51
|
Tissue and plasma levels of galectins in patients with high grade serous ovarian carcinoma as new predictive biomarkers. Sci Rep 2017; 7:13244. [PMID: 29038585 PMCID: PMC5643335 DOI: 10.1038/s41598-017-13802-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
Galectins are moving closer to center stage in detecting glycosylation aberration in cancer cells. Here, we have investigated the expression of galectins in ovarian cancer (OC) and examined their potential as biomarkers in tissues and blood plasma samples of high grade serous ovarian carcinoma (HGSC) patients. In tissues, we found that increased protein expression of stromal gal-1 and epithelial gal-8/9 was associated with a poor response to treatment of HGSC patients. Gal-8/9 were both independent predictors of chemoresistance and overall survival (OS), respectively. This galectin signature increased the predictive value of the cancer antigen 125 (CA125) on 5-year disease-free survival (DFS), post-chemotherapy treatment and 5-year OS. In CA125LOW patients, epithelial gal-9 was associated with a lower 5-year OS while stromal gal-1 and epithelial gal-8 were both associated with a lower 5-year DFS. Such negative predictive value of gal-8 and gal-9 was also found using plasma samples. In both cases, high plasma levels of gal-8 and gal-9 was associated with a lower OS and DFS. Overall, these data suggest that galectins may be promising biomarkers to identify subgroups of HGSC patients with poorer prognosis. Our study also contributes to better define the heterogeneity of the disease.
Collapse
|
52
|
García Calavia P, Chambrier I, Cook MJ, Haines AH, Field RA, Russell DA. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J Colloid Interface Sci 2017; 512:249-259. [PMID: 29073466 DOI: 10.1016/j.jcis.2017.10.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
Gold nanoparticles (AuNPs), which have been widely used for the delivery of photosensitizers for photodynamic therapy (PDT) of cancer, can be dispersed in aqueous solutions improving the delivery of the hydrophobic photosensitizer into the body. Furthermore, the large surface of AuNPs can be functionalized with a variety of ligands, including proteins, nucleic acids and carbohydrates, that allow selective targeting to cancer tissue. In this study, gold nanoparticles were functionalized with a mixed monolayer of a zinc phthalocyanine and a lactose derivative. For the first time, a carbohydrate was used with a dual purpose, as the stabilizing agent of the gold nanoparticles in aqueous solutions and as the targeting agent for breast cancer cells. The functionalization of the phthalocyanine-AuNPs with lactose led to the production of water-dispersible nanoparticles that are able to generate singlet oxygen and effect cell death upon irradiation. The targeting ability of lactose of the lactose-phthalocyanine functionalized AuNPs was studied in vitro towards the galectin-1 receptor on the surface of breast cancer cells. The targeting studies showed the exciting potential of lactose as a specific targeting agent for galactose-binding receptors overexpressed on breast cancer cells.
Collapse
Affiliation(s)
- Paula García Calavia
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Isabelle Chambrier
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Michael J Cook
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alan H Haines
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - David A Russell
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
53
|
Farhadi SA, Hudalla GA. Engineering galectin-glycan interactions for immunotherapy and immunomodulation. Exp Biol Med (Maywood) 2017; 241:1074-83. [PMID: 27229902 DOI: 10.1177/1535370216650055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Galectins, a 15-member family of soluble carbohydrate-binding proteins, are receiving increasing interest as therapeutic targets for immunotherapy and immunomodulation due to their role as extracellular signals that regulate innate and adaptive immune cell phenotype and function. However, different galectins can have redundant, synergistic, or antagonistic signaling activity in normal immunological responses, such as resolution of inflammation and induction of antigen-specific tolerance. In addition, certain galectins can be hijacked to promote progression of immunopathologies, such as tumor immune privilege, metastasis, and viral infection, while others can inhibit these processes. Thus, eliciting a desired immunological outcome will likely necessitate therapeutics that can precisely enhance or inhibit particular galectin-glycan interactions. Multivalency is an important determinant of the affinity and specificity of natural galectin-glycan interactions, and is emerging as a key design element for therapeutics that can effectively manipulate galectin bioactivity. This minireview surveys current molecular and biomaterial engineering approaches to create therapeutics that can stabilize galectin multivalency or recapitulate natural glycan multivalency (i.e. "the glycocluster effect"). In particular, we highlight examples of using natural and engineered multivalent galectins for immunosuppression and immune tolerance, with a particular emphasis on treating autoimmune diseases or avoiding transplant rejection. In addition, we present examples of multivalent inhibitors of galectin-glycan interactions to maintain or restore T-cell function, with a particular emphasis on promoting antitumor immunity. Finally, we discuss emerging opportunities to further engineer galectin-glycan interactions for immunotherapy and immunomodulation.
Collapse
Affiliation(s)
- Shaheen A Farhadi
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A Hudalla
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
54
|
Yang N, Zhang W, He T, Xing Y. Silencing of galectin-1 inhibits retinal neovascularization and ameliorates retinal hypoxia in a murine model of oxygen-induced ischemic retinopathy. Exp Eye Res 2017; 159:1-15. [PMID: 28257831 DOI: 10.1016/j.exer.2017.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/08/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022]
|
55
|
Besford QA, Wojnilowicz M, Suma T, Bertleff-Zieschang N, Caruso F, Cavalieri F. Lactosylated Glycogen Nanoparticles for Targeting Prostate Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16869-16879. [PMID: 28362077 DOI: 10.1021/acsami.7b02676] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Glyconanoparticles that exhibit multivalent binding to lectins are desirable for molecular recognition and therapeutic applications. Herein we explore the use of glycogen nanoparticles as a biosourced glycoscaffold for engineering multivalent glyconanoparticles. Glycogen nanoparticles, a naturally occurring highly branched polymer of glucose, was functionalized with lactose, achieved through copper(I)-catalyzed alkyne-azide cycloaddition chemistry, for targeted interaction with lectins ex situ and on prostate cancer cells. The lactosylated glycogen, which contains terminal β-galactoside moieties, is termed galacto-glycogen (GG), and is found to interact strongly with peanut agglutinin (PNA), a β-galactoside-specific lectin, as observed by optical waveguide lightmode spectroscopy, dynamic light scattering, and quartz crystal microbalance measurements. The GG nanoparticles exhibit multivalent binding to PNA with an affinity constant of 3.4 × 105 M-1, and the GG-PNA complex cannot be displaced by lactose, demonstrating the competitive binding of GG to the lectin. These GG nanoparticles were tested for association with prostate cancer cell membranes in vitro, where the particles exhibited a high affinity for the membrane, as observed from flow cytometry and confocal microscopy. This is inferred to result from specific extracellular galectin-1 targeting. Furthermore, the GG nanoparticles induce aggregation between prostate cancer cells. Our results highlight a strategy for engineering a biosourced polysaccharide with surface moieties that exhibit strong multivalent interactions with lectins, and targeted interaction with prostate cancer cells.
Collapse
Affiliation(s)
- Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Marcin Wojnilowicz
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Tomoya Suma
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Nadja Bertleff-Zieschang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Francesca Cavalieri
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Universita' degli Studi di Roma "Tor Vergata", via della ricerca scientifica 1 , 00173 Rome, Italy
| |
Collapse
|
56
|
Shimizu D, Inokawa Y, Sonohara F, Inaoka K, Nomoto S. Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors. Oncol Rep 2017; 37:2527-2542. [DOI: 10.3892/or.2017.5541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|
57
|
Qian D, Lu Z, Xu Q, Wu P, Tian L, Zhao L, Cai B, Yin J, Wu Y, Staveley-O'Carroll KF, Jiang K, Miao Y, Li G. Galectin-1-driven upregulation of SDF-1 in pancreatic stellate cells promotes pancreatic cancer metastasis. Cancer Lett 2017; 397:43-51. [PMID: 28336327 DOI: 10.1016/j.canlet.2017.03.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023]
Abstract
Galectin-1, mainly expressed in activated pancreatic stellate cells (PSCs), is involved in many important cancer-related processes. However, very little is known how Galectin-1 modulates PSCs and subsequently impacts pancreatic cancer cells (PCCs). Our chemokine antibody array and in vitro studies demonstrates that Galectin-1 induces secretion of stromal cell-derived factor-1(SDF-1) in PSCs by activating NF-κB signaling. The secreted SDF-1 increases migration and invasion of PCCs. Knockdown of Galectin-1 and inhibitor-mediated blockade of SDF-1 as well as its ligand CXCR4 and NF-κB verifies the findings. In vivo experiment by knockdown of Galectin-1 in PSCs further demonstrates the conclusion. Collectively, the present studies demonstrate that Galectin-1-driven production of SDF-1 in PSCs through activation of NF-κB promotes metastasis in PDAC, offering a potential target in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Dong Qian
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China; Department of General Surgery, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing 210029, China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China
| | - Qingcheng Xu
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China; Department of Gastroenterology, Subei People's Hospital, Clinical Medical School, Yangzhou University Affiliated Hospital, Yangzhou 225000, China
| | - Pengfei Wu
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China
| | - Lei Tian
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China
| | - Liangtao Zhao
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China
| | - Baobao Cai
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China
| | - Jie Yin
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China
| | - Yang Wu
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China.
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China.
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
58
|
Ho WL, Hsu WM, Huang MC, Kadomatsu K, Nakagawara A. Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma. J Hematol Oncol 2016; 9:100. [PMID: 27686492 PMCID: PMC5041531 DOI: 10.1186/s13045-016-0334-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023] Open
Abstract
Glycosylation is the most complex post-translational modification of proteins. Altered glycans on the tumor- and host-cell surface and in the tumor microenvironment have been identified to mediate critical events in cancer pathogenesis and progression. Tumor-associated glycan changes comprise increased branching of N-glycans, higher density of O-glycans, generation of truncated versions of normal counterparts, and generation of unusual forms of terminal structures arising from sialylation and fucosylation. The functional role of tumor-associated glycans (Tn, sTn, T, and sLea/x) is dependent on the interaction with lectins. Lectins are expressed on the surface of immune cells and endothelial cells or exist as extracellular matrix proteins and soluble adhesion molecules. Expression of tumor-associated glycans is involved in the dysregulation of glycogenes, which mainly comprise glycosyltransferases and glycosidases. Furthermore, genetic and epigenetic mechanisms on many glycogenes are associated with malignant transformation. With better understanding of all aspects of cancer-cell glycomics, many tumor-associated glycans have been utilized for diagnostic, prognostic, and therapeutic purposes. Glycan-based therapeutics has been applied to cancers from breast, lung, gastrointestinal system, melanomas, and lymphomas but rarely to neuroblastomas (NBs). The success of anti-disialoganglioside (GD2, a glycolipid antigen) antibodies sheds light on glycan-based therapies for NB and also suggests the possibility of protein glycosylation-based therapies for NB. This review summarizes our understanding of cancer glycobiology with a focus of how protein glycosylation and associated glycosyltransferases affect cellular behaviors and treatment outcome of various cancers, especially NB. Finally, we highlight potential applications of glycosylation in drug and cancer vaccine development for NB.
Collapse
Affiliation(s)
- Wan-Ling Ho
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan.,Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| | - Min-Chuan Huang
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan. .,Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 10051, Taiwan.
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
59
|
Vladoiu MC, Labrie M, Létourneau M, Egesborg P, Gagné D, Billard É, Grosset AA, Doucet N, Chatenet D, St-Pierre Y. Design of a peptidic inhibitor that targets the dimer interface of a prototypic galectin. Oncotarget 2016; 6:40970-80. [PMID: 26543238 PMCID: PMC4747383 DOI: 10.18632/oncotarget.5403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/20/2015] [Indexed: 12/30/2022] Open
Abstract
Galectins are small soluble lectins that bind β-galactosides via their carbohydrate recognition domain (CRD). Their ability to dimerize is critical for the crosslinking of glycoprotein receptors and subsequent cellular signaling. This is particularly important in their immunomodulatory role via the induction of T-cell apoptosis. Because galectins play a central role in many pathologies, including cancer, they represent valuable therapeutic targets. At present, most inhibitors have been directed towards the CRD, a challenging task in terms of specificity given the high structural homology of the CRD among galectins. Such inhibitors are not effective at targeting CRD-independent functions of galectins. Here, we report a new class of galectin inhibitors that specifically binds human galectin-7 (hGal-7), disrupts the formation of homodimers, and inhibits the pro-apoptotic activity of hGal-7 on Jurkat T cells. In addition to representing a new means to achieve specificity when targeting galectins, such inhibitors provide a promising alternative to more conventional galectin inhibitors that target the CRD with soluble glycans or other small molecular weight allosteric inhibitors.
Collapse
Affiliation(s)
| | - Marilyne Labrie
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - Myriam Létourneau
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - Philippe Egesborg
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - Étienne Billard
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - Andrée-Anne Grosset
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - Yves St-Pierre
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| |
Collapse
|
60
|
Cousin JM, Cloninger MJ. The Role of Galectin-1 in Cancer Progression, and Synthetic Multivalent Systems for the Study of Galectin-1. Int J Mol Sci 2016; 17:ijms17091566. [PMID: 27649167 PMCID: PMC5037834 DOI: 10.3390/ijms17091566] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/24/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
This review discusses the role of galectin-1 in the tumor microenvironment. First, the structure and function of galectin-1 are discussed. Galectin-1, a member of the galectin family of lectins, is a functionally dimeric galactoside-binding protein. Although galectin-1 has both intracellular and extracellular functions, the defining carbohydrate-binding role occurs extracellularly. In this review, the extracellular roles of galectin-1 in cancer processes are discussed. In particular, the importance of multivalent interactions in galectin-1 mediated cellular processes is reviewed. Multivalent interactions involving galectin-1 in cellular adhesion, mobility and invasion, tumor-induced angiogenesis, and apoptosis are presented. Although the mechanisms of action of galectin-1 in these processes are still not well understood, the overexpression of galectin-1 in cancer progression indicates that the role of galectin-1 is significant. To conclude this review, synthetic frameworks that have been used to modulate galectin-1 processes are reviewed. Small molecule oligomers of carbohydrates, carbohydrate-functionalized pseudopolyrotaxanes, cyclodextrins, calixarenes, and glycodendrimers are presented. These synthetic multivalent systems serve as important tools for studying galectin-1 mediated cancer cellular functions.
Collapse
Affiliation(s)
- Jonathan M Cousin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
61
|
de Aquino PF, Carvalho PC, Nogueira FCS, da Fonseca CO, de Souza Silva JCT, Carvalho MDGDC, Domont GB, Zanchin NIT, Fischer JDSDG. A Time-Based and Intratumoral Proteomic Assessment of a Recurrent Glioblastoma Multiforme. Front Oncol 2016; 6:183. [PMID: 27597932 PMCID: PMC4992702 DOI: 10.3389/fonc.2016.00183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/02/2016] [Indexed: 12/17/2022] Open
Abstract
Tumors consist of cells in different stages of transformation with molecular and cellular heterogeneity. By far, heterogeneity is the hallmark of glioblastoma multiforme (GBM), the most malignant and aggressive type of glioma. Most proteomic studies aim in comparing tumors from different patients, but here we dive into exploring the intratumoral proteome diversity of a single GBM. For this, we profiled tumor fragments from the profound region of the same patient’s GBM but obtained from two surgeries a year’s time apart. Our analysis also included GBM‘s fragments from different anatomical regions. Our quantitative proteomic strategy employed 4-plex iTRAQ peptide labeling followed by a four-step strong cation chromatographic separation; each fraction was then analyzed by reversed-phase nano-chromatography coupled on-line with an Orbitrap-Velos mass spectrometer. Unsupervised clustering grouped the proteomic profiles into four major distinct groups and showed that most changes were related to the tumor’s anatomical region. Nevertheless, we report differentially abundant proteins from GBM’s fragments of the same region but obtained 1 year apart. We discuss several key proteins (e.g., S100A9) and enriched pathways linked with GBM such as the Ras pathway, RHO GTPases activate PKNs, and those related to apoptosis, to name a few. As far as we know, this is the only report that compares GBM fragments proteomic profiles from the same patient. Ultimately, our results fuel the forefront of scientific discussion on the importance in exploring the richness of subproteomes within a single tissue sample for a better understanding of the disease, as each tumor is unique.
Collapse
Affiliation(s)
- Priscila F de Aquino
- Laboratory of Microbial Diversity from Amazon with Importance for Health, Instituto Leônidas e Maria Deane, Fiocruz , Manaus, Amazonas , Brazil
| | - Paulo Costa Carvalho
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz, Curitiba, Paraná, Brazil; Laboratory of Toxinology, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Laboratory for Protein Chemistry, Chemistry Institute, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Clovis Orlando da Fonseca
- Department of General and Specialized Surgery, Antonio Pedro University Hospital, Fluminense Federal University , Rio de Janeiro , Brazil
| | | | - Maria da Gloria da Costa Carvalho
- Laboratory of Molecular Pathology, Department of Pathology, University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Gilberto B Domont
- Laboratory for Protein Chemistry, Chemistry Institute, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Nilson I T Zanchin
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz , Curitiba, Paraná , Brazil
| | | |
Collapse
|
62
|
Hu Y, Yéléhé-Okouma M, Ea HK, Jouzeau JY, Reboul P. Galectin-3: A key player in arthritis. Joint Bone Spine 2016; 84:15-20. [PMID: 27238188 DOI: 10.1016/j.jbspin.2016.02.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/17/2016] [Indexed: 01/15/2023]
Abstract
Arthritis is more and more considered as the leading reason for the disability in the world, particularly regarding its main entities, rheumatoid arthritis and osteoarthritis. The common feature of arthritis is inflammation, which is mainly supported by synovitis (synovial inflammation), although the immune system plays a primary role in rheumatoid arthritis and a secondary one in osteoarthritis. During the inflammatory phase of arthritis, many pro-inflammatory cytokines and mediators are secreted by infiltrating immune and resident joint cells, which are responsible for cartilage degradation and excessive bone remodeling. Amongst them, a β-galactoside-binding lectin, galectin-3, has been reported to be highly expressed and secreted by inflamed synovium of rheumatoid arthritis and osteoarthritis patients. Furthermore, galectin-3 has been demonstrated to induce joint swelling and osteoarthritis-like lesions after intra-articular injection in laboratory animals. However, the mechanisms underlying its pathophysiological role in arthritis have not been fully elucidated. This review deals with the characterization of arthritis features and galectin-3 and summarizes our current knowledge of the contribution of galectin-3 to joint tissue lesions in arthritis.
Collapse
Affiliation(s)
- Yong Hu
- UMR 7365, CNRS, Université de Lorraine, IMoPA, Biopôle de l'Université de Lorraine, Campus Biologie-Santé, Faculté de Médecine, 9, avenue de la Forêt-de-Haye, CS50184, 54505 Vandœuvre-lès-Nancy cedex, France; Department of orthopedics, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Mélissa Yéléhé-Okouma
- UMR 7365, CNRS, Université de Lorraine, IMoPA, Biopôle de l'Université de Lorraine, Campus Biologie-Santé, Faculté de Médecine, 9, avenue de la Forêt-de-Haye, CS50184, 54505 Vandœuvre-lès-Nancy cedex, France; Département de Pharmacologie Clinique et Toxicologie, CHRU de Nancy, 54035 Nancy, France
| | - Hang-Korng Ea
- Service de rhumatologie, Centre Viggo-Petersen, Pôle appareil locomoteur, Hôpital Lariboisière, AP-HP, 75010 Paris, France; Inserm UMR-S 1132 Bioscar, Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Jean-Yves Jouzeau
- UMR 7365, CNRS, Université de Lorraine, IMoPA, Biopôle de l'Université de Lorraine, Campus Biologie-Santé, Faculté de Médecine, 9, avenue de la Forêt-de-Haye, CS50184, 54505 Vandœuvre-lès-Nancy cedex, France; Département de Pharmacologie Clinique et Toxicologie, CHRU de Nancy, 54035 Nancy, France
| | - Pascal Reboul
- UMR 7365, CNRS, Université de Lorraine, IMoPA, Biopôle de l'Université de Lorraine, Campus Biologie-Santé, Faculté de Médecine, 9, avenue de la Forêt-de-Haye, CS50184, 54505 Vandœuvre-lès-Nancy cedex, France.
| |
Collapse
|
63
|
Galectin-1 suppression delineates a new strategy to inhibit myeloma-induced angiogenesis and tumoral growth in vivo. Leukemia 2016; 30:2351-2363. [PMID: 27311934 DOI: 10.1038/leu.2016.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/22/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
Abstract
Galectin-1 (Gal-1) is involved in tumoral angiogenesis, hypoxia and metastases. Actually the Gal-1 expression profile in multiple myeloma (MM) patients and its pathophysiological role in MM-induced angiogenesis and tumoral growth are unknown. In this study, we found that Gal-1 expression by MM cells was upregulated in hypoxic conditions and that stable knockdown of hypoxia inducible factor-1α significantly downregulated its expression. Therefore, we performed Gal-1 inhibition using lentivirus transfection of shRNA anti-Gal-1 in human myeloma cell lines (HMCLs), and showed that its suppression modified transcriptional profiles in both hypoxic and normoxic conditions. Interestingly, Gal-1 inhibition in MM cells downregulated proangiogenic genes, including MMP9 and CCL2, and upregulated the antiangiogenic ones SEMA3A and CXCL10. Consistently, Gal-1 suppression in MM cells significantly decreased their proangiogenic properties in vitro. This was confirmed in vivo, in two different mouse models injected with HMCLs transfected with anti-Gal-1 shRNA or the control vector. Gal-1 suppression in both models significantly reduced tumor burden and microvascular density as compared with the control mice. Moreover, Gal-1 suppression induced smaller lytic lesions on X-ray in the intratibial model. Overall, our data indicate that Gal-1 is a new potential therapeutic target in MM blocking angiogenesis.
Collapse
|
64
|
Cagnoni AJ, Pérez Sáez JM, Rabinovich GA, Mariño KV. Turning-Off Signaling by Siglecs, Selectins, and Galectins: Chemical Inhibition of Glycan-Dependent Interactions in Cancer. Front Oncol 2016; 6:109. [PMID: 27242953 PMCID: PMC4865499 DOI: 10.3389/fonc.2016.00109] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/18/2016] [Indexed: 12/25/2022] Open
Abstract
Aberrant glycosylation, a common feature associated with malignancy, has been implicated in important events during cancer progression. Our understanding of the role of glycans in cancer has grown exponentially in the last few years, concurrent with important advances in glycomics and glycoproteomic technologies, paving the way for the validation of a number of glycan structures as potential glycobiomarkers. However, the molecular bases underlying cancer-associated glycan modifications are still far from understood. Glycans exhibit a natural heterogeneity, crucial for their diverse functional roles as specific carriers of biologically relevant information. This information is decoded by families of proteins named lectins, including sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), C-type lectin receptors (CLRs), and galectins. Siglecs are primarily expressed on the surface of immune cells and differentially control innate and adaptive immune responses. Among CLRs, selectins are a family of cell adhesion molecules that mediate interactions between cancer cells and platelets, leukocytes, and endothelial cells, thus facilitating tumor cell invasion and metastasis. Galectins, a family of soluble proteins that bind β-galactoside-containing glycans, have been implicated in diverse events associated with cancer biology such as apoptosis, homotypic cell aggregation, angiogenesis, cell migration, and tumor-immune escape. Consequently, individual members of these lectin families have become promising targets for the design of novel anticancer therapies. During the past decade, a number of inhibitors of lectin–glycan interactions have been developed including small-molecule inhibitors, multivalent saccharide ligands, and more recently peptides and peptidomimetics have offered alternatives for tackling tumor progression. In this article, we review the current status of the discovery and development of chemical lectin inhibitors and discuss novel strategies to limit cancer progression by targeting lectin–glycan interactions.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan M Pérez Sáez
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| |
Collapse
|
65
|
van Beijnum JR, Thijssen VL, Läppchen T, Wong TJ, Verel I, Engbersen M, Schulkens IA, Rossin R, Grüll H, Griffioen AW, Nowak-Sliwinska P. A key role for galectin-1 in sprouting angiogenesis revealed by novel rationally designed antibodies. Int J Cancer 2016; 139:824-35. [PMID: 27062254 DOI: 10.1002/ijc.30131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/03/2016] [Indexed: 11/10/2022]
Abstract
Galectins are carbohydrate binding proteins that function in many key cellular processes. We have previously demonstrated that galectins are essential for tumor angiogenesis and their expression is associated with disease progression. Targeting galectins is therefore a potential anti-angiogenic and anti-cancer strategy. Here, we used a rational approach to generate antibodies against a specific member of this conserved protein family, i.e. galectin-1. We characterized two novel mouse monoclonal antibodies that specifically react with galectin-1 in human, mouse and chicken. We demonstrate that these antibodies are excellent tools to study galectin-1 expression and function in a broad array of biological systems. In a potential diagnostic application, radiolabeled antibodies showed specific targeting of galectin-1 positive tumors. In a therapeutic setting, the antibodies inhibited sprouting angiogenesis in vitro and in vivo, underscoring the key function of galectin-1 in this process.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Victor L Thijssen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Tilman Läppchen
- Oncology Solutions, Philips Research, Eindhoven, the Netherlands.,Department of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Tse J Wong
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Iris Verel
- Oncology Solutions, Philips Research, Eindhoven, the Netherlands
| | - Maurits Engbersen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Iris A Schulkens
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Raffaella Rossin
- Oncology Solutions, Philips Research, Eindhoven, the Netherlands
| | - Holger Grüll
- Oncology Solutions, Philips Research, Eindhoven, the Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Patrycja Nowak-Sliwinska
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
66
|
Zhang PF, Li KS, Shen YH, Gao PT, Dong ZR, Cai JB, Zhang C, Huang XY, Tian MX, Hu ZQ, Gao DM, Fan J, Ke AW, Shi GM. Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling. Cell Death Dis 2016; 7:e2201. [PMID: 27100895 PMCID: PMC4855644 DOI: 10.1038/cddis.2015.324] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Abstract
Galectin-1 (Gal-1) is involved in several pathological activities associated with tumor progression and chemoresistance, however, the role and molecular mechanism of Gal-1 activity in hepatocellular carcinoma (HCC) epithelial–mesenchymal transition (EMT) and sorafenib resistance remain enigmatic. In the present study, forced Gal-1 expression promoted HCC progression and sorafenib resistance. Gal-1 elevated αvβ3-integrin expression, leading to AKT activation. Moreover, Gal-1 overexpression induced HCC cell EMT via PI3K/AKT cascade activation. Clinically, our data revealed that Gal-1 overexpression is correlated with poor HCC survival outcomes and sorafenib response. These data suggest that Gal-1 may be a potential therapeutic target for HCC and a biomarker for predicting response to sorafenib treatment.
Collapse
Affiliation(s)
- P-F Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - K-S Li
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Y-H Shen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - P-T Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Z-R Dong
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - J-B Cai
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - C Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - X-Y Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - M-X Tian
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Z-Q Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - D-M Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - J Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China.,Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China
| | - A-W Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - G-M Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
67
|
Blanchard H, Bum-Erdene K, Bohari MH, Yu X. Galectin-1 inhibitors and their potential therapeutic applications: a patent review. Expert Opin Ther Pat 2016; 26:537-54. [PMID: 26950805 DOI: 10.1517/13543776.2016.1163338] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Galectins have affinity for β-galactosides. Human galectin-1 is ubiquitously expressed in the body and its expression level can be a marker in disease. Targeted inhibition of galectin-1 gives potential for treatment of inflammatory disorders and anti-cancer therapeutics. AREAS COVERED This review discusses progress in galectin-1 inhibitor discovery and development. Patent applications pertaining to galectin-1 inhibitors are categorised as monovalent- and multivalent-carbohydrate-based inhibitors, peptides- and peptidomimetics. Furthermore, the potential of galectin-1 protein as a therapeutic is discussed along with consideration of the unique challenges that galectin-1 presents, including its monomer-dimer equilibrium and oxidized and reduced forms, with regard to delivering an intact protein to a pathologically relevant site. EXPERT OPINION Significant evidence implicates galectin-1's involvement in cancer progression, inflammation, and host-pathogen interactions. Conserved sequence similarity of the carbohydrate-binding sites of different galectins makes design of specific antagonists (blocking agents/inhibitors of function) difficult. Key challenges pertaining to the therapeutic use of galectin-1 are its monomer-dimer equilibrium, its redox state, and delivery of intact galectin-1 to the desired site. Developing modified forms of galectin-1 has resulted in increased stability and functional potency. Gene and protein therapy approaches that deliver the protein toward the target are under exploration as is exploitation of different inhibitor scaffolds.
Collapse
Affiliation(s)
- Helen Blanchard
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| | - Khuchtumur Bum-Erdene
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| | | | - Xing Yu
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| |
Collapse
|
68
|
The expression profiles of the galectin gene family in colorectal adenocarcinomas. Hum Pathol 2016; 53:105-13. [PMID: 27001434 DOI: 10.1016/j.humpath.2016.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/14/2016] [Accepted: 02/19/2016] [Indexed: 12/15/2022]
Abstract
We aim to investigate the expression profiles of galectin family genes (galectins-1, 2, 3, 4, 7, 8, 9, 10, and 11) in colorectal carcinomas. Messenger RNA (mRNA) expression of galectin family members (1, 2, 3, 4, 7, 8, 9, 10, and 12) was analyzed by real-time polymerase chain reaction in colorectal tissues from 201 patients (54 noncancer colorectal tissues, 49 adenomas, and 98 adenocarcinomas). Galectin-1 and galectin-3 protein expressions were determined by immunohistochemistry. In general, high galectin mRNA expression was noted in colorectal carcinomas in early stages of their pathogenesis. Significant differences in galectins-2, 3, 7, 8, and 10 mRNA expression were associated with pathologic stages (P<.05). Increased prevalence of galectins-2, 7, 8, and 10 mRNA overexpression was noted in nonmetastatic colorectal carcinomas (P<.05). Galectin-1 and galectin-3 proteins were present in the nucleus and cytoplasm of the colorectal tissues and expressed significantly higher in colorectal carcinomas when compared to colorectal adenomas (61% and 95%, respectively). Patients with colorectal carcinoma with high levels of galectin-3 mRNA and protein expression showed better prognosis (P=.052). To conclude, many novel correlations between the deregulation of galectin family genes and various clinicopathological features in colorectal adenocarcinoma were noted. Overexpression of galectins at the mRNA level and proteins were predominant in earlier stages of colorectal carcinomas. These altered expression patterns of galectin genes suggest the multifunctional role of galectin genes in the regulation of colorectal cancer development, progression, and metastasis.
Collapse
|
69
|
Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y, Wang J, Li B, Yin W, Wang D. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour Biol 2016; 37:1889-99. [PMID: 26323258 DOI: 10.1007/s13277-015-3942-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Galectin-1, an evolutionarily conserved glycan-binding protein with angiogenic potential, was recently identified as being overexpressed in cancer-associated fibroblasts (CAFs) of gastric cancer. The role of endogenous CAF-derived galectin-1 on angiogenesis in gastric cancer and the mechanism involved remain unknown. METHODS Immunohistochemical staining was used to investigate the correlation between galectin-1 and vascular endothelial growth factor (VEGF) and CD31 expression in gastric cancer tissues and normal gastric tissues. Galectin-1 was knocked down in CAFs isolated from gastric cancer using small interfering ribonucleic acid (RNA), or overexpressed using recombinant lentiviruses, and the CAFs were co-cultured with human umbilical vein endothelial cells (HUVECs) or cancer cells. Subsequently, proliferation, migration, tube formation, and VEGF/VEGF receptor (VEGFR) 2 expression were detected. The role of CAF-derived galectin-1 in tumor angiogenesis in vivo was studied using the chick chorioallantoic membrane (CAM) assay. RESULTS Galectin-1 was highly expressed in the CAFs and was positively associated with VEGF and CD31 expression. In the co-culture, high expression of galectin-1 in the CAFs increased HUVEC proliferation, migration, tube formation, and VEGFR2 phosphorylation and enhanced VEGF expression in gastric cancer cells. The CAM assay indicated that high expression of galectin-1 in the CAFs accelerated tumor growth and promoted angiogenesis. In contrast, galectin-1 knockdown in the CAFs significantly inhibited this effect. CONCLUSION CAF-derived galectin-1 significantly promotes angiogenesis in gastric cancer and may be a target for angiostatic therapy.
Collapse
Affiliation(s)
- Dong Tang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Jun Gao
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Sen Wang
- College of Clinical Medicine, Nanjing Medical University (the First Affiliated Hospital of Nanjing Medical University), Nanjing, 211166, People's Republic of China
| | - Nianyuan Ye
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Yang Chong
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Yuqin Huang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Jie Wang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Bin Li
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Wei Yin
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Daorong Wang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
70
|
Kobayakawa Y, Sakumi K, Kajitani K, Kadoya T, Horie H, Kira JI, Nakabeppu Y. Galectin-1 deficiency improves axonal swelling of motor neurones in SOD1(G93A) transgenic mice. Neuropathol Appl Neurobiol 2015; 41:227-44. [PMID: 24707896 DOI: 10.1111/nan.12123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/26/2014] [Indexed: 01/05/2023]
Abstract
AIMS Galectin-1, a member of the β-galactoside-binding lectin family, accumulates in neurofilamentous lesions in the spinal cords of both sporadic and familial amyotrophic lateral sclerosis (ALS) patients with a superoxide dismutase 1 gene (SOD1) mutation (A4V). The aim of this study was to evaluate the roles of endogenous galectin-1 in the pathogenesis of ALS. METHODS Expression of galectin-1 in the spinal cord of mutant SOD1 transgenic (SOD1(G93A) ) mice was examined by pathological analysis, real-time RT-PCR and Western blotting. The effects of galectin-1 deficiency were evaluated by cross-breeding SOD1(G93A) mice with galectin-1 null (Lgals1(-/-) ) mice. RESULTS Before ALS-like symptoms developed in SOD1(G93A) /Lgals1(+/+) mice, strong galectin-1 immunoreactivity was observed in swollen motor axons and colocalized with aggregated neurofilaments. Electron microscopic observations revealed that the diameters of swollen motor axons in the spinal cord were significantly smaller in SOD1(G93A) /Lgals1(-/-) mice, and there was less accumulation of vacuoles compared with SOD1(G93A) /Lgals1(+/+) mice. In symptomatic SOD1(G93A) /Lgals1(+/+) mice, astrocytes surrounding motor axons expressed a high level of galectin-1. CONCLUSIONS Galectin-1 accumulates in neurofilamentous lesions in SOD1(G93A) mice, as previously reported in humans with ALS. Galectin-1 accumulation in motor axons occurs before the development of ALS-like symptoms and is associated with early processes of axonal degeneration in SOD1(G93A) mice. In contrast, galectin-1 expressed in astrocytes may be involved in axonal degeneration during symptom presentation.
Collapse
Affiliation(s)
- Yuko Kobayakawa
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan; Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
71
|
Coosemans A, Decoene J, Baert T, Laenen A, Kasran A, Verschuere T, Seys S, Vergote I. Immunosuppressive parameters in serum of ovarian cancer patients change during the disease course. Oncoimmunology 2015; 5:e1111505. [PMID: 27141394 DOI: 10.1080/2162402x.2015.1111505] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/15/2015] [Accepted: 10/17/2015] [Indexed: 12/30/2022] Open
Abstract
Neoplastic cells can escape immune control leading to cancer growth. Regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) are crucial in immune escape. TAM are divided based on their immune profile, M1 are immunostimulatory while M2 are immunosuppressive. Research so far has mainly focused on the intratumoral behavior of these cells. This study, on the other hand, explored the systemic changes of the key metabolites [IL-4 (interleukin), IL-13, arginase, IL-10, VEGF-A (vascular endothelial growth factor), CCL-2 (chemokine (C-C) motif ligand 2) and TGF-β (transforming growth factor)] linked to Treg, MDSC and TAM during the course of the disease in ovarian and fallopian tube cancer patients. Serum samples were therefore analyzed at diagnosis, after (interval)-debulking surgery and after chemotherapy (paclitaxel-carboplatin). We also determined galectin-1 (gal-1), involved in angiogenesis and tumor-mediated immune evasion. We found significantly lower levels of IL-10, VEGF-A, TGF-β and arginase and higher levels of gal-1 after chemotherapy compared to diagnosis. After debulking surgery, a decrease in IL-10 was significant. Gal-1 and CCL-2 appeared independent prognostic factors for progression-free and overall survival (OS) (multivariate analysis). These results will help us in the decision making of future therapies in order to further modulate the immune system in a positive way.
Collapse
Affiliation(s)
- An Coosemans
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium; Department of Oncology, Laboratory of Gynecologic Oncology, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Judit Decoene
- Department of Gynecology and Obstetrics, UZ Leuven , Leuven, Belgium
| | - Thaïs Baert
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium; Department of Oncology, Laboratory of Gynecologic Oncology, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Annouschka Laenen
- Biostatistics and Statistical Bioinformatics Center of Leuven, KU Leuven , Leuven, Belgium
| | - Ahmad Kasran
- Department of Microbiology and Immunology, Laboratory of Clinical Immunology, KU Leuven , Leuven, Belgium
| | - Tina Verschuere
- Department of Neuroscience, Laboratory of Experimental Neurosurgery, KU Leuven , Leuven, Belgium
| | - Sven Seys
- Department of Microbiology and Immunology, Laboratory of Clinical Immunology, KU Leuven , Leuven, Belgium
| | - Ignace Vergote
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium; Department of Oncology, Laboratory of Gynecologic Oncology, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
72
|
Manzi M, Bacigalupo ML, Carabias P, Elola MT, Wolfenstein-Todel C, Rabinovich GA, Espelt MV, Troncoso MF. Galectin-1 Controls the Proliferation and Migration of Liver Sinusoidal Endothelial Cells and Their Interaction With Hepatocarcinoma Cells. J Cell Physiol 2015; 231:1522-33. [PMID: 26551914 DOI: 10.1002/jcp.25244] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/22/2015] [Indexed: 01/05/2023]
Abstract
Galectin-1 (Gal1), a β-galactoside-binding protein elevated in hepatocellular carcinoma (HCC), promotes epithelial-mesenchymal transition (EMT) and its expression correlates with HCC growth, invasiveness, and metastasis. During the early stages of HCC, transforming growth factor β1 (TGF-β1 ) acts as a tumor suppressor; however in advanced stages, HCC cells lose their cytostatic response to TGF-β1 and undergo EMT. Here, we investigated the role of Gal1 on liver endothelial cell biology, and the interplay between Gal1 and TGF-β1 in HCC progression. By Western blot and immunofluorescence, we analyzed Gal1 expression, secretion and localization in HepG2 and HuH-7 human HCC cells, and in SK-HEP-1 human liver sinusoidal endothelial cells (SECs). We used loss-of-function and gain-of-function experiments to down- or up-regulate Gal1 expression, respectively, in HepG2 cells. We cultured SK-HEP-1 cells with conditioned media from HCC cells secreting different levels of Gal1, and demonstrated that Gal1 derived from tumor hepatocytes induced its own expression in SECs. Colorimetric and scratch-wound assays revealed that secretion of Gal1 by HCC cells induced SEC proliferation and migration. Moreover, by fluorescence microscopy we demonstrated that Gal1 promoted glycan-dependent heterotypic adhesion of HepG2 cells to SK-HEP-1 SECs. Furthermore, TGF-β1 induced Gal1 expression and secretion by HCC cells, and promoted HepG2 cell adhesion to SK-HEP-1 SECs through a Gal1-dependent mechanism. Finally, Gal1 modulated HepG2 cell proliferation and sensitivity to TGF-β1 -induced growth inhibition. Our results suggest that Gal1 and TGF-β1 might function coordinately within the HCC microenvironment to regulate tumor growth, invasion, metastasis, and angiogenesis.
Collapse
Affiliation(s)
- Malena Manzi
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Institute of Biological Chemistry and Biophysics "Prof. Alejandro C. Paladini", University of Buenos Aires (UBA)-National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - María L Bacigalupo
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Institute of Biological Chemistry and Biophysics "Prof. Alejandro C. Paladini", University of Buenos Aires (UBA)-National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Pablo Carabias
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Institute of Biological Chemistry and Biophysics "Prof. Alejandro C. Paladini", University of Buenos Aires (UBA)-National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - María T Elola
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Institute of Biological Chemistry and Biophysics "Prof. Alejandro C. Paladini", University of Buenos Aires (UBA)-National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Carlota Wolfenstein-Todel
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Institute of Biological Chemistry and Biophysics "Prof. Alejandro C. Paladini", University of Buenos Aires (UBA)-National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Institute of Biology and Experimental Medicine (CONICET) and School of Exact and Natural Sciences, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - María V Espelt
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Institute of Biological Chemistry and Biophysics "Prof. Alejandro C. Paladini", University of Buenos Aires (UBA)-National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - María F Troncoso
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Institute of Biological Chemistry and Biophysics "Prof. Alejandro C. Paladini", University of Buenos Aires (UBA)-National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| |
Collapse
|
73
|
González CP, Rodríguez E, Soule S, Fraguas LF, Brena BM, Giacomini C, Irazoqui G. Enzymatic synthesis of 3-aminopropyl-1-O-β-D-galactopyranoside catalyzed byAspergillus oryzaeβ-galactosidase. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1095678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
74
|
Nishida N, Kitano M, Sakurai T, Kudo M. Molecular Mechanism and Prediction of Sorafenib Chemoresistance in Human Hepatocellular Carcinoma. Dig Dis 2015; 33:771-9. [PMID: 26488287 DOI: 10.1159/000439102] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide, and prognosis remains unsatisfactory when the disease is diagnosed at an advanced stage. Many molecular targeted agents are being developed for the treatment of advanced HCC; however, the only promising drug to have been developed is sorafenib, which acts as a multi-kinase inhibitor. Unfortunately, a subgroup of HCC is resistant to sorafenib, and the majority of these HCC patients show disease progression even after an initial satisfactory response. To date, a number of studies have examined the underlying mechanisms involved in the response to sorafenib, and trials have been performed to overcome the acquisition of drug resistance. The anti-tumor activity of sorafenib is largely attributed to the blockade of the signals from growth factors, such as vascular endothelial growth factor receptor and platelet-derived growth factor receptor, and the downstream RAF/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK cascade. The activation of an escape pathway from RAF/MEK/ERK possibly results in chemoresistance. In addition, there are several features of HCCs indicating sorafenib resistance, such as epithelial-mesenchymal transition and positive stem cell markers. Here, we review the recent reports and focus on the mechanism and prediction of chemoresistance to sorafenib in HCC.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | | | | | | |
Collapse
|
75
|
Redox state influence on human galectin-1 function. Biochimie 2015; 116:8-16. [DOI: 10.1016/j.biochi.2015.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 06/19/2015] [Indexed: 11/22/2022]
|
76
|
Krzywinska E, Allende-Vega N, Cornillon A, Vo DN, Cayrefourcq L, Panabieres C, Vilches C, Déchanet-Merville J, Hicheri Y, Rossi JF, Cartron G, Villalba M. Identification of Anti-tumor Cells Carrying Natural Killer (NK) Cell Antigens in Patients With Hematological Cancers. EBioMedicine 2015; 2:1364-76. [PMID: 26629531 PMCID: PMC4634619 DOI: 10.1016/j.ebiom.2015.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells, a cytotoxic lymphocyte lineage, are able to kill tumor cells in vitro and in mouse models. However, whether these cells display an anti-tumor activity in cancer patients has not been demonstrated. Here we have addressed this issue in patients with several hematological cancers. We found a population of highly activated CD56dimCD16+ NK cells that have recently degranulated, evidence of killing activity, and it is absent in healthy donors. A high percentage of these cells expressed natural killer cell p46-related protein (NKp46), natural-killer group 2, member D (NKG2D) and killer inhibitory receptors (KIRs) and a low percentage expressed NKG2A and CD94. They are also characterized by a high metabolic activity and active proliferation. Notably, we found that activated NK cells from hematological cancer patients have non-NK tumor cell antigens on their surface, evidence of trogocytosis during tumor cell killing. Finally, we found that these activated NK cells are distinguished by their CD45RA+RO+ phenotype, as opposed to non-activated cells in patients or in healthy donors displaying a CD45RA+RO− phenotype similar to naïve T cells. In summary, we show that CD45RA+RO+ cells, which resemble a unique NK population, have recognized tumor cells and degranulate in patients with hematological neoplasias. Expression of both CD45 isoforms RA and RO identifies anti-leukemia NK cells. Anti-leukemia NK cells proliferate, degranulate and perform trogocytosis in vivo. The presence of CD45RARO population identifies hematological cancer patients.
NK cells are thought to have an intrinsic anti-tumor activity. However, the presence of anti-leukemia NK cells in patients is unknown. We present a relatively simple protocol to identify and characterize them. This is based on differential protein expression and on the fact that they gain tumor cell proteins by the process of trogocytosis. These phenotypic differences should be taken into account in analysis to identify different NK cell subpopulations. Hence, NK cells are actively recognizing tumor cells in leukemia patients; but this seems to be insufficient to eradicate disease. Future efforts should enhance the antitumor activity of this population.
Collapse
Affiliation(s)
- Ewelina Krzywinska
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Nerea Allende-Vega
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Amelie Cornillon
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Dang-Nghiem Vo
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), Department of Cellular and Tissular Biopathology of Tumors, University Medical Centre, Montpellier, France ; EA2415 - Help for Personalized Decision: Methodological Aspects, University Institute of Clinical Research, Montpellier University, Montpellier, France
| | - Catherine Panabieres
- Laboratory of Rare Human Circulating Cells (LCCRH), Department of Cellular and Tissular Biopathology of Tumors, University Medical Centre, Montpellier, France ; EA2415 - Help for Personalized Decision: Methodological Aspects, University Institute of Clinical Research, Montpellier University, Montpellier, France
| | - Carlos Vilches
- Inmunogenética-HLA, Hospital Univ. Puerta de Hierro, Manuel de Falla 1, 28220 Majadahonda, Madrid, Spain
| | | | - Yosr Hicheri
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Jean-François Rossi
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Guillaume Cartron
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Martin Villalba
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France ; Institut for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier 34295, France
| |
Collapse
|
77
|
Restuccia A, Tian YF, Collier JH, Hudalla GA. Self-assembled glycopeptide nanofibers as modulators of galectin-1 bioactivity. Cell Mol Bioeng 2015; 8:471-487. [PMID: 26495044 DOI: 10.1007/s12195-015-0399-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that act as extracellular signaling molecules in various normal and pathological processes. Galectin bioactivity is mediated by specific non-covalent interactions with cell-surface and extracellular matrix (ECM) glycoproteins, which can enhance or inhibit signaling events that influence various cellular behaviors, including adhesion, proliferation, differentiation, and apoptosis. Here, we developed a materials approach to modulate galectin bioactivity by mimicking natural galectin-glycoprotein interactions. Specifically, we created a variant of a peptide that self-assembles into β-sheet nanofibers under aqueous conditions, QQKFQFQFEQQ (Q11), which has an asparagine residue modified with the monosaccharide N-acetylglucosamine (GlcNAc) at its N-terminus (GlcNAc-Q11). GlcNAc-Q11 self-assembled into β-sheet nanofibers under similar conditions as Q11. Nanofibrillar GlcNAc moieties were efficiently converted to the galectin-binding disaccharide N-acetyllactosamine (LacNAc) via the enzyme β-1,4-galactosyltransferase and the sugar donor UDP-galactose, while retaining β-sheet structure and nanofiber morphology. LacNAc-Q11 nanofibers bound galectin-1 and -3 in a LacNAc concentration-dependent manner, although nanofibers bound galectin-1 with higher affinity than galectin-3. In contrast, galectin-1 bound weakly to GlcNAc-Q11 nanofibers, while no galectin-3 binding to these nanofibers was observed. Galectin-1 binding to LacNAc-Q11 nanofibers was specific because it could be inhibited by excess soluble β-lactose, a galectin-binding carbohydrate. LacNAc-Q11 nanofibers inhibited galectin-1-mediated apoptosis of Jurkat T cells in a LacNAc concentration-dependent manner, but were unable to inhibit galectin-3 activity, consistent with galectin-binding affinity of the nanofibers. We envision that glycopeptide nanofibers capable of modulating galectin-1 bioactivity will be broadly useful as biomaterials for various medical applications, including cancer therapeutics, immunotherapy, tissue regeneration, and viral prophylaxis.
Collapse
Affiliation(s)
| | - Ye F Tian
- Department of Surgery, University of Chicago. ; Department of Biomedical Engineering, Illinois Institute of Technology
| | | | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering. ; Department of Surgery, University of Chicago
| |
Collapse
|
78
|
Varinska L, Gal P, Mojzisova G, Mirossay L, Mojzis J. Soy and breast cancer: focus on angiogenesis. Int J Mol Sci 2015; 16:11728-49. [PMID: 26006245 PMCID: PMC4463727 DOI: 10.3390/ijms160511728] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/08/2015] [Indexed: 02/06/2023] Open
Abstract
Epidemiological studies have revealed that high consumption of soy products is associated with low incidences of hormone-dependent cancers, including breast and prostate cancer. Soybeans contain large amounts of isoflavones, such as the genistein and daidzain. Previously, it has been demonstrated that genistein, one of the predominant soy isoflavones, can inhibit several steps involved in carcinogenesis. It is suggested that genistein possesses pleiotropic molecular mechanisms of action including inhibition of tyrosine kinases, DNA topoisomerase II, 5α-reductase, galectin-induced G2/M arrest, protein histidine kinase, and cyclin-dependent kinases, modulation of different signaling pathways associated with the growth of cancer cells (e.g., NF-κB, Akt, MAPK), etc. Moreover, genistein is also a potent inhibitor of angiogenesis. Uncontrolled angiogenesis is considered as a key step in cancer growth, invasion, and metastasis. Genistein was found to inhibit angiogenesis through regulation of multiple pathways, such as regulation of VEGF, MMPs, EGFR expressions and NF-κB, PI3-K/Akt, ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This review focuses on the antiangiogenic properties of soy isoflavonoids and examines their possible underlying mechanisms.
Collapse
Affiliation(s)
- Lenka Varinska
- Department of Pharmacology, P.J. Šafárik University, Faculty of Medicine, Trieda SNP 1, 040 11 Košice, Slovakia.
| | - Peter Gal
- Department of Pharmacology, P.J. Šafárik University, Faculty of Medicine, Trieda SNP 1, 040 11 Košice, Slovakia.
- Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Ondavská 8, 040 11 Košice, Slovakia.
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Commenius University, Odbojárov 10, 832 10 Bratislava, Slovakia.
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U nemocnice 3, 128 00 Prague, Czech Republic.
| | - Gabriela Mojzisova
- Department of Experimental Medicine, P.J. Šafárik University, Faculty of Medicine, Trieda SNP-1, 040 11 Košice, Slovakia.
| | - Ladislav Mirossay
- Department of Pharmacology, P.J. Šafárik University, Faculty of Medicine, Trieda SNP 1, 040 11 Košice, Slovakia.
| | - Jan Mojzis
- Department of Pharmacology, P.J. Šafárik University, Faculty of Medicine, Trieda SNP 1, 040 11 Košice, Slovakia.
| |
Collapse
|
79
|
Bacigalupo ML, Manzi M, Espelt MV, Gentilini LD, Compagno D, Laderach DJ, Wolfenstein-Todel C, Rabinovich GA, Troncoso MF. Galectin-1 triggers epithelial-mesenchymal transition in human hepatocellular carcinoma cells. J Cell Physiol 2015; 230:1298-309. [PMID: 25469885 DOI: 10.1002/jcp.24865] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 11/06/2014] [Indexed: 12/23/2022]
Abstract
Galectin-1 (Gal1), a β-galactoside-binding protein abundantly expressed in tumor microenvironments, is associated with the development of metastasis in hepatocellular carcinomas (HCC). However, the precise roles of Gal1 in HCC cell invasiveness and dissemination are uncertain. Here, we investigated whether Gal1 mediate epithelial-mesenchymal transition (EMT) in HCC cells, a key process during cancer progression. We used the well-differentiated and low invasive HepG2 cells and performed 'gain-of-function' and 'loss-function' experiments by transfecting cells with Gal1 cDNA constructs or by siRNA strategies, respectively. Epithelial and mesenchymal markers expression, changes in apico-basal polarity, independent-anchorage growth, and activation of specific signaling pathways were studied using Western blot, fluorescence microscopy, soft-agar assays, and FOP/TOP flash reporter system. Gal1 up-regulation in HepG2 cells induced down-regulation of the adherens junction protein E-cadherin and increased expression of the transcription factor Snail, one of the main inducers of EMT in HCC. Enhanced Gal1 expression facilitated the transition from epithelial cell morphology towards a fibroblastoid phenotype and favored up-regulation of the mesenchymal marker vimentin in HCC cells. Cells overexpressing Gal1 showed enhanced anchorage-independent growth and loss of apico-basal polarity. Remarkably, Gal1 promoted Akt activation, β-catenin nuclear translocation, TCF4/LEF1 transcriptional activity and increased cyclin D1 and c-Myc expression, suggesting activation of the Wnt pathway. Furthermore, Gal1 overexpression induced E-cadherin downregulation through a PI3K/Akt-dependent mechanism. Our results provide the first evidence of a role of Gal1 as an inducer of EMT in HCC cells, with critical implications in HCC metastasis.
Collapse
Affiliation(s)
- María L Bacigalupo
- Institute of Biological Chemistry and Biophysics "Prof. Alejandro C. Paladini" (UBA-CONICET), Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Cousin JM, Cloninger MJ. Glycodendrimers: tools to explore multivalent galectin-1 interactions. Beilstein J Org Chem 2015; 11:739-47. [PMID: 26124876 PMCID: PMC4464428 DOI: 10.3762/bjoc.11.84] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/04/2015] [Indexed: 11/23/2022] Open
Abstract
Four generations of lactose-functionalized polyamidoamine (PAMAM) were employed to further the understanding of multivalent galectin-1 mediated interactions. Dynamic light scattering and fluorescence microscopy were used to study the multivalent interaction of galectin-1 with the glycodendrimers in solution, and glycodendrimers were observed to organize galectin-1 into nanoparticles. In the presence of a large excess of galectin-1, glycodendrimers nucleated galectin-1 into nanoparticles that were remarkably homologous in size (400-500 nm). To understand augmentation of oncologic cellular aggregation by galectin-1, glycodendrimers were used in cell-based assays with human prostate carcinoma cells (DU145). The results revealed that glycodendrimers provided competitive binding sites for galectin-1, which diverted galectin-1 from its typical function in cellular aggregation of DU145 cells.
Collapse
Affiliation(s)
- Jonathan M Cousin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
81
|
Kozakowska M, Kotlinowski J, Grochot-Przeczek A, Ciesla M, Pilecki B, Derlacz R, Dulak J, Jozkowicz A. Myoblast-conditioned media improve regeneration and revascularization of ischemic muscles in diabetic mice. Stem Cell Res Ther 2015; 6:61. [PMID: 25889676 PMCID: PMC4431532 DOI: 10.1186/s13287-015-0063-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/21/2015] [Accepted: 03/24/2015] [Indexed: 12/17/2022] Open
Abstract
Introduction Diabetes is associated with reduced expression of heme oxygenase-1 (HO-1), a heme-degrading enzyme with cytoprotective and proangiogenic properties. In myoblasts and muscle satellite cells HO-1 improves survival, proliferation and production of proangiogenic growth factors. Induction of HO-1 in injured tissues facilitates neovascularization, the process impaired in diabetes. We aimed to examine whether conditioned media from the HO-1 overexpressing myoblast cell line can improve a blood-flow recovery in ischemic muscles of diabetic mice. Methods Analysis of myogenic markers was performed at the mRNA level in primary muscle satellite cells, isolated by a pre-plate technique from diabetic db/db and normoglycemic wild-type mice, and then cultured under growth or differentiation conditions. Hind limb ischemia was performed by femoral artery ligation in db/db mice and blood recovery was monitored by laser Doppler measurements. Mice were treated with a single intramuscular injection of conditioned media harvested from wild-type C2C12 myoblast cell line, C2C12 cells stably transduced with HO-1 cDNA, or with unconditioned media. Results Expression of HO-1 was lower in muscle satellite cells isolated from muscles of diabetic db/db mice when compared to their wild-type counterparts, what was accompanied by increased levels of Myf5 or CXCR4, and decreased Mef2 or Pax7. Such cells also displayed diminished differentiation potential when cultured in vitro, as shown by less effective formation of myotubes and reduced expression of myogenic markers (myogenic differentiation antigen - myoD, myogenin and myosin). Blood flow recovery after induction of severe hind limb ischemia was delayed in db/db mice compared to that in normoglycemic individuals. To improve muscle regeneration after ischemia, conditioned media collected from differentiating C2C12 cells (control and HO-1 overexpressing) were injected into hind limbs of diabetic mice. Analysis of blood flow revealed that media from HO-1 overexpressing cells accelerated blood-flow recovery, while immunohistochemical staining assessment of vessel density in injected muscle confirmed increased angiogenesis. The effect might be mediated by stromal-cell derived factor-1α proangiogenic factor, as its secretion is elevated in HO-1 overexpressing cells. Conclusions In conclusion, paracrine stimulation of angiogenesis in ischemic skeletal muscle using conditioned media may be a safe approach exploiting protective and proangiogenic properties of HO-1 in diabetes.
Collapse
Affiliation(s)
- Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
| | - Jerzy Kotlinowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
| | - Maciej Ciesla
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
| | - Bartosz Pilecki
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
| | - Rafal Derlacz
- R&D Department, Adamed Ltd, Pienkow 149, Czosnow, 05-152, Poland. .,Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland.
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland. .,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
| |
Collapse
|
82
|
Examination of the role of galectins and galectin inhibitors in endothelial cell biology. Methods Mol Biol 2015; 1207:285-91. [PMID: 25253147 DOI: 10.1007/978-1-4939-1396-1_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The growth of new blood vessels is a key event in many (patho)physiological processes, including embryogenesis, wound healing, inflammatory diseases, and cancer. Neovascularization requires different, well-coordinated actions of endothelial cells, i.e., the cells lining the luminal side of all blood vessels. Galectins are involved in several of these activities. In this chapter we describe methods to study galectins and galectin inhibition in three key functions of endothelial cells during angiogenesis, i.e., endothelial cell migration, endothelial cell sprouting, and endothelial cell network formation.
Collapse
|
83
|
Chen R, Dawson DW, Pan S, Ottenhof NA, de Wilde RF, Wolfgang CL, May DH, Crispin DA, Lai LA, Lay AR, Waghray M, Wang S, McIntosh MW, Simeone DM, Maitra A, Brentnall TA. Proteins associated with pancreatic cancer survival in patients with resectable pancreatic ductal adenocarcinoma. J Transl Med 2015; 95:43-55. [PMID: 25347153 PMCID: PMC4281293 DOI: 10.1038/labinvest.2014.128] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/06/2014] [Accepted: 08/30/2014] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a dismal prognosis. However, while most patients die within the first year of diagnosis, very rarely, a few patients can survive for >10 years. Better understanding the molecular characteristics of the pancreatic adenocarcinomas from these very-long-term survivors (VLTS) may provide clues for personalized medicine and improve current pancreatic cancer treatment. To extend our previous investigation, we examined the proteomes of individual pancreas tumor tissues from a group of VLTS patients (survival ≥10 years) and short-term survival patients (STS, survival <14 months). With a given analytical sensitivity, the protein profile of each pancreatic tumor tissue was compared to reveal the proteome alterations that may be associated with pancreatic cancer survival. Pathway analysis of the differential proteins identified suggested that MYC, IGF1R and p53 were the top three upstream regulators for the STS-associated proteins, and VEGFA, APOE and TGFβ-1 were the top three upstream regulators for the VLTS-associated proteins. Immunohistochemistry analysis using an independent cohort of 145 PDAC confirmed that the higher abundance of ribosomal protein S8 (RPS8) and prolargin (PRELP) were correlated with STS and VLTS, respectively. Multivariate Cox analysis indicated that 'High-RPS8 and Low-PRELP' was significantly associated with shorter survival time (HR=2.69, 95% CI 1.46-4.92, P=0.001). In addition, galectin-1, a previously identified protein with its abundance aversely associated with pancreatic cancer survival, was further evaluated for its significance in cancer-associated fibroblasts. Knockdown of galectin-1 in pancreatic cancer-associated fibroblasts dramatically reduced cell migration and invasion. The results from our study suggested that PRELP, LGALS1 and RPS8 might be significant prognostic factors, and RPS8 and LGALS1 could be potential therapeutic targets to improve pancreatic cancer survival if further validated.
Collapse
Affiliation(s)
- Ru Chen
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - David W Dawson
- 1] Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA [2] Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Niki A Ottenhof
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Roeland F de Wilde
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Christopher L Wolfgang
- Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Damon H May
- Fred Hutchinson Cancer Research Center, Molecular Diagnostics Program, Seattle, WA, USA
| | - David A Crispin
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lisa A Lai
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Anna R Lay
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
| | - Meghna Waghray
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Shouli Wang
- Department of Pathology, Soochow University School of Medicine, Suzhou, China
| | - Martin W McIntosh
- Fred Hutchinson Cancer Research Center, Molecular Diagnostics Program, Seattle, WA, USA
| | - Diane M Simeone
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Anirban Maitra
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
84
|
Bu Q, Wang J, Zheng Y, Zou Y, Wei M. MGL induces nuclear translocation of EndoG and AIF in caspase-independent T cell death. ACTA ACUST UNITED AC 2015; 20:816-24. [DOI: 10.1515/cmble-2015-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/21/2015] [Indexed: 11/15/2022]
Abstract
AbstractMacrophage galactose-type lectin (MGL) participates in the regulation of T cell apoptosis, but the exact death pathway remains unclear. Here, we demonstrated that MGL-induced T cell death occurs in a caspaseindependent manner. Furthermore, MGL treatment triggers the translocation of endonuclease G (EndoG) and apoptosis-inducing factor (AIF) from the mitochondria to the nucleus. Because galectin-1 (Gal-1) can also initiate similar mitochondrial events, we speculate that this death pathway may be widely used by the lectin family.
Collapse
|
85
|
He XJ, Tao HQ, Hu ZM, Ma YY, Xu J, Wang HJ, Xia YJ, Li L, Fei BY, Li YQ, Chen JZ. Expression of galectin-1 in carcinoma-associated fibroblasts promotes gastric cancer cell invasion through upregulation of integrin β1. Cancer Sci 2014; 105:1402-10. [PMID: 25230369 PMCID: PMC4462364 DOI: 10.1111/cas.12539] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/21/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Increased expression of galectin-1 (Gal-1) in carcinoma-associated fibroblasts (CAFs) has been reported to correlate with progression and prognosis in many cancers. However, rarely have reports sought to determine whether high Gal-1 expression in CAFs in gastric cancer is involved in the tumor process, and the specific mechanism by which it promotes the evolution of gastric cancer is still unknown. In this study, we cultured gastric cancer CAFs, which showed strong expression of Gal-1, and established a co-culture system of CAFs with gastric cancer cells. Specific siRNA and in vitro migration and invasion assays were used to explore the effects of the interaction between Gal-1 expression of CAFs and gastric cancer cells on cell migration and invasion. We found that the overexpression of Gal-1 in CAFs enhanced gastric cancer cell migration and invasion, and these stimulatory effects could be blocked by specific siRNA which reduced the Gal-1 expression level. A set of cancer invasion-associated genes were then chosen to identify the possible mechanism of Gal-1-induced cell invasion. Among these genes, integrin β1 expression in cancer cells was considered to be associated with Gal-1 expression. Pre-blocking of the integrin β1 expression in gastric cancer cells with siRNA could interrupt the invasion-promoting effect of CAFs with high Gal-1 expression. Furthermore, immunohistochemical assay confirmed a positive correlation between Gal-1 and integrin β1 expression. Our results showed that high expression of Gal-1 in CAFs might facilitate gastric cancer cell migration and invasion by upregulating integrin β1 expression in gastric cancer.
Collapse
Affiliation(s)
- Xu-Jun He
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Comparative proteomic analysis of fibrosarcoma and skin fibroblast cell lines. Tumour Biol 2014; 36:561-7. [DOI: 10.1007/s13277-014-2672-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022] Open
|
87
|
Martínez-Bosch N, Navarro P. Targeting Galectin-1 in pancreatic cancer: immune surveillance on guard. Oncoimmunology 2014; 3:e952201. [PMID: 25610742 DOI: 10.4161/21624011.2014.952201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 01/04/2023] Open
Abstract
The tumor microenviroment and immune barrier are known to modulate malignant disease progression. We have recently identified Galectin-1 as a key player in a novel stromal regulatory reaction driving immune evasion in pancreatic tumors in vivo. These results suggest that Galectin-1 inhibition represents a potential therapeutic strategy for one of the most deadly types of cancer.
Collapse
Affiliation(s)
- Neus Martínez-Bosch
- Cancer Research Program; IMIM (Hospital del Mar Medical Research Institute) ; Barcelona, Spain
| | - Pilar Navarro
- Cancer Research Program; IMIM (Hospital del Mar Medical Research Institute) ; Barcelona, Spain
| |
Collapse
|
88
|
MIAO JINHAO, WANG SHUQIANG, ZHANG MINGHUI, YU FENGBIN, ZHANG LEI, YU ZHONGXIANG, KUANG YONG. Knockdown of galectin-1 suppresses the growth and invasion of osteosarcoma cells through inhibition of the MAPK/ERK pathway. Oncol Rep 2014; 32:1497-504. [PMID: 25069486 DOI: 10.3892/or.2014.3358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/08/2014] [Indexed: 11/05/2022] Open
|
89
|
Hypoxia-inducible factor 2 alpha is essential for hepatic outgrowth and functions via the regulation of leg1 transcription in the zebrafish embryo. PLoS One 2014; 9:e101980. [PMID: 25000307 PMCID: PMC4084947 DOI: 10.1371/journal.pone.0101980] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022] Open
Abstract
The liver plays a vital role in metabolism, detoxification, digestion, and the maintenance of homeostasis. During development, the vertebrate embryonic liver undergoes a series of morphogenic processes known as hepatogenesis. Hepatogenesis can be separated into three interrelated processes: endoderm specification, hepatoblast differentiation, and hepatic outgrowth. Throughout this process, signaling molecules and transcription factors initiate and regulate the coordination of cell proliferation, apoptosis, differentiation, intercellular adhesion, and cell migration. Hifs are already recognized to be essential in embryonic development, but their role in hepatogenesis remains unknown. Using the zebrafish embryo as a model organism, we report that the lack of Hif2-alpha but not Hif1-alpha blocks hepatic outgrowth. While Hif2-alpha is not involved in hepatoblast specification, this transcription factor regulates hepatocyte cell proliferation during hepatic outgrowth. Furthermore, we demonstrated that the lack of Hif2-alpha can reduce the expression of liver-enriched gene 1 (leg1), which encodes a secretory protein essential for hepatic outgrowth. Additionally, exogenous mRNA expression of leg1 can rescue the small liver phenotype of hif2-alpha morphants. We also showed that Hif2-alpha directly binds to the promoter region of leg1 to control leg1 expression. Interestingly, we discovered overrepresented, high-density Hif-binding sites in the potential upstream regulatory sequences of leg1 in teleosts but not in terrestrial mammals. We concluded that hif2-alpha is a key factor required for hepatic outgrowth and regulates leg1 expression in zebrafish embryos. We also proposed that the hif2-alpha-leg1 axis in liver development may have resulted from the adaptation of teleosts to their environment.
Collapse
|
90
|
Berois N, Osinaga E. Glycobiology of neuroblastoma: impact on tumor behavior, prognosis, and therapeutic strategies. Front Oncol 2014; 4:114. [PMID: 24904828 PMCID: PMC4033258 DOI: 10.3389/fonc.2014.00114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/02/2014] [Indexed: 01/28/2023] Open
Abstract
Neuroblastoma (NB), accounting for 10% of childhood cancers, exhibits aberrant cell-surface glycosylation patterns. There is evidence that changes in glycolipids and protein glycosylation pathways are associated to NB biological behavior. Polysialic acid (PSA) interferes with cellular adhesion, and correlates with NB progression and poor prognosis, as well as the expression of sialyltransferase STX, the key enzyme responsible for PSA synthesis. Galectin-1 and gangliosides, overexpressed and actively shedded by tumor cells, can modulate normal cells present in the tumor microenvironment, favoring angiogenesis and immunological escape. Different glycosyltransferases are emerging as tumor markers and potential molecular targets. Immunotherapy targeting disialoganglioside GD2 rises as an important treatment option. One anti-GD2 antibody (ch14.18), combined with IL-2 and GM-CSF, significantly improves survival for high-risk NB patients. This review summarizes our current knowledge on NB glycobiology, highlighting the molecular basis by which carbohydrates and protein–carbohydrate interactions impact on biological behavior and patient clinical outcome.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo , Montevideo , Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo , Montevideo , Uruguay ; Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República , Montevideo , Uruguay
| |
Collapse
|
91
|
Salajegheh A, Dolan-Evans E, Sullivan E, Irani S, Rahman MA, Vosgha H, Gopalan V, Smith RA, Lam AKY. The expression profiles of the galectin gene family in primary and metastatic papillary thyroid carcinoma with particular emphasis on galectin-1 and galectin-3 expression. Exp Mol Pathol 2014; 96:212-8. [DOI: 10.1016/j.yexmp.2014.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/03/2014] [Indexed: 12/11/2022]
|
92
|
Rossi AFT, Duarte MC, Poltronieri AB, Valsechi MC, Jorge YC, de-Santi Neto D, Rahal P, Oliani SM, Silva AE. Deregulation of annexin-A1 and galectin-1 expression in precancerous gastric lesions: intestinal metaplasia and gastric ulcer. Mediators Inflamm 2014; 2014:478138. [PMID: 24719523 PMCID: PMC3955591 DOI: 10.1155/2014/478138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Annexin-A1 (ANXA1/AnxA1) and galectin-1 (LGALS1/Gal-1) are mediators that play an important role in the inflammatory response and are also associated with carcinogenesis. We investigated mRNA and protein expression in precancerous gastric lesions that participate in the progression cascade to gastric cancer, such as intestinal metaplasia (IM) and gastric ulcer (GU). METHODS Quantitative real-time PCR (qPCR) and immunohistochemical techniques were used to analyze the relative quantification levels (RQ) of ANXA1 and LGALS1 mRNA and protein expression, respectively. RESULTS Increased relative expression levels of ANXA1 were found in 100% of cases, both in IM (mean RQ = 6.22 ± 0.06) and in GU (mean RQ = 6.69 ± 0.10). However, the LGALS1 presented basal expression in both groups (IM: mean RQ = 0.35 ± 0.07; GU: mean RQ = 0.69 ± 0.09). Immunohistochemistry revealed significant positive staining for both the AnxA1 and Gal-1 proteins in the epithelial nucleus and cytoplasm as well as in the stroma of the IM and GU groups (P < 0.05) but absence or low immunorectivity in normal mucosa. CONCLUSION Our results bring an important contribution by evidencing that both the AnxA1 and Gal-1 anti-inflammatory proteins are deregulated in precancerous gastric lesions, suggesting their involvement in the early stages of gastric carcinogenesis, possibly due to an inflammatory process in the gastric mucosa.
Collapse
Affiliation(s)
- Ana Flávia Teixeira Rossi
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Márcia Cristina Duarte
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Ayla Blanco Poltronieri
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Marina Curado Valsechi
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Yvana Cristina Jorge
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Dalísio de-Santi Neto
- Legal Medicine Department and Pathology Service, Hospital de Base, Avenida Brigadeiro Faria Lima 5544, 15090-000 São José do Rio Preto, SP, Brazil
| | - Paula Rahal
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Sonia Maria Oliani
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Ana Elizabete Silva
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| |
Collapse
|
93
|
Häuselmann I, Borsig L. Altered tumor-cell glycosylation promotes metastasis. Front Oncol 2014; 4:28. [PMID: 24592356 PMCID: PMC3923139 DOI: 10.3389/fonc.2014.00028] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/29/2014] [Indexed: 12/14/2022] Open
Abstract
Malignant transformation of cells is associated with aberrant glycosylation presented on the cell-surface. Commonly observed changes in glycan structures during malignancy encompass aberrant expression and glycosylation of mucins; abnormal branching of N-glycans; and increased presence of sialic acid on proteins and glycolipids. Accumulating evidence supports the notion that the presence of certain glycan structures correlates with cancer progression by affecting tumor-cell invasiveness, ability to disseminate through the blood circulation and to metastasize in distant organs. During metastasis tumor-cell-derived glycans enable binding to cells in their microenvironment including endothelium and blood constituents through glycan-binding receptors – lectins. In this review, we will discuss current concepts how tumor-cell-derived glycans contribute to metastasis with the focus on three types of lectins: siglecs, galectins, and selectins. Siglecs are present on virtually all hematopoietic cells and usually negatively regulate immune responses. Galectins are mostly expressed by tumor cells and support tumor-cell survival. Selectins are vascular adhesion receptors that promote tumor-cell dissemination. All lectins facilitate interactions within the tumor microenvironment and thereby promote cancer progression. The identification of mechanisms how tumor glycans contribute to metastasis may help to improve diagnosis, prognosis, and aid to develop clinical strategies to prevent metastasis.
Collapse
Affiliation(s)
- Irina Häuselmann
- Zürich Center for Integrative Human Physiology, Institute of Physiology, University of Zürich , Zürich , Switzerland
| | - Lubor Borsig
- Zürich Center for Integrative Human Physiology, Institute of Physiology, University of Zürich , Zürich , Switzerland
| |
Collapse
|
94
|
Matsukawa S, Morita KI, Negishi A, Harada H, Nakajima Y, Shimamoto H, Tomioka H, Tanaka K, Ono M, Yamada T, Omura K. Galectin-7 as a potential predictive marker of chemo- and/or radio-therapy resistance in oral squamous cell carcinoma. Cancer Med 2014; 3:349-61. [PMID: 24515895 PMCID: PMC3987084 DOI: 10.1002/cam4.195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/20/2013] [Accepted: 12/26/2013] [Indexed: 12/15/2022] Open
Abstract
Treatment of advanced oral squamous cell carcinoma (OSCC) requires the integration of multimodal approaches. The aim of this study was to identify predictors of tumor sensitivity to preoperative radiotherapy/chemotherapy for OSCC in order to allow oncologists to determine optimum therapeutic strategies without the associated adverse effects. Here, the protein expression profiles of formalin-fixed paraffin-embedded (FFPE) tissue samples from 18 OSCC patients, termed learning cases, who received preoperative chemotherapy and/or radiotherapy followed by surgery were analyzed by quantitative proteomics and validated by immunohistochemistry in 68 test cases as well as in the 18 learning cases. We identified galectin-7 as a potential predictive marker of chemotherapy and/or radiotherapy resistance, and the sensitivity and specificity of the galectin-7 prediction score (G7PS) in predicting this resistance was of 96.0% and 39.5%, respectively, in the 68 test cases. The cumulative 5-year disease-specific survival rate was 75.2% in patients with resistant prediction using G7PS and 100% in patients with sensitive prediction. In vitro overexpression of galectin-7 significantly decreased cell viability in OSCC cell line. Therefore, our findings suggest that galectin-7 is a potential predictive marker of chemotherapy and/or radiotherapy resistance in patients with OSCC. Identification of proteins differentially expressed in OSSC samples from patients sensitive or resistant. The samples were processed by LC-MS and analyzed with 2DICAL.
Collapse
Affiliation(s)
- Sho Matsukawa
- Oral and Maxillofacial Surgery, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Zhang P, Shi B, Gao H, Jiang H, Kong J, Yan J, Pan X, Li K, Zhang P, Yao M, Yang S, Gu J, Wang H, Li Z. An EpCAM/CD3 bispecific antibody efficiently eliminates hepatocellular carcinoma cells with limited galectin-1 expression. Cancer Immunol Immunother 2014; 63:121-32. [PMID: 24177984 PMCID: PMC11029305 DOI: 10.1007/s00262-013-1497-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/24/2013] [Indexed: 12/17/2022]
Abstract
There have been several studies suggesting that cancer stem cells (CSCs) contribute to the high rates of recurrence and resistance to therapies observed in hepatocellular carcinoma (HCC). Epithelial cell adhesion molecule (EpCAM) has been demonstrated to be a biomarker of CSCs and a potential therapeutic target in HCC. Here, we prepared two anti-EpCAM monoclonal antibodies (1H8 and 2F2) and an anti-EpCAM bispecific T cell engager (BiTE) 1H8/CD3, which was derived from 1H8, and used them to treat HCC in vitro and in vivo. The results demonstrated that all of the developed anti-EpCAM antibodies specifically bound to EpCAM. Neither anti-EpCAM monoclonal antibody had obvious anti-HCC activities in vitro or in vivo. However, anti-EpCAM BiTE 1H8/CD3 induced strong peripheral blood mononuclear cell-dependent cellular cytotoxicity in Huh-7 and Hep3B cells but not EpCAM-negative SK-Hep-1 cells. Notably, 1H8/CD3 completely inhibited the growth of Huh-7 and Hep3B xenografts in vivo. Treatment of the Huh-7 HCC xenografts with 1H8/CD3 significantly suppressed tumor proliferation and reduced the expression of most CSC biomarkers. Intriguingly, galectin-1 (Gal-1) overexpression inhibited 1H8/CD3-induced lymphocytotoxicity in HCCs while knockdown of Gal-1 increased the lymphocytotoxicity. Collectively, these results indicate that anti-EpCAM BiTE 1H8/CD3 is a promising therapeutic agent for HCC treatment. Gal-1 may contribute to the resistance of HCC cells to 1H8/CD3-induced lysis.
Collapse
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai, 200032 China
| | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai, 200032 China
| | - Huiping Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai, 200032 China
| | - Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai, 200032 China
| | - Juan Kong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai, 200032 China
| | - Jin Yan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai, 200032 China
| | - Xiaorong Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai, 200032 China
| | - Kesang Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai, 200032 China
| | - Pengwei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai, 200032 China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai, 200032 China
| | - Shengli Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai, 200032 China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai, 200032 China
| | - Hongyang Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai, 200032 China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438 China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai, 200032 China
| |
Collapse
|
96
|
Burkholder B, Huang RY, Burgess R, Luo S, Jones VS, Zhang W, Lv ZQ, Gao CY, Wang BL, Zhang YM, Huang RP. Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta Rev Cancer 2014; 1845:182-201. [PMID: 24440852 DOI: 10.1016/j.bbcan.2014.01.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 12/14/2022]
Abstract
Until recently, the intrinsically high level of cross-talk between immune cells, the complexity of immune cell development, and the pleiotropic nature of cytokine signaling have hampered progress in understanding the mechanisms of immunosuppression by which tumor cells circumvent native and adaptive immune responses. One technology that has helped to shed light on this complex signaling network is the cytokine antibody array, which facilitates simultaneous screening of dozens to hundreds of secreted signal proteins in complex biological samples. The combined applications of traditional methods of molecular and cell biology with the high-content, high-throughput screening capabilities of cytokine antibody arrays and other multiplexed immunoassays have revealed a complex mechanism that involves multiple cytokine signals contributed not just by tumor cells but by stromal cells and a wide spectrum of immune cell types. This review will summarize the interactions among cancerous and immune cell types, as well as the key cytokine signals that are required for tumors to survive immunoediting in a dormant state or to grow and spread by escaping it. Additionally, it will present examples of how probing secreted cell-cell signal networks in the tumor microenvironment (TME) with cytokine screens have contributed to our current understanding of these processes and discuss the implications of this understanding to antitumor therapies.
Collapse
Affiliation(s)
- Brett Burkholder
- RayBiotech, Inc., 3607 Parkway Lane, Suite 100, Norcross, GA 30092, USA
| | | | - Rob Burgess
- RayBiotech, Inc., 3607 Parkway Lane, Suite 100, Norcross, GA 30092, USA
| | - Shuhong Luo
- RayBiotech, Inc., 3607 Parkway Lane, Suite 100, Norcross, GA 30092, USA; RayBiotech, Inc., Guangzhou 510600, China
| | | | | | | | | | | | | | - Ruo-Pan Huang
- RayBiotech, Inc., 3607 Parkway Lane, Suite 100, Norcross, GA 30092, USA; RayBiotech, Inc., Guangzhou 510600, China; South China Biochip Research Center, Guangzhou 510630, China.
| |
Collapse
|
97
|
Zhang P, Zhang P, Shi B, Zhou M, Jiang H, Zhang H, Pan X, Gao H, Sun H, Li Z. Galectin-1 overexpression promotes progression and chemoresistance to cisplatin in epithelial ovarian cancer. Cell Death Dis 2014; 5:e991. [PMID: 24407244 PMCID: PMC4040687 DOI: 10.1038/cddis.2013.526] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/15/2022]
Abstract
This study was performed to investigate the role of galectin-1 (Gal-1) in epithelial ovarian cancer (EOC) progression and chemoresistance. Tissue samples from patients with EOC were used to examine the correlation between Gal-1 expression and clinical stage of EOC. The role of Gal-1 in EOC progression and chemoresistance was evaluated in vitro by siRNA-mediated knockdown of Gal-1 or lentivirus-mediated overexpression of Gal-1 in EOC cell lines. To elucidate the molecular mechanisms underlying Gal-1-mediated tumor progression and chemoresistance, the expression and activities of some signaling molecules associated with Gal-1 were analyzed. We found overexpression of Gal-1 in advanced stages of EOC. Knockdown of endogenous Gal-1 in EOC cells resulted in the reduction in cell growth, migration, and invasion in vitro, which may be caused by Gal-1's interaction with H-Ras and activation of the Raf/extracellular signal-regulated kinase (ERK) pathway. Additionally, matrix metalloproteinase-9 (MMP-9) and c-Jun were downregulated in Gal-1-knockdown cells. Notably, Gal-1 overexpression could significantly decrease the sensitivities of EOC cells to cisplatin, which might be ascribed to Gal-1-induced activation of the H-Ras/Raf/ERK pathway and upregulation of p21 and Bcl-2. Taken together, the results suggest that Gal-1 contributes to both tumorigenesis and cisplatin resistance in EOC. Thus, Gal-1 is a potential therapeutic target for EOC.
Collapse
Affiliation(s)
- P Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - P Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - B Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - M Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - H Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - H Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - X Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - H Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - H Sun
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Z Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
98
|
Bacigalupo ML, Manzi M, Rabinovich GA, Troncoso MF. Hierarchical and selective roles of galectins in hepatocarcinogenesis, liver fibrosis and inflammation of hepatocellular carcinoma. World J Gastroenterol 2013; 19:8831-49. [PMID: 24379606 PMCID: PMC3870534 DOI: 10.3748/wjg.v19.i47.8831] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/02/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents a global health problem. Infections with hepatitis B or C virus, non-alcoholic steatohepatitis disease, alcohol abuse, or dietary exposure to aflatoxin are the major risk factors to the development of this tumor. Regardless of the carcinogenic insult, HCC usually develops in a context of cirrhosis due to chronic inflammation and advanced fibrosis. Galectins are a family of evolutionarily-conserved proteins defined by at least one carbohydrate recognition domain with affinity for β-galactosides and conserved sequence motifs. Here, we summarize the current literature implicating galectins in the pathogenesis of HCC. Expression of "proto-type" galectin-1, "chimera-type" galectin-3 and "tandem repeat-type" galectin-4 is up-regulated in HCC cells compared to their normal counterparts. On the other hand, the "tandem-repeat-type" lectins galectin-8 and galectin-9 are down-regulated in tumor hepatocytes. The abnormal expression of these galectins correlates with tumor growth, HCC cell migration and invasion, tumor aggressiveness, metastasis, postoperative recurrence and poor prognosis. Moreover, these galectins have important roles in other pathological conditions of the liver, where chronic inflammation and/or fibrosis take place. Galectin-based therapies have been proposed to attenuate liver pathologies. Further functional studies are required to delineate the precise molecular mechanisms through which galectins contribute to HCC.
Collapse
|
99
|
Abstract
PURPOSE OF REVIEW Galectins are a family of lectin molecules that have emerged as key players in inflammation and tumor progresssion by displaying intracellular and extracellular activities. This review describes the recent advances on the role of galectins in hematological neoplasms. RECENT FINDINGS Galectin-1 and galectin-3 are the best studied galectins in oncohematology. Increased expression of galectin-1 has been associated with tumor progression in Hodgkin's lymphoma and chronic lymphocytic leukemia, whereas galectin-3 plays a supporting role in chronic myelogenous leukemia and multiple myeloma. Functional studies have assigned a key role for galectin-1 as a negative regulator of T-cell immunity in Hodgkin's lymphoma and cutaneous T-cell lymphoma. Of therapeutic interest is the development of agents with the capacity to interfere with galectin functions. SUMMARY Current knowledge indicates a key role for galectins in hematological neoplasms by favoring the growth and survival of tumor cells and facilitating tumor immune escape. Intervention using specific galectin inhibitors is emerging as an attractive therapeutic option to alter the course of these malignancies.
Collapse
|
100
|
Sun X, Sui Q, Zhang C, Tian Z, Zhang J. Targeting blockage of STAT3 in hepatocellular carcinoma cells augments NK cell functions via reverse hepatocellular carcinoma-induced immune suppression. Mol Cancer Ther 2013; 12:2885-96. [PMID: 24107450 DOI: 10.1158/1535-7163.mct-12-1087] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
STAT3 is an important transcriptional factor for cell growth, differentiation, and apoptosis. Although evidence suggests a positive role for STAT3 in cancer, the inhibitory effects of tumor STAT3 on natural killer (NK) cell functions in human hepatocellular carcinoma are unclear. In this study, we found that blocking STAT3 in hepatocellular carcinoma cells enhanced NK-cell antitumor function. In the case of STAT3-blocked hepatocellular carcinoma cells, NKG2D ligands were upregulated, which promoted recognition by NK cells. Importantly, the cytokine profile of hepatocellular carcinoma cells was altered; in particular, TGF-β and interleukin 10 (IL-10) expression was reduced, and type I interferon (IFN) was induced, thus facilitating NK-cell activation. Indeed, the cytotoxicity of NK cells treated with supernatant from STAT3-blocked hepatocellular carcinoma cells was augmented, with a concomitant elevation of molecules associated with NK cytolysis. Further experiments confirmed that the recovery of NK cells depended on the downregulation of TGF-β and upregulation of type I IFN derived from STAT3-blocked hepatocellular carcinoma cells. These findings demonstrated a pivotal role for STAT3 in hepatocellular carcinoma-mediated NK-cell dysfunction, and highlighted the importance of STAT3 blockade for hepatocellular carcinoma immunotherapy, which could restore NK-cell cytotoxicity in addition to its direct influence on tumor cells.
Collapse
Affiliation(s)
- Xiaoxia Sun
- Corresponding Author: Jian Zhang, Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.
| | | | | | | | | |
Collapse
|