51
|
Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI, Morales-Montor J. The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res 2015; 35:1-16. [PMID: 25068787 PMCID: PMC4291218 DOI: 10.1089/jir.2014.0026] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/23/2014] [Indexed: 12/12/2022] Open
Abstract
Cytokines are highly inducible, secretory proteins that mediate intercellular communication in the immune system. They are grouped into several protein families that are referred to as tumor necrosis factors, interleukins, interferons, and colony-stimulating factors. In recent years, it has become clear that some of these proteins as well as their receptors are produced in the organisms under physiological and pathological conditions. The exact initiation process of breast cancer is unknown, although several hypotheses have emerged. Inflammation has been proposed as an important player in tumor initiation, promotion, angiogenesis, and metastasis, all phenomena in which cytokines are prominent players. The data here suggest that cytokines play an important role in the regulation of both induction and protection in breast cancer. This knowledge could be fundamental for the proposal of new therapeutic approaches to particularly breast cancer and other cancer-related disorders.
Collapse
Affiliation(s)
- Marcela Esquivel-Velázquez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Pedro Ostoa-Saloma
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | | | - Karen E. Nava-Castro
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, SSA, Cuernavaca, Morelos, México
| | - Julieta Ivonne Castro
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, SSA, Cuernavaca, Morelos, México
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
52
|
TGF-β induced TMEPAI/PMEPA1 inhibits canonical Smad signaling through R-Smad sequestration and promotes non-canonical PI3K/Akt signaling by reducing PTEN in triple negative breast cancer. Genes Cancer 2014; 5:320-36. [PMID: 25352949 PMCID: PMC4209604 DOI: 10.18632/genesandcancer.30] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/22/2023] Open
Abstract
TMEPAI (transmembrane prostate androgen-induced) is amplified at genomic, transcript and protein levels in triple-negative breast cancers and promotes TGF-β dependent growth, motility and invasion. Tumor promotion by TMEPAI depends on two different but related actions on TGF-β signaling. Firstly, TMEPAI binds and sequesters regulatory Smads2/3 and thereby decreases growth suppressive signaling by TGF-β. Secondly, increased expression of TMEPAI decreases PTEN (phosphatase and tensin homolog) abundance, and thereby increases TGF-β dependent tumor promotive PI3K/Akt signaling. These actions of TMEPAI give rise to increased cell proliferation and motility. Moreover, signaling alterations produced by high TMEPAI were associated with oncogenic Snail expression and lung metastases. Finally, an inverse correlation between TMEPAI and PTEN levels was confirmed in triple negative breast cancer tumor samples. Together, our findings suggest that TMEPAI has dually critical roles to promote TGF-β dependent cancer cell growth and metastasis. Thus, redirected TGF-β signaling through TMEPAI may play a pivotal role in TGF-β mediated tumor promotion.
Collapse
|
53
|
Epstein Shochet G, Tartakover-Matalon S, Drucker L, Pasmanik-Chor M, Pomeranz M, Fishman A, Lishner M. Placenta-breast cancer cell interactions promote cancer cell epithelial mesenchymal transition via TGFβ/JNK pathway. Clin Exp Metastasis 2014; 31:961-75. [PMID: 25316285 DOI: 10.1007/s10585-014-9683-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
Abstract
Women diagnosed with pregnancy associated breast cancer often have advanced cancer with metastases and reduced expression of ERα compared to non-pregnant women. Nevertheless, metastases to the placenta are uncommon. Previously, we demonstrated that breast cancer cells (MCF-7/T47D) migrated from ex vivo human placental explant implantation sites. We aimed to analyze the effect of factors produced during placental implantation or as a result of the interaction between the implanted placentae to cancer cells on cancer cells migration and aggressiveness. We collected supernatants from implanted placentae and placental-breast cancer cells cocultures and analyzed their effects on cancer cells phenotype and pathways. Supernatants collected from breast cancer cells served as controls. We found that supernatants collected from implanted placentae induced modest cancer cells migration that was not accompanied by epithelial to mesenchymal transition (EMT), supported breast cancer cells survival and elevated MCF-7 cell number. The coculture supernatant induced excessive motility and EMT of the MCF-7 cells. This EMT was mediated by Smad3 and JNK/ERK activation. Both placenta and coculture supernatants reduced ERα expression in the cancer cells. Finally, we showed that MCF-7 cocultured with the human placental explants underwent continuous activation of JNK and Smad3 pathways and the EMT process, which led to their migration away from the placental implantation sites. These findings may explain the reduced ERα and elevated metastases found in breast cancer during pregnancy and highlights pathways involved in it.
Collapse
Affiliation(s)
- Gali Epstein Shochet
- Oncogenetic Laboratory, Meir Medical Center, 45 Tschernchovski St., Kfar Saba, 44281, Israel
| | | | | | | | | | | | | |
Collapse
|
54
|
Pttg1 inhibits TGFβ signaling in breast cancer cells to promote their growth. Tumour Biol 2014; 36:199-203. [DOI: 10.1007/s13277-014-2609-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 09/04/2014] [Indexed: 01/03/2023] Open
|
55
|
Li YC, Ding XS, Li HM, Zhang Y, Bao J. Role of G protein-coupled estrogen receptor 1 in modulating transforming growth factor-β stimulated mesangial cell extracellular matrix synthesis and migration. Mol Cell Endocrinol 2014; 391:50-9. [PMID: 24793639 DOI: 10.1016/j.mce.2014.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 12/25/2022]
Abstract
Estrogen has been demonstrated to exert beneficial effects on kidney; however, the role of G protein-coupled estrogen receptor 1 (GPER) is still uncertain. In the present study, we investigated the effect of 17β-estradiol and GPER agonist Fulvestrant on extracellular matrix production under transforming growth factor-β1 (TGF-β1) stimulation in human and rat mesangial cells. As a result, 17β-estradiol and Fulvestrant inhibit TGF-β1-induced type IV collagen and fibronectin expression in a dose-dependent manner, by suppressing acute Smad2/3 phosphorylation and Smad4 complex formation. Furthermore, estrogen and Fulvestrant also down-regulate Smad signaling by promoting ubiquitin/proteasome-dependent Smad2 degradation. These effects could be abrogated by receptor antagonist G-15 or GPER gene knockdown. GPER is also required for estrogen and Fulvestrant to regulate mesangial cell migration in response to TGF-β1. To conclude, GPER is crucial in modulating glomerular mesangial cell function including extracellular matrix production and migration.
Collapse
Affiliation(s)
- Yi-Chen Li
- Department of Pharmacy, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu Province 210008, PR China; Department of Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu Province 210009, PR China.
| | - Xuan-Sheng Ding
- Department of Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu Province 210009, PR China.
| | - Hui-Mei Li
- Department of Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu Province 210009, PR China.
| | - Ying Zhang
- Department of Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu Province 210009, PR China.
| | - Jing Bao
- Department of Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu Province 210009, PR China.
| |
Collapse
|
56
|
van Wieringen WN, van de Wiel MA. Penalized differential pathway analysis of integrative oncogenomics studies. Stat Appl Genet Mol Biol 2014; 13:141-58. [PMID: 24552967 DOI: 10.1515/sagmb-2013-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Through integration of genomic data from multiple sources, we may obtain a more accurate and complete picture of the molecular mechanisms underlying tumorigenesis. We discuss the integration of DNA copy number and mRNA gene expression data from an observational integrative genomics study involving cancer patients. The two molecular levels involved are linked through the central dogma of molecular biology. DNA copy number aberrations abound in the cancer cell. Here we investigate how these aberrations affect gene expression levels within a pathway using observational integrative genomics data of cancer patients. In particular, we aim to identify differential edges between regulatory networks of two groups involving these molecular levels. Motivated by the rate equations, the regulatory mechanism between DNA copy number aberrations and gene expression levels within a pathway is modeled by a simultaneous-equations model, for the one- and two-group case. The latter facilitates the identification of differential interactions between the two groups. Model parameters are estimated by penalized least squares using the lasso (L1) penalty to obtain a sparse pathway topology. Simulations show that the inclusion of DNA copy number data benefits the discovery of gene-gene interactions. In addition, the simulations reveal that cis-effects tend to be over-estimated in a univariate (single gene) analysis. In the application to real data from integrative oncogenomic studies we show that inclusion of prior information on the regulatory network architecture benefits the reproducibility of all edges. Furthermore, analyses of the TP53 and TGFb signaling pathways between ER+ and ER- samples from an integrative genomics breast cancer study identify reproducible differential regulatory patterns that corroborate with existing literature.
Collapse
|
57
|
Transforming growth factor beta1 (TGFβ1) polymorphisms and breast cancer risk. Tumour Biol 2014; 35:4757-64. [PMID: 24425107 DOI: 10.1007/s13277-014-1621-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/03/2014] [Indexed: 01/01/2023] Open
Abstract
Transforming growth factor β1 (TGFβ1) is suggested to be involved in the pathogenesis of and in complications with breast cancer (BC). Polymorphisms in TGFβ1 gene (TGFβ1) have been suggested by many investigators to have a role in susceptibility to BC; however, many discordant data have been reported. Considering the role of ethnic variations, we performed an association study between TGFβ1 polymorphisms and BC among Iranian women. We sequenced DNA samples of 110 BC and 110 normal control women for the exons and their adjacent intronic regions of TGFβ1 using PCR. The allele, genotype, and haplotype frequencies were calculated using PowerMarker V3.25 and R 3.0.2 softwares. Ten single nucleotide polymorphisms (SNPs) were detected. Statistical analysis on the frequency of seven most frequent SNPs, including the three coding SNPs (cSNPs) revealed no significant difference between BC and control women. Moreover, among 11 constructed haplotypes, "GTGCCGC" was significantly different between two study groups. In conclusion, we found no association between the studied SNPs of TGFβ1 and BC among Iranian women, but a possible association between "GTGCCGC" haplotype and BC was seen. However, further studies are suggested to clarify this association.
Collapse
|
58
|
Lee YH, Schiemann WP. Chemotherapeutic Targeting of the Transforming Growth Factor-β Pathway in Breast Cancers. BREAST CANCER MANAGEMENT 2014; 3:73-85. [PMID: 25904986 DOI: 10.2217/bmt.13.74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor (TGF-β) is a multifunctional cytokine that plays essential roles in regulating mammary gland development, morphogenesis, differentiation, and involution. TGF-β also regulates mammary gland homeostasis and prevents its transformation by prohibiting dysregulated cell cycle progression, and by inducing apoptosis; it also creates cell microenvironments that readily inhibit cell migration, invasion, and metastasis. Interestingly, while early-stage mammary tumors remain sensitive to the tumor suppressing activities of TGF-β, late-stage breast cancers become insensitive to the anticancer functions of this cytokine and instead rely upon TGF-β to drive disease and metastatic progression. This switch in TGF-β function is known as the "TGF-β Paradox" and represents the rationale for developing chemotherapies to inactivate the TGF-β pathway and its oncogenic functions in late-stage breast cancers. Here we outline the molecular mechanisms that manifest the "TGF-β Paradox" and discuss the challenges associated with the development and use of anti-TGF-β agents to treat breast cancer patients.
Collapse
Affiliation(s)
- Yong-Hun Lee
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland, OH 44106
| | - William P Schiemann
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland, OH 44106
| |
Collapse
|
59
|
Park MA, Choi KC. Effects of 4-nonylphenol and bisphenol A on stimulation of cell growth via disruption of the transforming growth factor-β signaling pathway in ovarian cancer models. Chem Res Toxicol 2013; 27:119-28. [PMID: 24308608 DOI: 10.1021/tx400365z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transforming growth factor β (TGF-β) signaling pathway is a major pathway in cellular processes such as cell growth, apoptosis, and cellular homeostasis. The signaling pathway activated by 17β-estadiol (E2) appeared to inhibit the TGF-β signaling pathway by cross-talk with the TGF-β components in estrogen receptor (ER) positive cells. In this study, we examined the inhibitory effects of endocrine disrupting chemicals (EDCs), including 4-nonylphenol (NP), 4-otylphenol (OP), bisphenol A (BPA), and benzophenon-1 (BP-1), in the TGF-β signaling pathway in BG-1 ovarian cancer cells expressing estrogen receptors (ERs). The transcriptional and translational levels of TGF-β related genes were examined by reverse transcription-PCR (RT-PCR), Western blot analysis, and xenograft mouse models of ovarian cancer cells. As a result, treatment with NP, OP, and BPA induced the expressions of SnoN, a TGF-β pathway inhibitor, and c-Fos, a TGF-β target transcription factor. Treatment with NP, BPA, and BP-1 resulted in decreased phosphorylation of Smad3, a downstream target of TGF-β. These results indicate that NP and BPA may stimulate the proliferation of BG-1 cells via inhibition of the TGF-β signaling pathway. In a xenograft mouse model, transplanted BG-1 ovarian cancer cells showed significantly decreased phosphorylation of Smad3 and increased expression of SnoN in the ovarian tumor masses following treatment with E2, NP, or BPA. In parallel with an in vitro model, the expressions of these TGF-β signaling pathway were similarly regulated by NP or BPA in a xenograft mouse model. These results support the fact that the existence of an unproven relationship between EDCs/ER-α and TGF-β signaling pathway and a further study are required in order to verify more profound and distinct mechanism(s) for the disturbance of the TGF-β signaling pathway by diverse EDCs.
Collapse
Affiliation(s)
- Min-Ah Park
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University , Cheongju, Chungbuk 361-763, Republic of Korea
| | | |
Collapse
|
60
|
Park MA, Hwang KA, Lee HR, Yi BR, Choi KC. Cell Growth of BG-1 Ovarian Cancer Cells was Promoted by 4-Tert-octylphenol and 4-Nonylphenol via Downregulation of TGF-β Receptor 2 and Upregulation of c-myc. Toxicol Res 2013; 27:253-9. [PMID: 24278580 PMCID: PMC3834391 DOI: 10.5487/tr.2011.27.4.253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/09/2011] [Accepted: 11/13/2011] [Indexed: 01/23/2023] Open
Abstract
Transforming growth factor β (TGF-β) is involved in cellular processes including growth, differentiation, apoptosis, migration, and homeostasis. Generally, TGF-β is the inhibitor of cell cycle progression and plays a role in enhancing the antagonistic effects of many growth factors. Unlike the antiproliferative effect of TGF-β, E2, an endogeneous estrogen, is stimulating cell proliferation in the estrogen-dependent organs, which are mediated via the estrogen receptors, ERα and ERβ, and may be considered as a critical risk factor in tumorigenesis of hormone-responsive cancers. Previous researches reported the cross-talk between estrogen/ERα and TGF-β pathway. Especially, based on the E2-mediated inhibition of TGF-β signaling, we examined the inhibition effect of 4-tert-octylphenol (OP) and 4-nonylphenol (NP), which are well known xenoestrogens in endocrine disrupting chemicals (EDCs), on TGF-β signaling via semi-quantitative reverse-transcription PCR. The treatment of E2, OP, or NP resulted in the downregulation of TGF- β receptor2 (TGF-β R2) in TGF-β signaling pathway. However, the expression level of TGF-β1 and TGF- β receptor1 (TGF-β R1) genes was not altered. On the other hand, E2, OP, or NP upregulated the expression of a cell-cycle regulating gene, c-myc, which is a oncogene and a downstream target gene of TGF-β signaling pathway. As a result of downregulation of TGF-β R2 and the upregulation of c-myc, E2, OP, or NP increased cell proliferation of BG-1 ovarian cancer cells. Taken together, these results suggest that E2 and these two EDCs may mediate cancer cell proliferation by inhibiting TGF-β signaling via the downregulation of TGF-β R2 and the upregulation of c-myc oncogene. In addition, it can be inferred that these EDCs have the possibility of tumorigenesis in estrogen-responsive organs by certainly representing estrogenic effect in inhibiting TGF-β signaling.
Collapse
Affiliation(s)
- Min-Ah Park
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Chungbuk 361-763 Korea
| | | | | | | | | |
Collapse
|
61
|
Balogh P, Szabó A, Katz S, Likó I, Patócs A, L.Kiss A. Estrogen receptor alpha is expressed in mesenteric mesothelial cells and is internalized in caveolae upon Freund's adjuvant treatment. PLoS One 2013; 8:e79508. [PMID: 24244516 PMCID: PMC3828353 DOI: 10.1371/journal.pone.0079508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/27/2013] [Indexed: 12/03/2022] Open
Abstract
Transformation of epithelial cells into connective tissue cells (epithelial-mesenchymal transition, EMT) is a complex mechanism involved in tumor metastasis, and in normal embryogenesis, while type II EMT is mainly associated with inflammatory events and tissue regenaration. In this study we examined type II EMT at the ultrastructural and molecular level during the inflammatory process induced by Freund's adjuvant treatment in rat mesenteric mesothelial cells. We found that upon the inflammatory stimulus mesothelial cells lost contact with the basal lamina and with each other, and were transformed into spindle-shaped cells. These morphological changes were accompanied by release of interleukins IL-1alpha, -1beta and IL-6 and by secretion of transforming growth factor beta (TGF-β) into the peritoneal cavity. Mesothelial cells also expressed estrogen receptor alpha (ER-α) as shown by immunolabeling at the light and electron microscopical levels, as well as by quantitative RT-PCR. The mRNA level of ER-α showed an inverse correlation with the secretion of TGF-β. At the cellular and subcellular levels ER-α was colocalized with the coat protein caveolin-1 and was found in the plasma membrane of mesothelial cells, in caveolae close to multivesicular bodies (MVBs) or in the membrane of these organelles, suggesting that ER-α is internalized via caveola-mediated endocytosis during inflammation. We found asymmetric, thickened, electron dense areas on the limiting membrane of MVBs (MVB plaques) indicating that these sites may serve as platforms for collecting and organizing regulatory proteins. Our morphological observations and biochemical data can contribute to form a potential model whereby ER-α and its caveola-mediated endocytosis might play role in TGF-β induced type II EMT in vivo.
Collapse
Affiliation(s)
- Petra Balogh
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
- * E-mail:
| | - Arnold Szabó
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Sándor Katz
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - István Likó
- Pharmacology and Drug Safety Research, R. Gedeon Plc, Hungary
| | - Attila Patócs
- HSA-SE Lendület Hereditary Endocrine Tumors Research Group, Budapest, Hungary
| | - Anna L.Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
62
|
Associations between genetic variants in the TGF-β signaling pathway and breast cancer risk among Hispanic and non-Hispanic white women. Breast Cancer Res Treat 2013; 141:287-97. [PMID: 24036662 DOI: 10.1007/s10549-013-2690-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 12/17/2022]
Abstract
The TGF-β signaling pathway has a significant role in breast cancer initiation and promotion by regulating various cellular processes. We evaluated whether genetic variation in eight genes (TGF-β1, TGF-β2, TGF-βR1, TGF-βR2, TGF-βR3, RUNX1, RUNX2, and RUNX3) is associated with breast cancer risk in women from the Breast Cancer Health Disparities Study. A total of 3,524 cases (1,431 non-Hispanic whites (NHW); 2,093 Hispanics/Native Americans(NA)) and 4,209 population-based controls (1,599 NHWs; 2,610 Hispanics/NAs) were included in analyses. Genotypes for 47 single nucleotide polymorphisms (SNPs) were determined. Additionally, 104 ancestral informative markers estimated proportion of NA ancestry. Associations with breast cancer risk overall, by menopausal status, NA ancestry, and estrogen receptor (ER)/progesterone receptor tumor phenotype were evaluated. After adjustment for multiple comparisons, two SNPs were significantly associated with breast cancer risk: RUNX3 (rs906296 ORCG/GG = 1.15 95 % CI 1.04-1.26) and TGF-β1 (rs4803455 ORCA/AA = 0.89 95 % CI 0.81-0.98). RUNX3 (rs906296) and TGF-βR2 (rs3773644) were associated with risk in pre-menopausal women (p adj = 0.002 and 0.02, respectively) and in those with intermediate to high NA ancestry (p adj = 0.04 and 0.01, respectively). Self-reported race was strongly correlated with NA ancestry (r = 0.86). There was a significant interaction between NA ancestry and RUNX1 (rs7279383, p adj = 0.04). Four RUNX SNPs were associated with increased risk of ER- tumors. Results provide evidence that genetic variation in TGF-β and RUNX genes are associated with breast cancer risk. This is the first report of significant associations between genetic variants in TGF-β and RUNX genes and breast cancer risk among women of NA ancestry.
Collapse
|
63
|
TP53 mutation, epithelial-mesenchymal transition, and stemlike features in breast cancer subtypes. J Biomed Biotechnol 2012; 2012:254085. [PMID: 22899882 PMCID: PMC3414214 DOI: 10.1155/2012/254085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/11/2012] [Accepted: 06/14/2012] [Indexed: 12/16/2022] Open
Abstract
Altered p53 protein is prevalently associated with the pathologic class of triple-negative breast cancers and loss of p53 function has recently been linked to the induction of an epithelial-mesenchymal transition (EMT) and acquisition of stemness properties. We explored the association between TP53 mutational status and expression of some genes involved in the canonical TGF-β signaling pathway (the most potent EMT inducer) and in two early EMT associated events: loss of cell polarity and acquisition of stemness-associated features. We used a publicly accessible microarray dataset consisting of 251 p53-sequenced primary breast cancers. Statistical analysis indicated that mutant p53 tumors (especially those harboring a severe mutation) were consistent with the aggressive class of triple-negative cancers and that, differently from cell cultures, surgical tumors underexpressed some TGF-β related transcription factors known as involved in EMT (ID1, ID4, SMAD3, SMAD4, SMAD5, ZEB1). These unexpected findings suggest an interesting relationship between p53 mutation, mammary cell dedifferentiation, and the concomitant acquisition of stemlike properties (as indicated by the overexpression of PROM1 and NOTCH1 genes), which improve tumor cells aggressiveness as indicated by the overexpression of genes associated with cell proliferation (CDK4, CDK6, MKI67) and migration (CXCR4, MMP1).
Collapse
|
64
|
Cell polarity, epithelial-mesenchymal transition, and cell-fate decision gene expression in ductal carcinoma in situ. Int J Surg Oncol 2012; 2012:984346. [PMID: 22577534 PMCID: PMC3335180 DOI: 10.1155/2012/984346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/17/2012] [Accepted: 01/25/2012] [Indexed: 12/27/2022] Open
Abstract
Loss of epithelial cell identity and acquisition of mesenchymal features are early events in the neoplastic transformation of mammary cells. We investigated the pattern of expression of a selected panel of genes associated with cell polarity and apical junction complex or involved in TGF-β-mediated epithelial-mesenchymal transition and cell-fate decision in a series of DCIS and corresponding patient-matched normal tissue. Additionally, we compared DCIS gene profile with that of atypical ductal hyperplasia (ADH) from the same patient. Statistical analysis identified a “core” of genes differentially expressed in both precursors with respect to the corresponding normal tissue mainly associated with a terminally differentiated luminal estrogen-dependent phenotype, in agreement with the model according to which ER-positive invasive breast cancer derives from ER-positive progenitor cells, and with an autocrine production of estrogens through androgens conversion. Although preliminary, present findings provide transcriptomic confirmation that, at least for the panel of genes considered in present study, ADH and DCIS are part of a tumorigenic multistep process and strongly arise the necessity for the regulation, maybe using aromatase inhibitors, of the intratumoral and/or circulating concentration of biologically active androgens in DCIS patients to timely hamper abnormal estrogens production and block estrogen-induced cell proliferation.
Collapse
|
65
|
Sundqvist A, Ten Dijke P, van Dam H. Key signaling nodes in mammary gland development and cancer: Smad signal integration in epithelial cell plasticity. Breast Cancer Res 2012; 14:204. [PMID: 22315972 PMCID: PMC3496114 DOI: 10.1186/bcr3066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Smad proteins are the key intermediates of transforming growth factor-beta (TGF-β) signaling during development and in tissue homeostasis. Pertubations in TGF-β/Smad signaling have been implicated in cancer and other diseases. In the cell nucleus, Smad complexes trigger cell type- and context-specific transcriptional programs, thereby transmitting and integrating signals from a variety of ligands of the TGF-β superfamily and other stimuli in the cell microenvironment. The actual transcriptional and biological outcome of Smad activation critically depends on the genomic integrity and the modification state of genome and chromatin of the cell. The cytoplasmic and nuclear Smads can also modulate the activity of other signal transducers and enzymes such as microRNA-processing factors. In the case of breast cancer, the role of Smads in epithelial plasticity, tumor-stroma interactions, invasion, and metastasis seems of particular importance.
Collapse
Affiliation(s)
- Anders Sundqvist
- Ludwig Institute for Cancer Research, Uppsala University, Box 595, 75124, Uppsala, Sweden
| | | | | |
Collapse
|
66
|
He S, Deng J, Li G, Wang B, Cao Y, Tu Y. Down-regulation of Nedd4L is Associated with the Aggressive Progression and Worse Prognosis of Malignant Glioma. Jpn J Clin Oncol 2012; 42:196-201. [DOI: 10.1093/jjco/hyr195] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
67
|
|
68
|
Band AM, Laiho M. SnoN oncoprotein enhances estrogen receptor-α transcriptional activity. Cell Signal 2011; 24:922-30. [PMID: 22227247 DOI: 10.1016/j.cellsig.2011.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/19/2011] [Indexed: 12/13/2022]
Abstract
Estrogen receptor-α (ERα) and transforming growth factor-beta (TGF-β) signaling pathways are essential regulators during mammary gland development and tumorigenesis. Ski-related novel gene (SnoN) is an oncoprotein and a negative feedback inhibitor of TGF-β signaling. We have previously reported that low expression of SnoN in ERα positive breast carcinomas is associated with favorable prognosis (Zhang et al. Cancer Res. (2003) 63, 5005-5010). Here we have studied the mechanism of a possible cross-talk between ERα and SnoN. We find that SnoN interacts with the estrogen-activated form of ERα in the nucleus. SnoN contains two highly conserved nuclear receptor binding LxxLL-like motifs and we show that mutations in these motifs reduce the interaction of SnoN with ERα. Over-expression of SnoN enhanced the transcriptional activity of ERα in estrogen response element (ERE)-reporter assays, augmented the expression of several ERα target genes and increased the proliferation of MCF7 breast carcinoma cells in an estrogen-dependent manner. Chromatin immunoprecipitation demonstrated that SnoN interacts with ERα at the TTF1 (pS2) gene promoter. Conversely, silencing of SnoN reduced both ERE-reporter activity and the expression of ERα target genes in MCF7 and T-47D breast cancer cells. Histone deacetylase inhibition increased the level of SnoN and SnoN-dependent enhancement of ERα-dependent transcription and SnoN supported the recruitment of p300 histone acetylase to ERα. This study reveals a novel mechanism that interconnects ERα and TGF-β signaling pathways by SnoN. Accordingly, the results indicate that high SnoN level promotes ERα signaling and possibly breast cancer progression.
Collapse
Affiliation(s)
- Arja M Band
- Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
69
|
Zu X, Zhang Q, Cao R, Liu J, Zhong J, Wen G, Cao D. Transforming growth factor-β signaling in tumor initiation, progression and therapy in breast cancer: an update. Cell Tissue Res 2011; 347:73-84. [PMID: 21845401 DOI: 10.1007/s00441-011-1225-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/22/2011] [Indexed: 01/06/2023]
Abstract
Transforming growth factor-β (TGF-β) is a ubiquitous cytokine playing an essential role in cell proliferation, differentiation, apoptosis, adhesion and invasion, as well as in cellular microenvironment. In malignant diseases, TGF-β signaling features a growth inhibitory effect at an early stage but aggressive oncogenic activity at the advanced malignant state. Here, we update the current understanding of TGF-β signaling in cancer development and progression with a focus on breast cancer. We also review the current approaches of TGF-β signaling-targeted therapeutics for human malignancies.
Collapse
Affiliation(s)
- Xuyu Zu
- Clinical Research Institution, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|