51
|
Kao CW, Bakshi M, Sherameti I, Dong S, Reichelt M, Oelmüller R, Yeh KW. A Chinese cabbage (Brassica campetris subsp. Chinensis) τ-type glutathione-S-transferase stimulates Arabidopsis development and primes against abiotic and biotic stress. PLANT MOLECULAR BIOLOGY 2016; 92:643-659. [PMID: 27796720 DOI: 10.1007/s11103-016-0531-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/19/2016] [Indexed: 05/20/2023]
Abstract
The beneficial root-colonizing fungus Piriformospora indica stimulates root development of Chinese cabbage (Brassica campestris subsp. Chinensis) and this is accompanied by the up-regulation of a τ-class glutathione (GSH)-S-transferase gene (BcGSTU) (Lee et al. 2011) in the roots. BcGSTU expression is further promoted by osmotic (salt and PEG) and heat stress. Ectopic expression of BcGSTU in Arabidopsis under the control of the 35S promoter results in the promotion of root and shoot growth as well as better performance of the plants under abiotic (150 mM NaCl, PEG, 42 °C) and biotic (Alternaria brassicae infection) stresses. Higher levels of glutathione, auxin and stress-related (salicylic and jasmonic acid) phytohormones as well as changes in the gene expression profile result in better performance of the BcGSTU expressors upon exposure to stress. Simultaneously the plants are primed against upcoming stresses. We propose that BcGSTU is a target of P. indica in Chinese cabbage roots because the enzyme participates in balancing growth and stress responses, depending on the equilibrium of the symbiotic interaction. A comparable function of BcGST in transgenic Arabidopsis makes the enzyme a valuable tool for agricultural applications.
Collapse
Affiliation(s)
- Chih-Wei Kao
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Madhunita Bakshi
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Irena Sherameti
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Michael Reichelt
- Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Ralf Oelmüller
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
52
|
Wang X, Cai X, Xu C, Wang Q, Dai S. Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics. Int J Mol Sci 2016; 17:E1706. [PMID: 27763546 PMCID: PMC5085738 DOI: 10.3390/ijms17101706] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 02/04/2023] Open
Abstract
Plant drought tolerance is a complex trait that requires a global view to understand its underlying mechanism. The proteomic aspects of plant drought response have been extensively investigated in model plants, crops and wood plants. In this review, we summarize recent proteomic studies on drought response in leaves to reveal the common and specialized drought-responsive mechanisms in different plants. Although drought-responsive proteins exhibit various patterns depending on plant species, genotypes and stress intensity, proteomic analyses show that dominant changes occurred in sensing and signal transduction, reactive oxygen species scavenging, osmotic regulation, gene expression, protein synthesis/turnover, cell structure modulation, as well as carbohydrate and energy metabolism. In combination with physiological and molecular results, proteomic studies in leaves have helped to discover some potential proteins and/or metabolic pathways for drought tolerance. These findings provide new clues for understanding the molecular basis of plant drought tolerance.
Collapse
Affiliation(s)
- Xiaoli Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaofeng Cai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Chenxi Xu
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Quanhua Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shaojun Dai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
53
|
Yu Y, Wang N, Hu R, Xiang F. Genome-wide identification of soybean WRKY transcription factors in response to salt stress. SPRINGERPLUS 2016; 5:920. [PMID: 27386364 PMCID: PMC4927560 DOI: 10.1186/s40064-016-2647-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/22/2016] [Indexed: 01/23/2023]
Abstract
Members of the large family of WRKY transcription factors are involved in a wide range of developmental and physiological processes, most particularly in the plant response to biotic and abiotic stress. Here, an analysis of the soybean genome sequence allowed the identification of the full complement of 188 soybean WRKY genes. Phylogenetic analysis revealed that soybean WRKY genes were classified into three major groups (I, II, III), with the second group further categorized into five subgroups (IIa-IIe). The soybean WRKYs from each group shared similar gene structures and motif compositions. The location of the GmWRKYs was dispersed over all 20 soybean chromosomes. The whole genome duplication appeared to have contributed significantly to the expansion of the family. Expression analysis by RNA-seq indicated that in soybean root, 66 of the genes responded rapidly and transiently to the imposition of salt stress, all but one being up-regulated. While in aerial part, 49 GmWRKYs responded, all but two being down-regulated. RT-qPCR analysis showed that in the whole soybean plant, 66 GmWRKYs exhibited distinct expression patterns in response to salt stress, of which 12 showed no significant change, 35 were decreased, while 19 were induced. The data present here provide critical clues for further functional studies of WRKY gene in soybean salt tolerance.
Collapse
Affiliation(s)
- Yanchong Yu
- />The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100 Shandong China
- />Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 Shandong China
| | - Nan Wang
- />The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100 Shandong China
| | - Ruibo Hu
- />Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road No. 189, Qingdao, 266101 Shandong China
| | - Fengning Xiang
- />The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100 Shandong China
| |
Collapse
|
54
|
Fracasso A, Trindade LM, Amaducci S. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC PLANT BIOLOGY 2016; 16:115. [PMID: 27208977 PMCID: PMC4875703 DOI: 10.1186/s12870-016-0800-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/05/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Drought stress is the major environmental stress that affects plant growth and productivity. It triggers a wide range of responses detectable at molecular, biochemical and physiological levels. At the molecular level the response to drought stress results in the differential expression of several metabolic pathways. For this reason, exploring the subtle differences in gene expression of drought sensitive and drought tolerant genotypes enables the identification of drought-related genes that could be used for selection of drought tolerance traits. Genome-wide RNA-Seq technology was used to compare the drought response of two sorghum genotypes characterized by contrasting water use efficiency. RESULTS The physiological measurements carried out confirmed the drought sensitivity of IS20351 and the drought tolerance of IS22330 genotypes, as previously studied. The expression of drought-related genes was more abundant in the drought sensitive genotype IS20351 compared to the tolerant genotype IS22330. Under drought stress Gene Ontology enrichment highlighted a massive increase in transcript abundance in the sensitive genotype IS20351 in "response to stress" and "abiotic stimulus", as well as for "oxidation-reduction reaction". "Antioxidant" and "secondary metabolism", "photosynthesis and carbon fixation process", "lipids" and "carbon metabolism" were the pathways most affected by drought in the sensitive genotype IS20351. In addition, genotype IS20351 showed a lower constitutive expression level of "secondary metabolic process" (GO:0019748) and "glutathione transferase activity" (GO:000004364) under well-watered conditions. CONCLUSIONS RNA-Seq analysis proved to be a very useful tool to explore differences between sensitive and tolerant sorghum genotypes. Transcriptomics analysis results supported all the physiological measurements and were essential to clarify the tolerance of the two genotypes studied. The connection between differential gene expression and physiological response to drought unequivocally revealed the drought tolerance of genotype IS22330 and the strategy adopted to cope with drought stress.
Collapse
Affiliation(s)
- Alessandra Fracasso
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy.
| | - Luisa M Trindade
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, 6708 PD, Wageningen, The Netherlands
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122, Piacenza, Italy
| |
Collapse
|
55
|
Dong Y, Li C, Zhang Y, He Q, Daud MK, Chen J, Zhu S. Glutathione S-Transferase Gene Family in Gossypium raimondii and G. arboreum: Comparative Genomic Study and their Expression under Salt Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:139. [PMID: 26904090 PMCID: PMC4751282 DOI: 10.3389/fpls.2016.00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/27/2016] [Indexed: 05/06/2023]
Abstract
Glutathione S-transferases (GSTs) play versatile functions in multiple aspects of plant growth and development. A comprehensive genome-wide survey of this gene family in the genomes of G. raimondii and G. arboreum was carried out in this study. Based on phylogenetic analyses, the GST gene family of both two diploid cotton species could be divided into eight classes, and approximately all the GST genes within the same subfamily shared similar gene structure. Additionally, the gene structures between the orthologs were highly conserved. The chromosomal localization analyses revealed that GST genes were unevenly distributed across the genome in both G. raimondii and G. arboreum. Tandem duplication could be the major driver for the expansion of GST gene families. Meanwhile, the expression analysis for the selected 40 GST genes showed that they exhibited tissue-specific expression patterns and their expression were induced or repressed by salt stress. Those findings shed lights on the function and evolution of the GST gene family in Gossypium species.
Collapse
Affiliation(s)
- Yating Dong
- Department of Agronomy, Zhejiang UniversityHangzhou, China
| | - Cong Li
- Department of Agronomy, Zhejiang UniversityHangzhou, China
| | - Yi Zhang
- Department of Agronomy, Zhejiang UniversityHangzhou, China
| | - Qiuling He
- Department of Agronomy, Zhejiang UniversityHangzhou, China
| | - Muhammad K. Daud
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and TechnologyKohat, Pakistan
| | - Jinhong Chen
- Department of Agronomy, Zhejiang UniversityHangzhou, China
- *Correspondence: Jinhong Chen
| | - Shuijin Zhu
- Department of Agronomy, Zhejiang UniversityHangzhou, China
- Shuijin Zhu
| |
Collapse
|
56
|
Xu J, Xing XJ, Tian YS, Peng RH, Xue Y, Zhao W, Yao QH. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress. PLoS One 2015; 10:e0136960. [PMID: 26327625 PMCID: PMC4556630 DOI: 10.1371/journal.pone.0136960] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.
Collapse
Affiliation(s)
- Jing Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Xiao-Juan Xing
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yong-Sheng Tian
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Ri-He Peng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yong Xue
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Wei Zhao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| |
Collapse
|
57
|
Lo Cicero L, Madesis P, Tsaftaris A, Lo Piero AR. Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses. PHYTOCHEMISTRY 2015; 116:69-77. [PMID: 25819876 DOI: 10.1016/j.phytochem.2015.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 05/23/2023]
Abstract
The glutathione transferases (GSTs) are members of a superfamily of enzymes with pivotal role in the detoxification of both xenobiotic and endogenous compounds. In this work, the generation and characterization of transgenic tobacco plants over-expressing tau glutathione transferases from Citrus sinensis (CsGSTU1 and CsGSTU2) and several cross-mutate forms of these genes are reported. Putative transformed plants were verified for the presence of the transgenes and the relative quantification of transgene copy number was evaluated by Taqman real time PCR. The analysis of gene expression revealed that transformed plants exhibit high levels of CsGSTU transcription suggesting that the insertion of the transgenes occurred in transcriptional active regions of the tobacco genome. In planta studies demonstrate that transformed tobacco plants gain tolerance against fluorodifen. Simultaneously, the wild type CsGSTU genes were in vitro expressed and their kinetic properties were determined using fluorodifen as substrate. The results show that CsGSTU2 follows a Michaelis-Menten hyperbolic kinetic, whereas CsGSTU1 generates a sigmoid plot typical of the regulatory enzymes, thus suggesting that when working at sub-lethal fluorodifen concentrations CsGSTU2 can counteract the herbicide injury more efficiently than the CsGSTU1. Moreover, the transgenic tobacco plant over-expressing CsGSTs exhibited both drought and salinity stress tolerance. However, as we show that CsGSTUs do not function as glutathione peroxidase in vitro, the protective effect against salt and drought stress is not due to a direct scavenging activity of the oxidative stress byproducts. The transgenic tobacco plants, which are described in the present study, can be helpful for phytoremediation of residual xenobiotics in the environment and overall the over-expression of CsGSTUs can be helpful to develop genetically modified crops with high resistance to abiotic stresses.
Collapse
Affiliation(s)
- Luca Lo Cicero
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, 570 01 Thermi, Thessaloniki, Greece
| | - Athanasios Tsaftaris
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, 570 01 Thermi, Thessaloniki, Greece
| | - Angela Roberta Lo Piero
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy.
| |
Collapse
|
58
|
Xu XB, Ma XY, Lei HH, Song HM, Ying QC, Xu MJ, Liu SB, Wang HZ. Proteomic analysis reveals the mechanisms of Mycena dendrobii promoting transplantation survival and growth of tissue culture seedlings of Dendrobium officinale. J Appl Microbiol 2015; 118:1444-55. [PMID: 25732577 DOI: 10.1111/jam.12781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 01/30/2023]
Abstract
AIMS Dendrobium officinale is an important traditional Chinese medicinal herb. Its seedlings generally show low survival and growth when transferred from in vitro tissue culture to a greenhouse or field environment. In this study, the effect of Mycena dendrobii on the survival and growth of D. officinale tissue culture seedlings and the mechanisms involved was explored. METHODS AND RESULTS Mycena dendrobii were applied underneath the roots of D. officinale tissue culture seedlings. The seedling survival and growth were analysed. The root proteins induced by M. dendrobii were identified using two-dimensional (2-D) electrophoresis and matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF-MS). Mycena dendrobii treatment significantly enhanced survival and growth of D. officinale seedlings. Forty-one proteins induced by M. dendrobii were identified. Among them, 10 were involved in defence and stress response, two were involved in the formation of root or mycorrhizae, and three were related to the biosynthesis of bioactive constituents. CONCLUSIONS These results suggest that enhancing stress tolerance and promoting new root formation induced by M. dendrobii may improve the survival and growth of D. officinale tissue culture seedlings. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides a foundation for future use of M. dendrobii in the large-scale cultivation of Dendrobiums.
Collapse
Affiliation(s)
- X B Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - X Y Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - H H Lei
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - H M Song
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Q C Ying
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - M J Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - S B Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - H Z Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
59
|
Singh R, Pandey N, Naskar J, Shirke PA. Physiological performance and differential expression profiling of genes associated with drought tolerance in contrasting varieties of two Gossypium species. PROTOPLASMA 2015; 252:423-38. [PMID: 25149149 DOI: 10.1007/s00709-014-0686-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/01/2014] [Indexed: 05/26/2023]
Abstract
Cotton is mostly cultivated under rain-fed conditions in India, thus faces frequent drought conditions during its life cycle. Drought being a major stress factor responsible for yield penalty, there has always been a high priority to generate knowledge on adaptation and tolerance of cotton. In the present study, four cotton varieties, JKC-770 and KC-2 (Gossypium hirsutum), and JKC-717 and RAHS-187(Gossypium herbaceum), were imposed to drought. Under drought condition, differential changes in physiological characters like net photosynthesis, transpiration, stomatal conductance, chlorophyll fluorescence, relative water content (RWC), and predawn water potential (ψ 0) showed a change. While proline, malondialdehyde (MDA), and glutathione-S-transferase (GST) content increased along with a concomitant change in the expression of their associated genes. Under moderate stress, tolerant varieties maintain lower ψ 0 probably due to higher proline content as compared to sensitive varieties. Cyclic electron flow (CEF) also plays an important role in tolerance under mild water stress in G. hirsutum varieties. CEF not only activates at high light but also initiates at a very low light intensity. Expression analysis of genes reveals that drought-tolerant varieties showed enhanced detoxifying mechanism by up-regulation of asparagine synthase (AS), glutathione-S-transferase (GST), and methyl glyoxalase (GlyI) genes under drought stress. Up-regulation of Δ(1)-pyrroline-5-carboxylase synthase (Δ(1)P5CS) enhanced accumulation of proline, an osmolyte, under drought in tolerant varieties. While the drought-sensitive varieties showed up-regulation of ethylene responsive factor (ERF) and down-regulation of WRKY70 responsible for senescence of the leaf which correlated well with the high rate of leaf fall in sensitive varieties under water stress.
Collapse
Affiliation(s)
- Ruchi Singh
- Plant Physiology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | | | | | | |
Collapse
|
60
|
Gentile A, Dias LI, Mattos RS, Ferreira TH, Menossi M. MicroRNAs and drought responses in sugarcane. FRONTIERS IN PLANT SCIENCE 2015; 6:58. [PMID: 25755657 PMCID: PMC4337329 DOI: 10.3389/fpls.2015.00058] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 01/22/2015] [Indexed: 05/03/2023]
Abstract
There is a growing demand for renewable energy, and sugarcane is a promising bioenergy crop. In Brazil, the largest sugarcane producer in the world, sugarcane plantations are expanding into areas where severe droughts are common. Recent evidence has highlighted the role of miRNAs in regulating drought responses in several species, including sugarcane. This review summarizes the data from miRNA expression profiles observed in a wide array of experimental conditions using different sugarcane cultivars that differ in their tolerance to drought. We uncovered a complex regulation of sugarcane miRNAs in response to drought and discussed these data with the miRNA profiles observed in other plant species. The predicted miRNA targets revealed different transcription factors, proteins involved in tolerance to oxidative stress, cell modification, as well as hormone signaling. Some of these proteins might regulate sugarcane responses to drought, such as reduction of internode growth and shoot branching and increased leaf senescence. A better understanding on the regulatory network from miRNAs and their targets under drought stress has a great potential to contribute to sugarcane improvement, either as molecular markers as well as by using biotechnological approaches.
Collapse
Affiliation(s)
| | | | | | | | - Marcelo Menossi
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de CampinasCampinas, São Paulo, Brazil
| |
Collapse
|
61
|
Yin F, Liu M, Gao J, Zhang W, Qin C, Yang A, Luo C, Liu H, Shen Y, Lin H, Zhang Z, Pan G. Analysis of global gene expression profiles in tobacco roots under drought stress. Open Life Sci 2015. [DOI: 10.1515/biol-2015-0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractTobacco (Nicotiana tabacum L.) is an economically important and relatively drought-tolerant crop grown around the world. However, the molecular regulatory mechanisms involved in tobacco root development in response to drought stress are not wellknown. To gain insight into the transcriptome dynamics associated with drought resistance, genome-wide gene expression profiling of roots from a tobacco cultivar (Honghua Dajinyuan, a major flue-cured tobacco cultivar in Southwest China) under 20% PEG6000 treatment for 0, 6 h and 48 h were conducted using Solexa sequencing (Illumina Inc., San Diego, CA, USA). Over five million tags were generated from tobacco roots, including 229,344, 221,248 and 242,065 clean tags in three libraries, respectively. The most differentially expressed tags, with either log2FC > 2.0 for up-regulated genes or log2FC < -2.0 for down regulated genes (p < 0.001), were analyzed further. In comparison to the control, 1476 up-regulated and 1574 down-regulated differentially expressed genes (DEGs) were identified, except for unknown transcripts, which were grouped into 43 functional categories involved in seven significant pathways. The most enriched categories were those that were populated by transcripts involved in metabolism, signal transduction and cellular transport. Many genes and/or biological pathways were found to be common among the three libraries, for example, genes participating in transport, stress response, auxin transport and signaling, etc. Next, the expression patterns of 12 genes were assessed with quantitative real-time PCR, the results of which agreed with the Solexa analysis. In conclusion, we revealed complex changes in the transcriptome during tobacco root development related to drought resistance, and provided a comprehensive set of data that is essential to understanding the molecular regulatory mechanisms involved. These data may prove valuable in future studies of the molecular mechanisms regulating root development in response to drought stress in tobacco and other plants.
Collapse
|
62
|
Faghani E, Gharechahi J, Komatsu S, Mirzaei M, Khavarinejad RA, Najafi F, Farsad LK, Salekdeh GH. Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. J Proteomics 2014; 114:1-15. [PMID: 25449836 DOI: 10.1016/j.jprot.2014.10.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/28/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED Comparative physiology and proteomic analyses were conducted to monitor the stress response of two wheat genotypes (SERI M 82 (SE) and SW89.5193/kAu2 (SW)) with contrasting responses to drought stress. Under stress condition, the tolerant genotype (SE) produced higher shoot and root biomasses, longer roots and accumulated higher level of ABA in leaves. Physiological measurements suggested that the SE genotype was more efficient in water absorption and could preserve more water presumably by controlling stomata closure. Proteomic analysis showed an increased abundance of proteins related to defense and oxidative stress responses such as GLPs, GST, and SOD, and those related to protein processing such as small HSPs in roots of both genotypes in response to drought stress. Interestingly, the abundance of proteins such as endo-1,3-beta-glucosidase, peroxidase, SAMS, and MDH significantly increased in roots or leaves of the SE genotype and decreased in that of the SW one. In addition, an increased abundance of APX was detected in leaves and roots of the SE genotype and a decreased abundance of 14-3-3 and ribosomal proteins were noted in the SW one in response to drought stress. Our findings led to a better understanding about the integrated physiology and proteome responses of wheat genotypes with nearly contrasting responses to drought stress. BIOLOGICAL SIGNIFICANCE We applied a comparative physiology and proteomic analysis to decipher the differential responses of two contrasting wheat genotypes to drought stress. Based on physiological measurements the tolerant genotype (SE) showed better drought response by developing deep root system, higher root and shoot biomasses, and higher level of ABA in leaves. Proteomic analysis showed an increased abundance of proteins related to defense and oxidative stress responses such as GLPs, GST, and SOD, and those related to protein processing such as small HSPs in roots of both genotypes in response to drought stress. In addition, the abundance of proteins such as glucan endo-1,3-beta-glucosidase, peroxidases, SAMS, and MDH increased in roots or leaves of the tolerant genotype (SE) and decreased in that of the sensitive genotype (SW). Overall, proteins related to oxidative stress, protein processing and photosynthesis showed decreased abundance to a greater extent in the sensitive genotype (SW).
Collapse
Affiliation(s)
- Elham Faghani
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Javad Gharechahi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Setsuko Komatsu
- National Institute of Crop Science, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | - Laleh Karimi Farsad
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran; Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
63
|
Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner S, Tari I. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 78:15-26. [PMID: 24607575 DOI: 10.1016/j.plaphy.2014.02.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/10/2014] [Indexed: 05/24/2023]
Abstract
A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions.
Collapse
Affiliation(s)
- Jolán Csiszár
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Edit Horváth
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Zsolt Váry
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Ágnes Gallé
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Szilvia Brunner
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Irma Tari
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
64
|
Sharma R, Sahoo A, Devendran R, Jain M. Over-expression of a rice tau class glutathione s-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS One 2014; 9:e92900. [PMID: 24663444 PMCID: PMC3963979 DOI: 10.1371/journal.pone.0092900] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/27/2014] [Indexed: 12/28/2022] Open
Abstract
Glutathione S-transferases (GSTs) are multifunctional proteins encoded by large gene family in plants, which play important role in cellular detoxification of several endobiotic and xenobiotic compounds. Previously, we suggested the diverse roles of rice GST gene family members in plant development and various stress responses based on their differential expression. In this study, we report the functional characterization of a rice tau class GST gene, OsGSTU4. OsGSTU4 fusion protein was found to be localized in nucleus and cytoplasm. The over-expression of OsGSTU4 in E. coli resulted in better growth and higher GST activity under various stress conditions. Further, we raised over-expression transgenic Arabidopsis plants to reveal its in planta function. These transgenic lines showed reduced sensitivity towards plant hormones, auxin and abscisic acid. Various analyses revealed improved tolerance in transgenic Arabidopsis plants towards salinity and oxidative stresses, which may be attributed to the lower accumulation of reactive oxygen species and enhanced GST activity. In addition, microarray analysis revealed up-regulation of several genes involved in stress responses and cellular detoxification processes in the transgenic plants as compared to wild-type. These results suggest that OsGSTU4 can be used as a good candidate for the generation of stress-tolerant crop plants.
Collapse
Affiliation(s)
- Raghvendra Sharma
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Annapurna Sahoo
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Ragunathan Devendran
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Mukesh Jain
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
65
|
Isolation of GsGST19 from Glycine soja and Analysis of Saline-Alkaline Tolerance for Transgenic Medicago sativa. ZUOWU XUEBAO 2013. [DOI: 10.3724/sp.j.1006.2012.00971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
66
|
Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK. Differential Expression of Rice Lambda Class GST Gene Family Members During Plant Growth, Development, and in Response to Stress Conditions. PLANT MOLECULAR BIOLOGY REPORTER 2013; 31:569-580. [DOI: 10.1007/s11105-012-0524-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
67
|
Wendelboe-Nelson C, Morris PC. Proteins linked to drought tolerance revealed by DIGE analysis of drought resistant and susceptible barley varieties. Proteomics 2013; 12:3374-85. [PMID: 23001927 DOI: 10.1002/pmic.201200154] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/13/2012] [Accepted: 09/10/2012] [Indexed: 01/01/2023]
Abstract
Drought is a major threat to world agriculture. In order to identify proteins associated with plant drought tolerance, barley varieties bred in the UK (Golden Promise) and Iraq (Basrah) were compared. The variety Basrah showed physiological adaptations to drought when compared to Golden Promise, for example relative water content of roots and shoots after 1 week of drought was much higher for Basrah than for Golden Promise. DIGE analysis was carried out on proteins from roots and leaves under control and drought conditions. Twenty-four leaf and 45 root proteins were identified by MALDI-TOF MS. The relative expression patterns of the identified proteins fell into a number of distinct classes. The variety Basrah is characterised by constitutive expression or higher drought-induced expression levels of proteins regulating ROS production and protein folding. Photosynthetic enzymes, by contrast, were downregulated in Basrah. Enzyme assays showed a good correlation between DIGE-derived protein abundance estimates and enzyme activity in extracts. Overall, this study shows that the enhanced drought tolerance of variety Basrah is driven by an enhanced regulation of ROS under drought.
Collapse
|
68
|
A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 2013; 14:7405-32. [PMID: 23549272 PMCID: PMC3645693 DOI: 10.3390/ijms14047405] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/28/2013] [Accepted: 03/14/2013] [Indexed: 01/05/2023] Open
Abstract
Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance.
Collapse
|
69
|
Xu J, Ji P, Wang B, Zhao L, Wang J, Zhao Z, Zhang Y, Li J, Xu P, Sun X. Transcriptome sequencing and analysis of wild Amur Ide (Leuciscus waleckii) inhabiting an extreme alkaline-saline lake reveals insights into stress adaptation. PLoS One 2013; 8:e59703. [PMID: 23573207 PMCID: PMC3613414 DOI: 10.1371/journal.pone.0059703] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/17/2013] [Indexed: 11/18/2022] Open
Abstract
Background Amur ide (Leuciscus waleckii) is an economically and ecologically important species in Northern Asia. The Dali Nor population inhabiting Dali Nor Lake, a typical saline-alkaline lake in Inner Mongolia, is well-known for its adaptation to extremely high alkalinity. Genome information is needed for conservation and aquaculture purposes, as well as to gain further understanding into the genetics of stress tolerance. The objective of the study is to sequence the transcriptome and obtain a well-assembled transcriptome of Amur ide. Results The transcriptome of Amur ide was sequenced using the Illumina platform and assembled into 53,632 cDNA contigs, with an average length of 647 bp and a N50 length of 1,094 bp. A total of 19,338 unique proteins were identified, and gene ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses classified all contigs into functional categories. Open Reading Frames (ORFs) were detected from 34,888 (65.1%) of contigs with an average length of 577 bp, while 9,638 full-length cDNAs were identified. Comparative analyses revealed that 31,790 (59.3%) contigs have a significant similarity to zebrafish proteins, and 27,096 (50.5%), 27,524 (51.3%) and 27,996 (52.2%) to teraodon, medaka and three-spined stickleback proteins, respectively. A total of 10,395 microsatellites and 34,299 SNPs were identified and classified. A dN/dS analysis on unigenes was performed, which identified that 61 of the genes were under strong positive selection. Most of the genes are associated with stress adaptation and immunity, suggesting that the extreme alkaline-saline environment resulted in fast evolution of certain genes. Conclusions The transcriptome of Amur ide had been deeply sequenced, assembled and characterized, providing a valuable resource for a better understanding of the Amur ide genome. The transcriptome data will facilitate future functional studies on the Amur ide genome, as well as provide insight into potential mechanisms for adaptation to an extreme alkaline-saline environment.
Collapse
Affiliation(s)
- Jian Xu
- Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Peifeng Ji
- Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Baosen Wang
- Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
- College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Lan Zhao
- Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jian Wang
- Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Zixia Zhao
- Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yan Zhang
- Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jiongtang Li
- Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Peng Xu
- Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
- * E-mail: (PX); (XS)
| | - Xiaowen Sun
- Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
- * E-mail: (PX); (XS)
| |
Collapse
|
70
|
Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK. Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. JOURNAL OF HAZARDOUS MATERIALS 2013; 248-249:228-37. [PMID: 23380449 DOI: 10.1016/j.jhazmat.2013.01.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/12/2012] [Accepted: 01/03/2013] [Indexed: 05/04/2023]
Abstract
Global industrial growth has contaminated the soil and water with many hazardous compounds, including heavy metals. These heavy metals are not only toxic to plants but also cause severe human health hazards when leach out into food chain. One of the approaches employed for the decontamination of environment includes identification and overexpression of genes involved in the detoxification mechanism of plants. Glutathione S-transferases (GSTs) are a superfamily of enzymes, principally known for their role in detoxification reactions. Different classes of GSTs have been used to develop plants with improved detoxification mechanism, but not much information is available for Lambda class of GSTs. Here, we studied expression of OsGSTLs in different rice genotypes under arsenic stress. The study suggests differential expression of these genes in arsenic sensitive and tolerant genotypes. Further, the role of one member of Lambda class OsGSTL2 was studied by expressing in heterologous system, Arabidopsis. Transgenic lines developed were analysed for their response to different abiotic stresses including heavy metals. Analysis suggests that OsGSTL2 provides tolerance for heavy metals and other abiotic stresses like cold, osmotic stress and salt. We conclude that OsGSTLs can be utilized for developing plant varieties tolerant to different abiotic stresses including heavy metals.
Collapse
Affiliation(s)
- Smita Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
Soybean (Glycine max) is one of the most important crops in legume family. Soybean and soybean-based products are also considered as popular food for human and animal husbandry. With its high oil content, soybean has become a potential resource for the production of renewable fuel. However, soybean is considered one of the most drought-sensitive crops, with approximately 40% reduction of the yield in the worst years. Recent research progresses in elucidation of biochemical, morphological and physiological responses as well as molecular mechanisms of plant adaptation to drought stress in model plants have provided a solid foundation for translational genomics of soybean toward drought tolerance. In this review, we will summarize the recent advances in development of drought-tolerant soybean cultivars by gene transfer.
Collapse
Affiliation(s)
- Nguyen Phuong Thao
- International University, Vietnam National University-HCMC, St block 6, Linh Trung ward, Thu Duc district, HCM city, Vietnam
| | | |
Collapse
|
72
|
Kido ÉA, Ferreira Neto JRC, Silva RLDO, Pandolfi V, Guimarães ACR, Veiga DT, Chabregas SM, Crovella S, Benko-Iseppon AM. New insights in the sugarcane transcriptome responding to drought stress as revealed by superSAGE. ScientificWorldJournal 2012; 2012:821062. [PMID: 22629208 PMCID: PMC3353566 DOI: 10.1100/2012/821062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/02/2011] [Indexed: 12/30/2022] Open
Abstract
In the scope of the present work, four SuperSAGE libraries have been generated, using bulked root tissues from four drought-tolerant accessions as compared with four bulked sensitive genotypes, aiming to generate a panel of differentially expressed stress-responsive genes. Both groups were submitted to 24 hours of water deficit stress. The SuperSAGE libraries produced 8,787,315 tags (26 bp) that, after exclusion of singlets, allowed the identification of 205,975 unitags. Most relevant BlastN matches comprised 567,420 tags, regarding 75,404 unitags with 164,860 different ESTs. To optimize the annotation efficiency, the Gene Ontology (GO) categorization was carried out for 186,191 ESTs (BlastN against Uniprot-SwissProt), permitting the categorization of 118,208 ESTs (63.5%). In an attempt to elect a group of the best tags to be validated by RTqPCR, the GO categorization of the tag-related ESTs allowed the in silico identification of 213 upregulated unitags responding basically to abiotic stresses, from which 145 presented no hits after BlastN analysis, probably concerning new genes still uncovered in previous studies. The present report analyzes the sugarcane transcriptome under drought stress, using a combination of high-throughput transcriptome profiling by SuperSAGE with the Solexa sequencing technology, allowing the identification of potential target genes during the stress response.
Collapse
Affiliation(s)
- Éderson Akio Kido
- Department of Genetics, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Afify AEMMR, El-Beltagi HS, Aly AA, El-Ansary AE. Antioxidant enzyme activities and lipid peroxidation as biomarker for potato tuber stored by two essential oils from Caraway and Clove and its main component carvone and eugenol. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60312-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
74
|
Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. PLANT PHYSIOLOGY 2012; 158:340-51. [PMID: 22095046 PMCID: PMC3252094 DOI: 10.1104/pp.111.181875] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/12/2011] [Indexed: 05/18/2023]
Abstract
Although glutathione S-transferases (GSTs) are thought to play major roles in oxidative stress metabolism, little is known about the regulatory functions of GSTs. We have reported that Arabidopsis (Arabidopsis thaliana) GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17; At1g10370) participates in light signaling and might modulate various aspects of development by affecting glutathione (GSH) pools via a coordinated regulation with phytochrome A. Here, we provide further evidence to support a negative role of AtGSTU17 in drought and salt stress tolerance. When AtGSTU17 was mutated, plants were more tolerant to drought and salt stresses compared with wild-type plants. In addition, atgstu17 accumulated higher levels of GSH and abscisic acid (ABA) and exhibited hyposensitivity to ABA during seed germination, smaller stomatal apertures, a lower transpiration rate, better development of primary and lateral root systems, and longer vegetative growth. To explore how atgstu17 accumulated higher ABA content, we grew wild-type plants in the solution containing GSH and found that they accumulated ABA to a higher extent than plants grown in the absence of GSH, and they also exhibited the atgstu17 phenotypes. Wild-type plants treated with GSH also demonstrated more tolerance to drought and salt stresses. Furthermore, the effect of GSH on root patterning and drought tolerance was confirmed by growing the atgstu17 in solution containing l-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH biosynthesis. In conclusion, the atgstu17 phenotype can be explained by the combined effect of GSH and ABA. We propose a role of AtGSTU17 in adaptive responses to drought and salt stresses by functioning as a negative component of stress-mediated signal transduction pathways.
Collapse
|
75
|
Deikman J, Petracek M, Heard JE. Drought tolerance through biotechnology: improving translation from the laboratory to farmers' fields. Curr Opin Biotechnol 2011; 23:243-50. [PMID: 22154468 DOI: 10.1016/j.copbio.2011.11.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022]
Abstract
Water availability is a significant constraint to crop production, and increasing drought tolerance of crops is one step to gaining greater yield stability. Excellent progress has been made using models to identify pathways and genes that can be manipulated through biotechnology to improve drought tolerance. A current focus is on translation of results from models in controlled environments to crops in the field. Field testing to demonstrate improved yields under water-limiting conditions is challenging and expensive. More extensive phenotyping of transgenic lines in the greenhouse may contribute to improved predictions about field performance. It is possible that multiple mechanisms of drought tolerance may be needed to provide benefit across the diversity of water stress environments relevant to economic yield.
Collapse
Affiliation(s)
- Jill Deikman
- Monsanto Company, 1920 Fifth Street, Davis, CA 95616, USA
| | | | | |
Collapse
|
76
|
Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, Liu L, Tang S, Park CH, Wang X, Liu X, Dai L, Xie Q, Wang GL. The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. PLANT PHYSIOLOGY 2011; 157:242-55. [PMID: 21719639 PMCID: PMC3165873 DOI: 10.1104/pp.111.180893] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/29/2011] [Indexed: 05/18/2023]
Abstract
Ubiquitin-regulated protein degradation is a critical regulatory mechanism that controls a wide range of biological processes in plants. Here, we report that OsDIS1 (for Oryza sativa drought-induced SINA protein 1), a C3HC4 RING finger E3 ligase, is involved in drought-stress signal transduction in rice (O. sativa). The expression of OsDIS1 was up-regulated by drought treatment. In vitro ubiquitination assays showed that OsDIS1 possessed E3 ubiquitin ligase activity and that the conserved region of the RING finger was required for the activity. Transient expression assays in Nicotiana benthamiana leaves and rice protoplasts indicated that OsDIS1 was localized predominantly in the nucleus. Overexpression of OsDIS1 reduced drought tolerance in transgenic rice plants, while RNA interference silencing of OsDIS1 enhanced drought tolerance. Microarray analysis revealed that a large number of drought-responsive genes were induced or suppressed in the OsDIS1 overexpression plants under normal and drought conditions. Yeast two-hybrid screening showed that OsDIS1 interacted with OsNek6 (for O. sativa NIMA-related kinase 6), a tubulin complex-related serine/threonine protein kinase. Coexpression assays in N. benthamiana leaves indicated that OsNek6 was degraded by OsDIS1 via the 26S proteasome-dependent pathway and that this degradation was abolished by the OsDIS1(H71Y) mutation, which is essential for its E3 ligase activity. Together, these results demonstrate that OsDIS1 plays a negative role in drought stress tolerance through transcriptional regulation of diverse stress-related genes and possibly through posttranslational regulation of OsNek6 in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qi Xie
- Corresponding author; e-mail
| | | |
Collapse
|
77
|
Hossain MA, Hasanuzzaman M, Fujita M. Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11703-010-1070-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|