51
|
Townsend JR, Hoffman JR, Gonzalez AM, Jajtner AR, Boone CH, Robinson EH, Mangine GT, Wells AJ, Fragala MS, Fukuda DH, Stout JR. Effects of β-Hydroxy-β-methylbutyrate Free Acid Ingestion and Resistance Exercise on the Acute Endocrine Response. Int J Endocrinol 2015; 2015:856708. [PMID: 25792982 PMCID: PMC4352513 DOI: 10.1155/2015/856708] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
Objective. To examine the endocrine response to a bout of heavy resistance exercise following acute β-hydroxy-β-methylbutyrate free acid (HMB-FA) ingestion. Design. Twenty resistance trained men were randomized and consumed either 1 g of HMB-FA (BetaTor) or placebo (PL) 30 min prior to performing an acute heavy resistance exercise protocol. Blood was obtained before (PRE), immediately after (IP), and 30 min after exercise (30P). Circulating concentrations of testosterone, growth hormone (GH), insulin-like growth factor (IGF-1), and insulin were assayed. Data were analyzed with a repeated measures ANOVA and area under the curve (AUC) was analyzed by the trapezoidal rule. Results. The resistance exercise protocol resulted in significant elevations from PRE in testosterone (P < 0.01), GH (P < 0.01), and insulin (P = 0.05) at IP, with GH (P < 0.01) and insulin (P < 0.01) remaining elevated at 30P. A significant interaction was noted between groups in the plasma GH response at IP, which was significantly higher following HMB-FA compared to PL (P < 0.01). AUC analysis revealed an elevated GH and IGF-1 response in the HMB-FA group compared to PL. Conclusion. HMB-FA prior to resistance exercise augments the GH response to high volume resistance exercise compared to PL. These findings provide further support for the potential anabolic benefits associated with HMB supplementation.
Collapse
Affiliation(s)
- Jeremy R. Townsend
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Jay R. Hoffman
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
- *Jay R. Hoffman:
| | - Adam M. Gonzalez
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Adam R. Jajtner
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Carleigh H. Boone
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Edward H. Robinson
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Gerald T. Mangine
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Adam J. Wells
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Maren S. Fragala
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - David H. Fukuda
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| | - Jeffrey R. Stout
- Institute of Exercise Science and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
52
|
Vogt M, Haas S, Polen T, van Ooyen J, Bott M. Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes. Microb Biotechnol 2014; 8:351-60. [PMID: 25488800 PMCID: PMC4353348 DOI: 10.1111/1751-7915.12237] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 12/04/2022] Open
Abstract
2-Ketoisocaproate (KIC), the last intermediate in l-leucine biosynthesis, has various medical and industrial applications. After deletion of the ilvE gene for transaminase B in l-leucine production strains of Corynebacterium glutamicum, KIC became the major product, however, the strains were auxotrophic for l-isoleucine. To avoid auxotrophy, reduction of IlvE activity by exchanging the ATG start codon of ilvE by GTG was tested instead of an ilvE deletion. The resulting strains were indeed able to grow in glucose minimal medium without amino acid supplementation, but at the cost of lowered growth rates and KIC production parameters. The best production performance was obtained with strain MV-KICF1, which carried besides the ilvE start codon exchange three copies of a gene for a feedback-resistant 2-isopropylmalate synthase, one copy of a gene for a feedback-resistant acetohydroxyacid synthase and deletions of ltbR and iolR encoding transcriptional regulators. In the presence of 1 mM l-isoleucine, MV-KICF1 accumulated 47 mM KIC (6.1 g l−1) with a yield of 0.20 mol/mol glucose and a volumetric productivity of 1.41 mmol KIC l−1 h−1. Since MV-KICF1 is plasmid free and lacks heterologous genes, it is an interesting strain for industrial application and as platform for the production of KIC-derived compounds, such as 3-methyl-1-butanol.
Collapse
Affiliation(s)
- Michael Vogt
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | | | | | | | | |
Collapse
|
53
|
Daré LR, Dias DV, Rosa Junior GM, Bueno CRS, Buchaim RL, Rodrigues ADC, Andreo JC. Effect of β-hydroxy-β-methylbutyrate in masticatory muscles of rats. J Anat 2014; 226:40-6. [PMID: 25400135 DOI: 10.1111/joa.12256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2014] [Indexed: 12/23/2022] Open
Abstract
The aim of this research was to examine the influence of β-hydroxy-β-methylbutyrate (HMB) on changes in the profile of muscle fibers, whether these alterations were similar between the elevator and depressor muscles of the jaw, and whether the effects would be similar in male and female animals. Fifty-eight rats aged 60 days (29 animals of each gender) were divided into four groups: the initial control group (ICG) was sacrificed at the beginning of the experiment; the placebo control group (PCG) received saline and was fed ad libitum; the experimental group (EG) received 0.3 g kg(-1) of HMB daily for 4 weeks by gavage as well as the same amount of food consumed by the PCG in the previous day; and the experimental ad libitum group (EAG) received the same dose of the supplement along with food ad libitum. Samples included the digastric and masseter muscles for the histoenzymological analysis. Data were subjected to statistical analysis with a significance level of P < 0.05. Use of HMB caused a decrease in the percentage of fast twitch glycolytic (FG) fibers and an increase in fast twitch oxidative glycolytic (FOG) fibers in males in both experimental groups (EG and EAG). However, it produced no increase in the muscle fiber area, in either gender, in the masseter muscle. In the digastric muscle, the HMB did not change the frequency or the area of any muscle fiber types in either gender. Our data suggest that the use of HMB caused small changes in the enzymological profile of fibers of the mastication muscles; the changes were different in the elevator and depressor muscles of the jaw and the results were different depending on gender.
Collapse
Affiliation(s)
- Leticia R Daré
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Brazil
| | | | | | | | | | | | | |
Collapse
|
54
|
Noh KK, Chung KW, Choi YJ, Park MH, Jang EJ, Park CH, Yoon C, Kim ND, Kim MK, Chung HY. β-Hydroxy β-methylbutyrate improves dexamethasone-induced muscle atrophy by modulating the muscle degradation pathway in SD rat. PLoS One 2014; 9:e102947. [PMID: 25032690 PMCID: PMC4102592 DOI: 10.1371/journal.pone.0102947] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/24/2014] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle atrophy results from various conditions including high levels of glucocorticoids, and β-hydroxy β-methylbutyrate (HMB; a metabolite of leucine) is a potent therapeutical supplement used to treat various muscle disorders. Recent studies have demonstrated that HMB inhibits dexamethasone-induced atrophy in cultured myotubes, but its effect on dexamethasone-induced muscle atrophy has not been determined in vivo. In the present study, we investigated the effect of HMB on dexamethasone-induced muscle atrophy in rats. Treatment with dexamethasone weakened grip strengths and increased muscle damage as determined by increased serum creatine kinase levels and by histological analysis. Dexamethasone treatment also reduced both soleus and gastrocnemius muscle masses. However, HMB supplementation significantly prevented reductions in grip strengths, reduced muscle damage, and prevented muscle mass and protein concentration decrease in soleus muscle. Biochemical analysis demonstrated that dexamethasone markedly increased levels of MuRF1 protein, which causes the ubiquitination and degradation of MyHC. Indeed, dexamethasone treatment decreased MyHC protein expression and increased the ubiquitinated-MyHC to MyHC ratio. However, HMB supplementation caused the down-regulations of MuRF1 protein and of ubiquitinated-MyHC. Furthermore, additional experiments provided evidence that HMB supplementation inhibited the nuclear translocation of FOXO1 induced by dexamethasone, and showed increased MyoD expression in the nuclear fractions of soleus muscles. These findings suggest that HMB supplementation attenuates dexamethasone-induced muscle wasting by regulating FOXO1 transcription factor and subsequent MuRF1 expression. Accordingly, our results suggest that HMB supplementation could be used to prevent steroid myopathy.
Collapse
Affiliation(s)
- Kyung Kyun Noh
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yeon Ja Choi
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min Hi Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Eun Ji Jang
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Chan Hum Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Changshin Yoon
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Nam Deuk Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Mi Kyung Kim
- Longevity Life Science and Technology Institute, Pusan National University, Busan, Republic of Korea
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
55
|
Chevalier S, Winter A. Do patients with advanced cancer have any potential for protein anabolism in response to amino acid therapy? Curr Opin Clin Nutr Metab Care 2014; 17:213-8. [PMID: 24572834 DOI: 10.1097/mco.0000000000000047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW There is evidence that protein anabolism is achievable before cancer evolves into refractory cachexia with attenuation of muscle loss and even muscle gain. This review summarizes recent observations on the role of total and specific amino acids in promoting protein anabolism in human cancer and revisits prior studies in this context. RECENT FINDINGS Analysis of muscle changes in advanced cancer patients indicated opportunities for inducing anabolism. Maintenance and gain in muscle was reported in a majority of patients, from initiation of oncologic treatment and before the final refractory stage. In addition to being substrates, some amino acids, for example leucine, act as intracellular signals to promote protein synthesis. Recent acute studies demonstrated that provision of amino acids, sufficient to considerably elevate circulating leucine concentrations concurrent with other amino acid and nutrient availability, resulted in significant protein anabolism in cancer patients. This occurred even during weight loss and inflammation. SUMMARY Patients with cancer have an anabolic potential to be exploited early on in cachexia development. High-leucine and protein supplements are worth testing as part of a multimodal anabolic approach in long-term trials to confirm their efficacy to sustain anabolism, and attenuate or even reverse muscle wasting.
Collapse
Affiliation(s)
- Stéphanie Chevalier
- aDepartment of Medicine bSchool of Dietetics and Human Nutrition, McGill University cMcGill University Health Centre-Research Institute, Montreal, Quebec, Canada
| | | |
Collapse
|
56
|
Fuller JC, Arp LH, Diehl LM, Landin KL, Baier SM, Rathmacher JA. Subchronic toxicity study of β-hydroxy-β-methylbutyric free acid in Sprague–Dawley rats. Food Chem Toxicol 2014; 67:145-53. [DOI: 10.1016/j.fct.2014.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/04/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
57
|
High-intensity interval training and β-hydroxy-β-methylbutyric free acid improves aerobic power and metabolic thresholds. J Int Soc Sports Nutr 2014; 11:16. [PMID: 24782684 PMCID: PMC4004506 DOI: 10.1186/1550-2783-11-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous research combining Calcium β-hydroxy-β-methylbutyrate (CaHMB) and running high-intensity interval training (HIIT) have shown positive effects on aerobic performance measures. The purpose of this study was to examine the effect of β-hydroxy-β-methylbutyric free acid (HMBFA) and cycle ergometry HIIT on maximal oxygen consumption (VO2peak), ventilatory threshold (VT), respiratory compensation point (RCP) and time to exhaustion (Tmax) in college-aged men and women. METHODS Thirty-four healthy men and women (Age: 22.7 ± 3.1 yrs ; VO2peak: 39.3 ± 5.0 ml · kg(-1) · min(-1)) volunteered to participate in this double-blind, placebo-controlled design study. All participants completed a series of tests prior to and following treatment. A peak oxygen consumption test was performed on a cycle ergometer to assess VO2peak, Tmax, VT, and RCP. Twenty-six participants were randomly assigned into either a placebo (PLA-HIIT) or 3 g per day of HMBFA (BetaTor™) (HMBFA-HIIT) group. Eight participants served as controls (CTL). Participants in the HIIT groups completed 12 HIIT (80-120% maximal workload) exercise sessions consisting of 5-6 bouts of a 2:1 minute cycling work to rest ratio protocol over a four-week period. Body composition was measured with dual energy x-ray absorptiometry (DEXA). Outcomes were assessed by ANCOVA with posttest means adjusted for pretest differences. RESULTS The HMBFA-HIIT intervention showed significant (p < 0.05) gains in VO2peak, and VT, versus the CTL and PLA-HIIT group. Both PLA-HIIT and HMBFA-HIIT treatment groups demonstrated significant (p < 0.05) improvement over CTL for Tmax, and RCP with no significant difference between the treatment groups. There were no significant differences observed for any measures of body composition. An independent-samples t-test confirmed that there were no significant differences between the training volumes for the PLA-HIIT and HMBFA-HIIT groups. CONCLUSIONS Our findings support the use of HIIT in combination with HMBFA to improve aerobic fitness in college age men and women. These data suggest that the addition of HMBFA supplementation may result in greater changes in VO2peak and VT than HIIT alone. STUDY REGISTRATION The study was registered on ClinicalTrials.gov (ID NCT01941368).
Collapse
|
58
|
Mariño G, Pietrocola F, Eisenberg T, Kong Y, Malik SA, Andryushkova A, Schroeder S, Pendl T, Harger A, Niso-Santano M, Zamzami N, Scoazec M, Durand S, Enot DP, Fernández ÁF, Martins I, Kepp O, Senovilla L, Bauvy C, Morselli E, Vacchelli E, Bennetzen M, Magnes C, Sinner F, Pieber T, López-Otín C, Maiuri MC, Codogno P, Andersen JS, Hill JA, Madeo F, Kroemer G. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol Cell 2014; 53:710-25. [PMID: 24560926 DOI: 10.1016/j.molcel.2014.01.016] [Citation(s) in RCA: 378] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/17/2013] [Accepted: 01/17/2014] [Indexed: 01/22/2023]
Abstract
Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.
Collapse
Affiliation(s)
- Guillermo Mariño
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Federico Pietrocola
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, 8036 Graz, Austria
| | - Yongli Kong
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shoaib Ahmad Malik
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | | | - Sabrina Schroeder
- Institute of Molecular Biosciences, University of Graz, 8036 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, University of Graz, 8036 Graz, Austria
| | - Alexandra Harger
- Institute of Medical Technologies and Health Management, Joanneum Research, 8036 Graz, Austria
| | - Mireia Niso-Santano
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Naoufal Zamzami
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Marie Scoazec
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France
| | - Silvère Durand
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France
| | - David P Enot
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France
| | - Álvaro F Fernández
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Isabelle Martins
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Oliver Kepp
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Laura Senovilla
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Chantal Bauvy
- Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France; INSERM U845, 75014 Paris, France
| | - Eugenia Morselli
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Erika Vacchelli
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Martin Bennetzen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Christoph Magnes
- Institute of Medical Technologies and Health Management, Joanneum Research, 8036 Graz, Austria
| | - Frank Sinner
- Institute of Medical Technologies and Health Management, Joanneum Research, 8036 Graz, Austria
| | - Thomas Pieber
- Institute of Medical Technologies and Health Management, Joanneum Research, 8036 Graz, Austria; Medical University of Graz, Division of Endocrinology and Metabolism, Department of Internal Medicine, 8036 Graz, Austria
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Maria Chiara Maiuri
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Patrice Codogno
- Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France; INSERM U845, 75014 Paris, France
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, 8036 Graz, Austria.
| | - Guido Kroemer
- Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, 94805 Villejuif, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| |
Collapse
|
59
|
Wilson JM, Lowery RP, Joy JM, Andersen JC, Wilson SMC, Stout JR, Duncan N, Fuller JC, Baier SM, Naimo MA, Rathmacher J. The effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid supplementation on muscle mass, strength, and power in resistance-trained individuals: a randomized, double-blind, placebo-controlled study. Eur J Appl Physiol 2014; 114:1217-27. [PMID: 24599749 PMCID: PMC4019830 DOI: 10.1007/s00421-014-2854-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/13/2014] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Studies utilizing beta-hydroxy-beta-methylbutyrate (HMB) supplementation in trained populations are limited. No long-term studies utilizing HMB free acid (HMB-FA) have been conducted. Therefore, we investigated the effects of 12 weeks of HMB-FA supplementation on skeletal muscle hypertrophy, body composition, strength, and power in trained individuals. We also determined the effects of HMB-FA on muscle damage and performance during an overreaching cycle. METHODS A three-phase double-blind, placebo- and diet-controlled randomized intervention study was conducted. Phase 1 was an 8-week-periodized resistance-training program; Phase 2 was a 2-week overreaching cycle; and Phase 3 was a 2-week taper. Muscle mass, strength, and power were examined at weeks 0, 4, 8, and 12 to assess the chronic effects of HMB-FA; and assessment of these, as well as cortisol, testosterone, and creatine kinase (CK) was performed at weeks 9 and 10 of the overreaching cycle. RESULTS HMB-FA resulted in increased total strength (bench press, squat, and deadlift combined) over the 12-week training (77.1 ± 18.4 vs. 25.3 ± 22.0 kg, p < 0.001); a greater increase in vertical jump power (991 ± 168 vs. 630 ± 167 W, p < 0.001); and increased lean body mass gain (7.4 ± 4.2 vs. 2.1 ± 6.1 kg, p < 0.001) in HMB-FA- and placebo-supplemented groups, respectively. During the overreaching cycle, HMB-FA attenuated increases in CK (-6 ± 91 vs. 277 ± 229 IU/l, p < 0.001) and cortisol (-0.2 ± 2.9 vs. 4.5 ± 1.7 μg/dl, p < 0.003) in the HMB-FA- and placebo-supplemented groups, respectively. CONCLUSIONS These results suggest that HMB-FA enhances hypertrophy, strength, and power following chronic resistance training, and prevents decrements in performance following the overreaching.
Collapse
Affiliation(s)
- Jacob M Wilson
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, 33606, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Santos-Fandila A, Zafra-Gómez A, Barranco A, Navalón A, Rueda R, Ramírez M. Quantitative determination of β-hydroxymethylbutyrate and leucine in culture media and microdialysates from rat brain by UHPLC-tandem mass spectrometry. Anal Bioanal Chem 2014; 406:2863-72. [PMID: 24590106 DOI: 10.1007/s00216-014-7694-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/10/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
The main objective of the present work was to develop a method to determine β-hydroxymethylbutyrate (HMB) and leucine (Leu) in culture media and brain microdialysates. An accurate, selective, and cost-effective method, based on the use of ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), was developed for the identification and quantification of both compounds. The method consisted of sample dilution, direct injection onto the chromatographic equipment, and quantification with a triple quadrupole mass spectrometer using an electrospray ionization interface in positive mode. The procedure and the UHPLC-MS/MS parameters were accurately optimized to achieve the highest recoveries and to enhance the analytical characteristics of the method. For chromatographic separation, an Acquity UPLC BEH Hilic column using acetonitrile-water gradient with formic acid as additive was employed. The total run time was 4 min. The limits of detection (LODs) obtained ranged from 0.01 to 0.04 μg mL(-1), and the limits of quantification (LOQs) ranged from 0.04 to 0.12 μg mL(-1). Precision (expressed as relative standard deviation) was lower than 15 %, and the determination coefficient (R (2)) was higher than 99.0 % with a residual deviation for each calibration point lower than ±25 %. Mean recoveries were between 85 and 115 %. The method was successfully applied to the analysis of both compounds, HMB and Leu, in samples obtained from an experiment of blood-brain barrier (BBB) passage in vitro and to an experiment of brain microdialysis in rats in vivo after an oral challenge with HMB to detect its appearance in the brain.
Collapse
Affiliation(s)
- A Santos-Fandila
- Discovery R&D, Abbott Nutrition Research and Development, Abbott Laboratories, Camino de Purchil 68, 18004, Granada, Spain,
| | | | | | | | | | | |
Collapse
|
61
|
Wheatley SM, El-Kadi SW, Suryawan A, Boutry C, Orellana RA, Nguyen HV, Davis SR, Davis TA. Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of β-hydroxy-β-methylbutyrate. Am J Physiol Endocrinol Metab 2014; 306:E91-9. [PMID: 24192287 PMCID: PMC4520576 DOI: 10.1152/ajpendo.00500.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB). To determine the effects of HMB on protein synthesis and the regulation of translation initiation and degradation pathways, overnight-fasted neonatal pigs were infused with HMB at 0, 20, 100, or 400 μmol·kg body wt(-1)·h(-1) for 1 h (HMB 0, HMB 20, HMB 100, or HMB 400). Plasma HMB concentrations increased with infusion and were 10, 98, 316, and 1,400 nmol/ml in the HMB 0, HMB 20, HMB 100, and HMB 400 pigs. Protein synthesis rates in the longissimus dorsi (LD), gastrocnemius, soleus, and diaphragm muscles, lung, and spleen were greater in HMB 20 than in HMB 0, and in the LD were greater in HMB 100 than in HMB 0. HMB 400 had no effect on protein synthesis. Eukaryotic initiation factor (eIF)4E·eIF4G complex formation and ribosomal protein S6 kinase-1 and 4E-binding protein-1 phosphorylation increased in LD, gastrocnemius, and soleus muscles with HMB 20 and HMB 100 and in diaphragm with HMB 20. Phosphorylation of eIF2α and elongation factor 2 and expression of system A transporter (SNAT2), system L transporter (LAT1), muscle RING finger 1 protein (MuRF1), muscle atrophy F-box (atrogin-1), and microtubule-associated protein light chain 3 (LC3-II) were unchanged. Results suggest that supplemental HMB enhances protein synthesis in skeletal muscle of neonates by stimulating translation initiation.
Collapse
Affiliation(s)
- Scott M Wheatley
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Ortiz A. β-Hydroxy-β-Methylbutyrate Supplementation in Special Populations. Strength Cond J 2013. [DOI: 10.1519/ssc.0000000000000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
63
|
Nunes EA, Gonçalves-Neto LM, Ferreira FB, dos Santos C, Fernandes LC, Boschero AC, Calder PC, Rafacho A. Glucose intolerance induced by glucocorticoid excess is further impaired by co-administration with β-hydroxy-β-methylbutyrate in rats. Appl Physiol Nutr Metab 2013; 38:1137-46. [DOI: 10.1139/apnm-2012-0456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucocorticoid (GC) excess alters glucose homeostasis and promotes modifications in murinometric and anthropometric parameters in rodents and humans, respectively. β-hydroxy-β-methylbutyrate (HMB), a leucine metabolite, has been proposed as a nutritional strategy for preventing muscle wasting, but few data regarding its effects on glucose homeostasis are available. Here, we analyzed whether the effects of GC excess on glucose homeostasis may be attenuated or exacerbated by the concomitant ingestion of HMB. Adult Wistar rats (90-days-old) were assigned to four groups: (1) vehicle treated (Ctl), (2) dexamethasone (DEX) treated (Dex), (3) HMB treated (Hmb), and (4) DEX plus HMB treated (DexHmb). Dex groups received DEX (1 mg·kg body weight (BW)−1, intraperitoneal) for 5 consecutive days. HMB groups ingested HMB (320 mg·kg BW−1, oral gavage) for the same 5 days. HMB ingestion did not attenuate the effects of DEX on food intake and body weight loss, changes in masses of several organs, insulin resistance, and glucose intolerance (p > 0.05). In fact, in DexHmb rats, there was increased fasting glycemia and exacerbated glucose intolerance with the main effect attributed to DEX treatment (p < 0.05). HMB exerted no attenuating effect on plasma triacylglycerol levels from DexHmb rats, but it seems to attenuate the lipolysis induced by β-adrenergic stimulation (20 μmol·L−1isoproterenol) in fragments of retroperitoneal adipose tissue from DexHmb rats. Therefore, HMB does not attenuate the diabetogenic characteristics of GC excess. In fact, the data suggest that HMB may exacerbate GC-induced glucose intolerance.
Collapse
Affiliation(s)
- Everson A. Nunes
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Luiz M. Gonçalves-Neto
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Francielle B.D. Ferreira
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Cristiane dos Santos
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Luiz C. Fernandes
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Antonio C. Boschero
- Department of Functional and Structural Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Philip C. Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alex Rafacho
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| |
Collapse
|
64
|
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Appl Microbiol Biotechnol 2013; 98:297-311. [DOI: 10.1007/s00253-013-5310-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
|
65
|
Beasley JM, Shikany JM, Thomson CA. The role of dietary protein intake in the prevention of sarcopenia of aging. Nutr Clin Pract 2013; 28:684-90. [PMID: 24163319 DOI: 10.1177/0884533613507607] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia is defined as an age-related decrease in muscle mass and performance. Several consensus definitions of sarcopenia exist, each providing different cut points and methodologies for assessing muscle mass and muscle strength. Thus, wide variation in the prevalence of sarcopenia has been reported, generally ranging up to 45% for men and 26% for women. Risk factors for sarcopenia include age, malnutrition, and physical inactivity. Additional evidence suggests a protective role for protein supplementation in older adults to preserve lean body mass and prevent frailty, accepted intervention targets for reducing the risk of sarcopenia. Protein supplements vary widely in their composition, and small trials of heterogeneous study designs have made it difficult to extrapolate findings to develop data-driven, evidence-based recommendations for protein supplementation in sarcopenia prevention. Short-term randomized controlled trials of muscle protein synthesis have demonstrated that whey protein increases synthesis more so than casein or soy isolates. Studies also suggest that essential amino acids stimulate muscle protein synthesis to a greater extent than nonessential amino acids. This review summarizes the epidemiological and clinical trial evidence establishing the current definitions for sarcopenia and provides an overview of the state of the evidence for protein supplementation to prevent and/or mitigate sarcopenia.
Collapse
Affiliation(s)
- Jeannette M Beasley
- Jeannette M. Beasley, Assistant Professor, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Ave, Belfer 1312 C, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
66
|
Leucine and HMB differentially modulate proteasome system in skeletal muscle under different sarcopenic conditions. PLoS One 2013; 8:e76752. [PMID: 24124592 PMCID: PMC3790739 DOI: 10.1371/journal.pone.0076752] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/29/2013] [Indexed: 12/23/2022] Open
Abstract
In the present study we have compared the effects of leucine supplementation and its metabolite β-hydroxy-β-methyl butyrate (HMB) on the ubiquitin-proteasome system and the PI3K/Akt pathway during two distinct atrophic conditions, hindlimb immobilization and dexamethasone treatment. Leucine supplementation was able to minimize the reduction in rat soleus mass driven by immobilization. On the other hand, leucine supplementation was unable to provide protection against soleus mass loss in dexamethasone treated rats. Interestingly, HMB supplementation was unable to provide protection against mass loss in all treatments. While solely fiber type I cross sectional area (CSA) was protected in immobilized soleus of leucine-supplemented rats, none of the fiber types were protected by leucine supplementation in rats under dexamethasone treatment. In addition and in line with muscle mass results, HMB treatment did not attenuate CSA decrease in all fiber types against either immobilization or dexamethasone treatment. While leucine supplementation was able to minimize increased expression of both Mafbx/Atrogin and MuRF1 in immobilized rats, leucine was only able to minimize Mafbx/Atrogin in dexamethasone treated rats. In contrast, HMB was unable to restrain the increase in those atrogenes in immobilized rats, but in dexamethasone treated rats, HMB minimized increased expression of Mafbx/Atrogin. The amount of ubiquitinated proteins, as expected, was increased in immobilized and dexamethasone treated rats and only leucine was able to block this increase in immobilized rats but not in dexamethasone treated rats. Leucine supplementation maintained soleus tetanic peak force in immobilized rats at normal level. On the other hand, HMB treatment failed to maintain tetanic peak force regardless of treatment. The present data suggested that the anti-atrophic effects of leucine are not mediated by its metabolite HMB.
Collapse
|
67
|
Beta-hydroxy-beta-methylbutyrate supplementation in health and disease: a systematic review of randomized trials. Amino Acids 2013; 45:1273-92. [PMID: 24057808 DOI: 10.1007/s00726-013-1592-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 09/05/2013] [Indexed: 12/13/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB), a metabolite of the branched-chain amino acid leucine, is extensively used by athletes and bodybuilders in order to increase strength, muscle mass and exercise performance. We performed a systematic review of the clinical literature on the effectiveness of HMB supplementation in healthy and pathological conditions (i.e. training programs, aging, acute and chronic diseases, and after bariatric surgery). We reviewed all clinical trials indexed in Medline that tested HMB supplementation as well as all the experimental data regarding HMB intracellular mechanisms of action. Search terms included: randomized controlled trials, controlled clinical trials, single- and double-blind method, HMB, proteolytic pathways, muscle atrophy, cachexia, and training. We found out 13 studies testing HMB in healthy young trained subjects, 11 in healthy young untrained subjects, 9 in patients affected by chronic diseases (i.e. cancer, HIV, chronic obstructive pulmonary disease), and 6 in elderly subjects. The indexed studies support that HMB is effective in preventing exercise-related muscle damage in healthy trained and untrained individuals as well as muscle loss during chronic diseases. Most of the selected studies showed the effectiveness of HMB in preventing exercise-related muscle damage in healthy trained and untrained individuals as well as muscle loss during chronic diseases. The usual dose of 3 g/day may be routinely recommended to maintain or improve muscle mass and function in health and disease. The safety profile of HMB is unequivocal. Further, well-designed clinical studies are needed to confirm effectiveness and mode of action of HMB, particularly in pathological conditions.
Collapse
|
68
|
Alway SE, Pereira SL, Edens NK, Hao Y, Bennett BT. β-Hydroxy-β-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy. Exp Gerontol 2013; 48:973-84. [DOI: 10.1016/j.exger.2013.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/04/2013] [Accepted: 06/23/2013] [Indexed: 01/06/2023]
|
69
|
Wilson JM, Fitschen PJ, Campbell B, Wilson GJ, Zanchi N, Taylor L, Wilborn C, Kalman DS, Stout JR, Hoffman JR, Ziegenfuss TN, Lopez HL, Kreider RB, Smith-Ryan AE, Antonio J. International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB). J Int Soc Sports Nutr 2013; 10:6. [PMID: 23374455 PMCID: PMC3568064 DOI: 10.1186/1550-2783-10-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/12/2022] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the use of beta-hydroxy-beta-methylbutyrate (HMB) as a nutritional supplement. The ISSN has concluded the following. 1. HMB can be used to enhance recovery by attenuating exercise induced skeletal muscle damage in trained and untrained populations. 2. If consuming HMB, an athlete will benefit from consuming the supplement in close proximity to their workout. 3. HMB appears to be most effective when consumed for 2 weeks prior to an exercise bout. 4. Thirty-eight mg·kg·BM-1 daily of HMB has been demonstrated to enhance skeletal muscle hypertrophy, strength, and power in untrained and trained populations when the appropriate exercise prescription is utilized. 5. Currently, two forms of HMB have been used: Calcium HMB (HMB-Ca) and a free acid form of HMB (HMB-FA). HMB-FA may increase plasma absorption and retention of HMB to a greater extent than HMB-CA. However, research with HMB-FA is in its infancy, and there is not enough research to support whether one form is superior. 6. HMB has been demonstrated to increase LBM and functionality in elderly, sedentary populations. 7. HMB ingestion in conjunction with a structured exercise program may result in greater declines in fat mass (FM). 8. HMB's mechanisms of action include an inhibition and increase of proteolysis and protein synthesis, respectively. 9. Chronic consumption of HMB is safe in both young and old populations.
Collapse
Affiliation(s)
- Jacob M Wilson
- Department of Health Sciences and Human Performance, University of Tampa, Tampa, FL, USA
| | - Peter J Fitschen
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Bill Campbell
- Exercise and Performance Nutrition Laboratory, Dept. of Physical Education and Exercise Science, University of South Florida, 4202 E. Fowler Avenue, PED 214, Tampa, FL, 33620, USA
| | - Gabriel J Wilson
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nelo Zanchi
- Laboratory of Applied Nutrition and Metabolism, Physical Education and School of Sports, University of São Paulo, São Paulo, Brazil
| | - Lem Taylor
- Human Performance Laboratory, Exercise & Sport Science Department, University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Colin Wilborn
- Human Performance Laboratory, Exercise & Sport Science Department, University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Douglas S Kalman
- Miami Research Associates, Endocrinology & Nutrition Department, 6141 Sunset Drive - Suite 301, Miami, FL, 33143, USA
| | - Jeffrey R Stout
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Jay R Hoffman
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | | | - Hector L Lopez
- The Center for Applied Health Sciences, Stow, OH, 44224, USA.,Supplement Safety Solutions, Bedford, MA, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Abbie E Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599-8605, USA
| | - Jose Antonio
- Exercise and Sports Science, Nova Southeastern University, Davie, FL, 33314, USA
| |
Collapse
|
70
|
Kim JS, Park YM, Lee SR, Masad IS, Khamoui AV, Jo E, Park BS, Arjmandi BH, Panton LB, Lee WJ, Grant SC. β-hydroxy-β-methylbutyrate did not enhance high intensity resistance training-induced improvements in myofiber dimensions and myogenic capacity in aged female rats. Mol Cells 2012; 34:439-48. [PMID: 23149873 PMCID: PMC3887788 DOI: 10.1007/s10059-012-0196-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/30/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022] Open
Abstract
Older women exhibit blunted skeletal muscle hypertrophy following resistance training (RT) compared to other age and gender cohorts that is partially due to an impaired regenerative capacity. In the present study, we examined whether β-hydroxy-β-methylbutyrate (HMB) provision to aged female rodents would enhance regenerative mechanisms and facilitate RT-induced myofiber growth. Nineteen-month old female Sprague-Dawley rats were randomly divided into three groups: HMB (0.48 g/kg/d; n = 6), non-HMB (n = 6), and control (n = 4). HMB and non-HMB groups underwent RT every third day for 10 weeks using a ladder climbing apparatus. Whole body strength, grip strength, and body composition was evaluated before and after RT. The gastrocnemius and soleus muscles were analyzed using magnetic resonance diffusion tensor imaging, RT-PCR, and immunohistochemistry to determine myofiber dimensions, transcript expression, and satellite cells/myonuclei, respectively. ANOVAs were used with significance set at p < 0.05. There were significant time effects (pre vs. post) for whole body strength (+262%), grip strength (+17%), lean mass (+20%), and fat mass (-19%). Both RT groups exhibited significant increases in the mean myofiber cross-sectional area (CSA) in the gastrocnemius and soleus (+8-22%) compared to control. Moreover, both groups demonstrated significant increases in the numbers of satellite cells (+100-108%) and myonuclei (+32%) in the soleus but not the gastrocnemius. A significant IGF-I mRNA elevation was only observed in soleus of the HMB group (+33%) whereas MGF and myogenin increased significantly in both groups (+32-40%). Our findings suggest that HMB did not further enhance intense RT-mediated myogenic mechanisms and myofiber CSA in aged female rats.
Collapse
Affiliation(s)
- Jeong-Su Kim
- Department of Nutrition, Food, and Exercise Sciences, The Florida State University, Tallahassee, FL, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Wilson JM, Wilson SM, Loenneke JP, Wray M, Norton LE, Campbell BI, Lowery RP, Stout JR. Effects of Amino Acids and their Metabolites on Aerobic and Anaerobic Sports. Strength Cond J 2012. [DOI: 10.1519/ssc.0b013e31825663bd] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
72
|
Bruckbauer A, Zemel MB. Effects of dairy consumption on SIRT1 and mitochondrial biogenesis in adipocytes and muscle cells. Nutr Metab (Lond) 2011; 8:91. [PMID: 22185590 PMCID: PMC3264668 DOI: 10.1186/1743-7075-8-91] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/20/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent data from this laboratory suggest that components of dairy foods may serve as activators of SIRT1 (Silent Information Regulator Transcript 1), and thereby participate in regulation of glucose and lipid metabolism. In this study, an ex-vivo/in-vitro approach was used to examine the integrated effects of dairy diets on SIRT1 activation in two key target tissues (adipose and muscle tissue). METHODS Serum from overweight and obese subjects fed low or high dairy diets for 28 days was added to culture medium (similar to conditioned media) to treat cultured adipocytes and muscle cells for 48 hours. RESULTS Treatment with high dairy group conditioned media resulted in 40% increased SIRT1 gene expression in both tissues (p < 0.01) and 13% increased enzyme activity in adipose tissue compared to baseline. This was associated with increased gene expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF1), cytochrome oxidase c subunit 7 (Cox 7), NADH dehydrogenase and uncoupling protein 2 (UCP2) in adipocytes as well as uncoupling protein 3 (UCP3), NRF1 and Cox 7 in muscle cells (p < 0.05). Further, direct incubation of physiological concentrations of leucine and its metabolites α-Ketoisocaproic acid (KIC) and β-hydroxy-methylbuteric acid (HMB) with recombinant human SIRT1 enzyme resulted in 30 to 50% increase of SIRT1 activity (p < 0.05). CONCLUSIONS These data indicate that dairy consumption leads to systemic effects, which may promote mitochondrial biogenesis in key target tissues such as muscle and adipose tissue both by direct activation of SIRT1 as well as by SIRT1-independent pathways.
Collapse
Affiliation(s)
- Antje Bruckbauer
- Department of Nutrition, University of Tennessee, Knoxville, TN, USA.
| | | |
Collapse
|
73
|
Metabolic and functional effects of beta-hydroxy-beta-methylbutyrate (HMB) supplementation in skeletal muscle. Eur J Appl Physiol 2011; 112:2531-7. [PMID: 22075640 DOI: 10.1007/s00421-011-2224-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/22/2011] [Indexed: 12/22/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.
Collapse
|
74
|
Pramuková B, Čokášová D, Salaj R. Composition of the athletes diet. POTRAVINARSTVO 2011. [DOI: 10.5219/126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sports nutrition is a constantly evolving field with many of research papers published annually. However, designing the most suitable sports diet is very difficult. It must be given to the type of training, its duration and intensity, the age and sex of the athlete and also for overall health. The aim of this article is to summarize knowledges about sports nutrition, especially intake of carbohydrates, proteins, fats and dietary supplements and their influence on the performance and recovery of the athlete.
Collapse
|
75
|
Pimentel GD, Rosa JC, Lira FS, Zanchi NE, Ropelle ER, Oyama LM, Oller do Nascimento CM, de Mello MT, Tufik S, Santos RV. β-Hydroxy-β-methylbutyrate (HMβ) supplementation stimulates skeletal muscle hypertrophy in rats via the mTOR pathway. Nutr Metab (Lond) 2011; 8:11. [PMID: 21345206 PMCID: PMC3048483 DOI: 10.1186/1743-7075-8-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/23/2011] [Indexed: 11/10/2022] Open
Abstract
β-Hydroxy-β-methylbutyrate (HMβ) supplementation is used to treat cancer, sepsis and exercise-induced muscle damage. However, its effects on animal and human health and the consequences of this treatment in other tissues (e.g., fat and liver) have not been examined. The purpose of this study was to evaluate the effects of HMβ supplementation on skeletal muscle hypertrophy and the expression of proteins involved in insulin signalling. Rats were treated with HMβ (320 mg/kg body weight) or saline for one month. The skeletal muscle hypertrophy and insulin signalling were evaluated by western blotting, and hormonal concentrations were evaluated using ELISAs. HMβ supplementation induced muscle hypertrophy in the extensor digitorum longus (EDL) and soleus muscles and increased serum insulin levels, the expression of the mammalian target of rapamycin (mTOR) and phosphorylation of p70S6K in the EDL muscle. Expression of the insulin receptor was increased only in liver. Thus, our results suggest that HMβ supplementation can be used to increase muscle mass without adverse health effects.
Collapse
Affiliation(s)
- Gustavo D Pimentel
- Department of Physiology of Nutrition, Federal University of São Paulo (UNIFESP), São Paulo, SP - Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Portal S, Zadik Z, Rabinowitz J, Pilz-Burstein R, Adler-Portal D, Meckel Y, Cooper DM, Eliakim A, Nemet D. The effect of HMB supplementation on body composition, fitness, hormonal and inflammatory mediators in elite adolescent volleyball players: a prospective randomized, double-blind, placebo-controlled study. Eur J Appl Physiol 2011; 111:2261-9. [PMID: 21327797 DOI: 10.1007/s00421-011-1855-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
Abstract
The use of ergogenic nutritional supplements is becoming inseparable from competitive sports. β-Hydroxy-β-Methylbutyric acid (HMB) has recently been suggested to promote fat-free mass (FFM) and strength gains during resistance training in adults. In this prospective randomized, double-blind, placebo-controlled study, we studied the effect of HMB (3 g/day) supplementation on body composition, muscle strength, anaerobic and aerobic capacity, anabolic/catabolic hormones and inflammatory mediators in elite, national team level adolescent volleyball players (13.5-18 years, 14 males, 14 females, Tanner stage 4-5) during the first 7 weeks of the training season. HMB led to a significant greater increase in FFM by skinfold thickness (56.4 ± 10.2 to 56.3 ± 8.6 vs. 59.3 ± 11.3 to 61.6 ± 11.3 kg in the control and HMB group, respectively, p < 0.001). HMB led to a significant greater increase in both dominant and non-dominant knee flexion isokinetic force/FFM, measured at fast (180°/sec) and slow (60°/sec) angle speeds, but had no significant effect on knee extension and elbow flexion and extension. HMB led to a significant greater increase in peak and mean anaerobic power determined by the Wingate anaerobic test (peak power: 15.5 ± 1.6 to 16.2 ± 1.2 vs. 15.4 ± 1.6 to 17.2 ± 1.2 watts/FFM, mean power: 10.6 ± 0.9 to 10.8 ± 1.1 vs. 10.7 ± 0.8 to 11.8 ± 1.0 watts/FFM in control and HMB group, respectively, p < 0.01), with no effect on fatigue index. HMB had no significant effect on aerobic fitness or on anabolic (growth hormone, IGF-I, testosterone), catabolic (cortisol) and inflammatory mediators (IL-6 and IL-1 receptor antagonist). HMB supplementation was associated with greater increases in muscle mass, muscle strength and anaerobic properties with no effect on aerobic capacity suggesting some advantage for its use in elite adolescent volleyball players during the initial phases of the training season. These effects were not accompanied by hormonal and inflammatory mediator changes.
Collapse
Affiliation(s)
- Shawn Portal
- School of Nutritional Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
The scientific literature contains an abundance of information on the nutritional demands of athletes. However, designing the most suitable sports diet is very difficult.The principal aim of this article is to summarize knowledge about sports nutrition, especially the intake of macronutrients and dietary supplements.
Collapse
Affiliation(s)
- B Pramuková
- Institute of the Experimental Medicine, Faculty of Medicine UPJŠ, Košice, Slovakia
| | | | | |
Collapse
|
78
|
A leucine-rich diet and exercise affect the biomechanical characteristics of the digital flexor tendon in rats after nutritional recovery. Amino Acids 2010; 42:329-36. [DOI: 10.1007/s00726-010-0810-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/08/2010] [Indexed: 12/21/2022]
|