more investigations for ketamine and other novel glutamatergic agents are needed.
Collapse
|
87
|
Hadzic M, Jack A, Wahle P. Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex. J Comp Neurol 2016; 525:976-1033. [PMID: 27560295 DOI: 10.1002/cne.24103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
A multitude of 18 iGluR receptor subunits, many of which are diversified by splicing and RNA editing, localize to >20 excitatory and inhibitory neocortical neuron types defined by physiology, morphology, and transcriptome in addition to various types of glial, endothelial, and blood cells. Here we have compiled the published expression of iGluR subunits in the areas and cell types of developing and adult cortex of rat, mouse, carnivore, bovine, monkey, and human as determined with antibody- and mRNA-based techniques. iGluRs are differentially expressed in the cortical areas and in the species, and all have a unique developmental pattern. Differences are quantitative rather than a mere absence/presence of expression. iGluR are too ubiquitously expressed and of limited use as markers for areas or layers. A focus has been the iGluR profile of cortical interneuron types. For instance, GluK1 and GluN3A are enriched in, but not specific for, interneurons; moreover, the interneurons expressing these subunits belong to different types. Adressing the types is still a major hurdle because type-specific markers are lacking, and the frequently used neuropeptide/CaBP signatures are subject to regulation by age and activity and vary as well between species and areas. RNA-seq reveals almost all subunits in the two morphofunctionally characterized interneuron types of adult cortical layer I, suggesting a fairly broad expression at the RNA level. It remains to be determined whether all proteins are synthesized, to which pre- or postsynaptic subdomains in a given neuron type they localize, and whether all are involved in synaptic transmission. J. Comp. Neurol. 525:976-1033, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minela Hadzic
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
88
|
Ren Z, Pribiag H, Jefferson SJ, Shorey M, Fuchs T, Stellwagen D, Luscher B. Bidirectional Homeostatic Regulation of a Depression-Related Brain State by Gamma-Aminobutyric Acidergic Deficits and Ketamine Treatment. Biol Psychiatry 2016; 80:457-468. [PMID: 27062563 PMCID: PMC4983262 DOI: 10.1016/j.biopsych.2016.02.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Major depressive disorder is increasingly recognized to involve functional deficits in both gamma-aminobutyric acid (GABA)ergic and glutamatergic synaptic transmission. To elucidate the relationship between these phenotypes, we used GABAA receptor γ2 subunit heterozygous (γ2(+/-)) mice, which we previously characterized as a model animal with construct, face, and predictive validity for major depressive disorder. METHODS To assess possible consequences of GABAergic deficits on glutamatergic transmission, we quantitated the cell surface expression of N-methyl-D-aspartate (NMDA)-type and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors and the function of synapses in the hippocampus and medial prefrontal cortex of γ2(+/-) mice. We also analyzed the effects of an acute dose of the experimental antidepressant ketamine on all these parameters in γ2(+/-) versus wild-type mice. RESULTS Modest defects in GABAergic synaptic transmission of γ2(+/-) mice resulted in a strikingly prominent homeostatic-like reduction in the cell surface expression of NMDA-type and AMPA-type glutamate receptors, along with prominent functional impairment of glutamatergic synapses in the hippocampus and medial prefrontal cortex. A single subanesthetic dose of ketamine normalized glutamate receptor expression and synaptic function of γ2(+/-) mice to wild-type levels for a prolonged period, along with antidepressant-like behavioral consequences selectively in γ2(+/-) mice. The GABAergic synapses of γ2(+/-) mice were potentiated by ketamine in parallel but only in the medial prefrontal cortex. CONCLUSIONS Depressive-like brain states that are caused by GABAergic deficits involve a homeostatic-like reduction of glutamatergic transmission that is reversible by an acute, subanesthetic dose of ketamine, along with regionally selective potentiation of GABAergic synapses. The data merge the GABAergic and glutamatergic deficit hypotheses of major depressive disorder.
Collapse
Affiliation(s)
- Zhen Ren
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - Horia Pribiag
- Center for Research in Neuroscience, McGill University, Montreal General Hospital, L7-132, 1650 Cedar Av, Montreal, QC H3G 1A4, Canada
| | - Sarah J. Jefferson
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - Matthew Shorey
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - Thomas Fuchs
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - David Stellwagen
- Center for Research in Neuroscience, McGill University, Montreal General Hospital, L7-132, 1650 Cedar Av, Montreal, QC H3G 1A4, Canada
| | - Bernhard Luscher
- Departments of Biology, Pennsylvania State University, University Park, Pennsylvania; Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania; Center for Molecular Investigation of Neurological Disorders, Pennsylvania State University, University Park, Pennsylvania.
| |
Collapse
|
89
|
de Sousa RT, Zanetti MV, Brunoni AR, Machado-Vieira R. Challenging Treatment-Resistant Major Depressive Disorder: A Roadmap for Improved Therapeutics. Curr Neuropharmacol 2016; 13:616-35. [PMID: 26467411 PMCID: PMC4761633 DOI: 10.2174/1570159x13666150630173522] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Major
depressive disorder (MDD) is associated with a significant burden and costs to
the society. As remission of depressive symptoms is achieved in only one-third
of the MDD patients after the first antidepressant trial, unsuccessful
treatments contribute largely to the observed suffering and social costs of MDD.
The present article provides a summary of the therapeutic strategies that have
been tested for treatment-resistant depression (TRD). A computerized search on
MedLine/PubMed database from 1975 to September 2014 was performed, using the
keywords “treatment-resistant depression”, “major depressive disorder”,
“adjunctive”, “refractory” and “augmentation”. From the 581 articles retrieved,
two authors selected 79 papers. A manual searching further considered relevant
articles of the reference lists. The evidence found supports adding or switching
to another antidepressant from a different class is an effective strategy in
more severe MDD after failure to an initial antidepressant trial. Also, in
subjects resistant to two or more classes of antidepressants, some augmentation
strategies and antidepressant combinations should be considered, although the
overall response and remission rates are relatively low, except for fast acting
glutamatergic modulators. The wide range of available treatments for TRD
reflects the complexity of MDD, which does not underlie diverse key features of
the disorder. Larger and well-designed studies applying dimensional approaches
to measure efficacy and effectiveness are warranted.
Collapse
Affiliation(s)
| | | | | | - Rodrigo Machado-Vieira
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of Sao Paulo, Brazil, Address: Instituto de Psiquiatria do HC-FMUSP, 3o andar, LIM-27, Rua Dr. Ovidio Pires de Campos, 785, Postal code 05403- 010, Sao Paulo, SP, Brazil
| |
Collapse
|
90
|
Li S, Han J, Wang DS, Feng B, Deng YT, Wang XS, Yang Q, Zhao MG. Echinocystic acid reduces reserpine-induced pain/depression dyad in mice. Metab Brain Dis 2016; 31:455-63. [PMID: 26729203 DOI: 10.1007/s11011-015-9786-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023]
Abstract
Chronic pain has consistently been correlated with depression. Echinocystic acid (EA), a natural triterpone enriched in various herbs and used for medicinal purpose in many Asian countries, exhibits anti-inflammatory and analgesic activities. However, little is known the effects of EA on the depression. In present study, we investigated the anti-depression activities in the mouse model of reserpine-induced pain-depression dyad. Reserpine (1 mg/kg subcutaneously daily for 3 days) caused significant depression-like behaviors and pain sensation. Subsequent treatment of EA (5 mg/kg intragastrically daily for 5 days) attenuated the reserpine-induced pain/depression dyad as shown by the increase of pain threshold and the behaviors in forced swimming test, tail suspension test, and open field test. Furthermore, treatment of EA reversed the decrease of biogenic amines (norepinephrine, dopamine, and serotonin) in the brain region of hippocampus, a structure involved in the formation of emotional disorders. Levels of serotonin receptor 5-HT1A were decreased and levels of 5-HT2A were increased in the reserpine-injected mice. Treatment of EA could restore the alterations of serotonin receptors. At the same time, the increase in GluN2B-containing NMDA receptors, p-GluA1-Ser831, PSD-95 and CaMKII were integrated with the increase in caspase-3 and iNOS levels in the hippocampus of the reserpine-injected mice. EA significantly reversed the changes of above proteins. However, EA did not affect the levels of GluN2A-containing NMDA receptors and the total levels of GluA1 and p-GluA1-Ser845. Our study provides strong evidence that EA attenuates reserpine-induced pain/depression dyad partially through regulating the biogenic amines levels and GluN2B receptors in the hippocampus.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Han
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Dong-Sheng Wang
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, 210002, China
| | - Bin Feng
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ya-Ting Deng
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
91
|
Nguyen L, Thomas KL, Lucke-Wold BP, Cavendish JZ, Crowe MS, Matsumoto RR. Dextromethorphan: An update on its utility for neurological and neuropsychiatric disorders. Pharmacol Ther 2016; 159:1-22. [PMID: 26826604 DOI: 10.1016/j.pharmthera.2016.01.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dextromethorphan (DM) is a commonly used antitussive and is currently the only FDA-approved pharmaceutical treatment for pseudobulbar affect. Its safety profile and diverse pharmacologic actions in the central nervous system have stimulated new interest for repurposing it. Numerous preclinical investigations and many open-label or blinded clinical studies have demonstrated its beneficial effects across a variety of neurological and psychiatric disorders. However, the optimal dose and safety of chronic dosing are not fully known. This review summarizes the preclinical and clinical effects of DM and its putative mechanisms of action, focusing on depression, stroke, traumatic brain injury, seizure, pain, methotrexate neurotoxicity, Parkinson's disease and autism. Moreover, we offer suggestions for future research with DM to advance the treatment for these and other neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Linda Nguyen
- Department of Behavioral Medicine and Psychiatry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Kelan L Thomas
- College of Pharmacy, Touro University California, Vallejo, CA 94592, USA
| | - Brandon P Lucke-Wold
- Graduate Program in Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - John Z Cavendish
- Graduate Program in Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Molly S Crowe
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
| | - Rae R Matsumoto
- Department of Behavioral Medicine and Psychiatry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; College of Pharmacy, Touro University California, Vallejo, CA 94592, USA.
| |
Collapse
|
92
|
Gowda MR, Srinivasa P, Kumbar PS, Ramalingaiah VH, Muthyalappa C, Durgoji S. Rapid Resolution of Grief with IV Infusion of Ketamine: A Unique Phenomenological Experience. Indian J Psychol Med 2016; 38:62-4. [PMID: 27011405 PMCID: PMC4782448 DOI: 10.4103/0253-7176.175121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Ketamine, a primarily FDA-approved anaesthetic agent is also used as recreational drug. Based on preclinical findings and later the clinical observations it is noted to have rapid antidepressant effect due to its mechanisms related to NMDA antagonism. In spite of established evidence of ketamine being effective in depression with significant role in treatment resistant cases as well, there was absolute dearth of literature regarding its utility in grief-related disorders. In this context we present a case of 28-year-old graduate male who presented to us in complicated grief following death of his wife due to obstetric complications. With the patient and immediate family members consenting for use of ketamine as off-label use, patient had single IV infusion of ketamine following which he had unique phenomenological experience ultimately resolving his grief in few minutes. Through this case we highlight the enormous therapeutic promise of ketamine in complicated grief.
Collapse
Affiliation(s)
| | - Preethi Srinivasa
- Department of Psychiatrist, Spandana Nursing Home, Bangalore, Karnataka, India
| | - Prabha S Kumbar
- Clinical Research Coordinator, Spandana Nursing Home, Bangalore, Karnataka, India
| | | | | | - Sumit Durgoji
- DNB Resident, Spandana Nursing Home, Bangalore, Karnataka, India
| |
Collapse
|
93
|
Rajagopal L, Burgdorf JS, Moskal JR, Meltzer HY. GLYX-13 (rapastinel) ameliorates subchronic phencyclidine- and ketamine-induced declarative memory deficits in mice. Behav Brain Res 2015; 299:105-10. [PMID: 26632337 DOI: 10.1016/j.bbr.2015.10.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 12/27/2022]
Abstract
GLYX-13 (rapastinel), a tetrapeptide (Thr-Pro-Pro-Thr-amide), has been reported to have fast acting antidepressant properties in man based upon its N-methyl-D-aspartate receptor (NMDAR) glycine site functional partial agonism. Ketamine, a non-competitive NMDAR antagonist, also reported to have fast acting antidepressant properties, produces cognitive impairment in rodents and man, whereas rapastinel has been reported to have cognitive enhancing properties in rodents, without impairing cognition in man, albeit clinical testing has been limited. The goal of this study was to compare the cognitive impairing effects of rapastinel and ketamine in novel object recognition (NOR), a measure of declarative memory, in male C57BL/6J mice treated with phencyclidine (PCP), another NMDAR noncompetitive antagonist known to severely impair cognition, in both rodents and man. C57BL/6J mice given a single dose or subchronic ketamine (30 mg/kg.i.p.) showed acute or persistent deficits in NOR, respectively. Acute i.v. rapastinel (1.0 mg/kg), did not induce NOR deficit. Pre-treatment with rapastinel significantly prevented acute ketamine-induced NOR deficit. Rapastinel (1.0 mg/kg, but not 0.3 mg/kg, iv) significantly reversed both subchronic ketamine- and subchronic PCP-induced NOR deficits. Rapastinel also potentiated the atypical antipsychotic drug with antidepressant properties, lurasidone, to restore NOR in subchronic ketamine-treated mice. These findings indicate that rapastinel, unlike ketamine, does not induce a declarative memory deficit in mice, and can prevent or reverse the ketamine-induced NOR deficit. Further study is required to determine if these differences translate during clinical use of ketamine and rapastinel as fast acting antidepressant drugs and if rapastinel could have non-ionotropic effects as an add-on therapy with antipsychotic/antidepressant medications.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, 303 E Chicago Ave., 7-101, Chicago, IL 60611, USA
| | - Jeffrey S Burgdorf
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 1801 Maple Ave., Suite 4300, Evanston, IL 60201, USA
| | - Joseph R Moskal
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 1801 Maple Ave., Suite 4300, Evanston, IL 60201, USA; Naurex Inc., 1801 Maple Ave., Suite 4300, Evanston, IL 60201, USA
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, 303 E Chicago Ave., 7-101, Chicago, IL 60611, USA.
| |
Collapse
|
94
|
Costi S, Van Dam NT, Murrough JW. Current Status of Ketamine and Related Therapies for Mood and Anxiety Disorders. Curr Behav Neurosci Rep 2015; 2:216-225. [PMID: 26783510 DOI: 10.1007/s40473-015-0052-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Major Depressive Disorder (MDD) is a leading cause of disability worldwide. Despite a plethora of established treatments, less than one-third of individuals with MDD achieve stable remission of symptoms. Given limited efficacy and significant lag time to onset of therapeutic action among conventional antidepressants, interest has shifted to treatments that act outside of the monoamine neurotransmitter systems (e.g., serotonin, norepinephrine, and dopamine). Preclinical and clinical research on the glutamate system has been particularly promising in this regard. Accumulating evidence shows support for a rapid antidepressant effect of ketamine - a glutamate N-methyl-d-aspartate (NMDA) receptor antagonist. The present article reviews the pharmacology, safety, and efficacy of ketamine as a novel therapeutic agent for mood and anxiety disorders. The majority of clinical trials using ketamine have been conducted in patients with treatment resistant forms of MDD; recent work has begun to examine ketamine in bipolar disorder, posttraumatic stress disorder, and obsessive-compulsive disorder. The impact of ketamine on suicidal ideation is also discussed. The current status and prospects for the identification of human biomarkers of ketamine treatment response and hurdles to treatment development are considered. We conclude by considering modulators of the glutamate system other than ketamine currently in development as potential novel treatment strategies for mood and anxiety disorders.
Collapse
Affiliation(s)
- Sara Costi
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicholas T Van Dam
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - James W Murrough
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
95
|
Ketamine and suicidal ideation in depression: Jumping the gun? Pharmacol Res 2015; 99:23-35. [DOI: 10.1016/j.phrs.2015.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
|
96
|
Barker-Haliski M, White HS. Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harb Perspect Med 2015; 5:a022863. [PMID: 26101204 PMCID: PMC4526718 DOI: 10.1101/cshperspect.a022863] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epilepsy is broadly characterized by aberrant neuronal excitability. Glutamate is the predominant excitatory neurotransmitter in the adult mammalian brain; thus, much of past epilepsy research has attempted to understand the role of glutamate in seizures and epilepsy. Seizures induce elevations in extracellular glutamate, which then contribute to excitotoxic damage. Chronic seizures can alter neuronal and glial expression of glutamate receptors and uptake transporters, further contributing to epileptogenesis. Evidence points to a shared glutamate pathology for epilepsy and other central nervous system (CNS) disorders, including depression, which is often a comorbidity of epilepsy. Therapies that target glutamatergic neurotransmission are available, but many have met with difficulty because of untoward adverse effects. Better understanding of this system has generated novel therapeutic targets that directly and indirectly modulate glutamatergic signaling. Thus, future efforts to manage the epileptic patient with glutamatergic-centric treatments now hold greater potential.
Collapse
Affiliation(s)
- Melissa Barker-Haliski
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84108
| | - H Steve White
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84108
| |
Collapse
|
97
|
Bentea E, Demuyser T, Van Liefferinge J, Albertini G, Deneyer L, Nys J, Merckx E, Michotte Y, Sato H, Arckens L, Massie A, Smolders I. Absence of system xc- in mice decreases anxiety and depressive-like behavior without affecting sensorimotor function or spatial vision. Prog Neuropsychopharmacol Biol Psychiatry 2015; 59:49-58. [PMID: 25619129 DOI: 10.1016/j.pnpbp.2015.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/05/2015] [Accepted: 01/16/2015] [Indexed: 01/22/2023]
Abstract
There is considerable preclinical and clinical evidence indicating that abnormal changes in glutamatergic signaling underlie the development of mood disorders. Astrocytic glutamate dysfunction, in particular, has been recently linked with the pathogenesis and treatment of mood disorders, including anxiety and depression. System xc- is a glial cystine/glutamate antiporter that is responsible for nonvesicular glutamate release in various regions of the brain. Although system xc- is involved in glutamate signal transduction, its possible role in mediating anxiety or depressive-like behaviors is currently unknown. In the present study, we phenotyped adult and aged system xc- deficient mice in a battery of tests for anxiety and depressive-like behavior (open field, light/dark test, elevated plus maze, novelty suppressed feeding, forced swim test, tail suspension test). Concomitantly, we evaluated the sensorimotor function of system xc- deficient mice, using motor and sensorimotor based tests (rotarod, adhesive removal test, nest building test). Finally, due to the presence and potential functional relevance of system xc- in the eye, we investigated the visual acuity of system xc- deficient mice (optomotor test). Our results indicate that loss of system xc- does not affect motor or sensorimotor function, in either adult or aged mice, in any of the paradigms investigated. Similarly, loss of system xc- does not affect basic visual acuity, in either adult or aged mice. On the other hand, in the open field and light/dark tests, and forced swim and tail suspension tests respectively, we could observe significant anxiolytic and antidepressive-like effects in system xc- deficient mice that in certain cases (light/dark, forced swim) were age-dependent. These findings indicate that, under physiological conditions, nonvesicular glutamate release via system xc- mediates aspects of higher brain function related to anxiety and depression, but does not influence sensorimotor function or spatial vision. As such, modulation of system xc- might constitute the basis of innovative interventions in mood disorders.
Collapse
Affiliation(s)
- Eduard Bentea
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Demuyser
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joeri Van Liefferinge
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Giulia Albertini
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lauren Deneyer
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ellen Merckx
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yvette Michotte
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hideyo Sato
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
98
|
Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci 2015; 9:37. [PMID: 25750611 PMCID: PMC4335177 DOI: 10.3389/fnins.2015.00037] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/26/2015] [Indexed: 12/21/2022] Open
Abstract
Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo.
Collapse
Affiliation(s)
- Claudia Barth
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Clinic of Cognitive Neurology, University of Leipzig Leipzig, Germany ; Leipzig Research Center for Civilization Diseases, University of Leipzig Leipzig, Germany ; Integrated Research and Treatment Center Adiposity Diseases, University of Leipzig Leipzig, Germany ; Berlin School of Mind and Brain, Mind and Brain Institute Berlin, Germany
| | - Julia Sacher
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Clinic of Cognitive Neurology, University of Leipzig Leipzig, Germany
| |
Collapse
|
99
|
Réus GZ, Abaleira HM, Michels M, Tomaz DB, dos Santos MAB, Carlessi AS, Matias BI, Leffa DD, Damiani AP, Gomes VDC, Andrade VM, Dal-Pizzol F, Landeira-Fernadez J, Quevedo J. Anxious phenotypes plus environmental stressors are related to brain DNA damage and changes in NMDA receptor subunits and glutamate uptake. Mutat Res 2015; 772:30-37. [PMID: 25772108 DOI: 10.1016/j.mrfmmm.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
This study aimed at investigating the effects of chronic mild stress on DNA damage, NMDA receptor subunits and glutamate transport levels in the brains of rats with an anxious phenotype, which were selected to represent both the high-freezing (CHF) and low-freezing (CLF) lines. The anxious phenotype induced DNA damage in the hippocampus, amygdala and nucleus accumbens (NAc). CHF rats subjected to chronic stress presented a more pronounced DNA damage in the hippocampus and NAc. NMDAR1 were increased in the prefrontal cortex (PC), hippocampus and amygdala of CHF, and decreased in the hippocampus, amygdala and NAc of CHF stressed. NMDAR2A were decreased in the amygdala of the CHF and stressed; and increased in CHF stressed. NMDRA2A in the NAc was increased after stress, and decreased in the CLF. NMDAR2B were increased in the hippocampus of CLF and CHF. In the amygdala, there was a decrease in the NMDAR2B for stress in the CLF and CHF. NMDAR2B in the NAc were decreased for stress and increased in the CHF; in the PC NMDAR2B increased in the CHF. EAAT1 increased in the PC of CLF+stress. In the hippocampus, EAAT1 decreased in all groups. In the amygdala, EAAT1 decreased in the CLF+stress and CHF. EAAT2 were decreased in the PC for stress, and increased in CHF+control. In the hippocampus, the EAAT2 were increased for the CLF and decreased in the CLF+stress. In the amygdala, there was a decrease in the EATT2 in the CLF+stress and CHF. These findings suggest that an anxious phenotype plus stress may induce a more pronounced DNA damage, and promote more alterations in the glutamatergic system. These findings may help to explain, at least in part, the common point of the mechanisms involved with the pathophysiology of depression and anxiety.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA.
| | - Helena M Abaleira
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Débora B Tomaz
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Maria Augusta B dos Santos
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Anelise S Carlessi
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Beatriz I Matias
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Daniela D Leffa
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Adriani P Damiani
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vitor de C Gomes
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João del Rei, São João del Rei, MG, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
100
|
Wang M, Zhu J, Pan Y, Dong J, Zhang L, Zhang X, Zhang L. Hydrogen sulfide functions as a neuromodulator to regulate striatal neurotransmission in a mouse model of Parkinson's disease. J Neurosci Res 2014; 93:487-94. [PMID: 25388401 DOI: 10.1002/jnr.23504] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 01/09/2023]
Abstract
Hydrogen sulfide (H2S), a novel endogenous gasotransmitter, has been considered a neuromodulator to enhance hippocampal long-term potentiation and exerts neuroprotective effects against neurotoxin-induced neurodegeneration in rodent models of Parkinson's disease (PD). However, whether H2S can function as a neuromodulator to regulate the levels of nigrostriatal neurotransmitters and then impact the vulnerability of dopaminergic (DA) neurons in response to neurotoxins remains unknown. For this study, we prepared a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid (MPTP/p)-induced mouse subacute model of PD to explore the modulatory effect of H2S on monoamine and amino acid neurotransmitters in the striatum of MPTP-treated mice. This study shows that NaHS (an H2S donor, 5.6 mg/kg/day, i.p.) administration improves the survival rate and significantly ameliorates the weight loss of MPTP-treated mice. NaHS treatment attenuated MPTP-induced neuronal damage, restored the diminution of DA neurons, and suppressed the overactivation of astrocytes in the mouse striatum. Additionally, NaHS upregulated striatal serotonin levels and modulated the balance of excitatory glutamate and the inhibitory γ-aminobutyric acid system in response to MPTP challenge. The current study indicates that H2S may function as an effective neuromodulator to regulate striatal neurotransmission and provides insight into the potential of H2S for PD therapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|