51
|
Moreira A, Naqvi R, Hall K, Emukah C, Martinez J, Moreira A, Dittmar E, Zoretic S, Evans M, Moses D, Mustafa S. Effects of mesenchymal stromal cell-conditioned media on measures of lung structure and function: a systematic review and meta-analysis of preclinical studies. Stem Cell Res Ther 2020; 11:399. [PMID: 32933584 PMCID: PMC7493362 DOI: 10.1186/s13287-020-01900-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lung disease is a leading cause of morbidity and mortality. A breach in the lung alveolar-epithelial barrier and impairment in lung function are hallmarks of acute and chronic pulmonary illness. This review is part two of our previous work. In part 1, we demonstrated that CdM is as effective as MSCs in modulating inflammation. Herein, we investigated the effects of mesenchymal stromal cell (MSC)-conditioned media (CdM) on (i) lung architecture/function in animal models mimicking human lung disease, and (ii) performed a head-to-head comparison of CdM to MSCs. METHODS Adhering to the animal Systematic Review Centre for Laboratory animal Experimentation protocol, we conducted a search of English articles in five medical databases. Two independent investigators collected information regarding lung: alveolarization, vasculogenesis, permeability, histologic injury, compliance, and measures of right ventricular hypertrophy and right pulmonary pressure. Meta-analysis was performed to generate random effect size using standardized mean difference with 95% confidence interval. RESULTS A total of 29 studies met inclusion. Lung diseases included bronchopulmonary dysplasia, asthma, pulmonary hypertension, acute respiratory distress syndrome, chronic obstructive pulmonary disease, and pulmonary fibrosis. CdM improved all measures of lung structure and function. Moreover, no statistical difference was observed in any of the lung measures between MSCs and CdM. CONCLUSIONS In this meta-analysis of animal models recapitulating human lung disease, CdM improved lung structure and function and had an effect size comparable to MSCs.
Collapse
Affiliation(s)
- Alvaro Moreira
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA.
| | - Rija Naqvi
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - Kristen Hall
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - Chimobi Emukah
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - John Martinez
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - Axel Moreira
- Department of Pediatrics, Division of Critical Care, Baylor College of Medicine, Houston, TX, USA
| | - Evan Dittmar
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - Sarah Zoretic
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - Mary Evans
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - Delanie Moses
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| | - Shamimunisa Mustafa
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science-San Antonio, San Antonio, TX, 78229-3900, USA
| |
Collapse
|
52
|
Copcu HE. Potential Using of Fat-derived Stromal Cells in the Treatment of Active Disease, and also, in Both Pre- and Post-Periods in COVID-19. Aging Dis 2020; 11:730-736. [PMID: 32765938 PMCID: PMC7390516 DOI: 10.14336/ad.2020.0621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/21/2020] [Indexed: 12/15/2022] Open
Abstract
The whole world is fighting with the COVID-19 pandemic, which traps people home, causing high business and economic losses, and above all, leads to very serious deaths. The lack of a valid, accepted treatment protocol and vaccine that leads to continued treatment searches. Leng et al published their article in the Aging and Disease journal, which demonstrates that mesenchymal stem cells (MSCs) can be used for COVID-19 treatment. Adipose tissue is one of the most important MSCs sources in the body, and adipose derived stromal cells (ADSCs) from adipose tissue are also one of the most valuable components of stromal vascular fraction (SVF). Finally, Gentile and Sterodimas, have also published their article for the potential use of SVF in COVID-19 treatment in Aging and Disease journal. Their publication has been a guide in many ways. Adipose tissue-derived stromal cells have three main features: Immunomodulatory, anti-inflammatory and regenerative. Immunomodulator effects are used as a preventive in patients prone to disease; its anti-inflammatory effects may allow them to be used as a therapeutic during active disease period and finally regenerative effects to repair post-disease sequale. Those cells can be obtained not only enzymatically, but also mechanically with very benefits. They can be delivered not only systemically through the IV route but also to the target organ with a carrier. While suggesting any adipose tissue-derived treatment method possibility, the relation of adipose tissue COVID-19 should not be ignored. Because, COVID-19 shows its effect through ACE-2 and adipose tissue is very rich and important tissue in terms of ACE-2.
Collapse
Affiliation(s)
- Hasim Eray Copcu
- Mest Health Services, Aesthetic and Plastic Surgery, Izmir, Turkey
| |
Collapse
|
53
|
Eiro N, Cabrera JR, Fraile M, Costa L, Vizoso FJ. The Coronavirus Pandemic (SARS-CoV-2): New Problems Demand New Solutions, the Alternative of Mesenchymal (Stem) Stromal Cells. Front Cell Dev Biol 2020; 8:645. [PMID: 32766251 PMCID: PMC7378818 DOI: 10.3389/fcell.2020.00645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal (stem) stromal cells (MSC) can be a therapeutic alternative for COVID-19 considering their anti-inflammatory, regenerative, angiogenic, and even antimicrobial capacity. Preliminary data point to therapeutic interest of MSC for patients with COVID-19, and their effect seems based on the MSC's ability to curb the cytokine storm caused by COVID-19. In fact, promising clinical studies using MSC to treat COVID-19, are currently underway. For this reason, now is the time to firmly consider new approaches to MSC research that addresses key issues, like selecting the most optimal type of MSC for each indication, assuming the heterogeneity of the donor-dependent MSC and the biological niche where MSC are located.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
- Foundation for Research With Uterine Stem Cells - FICEMU, Gijón, Spain
| | - Jorge Ruben Cabrera
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
- Foundation for Research With Uterine Stem Cells - FICEMU, Gijón, Spain
| | - Maria Fraile
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
- Foundation for Research With Uterine Stem Cells - FICEMU, Gijón, Spain
| | - Luis Costa
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
- Foundation for Research With Uterine Stem Cells - FICEMU, Gijón, Spain
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
- Foundation for Research With Uterine Stem Cells - FICEMU, Gijón, Spain
| |
Collapse
|
54
|
Geng YJ, Wei ZY, Qian HY, Huang J, Lodato R, Castriotta RJ. Pathophysiological characteristics and therapeutic approaches for pulmonary injury and cardiovascular complications of coronavirus disease 2019. Cardiovasc Pathol 2020; 47:107228. [PMID: 32375085 PMCID: PMC7162778 DOI: 10.1016/j.carpath.2020.107228] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) has emerged as a major health crisis, with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) having infected over a million people around the world within a few months of its identification as a human pathogen. Initially, SARS-CoV-2 infects cells in the respiratory system and causes inflammation and cell death. Subsequently, the virus spreads out and damages other vital organs and tissues, triggering a complicated spectrum of pathophysiological changes and symptoms, including cardiovascular complications. Acting as the receptor for SARS-CoV entering mammalian cells, angiotensin converting enzyme-2 (ACE2) plays a pivotal role in the regulation of cardiovascular cell function. Diverse clinical manifestations and laboratory abnormalities occur in patients with cardiovascular injury in COVID-19, characterizing the development of this complication, as well as providing clues to diagnosis and treatment. This review provides a summary of the rapidly appearing laboratory and clinical evidence for the pathophysiology and therapeutic approaches to COVID-19 pulmonary and cardiovascular complications.
Collapse
Affiliation(s)
- Yong-Jian Geng
- Department of Internal Medicine, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Zhi-Yao Wei
- Department of Cardiology, Center for Coronary Heart Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Yan Qian
- Department of Cardiology, Center for Coronary Heart Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Huang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Robert Lodato
- Department of Internal Medicine, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Richard J Castriotta
- Department of Internal Medicine, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA; Division of Pulmonary, Critical and Sleep Medicine, University of South California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
55
|
Aguiar FS, Melo AS, Araújo AMS, Cardoso AP, de Souza SAL, Lopes-Pacheco M, Cruz FF, Xisto DG, Asensi KD, Faccioli L, Salgado ABS, Landesmann MCPP, Goldenberg RCS, Gutfilen B, Morales MM, Rocco PRM, Lapa E Silva JR. Autologous bone marrow-derived mononuclear cell therapy in three patients with severe asthma. Stem Cell Res Ther 2020; 11:167. [PMID: 32357905 PMCID: PMC7193384 DOI: 10.1186/s13287-020-01675-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite recent advances in understanding its pathophysiology and development of novel therapies, asthma remains a serious public health issue worldwide. Combination therapy with inhaled corticosteroids and long-acting β2-adrenoceptor agonists results in disease control for many patients, but those who exhibit severe asthma are often unresponsive to conventional treatment, experiencing worse quality of life, frequent exacerbations, and increasing healthcare costs. Bone marrow-derived mononuclear cell (BMMC) transplantation has been shown to reduce airway inflammation and remodeling and improve lung function in experimental models of allergic asthma. METHODS This is a case series of three patients who presented severe asthma, unresponsive to conventional therapy and omalizumab. They received a single intravenous dose of autologous BMMCs (2 × 107) and were periodically evaluated for 1 year after the procedure. Endpoint assessments included physical examination, quality of life questionnaires, imaging (computed tomography, single-photon emission computed tomography, and ventilation/perfusion scan), lung function tests, and a 6-min walk test. RESULTS All patients completed the follow-up protocol. No serious adverse events attributable to BMMC transplantation were observed during or after the procedure. Lung function remained stable throughout. A slight increase in ventilation of the right lung was observed on day 120 after BMMC transplantation in one patient. All three patients reported improvement in quality of life in the early post-procedure course. CONCLUSIONS This paper described for the first time the effects of BMMC therapy in patients with severe asthma, providing a basis for subsequent trials to assess the efficacy of this therapy.
Collapse
Affiliation(s)
- Fabio S Aguiar
- Institute of Thoracic Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - André S Melo
- Institute of Thoracic Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria S Araújo
- Institute of Thoracic Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre P Cardoso
- Institute of Thoracic Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Debora G Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Karina D Asensi
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Cardiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lanuza Faccioli
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Cardiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Beatriz S Salgado
- Department of Clinical Hematology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Regina C S Goldenberg
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Cardiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Gutfilen
- Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| | - Jose R Lapa E Silva
- Institute of Thoracic Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
56
|
Bari E, Ferrarotti I, Saracino L, Perteghella S, Torre ML, Corsico AG. Mesenchymal Stromal Cell Secretome for Severe COVID-19 Infections: Premises for the Therapeutic Use. Cells 2020; 9:E924. [PMID: 32283815 PMCID: PMC7226831 DOI: 10.3390/cells9040924] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
From the end of 2019, the world population has been faced the spread of the novel coronavirus SARS-CoV-2 responsible for COVID-19 infection. In approximately 14% of the patients affected by the novel coronavirus, the infection progresses with the development of pneumonia that requires mechanical ventilation. At the moment, there is no specific antiviral treatment recommended for the COVID-19 pandemic and the therapeutic strategies to deal with the infection are only supportive. In our opinion, mesenchymal stem cell secretome could offer a new therapeutic approach in treating COVID-19 pneumonia, due to the broad pharmacological effects it shows, including anti-inflammatory, immunomodulatory, regenerative, pro-angiogenic and anti-fibrotic properties.
Collapse
Affiliation(s)
- Elia Bari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (E.B.); (S.P.)
| | - Ilaria Ferrarotti
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy; (I.F.); (A.G.C.)
| | - Laura Saracino
- Pneumology Unit IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy;
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (E.B.); (S.P.)
- PharmaExceed S.r.l., 27100 Pavia, Italy
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (E.B.); (S.P.)
- PharmaExceed S.r.l., 27100 Pavia, Italy
| | - Angelo Guido Corsico
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy; (I.F.); (A.G.C.)
- PharmaExceed S.r.l., 27100 Pavia, Italy
| |
Collapse
|
57
|
Li L, Huang Q, Wang DC, Ingbar DH, Wang X. Acute lung injury in patients with COVID-19 infection. Clin Transl Med 2020; 10:20-27. [PMID: 32508022 PMCID: PMC7240840 DOI: 10.1002/ctm2.16] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 03/14/2020] [Indexed: 01/10/2023] Open
Abstract
During the 2020 Spring Festival in China, the outbreak of a novel coronavirus, named COVID-19 by WHO, brought on a worldwide panic. According to the clinical data of infected patients, radiologic evidence of lung edema is common and deserves clinical attention. Lung edema is a manifestation of acute lung injury (ALI) and may progress to hypoxemia and potentially acute respiratory distress syndrome (ARDS). Patients diagnosed with ARDS have poorer prognosis and potentially higher mortality. Although no effective treatment is formally approved for COVID-19 infection, support of ventilation with oxygen therapy and sometimes mechanical ventilation is often required. Treatment with systemic and/or local glucocorticoids might be helpful to alleviate the pulmonary inflammation and edema, which may decrease the development and/or consequences of ARDS. In this article, we focus on the lung edema and ALI of patients with this widely transmitted COVID-19 infection in order to provide clinical indications and potential therapeutic targets for clinicians and researchers.
Collapse
Affiliation(s)
- Liyang Li
- Zhongshan Hospital Institute of Clinical ScienceShanghai Medical SchoolFudan UniversityShanghaiChina
| | - Qihong Huang
- Zhongshan Hospital Institute of Clinical ScienceShanghai Medical SchoolFudan UniversityShanghaiChina
| | - Diane C. Wang
- Department of EmergencySunshine Coast University HospitalBirtinyaQueenslandAustralia
| | - David H. Ingbar
- Pulmonary, Allergy, Critical Care & Sleep Division, Center for Lung Science and HealthUniversity of MinnesotaMinnesotaUSA
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical ScienceShanghai Medical SchoolFudan UniversityShanghaiChina
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalShanghai Medical SchoolFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
| |
Collapse
|
58
|
Castro LL, Kitoko JZ, Xisto DG, Olsen PC, Guedes HLM, Morales MM, Lopes-Pacheco M, Cruz FF, Rocco PRM. Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma. Stem Cells Transl Med 2019; 9:250-260. [PMID: 31746562 PMCID: PMC6988761 DOI: 10.1002/sctm.19-0120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
In experimental house dust mite (HDM)‐induced allergic asthma, therapeutic administration of a single dose of adipose tissue‐derived mesenchymal stromal cells (MSCs) ameliorates lung inflammation but is unable to reverse remodeling. We hypothesized that multiple doses of MSCs might exert better therapeutic effects by reducing lung inflammation and remodeling but might also result in immunosuppressive effects in experimental asthma. HDM was administered intranasally in C57BL/6 mice. After the last HDM challenge, mice received two or three doses of MSCs (105 cells per day) or saline intravenously. An additional cohort of mice received dexamethasone as a positive control for immunosuppression. Two and three doses of MSCs reduced lung inflammation, levels of interleukin (IL)‐4, IL‐13, and eotaxin; total leukocyte, CD4+ T‐cell, and eosinophil counts in bronchoalveolar lavage fluid; and total leukocyte counts in bone marrow, spleen, and mediastinal lymph nodes. Two and three doses of MSCs also reduced collagen fiber content and transforming growth factor‐β levels in lung tissue; however, the three‐dose regimen was more effective, and reduced these parameters to control levels, while also decreasing α‐actin content in lung tissue. Two and three doses of MSCs improved lung mechanics. Dexamethasone, two and three doses of MSCs similarly increased galectin levels, but only the three‐dose regimen increased CD39 levels in the thymus. Dexamethasone and the three‐dose, but not the two‐dose regimen, also increased levels of programmed death receptor‐1 and IL‐10, while reducing CD4+CD8low cell percentage in the thymus. In conclusion, multiple doses of MSCs reduced lung inflammation and remodeling while causing immunosuppression in HDM‐induced allergic asthma.
Collapse
Affiliation(s)
- Ligia L Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Jamil Z Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora G Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscilla C Olsen
- Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert L M Guedes
- Laboratory of Glycobiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|