51
|
Hollingshead BD, Tomlinson L, Finley J, Doshna C, Ritenour C, Barricklow J, Oppenheimer SR, O'Neil SP, Moore JL, Patterson NH, Nicholson SP, Norris JL, Caprioli RM, Beaumont K, King-Ahmad AJ, Vispute S, Cook JC, Radi Z, Schuler M. An orthogonal methods assessment of topical drug concentrations in skin and the impact for risk assessment in the viable epidermis. Regul Toxicol Pharmacol 2021; 123:104934. [PMID: 33872740 DOI: 10.1016/j.yrtph.2021.104934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022]
Abstract
Systemic toxicity assessments for oral or parenteral drugs often utilize the concentration of drug in plasma to enable safety margin calculations for human risk assessment. For topical drugs, there is no standard method for measuring drug concentrations in the stratum basale of the viable epidermis. This is particularly important since the superficial part of the epidermis, the stratum corneum (SC), is nonviable and where most of a topically applied drug remains, never penetrating deeper into the skin. We investigated the relative concentrations of a prototype kinase inhibitor using punch biopsy, laser capture microdissection, and imaging mass spectrometry methods in the SC, stratum basale, and dermis of minipig skin following topical application as a cream formulation. The results highlight the value of laser capture microdissection and mass spectrometry imaging in quantifying the large difference in drug concentration across the skin and even within the epidermis, and supports use of these methods for threshold-based toxicity risk assessments in specific anatomic locations of the skin, like of the stratum basale.
Collapse
Affiliation(s)
- Brett D Hollingshead
- Pfizer Drug Safety Research and Development, 1 Portland Street, Cambridge, MA, 02139, USA.
| | - Lindsay Tomlinson
- Pfizer Drug Safety Research and Development, 1 Portland Street, Cambridge, MA, 02139, USA
| | - Jim Finley
- Pfizer Drug Safety Research and Development, Eastern Point Road, Groton, CT, 06340, USA
| | - Colleen Doshna
- Pfizer Drug Safety Research and Development, Eastern Point Road, Groton, CT, 06340, USA
| | - Casey Ritenour
- Pfizer Drug Safety Research and Development, Eastern Point Road, Groton, CT, 06340, USA
| | - Jason Barricklow
- Pfizer Pharmacokinetics, Dynamics and Metabolism, Eastern Point Road, Groton, CT, 06340, USA
| | | | - Shawn P O'Neil
- Pfizer Drug Safety Research and Development, 1 Portland Street, Cambridge, MA, 02139, USA
| | - Jessica L Moore
- Frontier Diagnostics, 345 Hill Ave, Nashville, TN, 37210, USA
| | | | | | - Jeremy L Norris
- Frontier Diagnostics, 345 Hill Ave, Nashville, TN, 37210, USA
| | | | - Kevin Beaumont
- Pfizer Pharmacokinetics, Dynamics and Metabolism, 1 Portland Street, Cambridge, MA, 02139, USA
| | - Amanda J King-Ahmad
- Pfizer Pharmacokinetics, Dynamics and Metabolism, Eastern Point Road, Groton, CT, 06340, USA
| | - Saurabh Vispute
- Pfizer Drug Safety Research and Development, Eastern Point Road, Groton, CT, 06340, USA
| | - Jon C Cook
- Pfizer Drug Safety Research and Development, Eastern Point Road, Groton, CT, 06340, USA
| | - Zaher Radi
- Pfizer Drug Safety Research and Development, 1 Portland Street, Cambridge, MA, 02139, USA
| | - Maik Schuler
- Pfizer Drug Safety Research and Development, Eastern Point Road, Groton, CT, 06340, USA
| |
Collapse
|
52
|
Chaturvedi S, Garg A. An insight of techniques for the assessment of permeation flux across the skin for optimization of topical and transdermal drug delivery systems. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102355] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
53
|
Narula P, Saini K, Saini M, Singla D, Chauhan AS, Kakkar V. Assay and Dermatokinetics of Tetrahydrocurcumin Lipidic Nanostructures Using Reverse Phase-high Performance Liquid Chromatography. Pharm Nanotechnol 2021; 9:130-140. [PMID: 33511962 DOI: 10.2174/2211738509999210128203251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 12/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Envisaging the poor solubility (56 ngml1) and permeability of tetrahydrocurcumin (THCC), it was formulated into lipidic nanostructures to enhance its bioavailability upon topical application to promote the healing process for skin inflammatory disorders. Lack of literature on a suitable method for determining THCC per se and nanoformulations prompted us to develop an RP-HPLC method to detect the drug in its nanostructures and in pig ear skin post dermatokinetics. OBJECTIVE The present investigation aimed to develop a simple, precise and RP-HPLC method for the quantitative estimation of THCC in prepared lipidic nanostructures, its ointment, and in skin homogenate obtained post dermatokinetic study. METHODS THCC encapsulated nanostructures and ointment were formulated using a modified emulsification method and embedded into an ointment base to enhance its spreadability and improve patient compliance. A fast and sensitive reverse-phase high-performance liquid chromatography method was developed using a Hypersil BDS reverse phase C18 column (4.6 mm × 250 mm, 5 μm) with mobile phase comprising tetrahydrofuran (THF) and 1 mgmL-1 citric acid (4:6), at a flow rate of 1.0 mLmin-1 with a run time of 20 min. RESULTS THCC nanostructures were successfully prepared using the spontaneous microemulsification method. THCC was detected at 282 nm and revealed two peaks which were attributed to the keto-enol tautomerism in the molecule with retention times of 6.23 min and 11.06 min, respectively. The assay of THCC in nanostructures and ointment was found to be 98.30 % and 99.98 %, with an entrapment efficiency 77.00±2.74 %. The dermatokinetic studies revealed sufficient release of THCC from its ointment up to 24 hr with a concentration of 1382 μgcm-2, for causing a therapeutic effect. CONCLUSION The method was found to be reproducible and robust, as shown by the low coefficient of variation and a constant analyte/IS ratio. It was successfully employed for the estimation of THCC assay in nanostructures and its ointment and dermatokinetic analysis in the skin.
Collapse
Affiliation(s)
- Priyanka Narula
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| | - Komal Saini
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| | - Megha Saini
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| | - Dinesh Singla
- Analytical Research and Development, Panacea Biotec Ltd, Lalru-140501, India
| | | | - Vandita Kakkar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| |
Collapse
|
54
|
Schuler M, Tomlinson L, Homiski M, Cheung J, Zhan Y, Coffing S, Engel M, Rubitski E, Seitis G, Hales K, Robertson A, Vispute S, Cook J, Radi Z, Hollingshead B. Experiments in the EpiDerm 3D Skin In Vitro Model and Minipigs In Vivo Indicate Comparatively Lower In Vivo Skin Sensitivity of Topically Applied Aneugenic Compounds. Toxicol Sci 2021; 180:103-121. [PMID: 33481035 DOI: 10.1093/toxsci/kfaa189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Risk management of in vitro aneugens for topically applied compounds is not clearly defined because there is no validated methodology to accurately measure compound concentration in proliferating stratum basale keratinocytes of the skin. Here, we experimentally tested several known aneugens in the EpiDerm reconstructed human skin in vitro micronucleus assay and compared the results to flow cytometric mechanistic biomarkers (phospho-H3; MPM2, DNA content). We then evaluated similar biomarkers (Ki-67, nuclear area) using immunohistochemistry in skin sections of minipigs following topical exposure the potent aneugens, colchicine, and hesperadin. Data from the EpiDerm model showed positive micronucleus responses for all aneugens tested following topical or direct media dosing with similar sensitivity when adjusted for applied dose. Quantitative benchmark dose-response analysis exhibited increases in the mitotic index biomarkers phospho-H3 and MPM2 for tubulin binders and polyploidy for aurora kinase inhibitors are at least as sensitive as the micronucleus endpoint. By comparison, the aneugens tested did not induce histopathological changes, increases in Ki-67 immunolabeling or nuclear area in skin sections from the in vivo minipig study at doses in significant excess of those eliciting a response in vitro. Results indicate the EpiDerm in vitro micronucleus assay is suitable for the hazard identification of aneugens. The lack of response in the minipig studies indicates that the barrier function of the minipig skin, which is comparable to human skin, protects from the effects of aneugens in vivo. These results provide a basis for conducting additional studies in the future to further refine this understanding.
Collapse
Affiliation(s)
- Maik Schuler
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Lindsay Tomlinson
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Michael Homiski
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Jennifer Cheung
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Yutian Zhan
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Stephanie Coffing
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Maria Engel
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Elizabeth Rubitski
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Gary Seitis
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Katherine Hales
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Andrew Robertson
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Saurabh Vispute
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Jon Cook
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Zaher Radi
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| | - Brett Hollingshead
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340 and Cambridge, Massachusetts 02139, USA
| |
Collapse
|
55
|
Wu L, Zhou K, Zong W, Chen Y, Sheng C. Single dose pharmacokinetics of topical iodiconazole creams in healthy Chinese volunteers. Xenobiotica 2021; 51:427-433. [PMID: 33478324 DOI: 10.1080/00498254.2021.1876962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
1.In this study, the pharmacokinetics of new triazole antifungal iodiconzole creams at target sites after single-dose topical application was investigated.2.30 healthy Chinese volunteers were randomly divided into three groups after being stratified by sex, each group was given a single topical dose of 1%, 2%, 4% iodiconazole cream (0.4 g). Stratum corneum (SC) samples of treated sites were collected by tape-stripping method after the chosen contact times, and were extracted and analysed by a validated LC-MS method.3.After single-dose topical application of 1%, 2%, 4% iodiconazole creams, the Cmax of iodiconazole in SC was 1.2 ± 0.7, 2.2 ± 1.0, 2.4 ± 1.0 mg/g; Tmax was 3.3 ± 1.1, 2.9 ± 1.1, 3.8 ± 0.4 h; t1/2 was 6.6 ± 3.4 h, 7.2 ± 4.1 h, 5.9 ± 2.9 h; AUC0-t was 10.9 ± 3.0, 20.8 ± 10.4, 20.9 ± 7.9 mg·h/g; AUC0-∞ was 11.6 ± 2.9, 23.5 ± 14.4, 22.2 ± 8.9 mg·h/g, respectively. The results showed that Cmax, AUC0-t and AUC0-∞ did not increase proportionately with dose, which could also be due to the drug being saturated in the formulation at ∼2%.4.The results of this study could provide reference for the clinical medication and further study of the formulations.
Collapse
Affiliation(s)
- Lili Wu
- Institute of Dermatology and Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Ke Zhou
- Department of dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Wenkai Zong
- Institute of Dermatology and Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yun Chen
- Institute of Dermatology and Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
56
|
Al Mahrooqi JH, Khutoryanskiy VV, Williams AC. Thiolated and PEGylated silica nanoparticle delivery to hair follicles. Int J Pharm 2021; 593:120130. [PMID: 33264642 DOI: 10.1016/j.ijpharm.2020.120130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Targeting drug delivery to hair follicles is valuable to treat conditions such as alopecia's and acne, and this shunt route may also allow drug delivery to deeper skin layers and the systemic circulation by avoiding the intact stratum corneum. Here, we investigated the effects of nanoparticle surface chemistry on their delivery into hair follicles by synthesizing fluorescent thiolated silica nanoparticles and functionalizing with 750 Da and 5000 Da methoxypolyethylene glycol maleimide (PEG). The stability of the nanoparticles in skin homogenate was verified before tape stripping of porcine-dosed tissue showed the distribution of the free fluorescent dye and different nanoparticles in the skin. Analysis of microscopic images of the skin sections revealed penetration of nanoparticles functionalized with PEG into the appendages whereas thiolated nanoparticles stayed on the surface of the skin and were removed by tape stripping. Nanoparticles functionalized with PEG 5000 Da penetrated deeper into the hair follicles compared to counterparts functionalized with PEG 750 Da. PEGylation can thus enhance targeted delivery of nanoparticulates into hair follicles.
Collapse
Affiliation(s)
| | | | - Adrian C Williams
- Reading School of Pharmacy, University of Reading, Reading RG6 6AD, UK.
| |
Collapse
|
57
|
Russo J, Fiegel J, Brogden NK. Rheological and Drug Delivery Characteristics of Poloxamer-Based Diclofenac Sodium Formulations for Chronic Wound Site Analgesia. Pharmaceutics 2020; 12:pharmaceutics12121214. [PMID: 33333773 PMCID: PMC7765230 DOI: 10.3390/pharmaceutics12121214] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Chronic wounds are a significant and growing health problem, and clinical treatment is often a painful experience. A topical dosage form would be optimal to treat this pain. Poloxamer 407, a thermosensitive polymer that is a liquid at low temperatures but gels at higher temperatures, is well suited to administer topical analgesics to chronic wound sites. The goal of this study was to evaluate the gelation and drug delivery properties of poloxamer 407 gels containing diclofenac sodium for potential use in chronic wound analgesic delivery. The gelation properties of poloxamer formulations were evaluated rheologically. Drug delivery properties of poloxamers loaded with diclofenac sodium were evaluated using snakeskin dialysis membranes, intact porcine ear skin, and porcine ear skin impaired via tape stripping. A commercial gel product and a solution of diclofenac sodium in water were used as control formulations. Poloxamer concentration and gelation temperature varied inversely, and the addition of higher concentrations of diclofenac sodium correlated to significant increases in poloxamer gelation temperature. Poloxamer solutions were effective in limiting the permeation of diclofenac sodium through membranes with impaired barrier properties, and delivery of diclofenac sodium from poloxamer 407 did not vary significantly from delivery observed from the commercial gel product. The amount of drug delivered in 24 h did not change significantly with changes in poloxamer 407 concentration. The results of this study indicate that poloxamer 407 may be a useful formulation component for administration of an analgesic product to a chronic wound site.
Collapse
Affiliation(s)
- Jackson Russo
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
| | - Jennifer Fiegel
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242, USA;
| | - Nicole K. Brogden
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
- Department of Dermatology, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
58
|
Rapalli VK, Singhvi G. Dermato-pharmacokinetic: assessment tools for topically applied dosage forms. Expert Opin Drug Deliv 2020; 18:423-426. [PMID: 33232212 DOI: 10.1080/17425247.2021.1856071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, India
| |
Collapse
|
59
|
Samant PP, Niedzwiecki MM, Raviele N, Tran V, Mena-Lapaix J, Walker DI, Felner EI, Jones DP, Miller GW, Prausnitz MR. Sampling interstitial fluid from human skin using a microneedle patch. Sci Transl Med 2020; 12:eaaw0285. [PMID: 33239384 PMCID: PMC7871333 DOI: 10.1126/scitranslmed.aaw0285] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/14/2019] [Accepted: 10/23/2020] [Indexed: 12/21/2022]
Abstract
Tissue interstitial fluid (ISF) surrounds cells and is an underutilized source of biomarkers that complements conventional sources such as blood and urine. However, ISF has received limited attention due largely to lack of simple collection methods. Here, we developed a minimally invasive, microneedle-based method to sample ISF from human skin that was well tolerated by participants. Using a microneedle patch to create an array of micropores in skin coupled with mild suction, we sampled ISF from 21 human participants and identified clinically relevant and sometimes distinct biomarkers in ISF when compared to companion plasma samples based on mass spectrometry analysis. Many biomarkers used in research and current clinical practice were common to ISF and plasma. Because ISF does not clot, these biomarkers could be continuously monitored in ISF similar to current continuous glucose monitors but without requiring an indwelling subcutaneous sensor. Biomarkers distinct to ISF included molecules associated with systemic and dermatological physiology, as well as exogenous compounds from environmental exposures. We also determined that pharmacokinetics of caffeine in healthy adults and pharmacodynamics of glucose in children and young adults with diabetes were similar in ISF and plasma. Overall, these studies provide a minimally invasive method to sample dermal ISF using microneedles and demonstrate human ISF as a source of biomarkers that may enable research and translation for future clinical applications.
Collapse
Affiliation(s)
- Pradnya P Samant
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Megan M Niedzwiecki
- Department of Environmental Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicholas Raviele
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vilinh Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Juan Mena-Lapaix
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Douglas I Walker
- Department of Environmental Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Eric I Felner
- Department of Pediatrics, Division of Endocrinology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Health Science, Columbia University, New York, NY 10032, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
60
|
Eirefelt S, Hummer J, Basse LH, Bertelsen M, Johansson F, Birngruber T, Sinner F, Larsen J, Nielsen SF, Lambert M. Evaluating Dermal Pharmacokinetics and Pharmacodymanic Effect of Soft Topical PDE4 Inhibitors: Open Flow Microperfusion and Skin Biopsies. Pharm Res 2020; 37:243. [PMID: 33188482 DOI: 10.1007/s11095-020-02962-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate the difference in clinical efficacy in AD patients between two topical PDE4 inhibitors using dermal open flow microperfusion and cAMP as a pharmacodynamic read-out in fresh human skin explants. METHODS Clinical formulations were applied to intact or barrier disrupted human skin explants and both skin biopsy samples and dermal interstitial fluid was sampled for measuring drug concentration. Furthermore, cAMP levels were determined in the skin biopsies as a measure of target engagement. RESULTS Elevated cAMP levels were observed with LEO 29102 while no evidence of target engagement was obtained with LEO 39652. In barrier impaired skin the dISF concentration of LEO 29102 was 2100 nM while only 33 nM for LEO 39652. For both compounds the concentrations measured in skin punch biopsies were 7-33-fold higher than the dISF concentrations. CONCLUSIONS Low unbound drug concentration in dISF in combination with minimal target engagement of LEO 39652 in barrier impaired human skin explants supports that lack of clinical efficacy of LEO 39652 in AD patients is likely due to insufficient drug availability at the target. We conclude that dOFM together with a pharmacodynamic target engagement biomarker are strong techniques for establishing skin PK/PD relations and that skin biopsies should be used with caution.
Collapse
Affiliation(s)
- Stefan Eirefelt
- LEO Pharma Global Research & Development, Industriparken 55, 2750, Ballerup, Denmark
| | - Joanna Hummer
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Line Hollesen Basse
- Discovery & Development PKPD, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Malene Bertelsen
- LEO Pharma Global Research & Development, Industriparken 55, 2750, Ballerup, Denmark
| | - Fredrik Johansson
- LEO Pharma Global Research & Development, Industriparken 55, 2750, Ballerup, Denmark
| | - Thomas Birngruber
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Frank Sinner
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Jens Larsen
- LEO Pharma Global Research & Development, Industriparken 55, 2750, Ballerup, Denmark
| | - Simon Feldbæk Nielsen
- LEO Pharma Global Research & Development, Industriparken 55, 2750, Ballerup, Denmark
| | - Maja Lambert
- LEO Pharma Global Research & Development, Industriparken 55, 2750, Ballerup, Denmark.
| |
Collapse
|
61
|
Supe S, Takudage P. Methods for evaluating penetration of drug into the skin: A review. Skin Res Technol 2020; 27:299-308. [PMID: 33095948 DOI: 10.1111/srt.12968] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/20/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Skin being the largest organ of the human body plays a very important role in the permeation and penetration of the drug. In addition, the transdermal drug delivery system (TDDS) plays a major role in managing dermal infections and attaining sustained plasma drug concentration. Thus, evaluation of percutaneous penetration of the drug through the skin is important in developing TDDS for human use. MATERIAL AND METHODS Various techniques are used for getting the desired drug penetration, permeation, and absorption through the skin in managing these dermal disorders. The development of novel pharmaceutical dosage forms for dermal use is much explored in the current era. However, it is very important to evaluate these methods to determine the bioequivalence and risk of these topically applied drugs, which ultimately penetrate and are absorbed through the skin. RESULTS Currently, numerous skin permeation models are being developed and persuasively used in studying dermatopharmacokinetic (DPK) profile and various models have been developed, to evaluate the TDD which include ex vivo human skin, ex vivo animal skin, and artificial or reconstructed skin models. CONCLUSION This review discusses the general physiology of the skin, the physiochemical characteristics affecting particle penetration, understand the models used for human skin permeation studies and understanding their advantages, and disadvantages.
Collapse
Affiliation(s)
- Shibani Supe
- Department of Pharmaceutics, Institute of Chemical technology, Mumbai, India
| | | |
Collapse
|
62
|
Lin P, Ni H, Li H, Vickers NA, Tan Y, Gong R, Bifano T, Cheng JX. Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope. OPTICS EXPRESS 2020; 28:30210-30221. [PMID: 33114904 PMCID: PMC7679187 DOI: 10.1364/oe.404869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Operable under ambient light and providing chemical selectivity, stimulated Raman scattering (SRS) microscopy opens a new window for imaging molecular events on a human subject, such as filtration of topical drugs through the skin. A typical approach for volumetric SRS imaging is through piezo scanning of an objective lens, which often disturbs the sample and offers a low axial scan rate. To address these challenges, we have developed a deformable mirror-based remote-focusing SRS microscope, which not only enables high-quality volumetric chemical imaging without mechanical scanning of the objective but also corrects the system aberrations simultaneously. Using the remote-focusing SRS microscope, we performed volumetric chemical imaging of living cells and captured in real time the dynamic diffusion of topical chemicals into human sweat pores.
Collapse
Affiliation(s)
- Peng Lin
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
- These authors contributed equally
| | - Hongli Ni
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
- These authors contributed equally
| | - Huate Li
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
| | - Nicholas A. Vickers
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
| | - Yuying Tan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston Boston, MA 02215, USA
| | - Ruyi Gong
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Thomas Bifano
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 St. Mary’s St, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston Boston, MA 02215, USA
- Photonics Center, Boston University, 8 St. Mary’s St, Boston, MA 02215, USA
| |
Collapse
|
63
|
Akhtar N, Singh V, Yusuf M, Khan RA. Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. ACTA ACUST UNITED AC 2020; 65:243-272. [PMID: 31926064 DOI: 10.1515/bmt-2019-0019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022]
Abstract
Pay-load deliveries across the skin barrier to the systemic circulation have been one of the most challenging delivery options. Necessitated requirements of the skin and facilitated skin layer cross-over delivery attempts have resulted in development of different non-invasive, non-oral methods, devices and systems which have been standardized, concurrently used and are in continuous upgrade and improvements. Iontophoresis, electroporation, sonophoresis, magnetophoresis, dermal patches, nanocarriers, needled and needle-less shots, and injectors are among some of the methods of transdermal delivery. The current review covers the current state of the art, merits and shortcomings of the systems, devices and transdermal delivery patches, including drugs' and other payloads' passage facilitation techniques, permeation and absorption feasibility studies, as well as physicochemical properties affecting the delivery through different transdermal modes along with examples of drugs, vaccines, genes and other payloads.
Collapse
Affiliation(s)
- Naseem Akhtar
- Department of Pharmaceutics, College of Pharmacy,Buraydah Colleges, PO Box 31717, Qassim 51418, Saudi Arabia
| | - Varsha Singh
- Manav Rachna International University (MRIU) and Manav Rachna International Institute of Research and Study (MRIIRS), Faridabad, HR 121 001, India
| | - Mohammad Yusuf
- College of Pharmacy, University of Taif, Taif Al-Haweiah, Taif, Saudi Arabia.https://orcid.org/0000-0003- 1417-7774
| | - Riaz A Khan
- Manav Rachna International University (MRIU) and Manav Rachna International Institute of Research and Study (MRIIRS), Faridabad, HR 121 001, India.,Department of Medicinal Chemistry, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
64
|
Ozdin D, Kanfer I, Ducharme MP. Novel Approach for the Bioequivalence Assessment of Topical Cream Formulations: Model-Based Analysis of Tape Stripping Data Correctly Concludes BE and BIE. Pharm Res 2020; 37:20. [PMID: 31897770 DOI: 10.1007/s11095-019-2724-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE The purpose of this study was (a) to suggest a novel dermatopharmacokinetic (DPK) approach from which pharmacokinetic parameters relevant to the bioequivalence (BE) assessment of a topical formulation can be deduced while circumventing the need for numerous measurements and assumptions, and (b) to investigate whether this approach enables the correct conclusion of BE and bioinequivalence (BIE). METHODS Bioequivalent and bioinequivalent formulations of acyclovir were compared versus a reference product (Zovirax®). Tape Stripping was conducted at only one dose duration during the uptake phase to generate drug content in stratum corneum versus time profiles, each time point corresponding to one stripped layer. Nonlinear mixed effect modeling (ADAPT5®) (MLEM algorithm) was used to fit the DPK data and to estimate the rate (Kin) and extent (FS) of drug absorption/input into the skin. Results were evaluated using the average BE approach. RESULTS Estimated exposure metrics were within the usual BE limits for the bioequivalent formulation (FS: 102.4 [90%CI: 97.5-107.7]; Kin: 94.2 [90%CI: 83.7-106.0]), but outside those limits for the bioinequivalent formulation (FS: 43.4 [90%CI: 27.9-67.6]; Kin: 54.5 [90%CI: 36.6-81.1]). CONCLUSIONS The proposed novel DPK approach was shown to be successful, robust and applicable to assess BE and BIE correctly between topical formulations.
Collapse
Affiliation(s)
- Deniz Ozdin
- Faculté de pharmacie, Université de Montréal, Pavillon Jean Coutu, 2940 Chemin de la polytechnique, Montréal, Quebec, Canada.,Learn and Confirm Inc., 750 Marcel-Laurin Suite 235, St-Laurent, Quebec, Canada
| | - Isadore Kanfer
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, Ontario, Canada.,Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Murray P Ducharme
- Faculté de pharmacie, Université de Montréal, Pavillon Jean Coutu, 2940 Chemin de la polytechnique, Montréal, Quebec, Canada. .,Learn and Confirm Inc., 750 Marcel-Laurin Suite 235, St-Laurent, Quebec, Canada.
| |
Collapse
|
65
|
Fundamentals of fractional laser-assisted drug delivery: An in-depth guide to experimental methodology and data interpretation. Adv Drug Deliv Rev 2020; 153:169-184. [PMID: 31628965 DOI: 10.1016/j.addr.2019.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 01/23/2023]
Abstract
In the decade since their advent, ablative fractional lasers have emerged as powerful tools to enhance drug delivery to and through the skin. Effective and highly customizable, laser-assisted drug delivery (LADD) has led to improved therapeutic outcomes for several medical indications. However, for LADD to reach maturity as a standard treatment technique, a greater appreciation of its underlying science is needed. This work aims to provide an in-depth guide to the technology's fundamental principles, experimental methodology and unique aspects of LADD data interpretation. We show that drug's physicochemical properties including solubility, molecular weight and tissue binding behavior, are crucial determinants of how laser channel morphology influences topical delivery. Furthermore, we identify strengths and limitations of experimental models and drug detection techniques, interrogating the usefulness of in vitro data in predicting LADD in vivo. By compiling insights from over 75 studies, we ultimately devise an approach for intelligent application of LADD, supporting its implementation in the clinical setting.
Collapse
|
66
|
Li L, Zhang M, Cao Y, Ma P, Wei J, Tao L, Qian K. An LC-MS Method for Determination of Betamethasone in Tissue Engineering Skin and Application to Dermatopharmacokinetic Study. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180831101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background and Objectives:Tissue engineering skin is a three-dimensional skin substitute cultured in the gas-liquid interface using the immortalized keratinocytes (HaCaT cells). In this study, the preliminary metabolism of betamethasone dipropionate by tissue engineering skin was studied and the pharmacokinetics methodology was established using betamethasone dipropionate gel as the target drug.Methods:The betamethasone dipropionate gel was applied on the tissue engineering skin after the skin was cultured. Then the medium (receiving liquid) and skin were taken on 0.25, 0.75, 1.75, 3, 5, 8, 12, 24, 36, 48 h time points. The betamethasone concentration in the medium and skin was determinated by the LC-MS method. Chromatographic analysis was conducted using isocratic elution on a C18 column (150 mm × 2.0 mm, 5 µm) in mobile phase consisting of methanol and water (70 : 30, v/v). The mobile phase was pumped at a flow rate of 0.2 mL/min.Results:This method exhibited linearity within the concentration range of 0. 1 to 50 µg /mL of betamethasone. The LLOQ was 0. 1 µg /mL. The intra- and inter-day precisions of betamethasone in the blank medium were all less than 10.69 % (RSD, %), while in the blank, skin homogenates were all less than 13.96 % (RSD, %). As a result, the betamethasone concentration in the medium and skin could both be detected, which suggested that betamethasone dipropionate could be metabolized to betamethasone through the tissue engineering skin.Conclusion:It was feasible to use tissue engineering skin as a model to study the dermatopharmacokinetics of topical betamethasone dipropionate gel. The research could build a foundation for the dermato-pharmacokinetic study approach.
Collapse
Affiliation(s)
- Lingjun Li
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 12, Jiangwangmiao Street, Nanjing, 210042, China
| | - Mengli Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 12, Jiangwangmiao Street, Nanjing, 210042, China
| | - Yuping Cao
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 12, Jiangwangmiao Street, Nanjing, 210042, China
| | - Pengcheng Ma
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 12, Jiangwangmiao Street, Nanjing, 210042, China
| | - Jun Wei
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 12, Jiangwangmiao Street, Nanjing, 210042, China
| | - Lei Tao
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 12, Jiangwangmiao Street, Nanjing, 210042, China
| | - Kun Qian
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 12, Jiangwangmiao Street, Nanjing, 210042, China
| |
Collapse
|
67
|
Sarri B, Chen X, Canonge R, Grégoire S, Formanek F, Galey JB, Potter A, Bornschlögl T, Rigneault H. In vivo quantitative molecular absorption of glycerol in human skin using coherent anti-Stokes Raman scattering (CARS) and two-photon auto-fluorescence. J Control Release 2019; 308:190-196. [PMID: 31319095 DOI: 10.1016/j.jconrel.2019.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/04/2019] [Accepted: 07/14/2019] [Indexed: 12/23/2022]
Abstract
The penetration of small molecules through the human skin is a major issue for both safety and efficacy issues in cosmetics and pharmaceutic domains. To date, the quantification of active molecular compounds in human skin following a topical application uses ex vivo skin samples mounted on Franz cell diffusion set-up together with appropriate analytical methods. Coherent anti-Stokes Raman scattering (CARS) has also been used to perform active molecule quantification on ex vivo skin samples, but no quantification has been described in human skin in vivo. Here we introduce and validate a framework for imaging and quantifying the active molecule penetration into human skin in vivo. Our approach combines nonlinear imaging microscopy modalities, such as two-photon excited auto-fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS), together with the use of deuterated active molecules. The imaging framework was exemplified on topically applied glycerol diluted in various vehicles such as water and xanthan gel. In vivo glycerol quantitative percutaneous penetration over time was demonstrated, showing that, contrary to water, the xanthan gel vehicle acts as a film reservoir that releases glycerol continuously over time. More generally, the proposed imaging framework provides an enabling platform for establishing functional activity of topically applied products in vivo.
Collapse
Affiliation(s)
- Barbara Sarri
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Xueqin Chen
- L'Oréal Recherche Avancée, Aulnay-sous-bois, France
| | - Rafaël Canonge
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | | | | | | | - Anne Potter
- L'Oréal Recherche Avancée, Aulnay-sous-bois, France
| | | | - Hervé Rigneault
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France.
| |
Collapse
|
68
|
Baumann KY, Church MK, Clough GF, Quist SR, Schmelz M, Skov PS, Anderson CD, Tannert LK, Giménez-Arnau AM, Frischbutter S, Scheffel J, Maurer M. Skin microdialysis: methods, applications and future opportunities-an EAACI position paper. Clin Transl Allergy 2019; 9:24. [PMID: 31007896 PMCID: PMC6456961 DOI: 10.1186/s13601-019-0262-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
Skin microdialysis (SMD) is a versatile sampling technique that can be used to recover soluble endogenous and exogenous molecules from the extracellular compartment of human skin. Due to its minimally invasive character, SMD can be applied in both clinical and preclinical settings. Despite being available since the 1990s, the technique has still not reached its full potential use as a tool to explore pathophysiological mechanisms of allergic and inflammatory reactions in the skin. Therefore, an EAACI Task Force on SMD was formed to disseminate knowledge about the technique and its many applications. This position paper from the task force provides an overview of the current use of SMD in the investigation of the pathogenesis of chronic inflammatory skin diseases, such as atopic dermatitis, chronic urticaria, psoriasis, and in studies of cutaneous events during type 1 hypersensitivity reactions. Furthermore, this paper covers drug hypersensitivity, UVB-induced- and neurogenic inflammation, and drug penetration investigated by SMD. The aim of this paper is to encourage the use of SMD and to make the technique easily accessible by providing an overview of methodology and applications, supported by standardized operating procedures for SMD in vivo and ex vivo.
Collapse
Affiliation(s)
- Katrine Y Baumann
- RefLab ApS, Copenhagen, Denmark.,2Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin K Church
- 3Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Sven Roy Quist
- 5Clinic of Dermatology, Otto-von-Guericke University, Magdeburg, Germany.,Skin Center MDZ, Mainz, Germany
| | - Martin Schmelz
- 7Department of Experimental Pain Research, CBTM, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Per Stahl Skov
- RefLab ApS, Copenhagen, Denmark.,8Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, Odense, Denmark
| | - Chris D Anderson
- 9Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Line Kring Tannert
- 8Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, Odense, Denmark
| | - Ana Maria Giménez-Arnau
- 10Department of Dermatology, Hospital del Mar, Institut Mar d'Investigacions Mèdiques, Universitat Autònoma, Barcelona, Spain
| | - Stefan Frischbutter
- 3Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörg Scheffel
- 3Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Marcus Maurer
- 3Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
69
|
van der Burg NMD, Depelsenaire ACI, Crichton ML, Kuo P, Phipps S, Kendall MAF. A low inflammatory, Langerhans cell-targeted microprojection patch to deliver ovalbumin to the epidermis of mouse skin. J Control Release 2019; 302:190-200. [PMID: 30940498 DOI: 10.1016/j.jconrel.2019.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/20/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
Abstract
In a low inflammatory skin environment, Langerhans cells (LCs) - but not dermal dendritic cells (dDCs) - contribute to the pivotal process of tolerance induction. Thus LCs are a target for specific-tolerance therapies. LCs reside just below the stratum corneum, within the skin's viable epidermis. One way to precisely deliver immunotherapies to LCs while remaining minimally invasive is with a skin delivery device such as a microprojection arrays (MPA). Today's MPAs currently achieve rapid delivery (e.g. within minutes of application), but are focussed primarily at delivery of therapeutics to the dermis, deeper within the skin. Indeed, no MPA currently delivers specifically to the epidermal LCs of mouse skin. Without any convenient, pre-clinical device available, advancement of LC-targeted therapies has been limited. In this study, we designed and tested a novel MPA that delivers ovalbumin to the mouse epidermis (eMPA) while maintaining a low, local inflammatory response (as defined by low erythema after 24 h). In comparison to available dermal-targeted MPAs (dMPA), only eMPAs with larger projection tip surface areas achieved shallow epidermal penetration at a low application energy. The eMPA characterised here induced significantly less erythema after 24 h (p = 0.0004), less epidermal swelling after 72 h (p < 0.0001) and 52% less epidermal cell death than the dMPA. Despite these differences in skin inflammation, the eMPA and dMPA promoted similar levels of LC migration out of the skin. However, only the eMPA promoted LCs to migrate with a low MHC II expression and in the absence of dDC migration. Implementing this more mouse-appropriate and low-inflammatory eMPA device to deliver potential immunotherapeutics could improve the practicality and cell-specific targeting of such therapeutics in the pre-clinical stage. Leading to more opportunities for LC-targeted therapeutics such as for allergy immunotherapy and asthma.
Collapse
Affiliation(s)
- Nicole M D van der Burg
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia
| | - Alexandra C I Depelsenaire
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia
| | - Michael L Crichton
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia
| | - Paula Kuo
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QL 4102, Australia
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute, Herston, QL 4006, Australia
| | - Mark A F Kendall
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia; The Australian National University, Canberra, Australian Capital Territory 2600, Australia.
| |
Collapse
|
70
|
Vanden-Hehir S, Tipping WJ, Lee M, Brunton VG, Williams A, Hulme AN. Raman Imaging of Nanocarriers for Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E341. [PMID: 30832394 PMCID: PMC6474004 DOI: 10.3390/nano9030341] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
Abstract
The efficacy of pharmaceutical agents can be greatly improved through nanocarrier delivery. Encapsulation of pharmaceutical agents into a nanocarrier can enhance their bioavailability and biocompatibility, whilst also facilitating targeted drug delivery to specific locations within the body. However, detailed understanding of the in vivo activity of the nanocarrier-drug conjugate is required prior to regulatory approval as a safe and effective treatment strategy. A comprehensive understanding of how nanocarriers travel to, and interact with, the intended target is required in order to optimize the dosing strategy, reduce potential off-target effects, and unwanted toxic effects. Raman spectroscopy has received much interest as a mechanism for label-free, non-invasive imaging of nanocarrier modes of action in vivo. Advanced Raman imaging techniques, including coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS), are paving the way for rigorous evaluation of nanocarrier activity at the single-cell level. This review focuses on the development of Raman imaging techniques to study organic nanocarrier delivery in cells and tissues.
Collapse
Affiliation(s)
- Sally Vanden-Hehir
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - William J Tipping
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Martin Lee
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK.
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK.
| | - Anna Williams
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - Alison N Hulme
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
71
|
Kolluru C, Williams M, Yeh JS, Noel RK, Knaack J, Prausnitz MR. Monitoring drug pharmacokinetics and immunologic biomarkers in dermal interstitial fluid using a microneedle patch. Biomed Microdevices 2019; 21:14. [PMID: 30725230 PMCID: PMC6533066 DOI: 10.1007/s10544-019-0363-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Minimally invasive point-of-care diagnostic devices are of great interest for rapid detection of biomarkers in diverse settings. Although blood is the most common source of biomarkers, interstitial fluid (ISF) is an alternate body fluid that does not clot or contain red blood cells that often complicate analysis. However, ISF is difficult to collect. In this study, we assessed the utility of a microneedle patch to sample microliter volumes of ISF in a simple and minimally invasive manner. We demonstrated the use of ISF collected in this way for therapeutic drug monitoring by showing similar vancomycin pharmacokinetic profiles in ISF and serum from rats. We also measured polio-specific neutralizing antibodies and anti-polio IgG in ISF similar to serum in rats immunized with polio vaccine. These studies demonstrate the potential utility of ISF collected by microneedle patch in therapeutic drug monitoring and immunodiagnostic applications.
Collapse
Affiliation(s)
- Chandana Kolluru
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Mikayla Williams
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Jihee Stephanie Yeh
- School of Pharmaceutical Sciences, Mercer University, Atlanta, GA, 30341, USA
| | - Richard K Noel
- Physiological Research Laboratory, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - Jennifer Knaack
- School of Pharmaceutical Sciences, Mercer University, Atlanta, GA, 30341, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
72
|
Calatayud-Pascual MA, Sebastian-Morelló M, Balaguer-Fernández C, Delgado-Charro MB, López-Castellano A, Merino V. Influence of Chemical Enhancers and Iontophoresis on the In Vitro Transdermal Permeation of Propranolol: Evaluation by Dermatopharmacokinetics. Pharmaceutics 2018; 10:pharmaceutics10040265. [PMID: 30544534 PMCID: PMC6321337 DOI: 10.3390/pharmaceutics10040265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/18/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
The aims of this study were to assess, in vitro, the possibility of administering propranolol transdermally and to evaluate the usefulness of the dermatopharmacokinetic (DPK) method in assessing the transport of drugs through stratum corneum, using propranolol as a model compound. Four chemical enhancers (decenoic and oleic acid, laurocapram, and R-(+)-limonene) and iontophoresis at two current densities, 0.25 and 0.5 mA/cm2 were tested. R-(+)-limonene, and iontophoresis at 0.5 mA/cm2 were proven to be the most efficient in increasing propranolol transdermal flux, both doubled the original propranolol transdermal flux. Iontophoresis was demonstrated to be superior than the chemical enhancer because it allowed faster delivery of the drug. The DPK method was sufficiently sensitive to detect subtle vehicle-induced effects on the skin permeation of propranolol. The shorter duration of these experiments and their ability to provide mechanistic information about partition between vehicle and skin and diffusivity through skin place them as practical and potentially insightful approach to quantify and, ultimately, optimize topical bioavailability.
Collapse
Affiliation(s)
- María Aracely Calatayud-Pascual
- Instituto de Ciencias Biomédicas, Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain.
| | - María Sebastian-Morelló
- Instituto de Ciencias Biomédicas, Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain.
| | - Cristina Balaguer-Fernández
- Instituto de Ciencias Biomédicas, Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain.
| | - M Begoña Delgado-Charro
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Alicia López-Castellano
- Instituto de Ciencias Biomédicas, Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain.
| | - Virginia Merino
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46100 Burjassot, Spain.
- Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Universidad de València, Avda. Vicente Andrés Estellés sn, 46100 Burjassot, Spain.
| |
Collapse
|
73
|
Kelchen MN, Brogden NK. Effect of dosing regimen and microneedle pretreatment on in vitro skin retention of topically applied beta-blockers. Biomed Microdevices 2018; 20:100. [PMID: 30523423 PMCID: PMC6688608 DOI: 10.1007/s10544-018-0348-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Topical beta-blocker formulations are commonly used to treat infantile hemangiomas (IHs); however, the skin concentrations and drug permeation through the skin have not been quantified. Microneedles (MNs) may increase local skin concentrations, which could further enhance lesion clearance and improve dosing regimens. The objective of this study was to quantify skin concentrations and drug permeation of two beta-blockers, propranolol and timolol, in vitro after application to intact skin and skin pretreated with solid MNs of two lengths. Propranolol skin concentrations and drug permeation were significantly higher than timolol skin concentrations for all study conditions, which is likely due to the lipophilic nature of propranolol compared to the hydrophilicity of timolol. Propranolol skin concentrations were significantly influenced by dosing regimen, as skin concentrations increased with increasing drug application. Pretreatment of the skin with solid 250 μm and 500 μm length MNs increased local skin concentrations of timolol; propranolol skin concentrations did not significantly increase after MN pretreatment. Propranolol and timolol permeation through the skin increased after MN pretreatment with both MN lengths for both compounds. Taken together, solid MN pretreatment prior to application of topical timolol may be beneficial for deep or mixed IHs upon further optimization of the MN treatment paradigm.
Collapse
Affiliation(s)
- Megan N Kelchen
- Department of Pharmaceutical Science and Experimental Therapeutics, University of Iowa College of Pharmacy, 115 South Grand Avenue, Iowa City, IA, 52242, USA
| | - Nicole K Brogden
- Department of Pharmaceutical Science and Experimental Therapeutics, University of Iowa College of Pharmacy, 115 South Grand Avenue, Iowa City, IA, 52242, USA.
- Department of Dermatology, University of Iowa Carver College of Medicine, 200 Hawkins Dr, Iowa City, IA, 52242, USA.
| |
Collapse
|
74
|
Costa MMD, Alves LP, Osório RAL, Pacheco MTT, Silveira L. Detecting active ingredients of insect repellents and sunscreens topically in skin by Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-11. [PMID: 30350493 DOI: 10.1117/1.jbo.23.10.107003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
We present the use of Raman spectroscopy for determination of functional characteristics of insect repellents and sunscreens by identifying the active ingredients of these products applied topically to the skin. Commercial formulations of insect repellents and sunscreens (SPF 15 and 30) were obtained, and Raman spectra were obtained from the formulations and from volunteers' skins with topical applications of such products compared to controls. The results indicated that, for insect repellents, the peaks at 527 and 1003 cm - 1 were markers of the presence of the active ingredient diethyl toluamide in the skin, while for sunscreens, the peaks at 1177, 1288, and 1611 cm - 1, associated to octinoxate, benzophenone-3, and avobenzone, were markers of the presence of solar filters in the skin. The results suggested reliability in the use of Raman spectroscopy to identify the active ingredients of insect repellents and sunscreens topically applied on the skin; the applied methodology can be used to determine the functional characteristics of topical products with similar characteristics.
Collapse
Affiliation(s)
- Michele Marin da Costa
- Universidade Anhembi Morumbi, Center for Innovation, Technology and Education, São José dos Campos, Brazil
| | - Leandro Procópio Alves
- Universidade Anhembi Morumbi, Center for Innovation, Technology and Education, São José dos Campos, Brazil
| | - Rodrigo Alexis Lazo Osório
- Universidade Anhembi Morumbi, Center for Innovation, Technology and Education, São José dos Campos, Brazil
| | | | - Landulfo Silveira
- Universidade Anhembi Morumbi, Center for Innovation, Technology and Education, São José dos Campos, Brazil
| |
Collapse
|
75
|
Ahn J, Kim KH, Choe K, Lim JH, Lee SK, Kim YS, Kim P. Quantitative two-photon microscopy imaging analysis of human skin to evaluate enhanced transdermal delivery by hybrid-type multi-lamellar nanostructure. BIOMEDICAL OPTICS EXPRESS 2018; 9:3974-3982. [PMID: 30338168 PMCID: PMC6191627 DOI: 10.1364/boe.9.003974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/15/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Transdermal skin delivery is a method to transport various topical formulations to a deeper skin layer non-invasively. Permeability analysis of many delivering agents has been mostly conducted by a simple tape stripping method. However, it cannot reveal a detailed depth-dependent distribution profile of transdermally delivered agents in the skin. In this work, we achieved a cellular-level depth-defined visualization of fluorophore-labelled human epidermal growth factor (EGF) transdermally delivered to human skin by using encapsulation with common liposomes and newly fabricated multi-lamellar nanostructures using a custom-design two-photon microscopy system. It was able to generate 3D reconstructed images displaying the distribution of human EGF inside the human skin sample with high-resolution. Based on a depthwise fluorescence intensity profile showing the permeation of human EGF, a quantitative analysis was performed to assess the transdermal delivery efficacy achieved by each formulation, showing a significant improvement of the efficacy with the utilization of multi-lamellar nanostructure.
Collapse
Affiliation(s)
- Jinhyo Ahn
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Kyeong Hu Kim
- Biotechnology Research Institute, CELLTRION, 23 Academy-ro, Yeonsu-gu, Incheon 22014, South Korea
| | - Kibaek Choe
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Joo Hyuck Lim
- Biotechnology Research Institute, CELLTRION, 23 Academy-ro, Yeonsu-gu, Incheon 22014, South Korea
| | - Seung Ki Lee
- Biotechnology Research Institute, CELLTRION, 23 Academy-ro, Yeonsu-gu, Incheon 22014, South Korea
| | - Yeon Sook Kim
- Biotechnology Research Institute, CELLTRION, 23 Academy-ro, Yeonsu-gu, Incheon 22014, South Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
76
|
Iqbal B, Ali J, Baboota S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int J Dermatol 2018; 57:646-660. [DOI: 10.1111/ijd.13902] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Babar Iqbal
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Javed Ali
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Sanjula Baboota
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| |
Collapse
|
77
|
Abd E, Benson HAE, Roberts MS, Grice JE. Minoxidil Skin Delivery from Nanoemulsion Formulations Containing Eucalyptol or Oleic Acid: Enhanced Diffusivity and Follicular Targeting. Pharmaceutics 2018; 10:E19. [PMID: 29370122 PMCID: PMC5874832 DOI: 10.3390/pharmaceutics10010019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/14/2018] [Accepted: 01/14/2018] [Indexed: 12/26/2022] Open
Abstract
In this work, we examined enhanced skin delivery of minoxidil applied in nanoemulsions incorporating skin penetration enhancers. Aliquots of fully characterized oil-in-water nanoemulsions (1 mL), containing minoxidil (2%) and the skin penetration enhancer oleic acid or eucalyptol as oil phases, were applied to full-thickness excised human skin in Franz diffusion cells, while aqueous solutions (1 mL) containing minoxidil were used as controls. Minoxidil in the stratum corneum (SC), hair follicles, deeper skin layers, and flux through the skin over 24 h was determined, as well as minoxidil solubility in the formulations and in the SC. The nanoemulsions significantly enhanced the permeation of minoxidil through skin compared with control solutions. The eucalyptol formulations (NE) promoted minoxidil retention in the SC and deeper skin layers more than did the oleic acid formulations, while the oleic acid formulations (NO) gave the greatest hair follicle penetration. Minoxidil maximum flux enhancement was associated with increases in both minoxidil SC solubility and skin diffusivity in both nanoemulsion systems. The mechanism of enhancement appeared to be driven largely by increased diffusivity, rather than increased partitioning into the stratum corneum, supporting the concept of enhanced fluidity and disruption of stratum corneum lipids.
Collapse
Affiliation(s)
- Eman Abd
- Therapeutics Research Centre, School of Medicine, Translational Research Institute, University of Queensland, Brisbane 4102, Australia.
| | - Heather A E Benson
- Curtin Health Innovation Research Institute, School of Pharmacy, Curtin University, Perth 6845, Australia.
| | - Michael S Roberts
- Therapeutics Research Centre, School of Medicine, Translational Research Institute, University of Queensland, Brisbane 4102, Australia.
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia.
| | - Jeffrey E Grice
- Therapeutics Research Centre, School of Medicine, Translational Research Institute, University of Queensland, Brisbane 4102, Australia.
| |
Collapse
|
78
|
Human axillary skin condition is improved following incorporation of glycerol into the stratum corneum from an antiperspirant formulation. Arch Dermatol Res 2017; 309:739-748. [PMID: 28889318 DOI: 10.1007/s00403-017-1771-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/31/2017] [Accepted: 08/22/2017] [Indexed: 01/26/2023]
Abstract
The study objectives were to demonstrate that glycerol, when topically applied from a roll-on antiperspirant formulation, can be delivered directly to human skin ex vivo and the axillary stratum corneum (SC) in vivo, and to assess whether it improves the quality of the axillary skin barrier. Ex vivo human skin absorption of glycerol was measured following application of a roll-on antiperspirant formulation containing 4% 13C3-glycerol. Skin distribution of 13C3-glycerol over 24 h was assessed using gas chromatography-mass spectrometry. In vivo axillary SC penetration was measured by confocal Raman spectroscopy and multivariate curve-resolution software 1 h after topical application of a roll-on antiperspirant formulation containing 8% deuterated glycerol (d5-glycerol). A clinical study was conducted to determine the efficacy of a roll-on antiperspirant formulation containing 4% glycerol in reducing shaving-induced visual irritation and in increasing axillary-skin hydration. Ex vivo skin absorption studies indicated that the formulation delivered 13C3-glycerol into the SC at all timepoints over the 24-h period. In vivo Raman measurements (1 h after application) demonstrated that d5-glycerol was detectable to a depth of at least 10 μm in the axillary SC. Application of 4% glycerol from a roll-on antiperspirant formulation to the axilla was associated with significantly less visible irritation and greater skin hydration than observed with the control (glycerol-free) product. These studies demonstrate that glycerol, incorporated in a roll-on antiperspirant formulation, is delivered directly and rapidly to all depths of the axillary SC, and results in improvements in visible irritation and hydration in the axilla.
Collapse
|
79
|
Abstract
OBJECTIVE Topical delivery of drugs is an alternative to oral administration, often with similar efficacy but potentially a more favorable tolerability profile. However, topical formulations need to be able to penetrate the skin and permeate to the target areas in quantities sufficient to exert a therapeutic effect. Many factors can affect this process, including the physicochemical properties of the drug, the formulation used, and the site and mode of application. It is believed that measurement of drug concentrations at the sites of action may be an indicator of their likely efficacy. This review addresses these issues, with reference to topically administered diclofenac in osteoarthritis. METHODS Articles relevant to this review were identified after a systematic search of Medline and Embase, using the key words "diclofenac", "topical administration" and "osteoarthritis" in the search strategy. RESULTS The sparse data available indicate that topical diclofenac can penetrate and permeate to deeper tissues, with a lower plasma to tissue ratio than oral diclofenac. The tissue diclofenac levels after topical delivery are sustained over time (at least several hours). However, there is not enough data to establish how diclofenac levels in the joint compare with IC50 levels (50% of the maximum inhibition of prostaglandin synthesis) established following oral administration. CONCLUSIONS After topical application, diclofenac can penetrate the skin and permeate to deeper tissues, where it reaches a concentration that appears to be sufficient to exert a therapeutic effect. More robust methods are required for in vivo characterization to better estimate the clinical efficacy of topically applied drugs.
Collapse
Affiliation(s)
- Martina Hagen
- a GlaxoSmithKline Consumer Healthcare , Nyon , Switzerland
| | - Mark Baker
- a GlaxoSmithKline Consumer Healthcare , Nyon , Switzerland
| |
Collapse
|
80
|
Cordery SF, Pensado A, Chiu WS, Shehab MZ, Bunge AL, Delgado-Charro MB, Guy RH. Topical bioavailability of diclofenac from locally-acting, dermatological formulations. Int J Pharm 2017; 529:55-64. [PMID: 28636892 PMCID: PMC5557682 DOI: 10.1016/j.ijpharm.2017.06.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022]
Abstract
Assessment of the bioavailability of topically applied drugs designed to act within or beneath the skin is a challenging objective. A number of different, but potentially complementary, techniques are under evaluation. The objective of this work was to evaluate in vitro skin penetration and stratum corneum tape-stripping in vivo as tools with which to measure topical diclofenac bioavailability from three approved and commercialized products (two gels and one solution). Drug uptake into, and its subsequent clearance from, the stratum corneum of human volunteers was used to estimate the input rate of diclofenac into the viable skin layers. This flux was compared to that measured across excised porcine skin in conventional diffusion cells. Both techniques clearly demonstrated (a) the superiority in terms of drug delivery from the solution, and (b) that the two gels performed similarly. There was qualitative and, importantly, quantitative agreement between the in vitro and in vivo measurements of drug flux into and beyond the viable skin. Evidence is therefore presented to support an in vivo - in vitro correlation between methods to assess topical drug bioavailability. The potential value of the stratum corneum tape-stripping technique to quantify drug delivery into (epi)dermal and subcutaneous tissue beneath the barrier is demonstrated.
Collapse
Affiliation(s)
- S F Cordery
- Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
| | - A Pensado
- Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
| | - W S Chiu
- Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
| | - M Z Shehab
- Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
| | - A L Bunge
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | | | - R H Guy
- Department of Pharmacy & Pharmacology, University of Bath, Bath, UK.
| |
Collapse
|
81
|
Abstract
Background The availability of generic topical dermatological drug products is constrained by the limited methods established to assess topical bioequivalence (BE). A novel cutaneous pharmacokinetic approach, dermal open-flow microperfusion (dOFM), can continuously assess the rate and extent to which a topical drug becomes available in the dermis, to compare in vivo dermal bioavailability (BA) and support BE evaluations for topical products. Objective To evaluate whether dOFM is an accurate, sensitive, and reproducible in vivo method to characterize the intradermal BA of acyclovir from 5 % acyclovir creams, comparing a reference (R) product either to itself or to a different test (T) product. Methods In a single-center clinical study, R or T products were applied to six randomized treatment sites on the skin of 20 healthy human subjects. Two dOFM probes were inserted in each treatment site to monitor the intradermal acyclovir concentration for 36 h. Comparative BA (of R vs. R and T vs. R) was evaluated based on conventional BE criteria for pharmacokinetic endpoints (area under the curve and maximum plasma concentration) where the 90 % confidence interval of the geometric mean ratio between the T and R falls within 0.80–1.25. Results The positive control products (R vs. R) were accurately and reproducibly confirmed to be bioequivalent, while the negative control products (T vs. R) were sensitively discriminated not to be bioequivalent. Conclusions dOFM accurately, sensitively, and reproducibly characterized the dermal BA in a manner that can support BE evaluations for topical acyclovir 5 % creams in a study with n = 40 (20 subjects in this study).
Collapse
|
82
|
Tacrolimus loaded biocompatible lecithin-based microemulsions with improved skin penetration: Structure characterization and in vitro/in vivo performances. Int J Pharm 2017; 529:491-505. [DOI: 10.1016/j.ijpharm.2017.07.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022]
|
83
|
Osman-Ponchet H, Gaborit A, Kouidhi M, Anglars S, Marceau-Suissa J, Duffy-Roger O, Linget JM, Wilson CE. Comparison of the Effect of Skin Preparation Pads on Transepidermal Water Loss in Ex Vivo Human Skin. Dermatol Ther (Heidelb) 2017; 7:407-415. [PMID: 28710659 PMCID: PMC5574744 DOI: 10.1007/s13555-017-0193-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 11/25/2022] Open
Abstract
Introduction Pre-treatment of the skin to remove scales and crusts prior to photodynamic therapy (PDT) is essential to enhance the uptake of topically applied methyl aminolevulinate (MAL) and to improve treatment efficacy. This study compared the effect of two different skin preparation pads on skin integrity in ex vivo human skin. Methods Ex vivo human skin samples from three donors were pre-treated in triplicates with PREPSTER™ (PR) skin preparation pad (6, 8, and 10 passages) or Ambu Unilect™ (A-UN) skin preparation pad (6, 8, and 10 passages). In addition, skin samples were pre-treated with tape strippings (10 adhesive tape strips) as a reference method for comparison. Transepidermal water loss (TEWL) was measured on intact skin and following skin barrier impairment using skin preparation pads and tape stripping. Histological analysis was performed to verify the impairment of the stratum corneum (SC) barrier function in samples from intact skin (control), 10 tape strippings (reference method), 10 passages of PR, and 10 passages of A-UN. Results TEWL increased with the increasing number of passages of skin preparation pads, with 2.4- and 3.3-fold increases following 10 passages of A-UN and PR, respectively, versus a 2.2-fold increase with 10 tape strippings (reference). Histological analysis showed only partial removal of the SC, with no damage observed on the epidermis, regardless of the procedure used. Conclusion Pre-treatment of skin using PR and A-UN skin preparation pads markedly increases TEWL, indicating slight impairment of the SC barrier function. Comparison of both skin preparation pads showed that PR pad consistently induced significantly higher TEWL than A-UN pad (p < 0.05), regardless of the number of passages. Both skin preparation pads are thought to increase the uptake of MAL and can therefore be used for the preparation of skin prior to PDT. Funding Nestlé Skin Health – Galderma R&D.
Collapse
Affiliation(s)
| | | | - Magali Kouidhi
- Nestlé Skin Health - Galderma R&D, Sophia Antipolis, France
| | | | | | | | | | | |
Collapse
|
84
|
Noninvasive measurement of transdermal drug delivery by impedance spectroscopy. Sci Rep 2017; 7:44647. [PMID: 28338008 PMCID: PMC5364508 DOI: 10.1038/srep44647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/06/2017] [Indexed: 11/09/2022] Open
Abstract
The effectiveness in transdermal delivery of skin permeation strategies (e.g., chemical enhancers, vesicular carrier systems, sonophoresis, iontophoresis, and electroporation) is poorly investigated outside of laboratory. In therapeutic application, the lack of recognized techniques for measuring the actually-released drug affects the scientific concept itself of dosage for topically- and transdermally-delivered drugs. Here we prove the suitability of impedance measurement for assessing the amount of drug penetrated into the skin after transdermal delivery. In particular, the measured amount of drug depends linearly on the impedance magnitude variation normalized to the pre-treated value. Three experimental campaigns, based on the electrical analysis of the biological tissue behavior due to the drug delivery, are reported: (i) laboratory emulation on eggplants, (ii) ex-vivo tests on pig ears, and finally (iii) in-vivo tests on human volunteers. Results point out that the amount of delivered drug can be assessed by reasonable metrological performance through a unique measurement of the impedance magnitude at one single frequency. In particular, in-vivo results point out sensitivity of 23 ml−1, repeatability of 0.3%, non-linearity of 3.3%, and accuracy of 5.7%. Finally, the measurement resolution of 0.20 ml is compatible with clinical administration standards.
Collapse
|
85
|
Leal LB, Cordery SF, Delgado-Charro MB, Bunge AL, Guy RH. Bioequivalence Methodologies for Topical Drug Products: In Vitro and Ex Vivo Studies with a Corticosteroid and an Anti-Fungal Drug. Pharm Res 2017; 34:730-737. [PMID: 28097506 PMCID: PMC5336544 DOI: 10.1007/s11095-017-2099-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/04/2017] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To examine whether in vitro and ex vivo measurements of topical drug product performance correlate with in vivo outcomes, such that more efficient experimental approaches can be reliably and reproducibly used to establish (in)equivalence between formulations for skin application. MATERIALS AND METHODS In vitro drug release through artificial membranes, and drug penetration into porcine skin ex vivo, were compared with published human in vivo studies. Two betamethasone valerate (BMV) formulations, and three marketed econazole nitrate (EN) creams were assessed. RESULTS For BMV, the stratum corneum (SC) uptake of drug in 6 h closely matched data observed in vivo in humans, and distinguished between inequivalent formulations. SC uptake of EN from the 3 creams mirrored the in vivo equivalence in man (both clinically and via similar tape-stripping experiments). However, EN clearance from SC ex vivo did not parallel that in vivo, presumably due to the absence of a functioning microcirculation. In vitro release of BMV from the different formulations did not overlap with either ex vivo or in vivo tape-stripping data whereas, for EN, a good correlation was observed. No measurable permeation of either BMV or EN was detected in a 6-h in vitro skin penetration experiment. CONCLUSIONS In vitro and ex vivo methods for topical bioequivalence determination can show correlation with in vivo outcomes. However, these surrogates have understandable limitations. A "one-size-fits-all" approach for topical bioequivalence evaluation may not always be successful, therefore, and the judicious use of complementary methods may prove a more effective and reliable strategy.
Collapse
Affiliation(s)
- Leila Bastos Leal
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, CEP: 50740-520, Recife-PE, Brazil
| | - Sarah F Cordery
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - M Begoña Delgado-Charro
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Annette L Bunge
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado, 80401, USA
| | - Richard H Guy
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
86
|
Melo EKSD, Araujo TPD, Silva JWVD, Chagas SCC, Bedor DCG, Santana DPD, Leal LB. Metronidazole thermogel improves retention and decreases permeation through the skin. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000216130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
87
|
Cho DY, Hoffman K, Skinner D, Mackey C, Lim DJ, Alexander GC, Bae CY, Han DK, Jun HW, Woodworth BA. Tolerance and pharmacokinetics of a ciprofloxacin-coated sinus stent in a preclinical model. Int Forum Allergy Rhinol 2016; 7:352-358. [PMID: 27992118 DOI: 10.1002/alr.21892] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/22/2016] [Accepted: 11/04/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is often associated with persistent bacterial infection despite the use of systemic antibiotics. Topically administered antibiotics are an alternative strategy, but require effective local concentrations, prolonged mucosal contact time, minor systemic absorption, and minimal depletion. The objectives of the current study were to analyze the in vitro release rate and in vivo drug delivery tolerance and pharmacokinetics of a ciprofloxacin-coated sinus stent (CSS). METHODS The CSS (2 mg) was created from biodegradable poly-D/L-lactic acid. After analyzing in vitro release profile, CSSs were placed unilaterally in maxillary sinuses of 16 rabbits via dorsal sinusotomy. Animals were euthanized between 1 and 3 weeks postoperatively. Ciprofloxacin concentrations in the sinus tissue and plasmas were assessed using high-performance liquid chromatography. Radiological and histological evaluations were performed. RESULTS In the in vitro release profile, an initial burst release was observed over the first 24 hours, followed by sustained release through the 14-day time point. In the rabbit model, ciprofloxacin was continuously released from the stent up to 3 weeks at doses >50 ng/mL. Histologic examination found no evidence of inflammation, epithelial ulceration, or bony reaction upon euthanization of the animals at 21 days. Computed tomography also demonstrated no signs of mucosal edema or opacification in the sinus. CONCLUSION The CSS was safe in this preclinical model and sustained release was observed in both the in vitro and in vivo analyses. The innovative stent design coated with ciprofloxacin may provide a unique therapeutic strategy for chronic rhinosinusitis (CRS).
Collapse
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| | - Kyle Hoffman
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel Skinner
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Calvin Mackey
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Dong Jin Lim
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Grant C Alexander
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL
| | - Chae Yun Bae
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), University of Science and Technology (UST), Seoul, South Korea
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL
| | - Bradford A Woodworth
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
88
|
Lu M, Xing H, Chen X, Xian L, Jiang J, Yang T, Ding P. Advance in bioequivalence assessment of topical dermatological products. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
89
|
Topical application of superoxide dismutase mediated by HIV-TAT peptide attenuates UVB-induced damages in human skin. Eur J Pharm Biopharm 2016; 107:286-94. [PMID: 27460952 DOI: 10.1016/j.ejpb.2016.07.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/15/2016] [Accepted: 07/22/2016] [Indexed: 12/29/2022]
Abstract
The purpose of this study was to evaluate whether topical application of superoxide dismutase with cell penetrating peptide (HIV-TAT) could protect against skin damage induced by UVB irradiation in humans. The permeability through stratum corneum of large proteins linked to TAT peptide was firstly confirmed by confocal microscopy and tape stripping. Ten healthy volunteers with either Fitzpatrick skin type II or III were recruited in this clinical study. TAT-SOD (300units/cm(2)) and vehicle cream were applied on two symmetric areas of both inner upper arms 1h prior to UVB irradiation. After one hour of pretreatment, subjects received 10 incremental doses of UVB on pretreated areas. 24h later, erythema, blood flow and apoptotic cells were measured. Pretreatment with TAT-SOD 1h prior to UVB radiation promoted a mean minimal erythema dose (MED) increase of 36.6±18.4% (p=0.013<0.05. n=10) compared to vehicle control. The median blood flow values of all subjects following 2 and 3-MED of UVB were 107.8±51.0units and 239.5±88.0units respectively, which account for 26% and 25% decrease with respect to vehicle groups. These data suggest that TAT-SOD significantly suppresses UVB induced erythema formation and blood flow rise. Furthermore, pretreatment with TAT-SOD 1h prior to 2-MED of UVB irradiation reduced the apoptotic sunburn cell formation by 47.6±8.6% (p<0.0001) in all subjects. Evaluating results generated from all measurements, we conclude that topical application of TAT-SOD significantly attenuates UVB-induced skin damage in man. These biological effects of TAT-SOD are probably mediated via its free radical scavenging properties, clearly differentiating it from other physical sunscreen agents.
Collapse
|
90
|
|
91
|
Kinetics of Clobetasol-17-Propionate in Psoriatic Lesional and Non-Lesional Skin Assessed by Dermal Open Flow Microperfusion with Time and Space Resolution. Pharm Res 2016; 33:2229-38. [PMID: 27271272 PMCID: PMC4967091 DOI: 10.1007/s11095-016-1960-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/27/2016] [Indexed: 01/28/2023]
Abstract
Purpose To evaluate the kinetics of topically applied clobetasol-17-propionate (CP-17) in lesional and non-lesional psoriatic skin when released from a commercially available low-strength cream using in vivo dermal open-flow microperfusion (dOFM). Methods Twelve patients received Dermovate® cream (CP-17, 0.05%) on small lesional and non-lesional skin test sites for 14 days, once daily. On day 1 and 14, dOFM samples were continuously taken in the dermis for 24 h post-dose and analyzed by LC-MS/MS. Probe depths were assessed by 50 MHz ultrasound scanning. Results Mixed-effects modelling identified skin condition, treatment duration and probe-depth as kinetics determining variables. The time- and depth-resolved intradermal data revealed (i) slower penetration of CP-17 into lesional than into non-lesional skin, (ii) normalized (faster) skin penetration after repeated dosing, and (iii) no CP-17 accumulation within the dermis independently of the skin condition. Conclusions Intradermal investigation of a highly lipophilic drug released from low-strength cream was successfully performed by using dOFM and timely and spatially, i.e., probe-depth dependent, resolved kinetic data were delivered. These data support the assumption that the thickened psoriatic stratum corneum might act as trap compartment which lowers the skin penetration rate for lipophilic topical drugs. Electronic supplementary material The online version of this article (doi:10.1007/s11095-016-1960-y) contains supplementary material, which is available to authorized users.
Collapse
|
92
|
Siddique MI, Katas H, Amin MCIM, Ng SF, Zulfakar MH, Jamil A. In-vivo dermal pharmacokinetics, efficacy, and safety of skin targeting nanoparticles for corticosteroid treatment of atopic dermatitis. Int J Pharm 2016; 507:72-82. [DOI: 10.1016/j.ijpharm.2016.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 02/08/2023]
|
93
|
Research Techniques Made Simple: Drug Delivery Techniques, Part 2: Commonly Used Techniques to Assess Topical Drug Bioavailability. J Invest Dermatol 2016; 136:e43-e49. [DOI: 10.1016/j.jid.2016.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
94
|
Tipping WJ, Lee M, Serrels A, Brunton VG, Hulme AN. Stimulated Raman scattering microscopy: an emerging tool for drug discovery. Chem Soc Rev 2016; 45:2075-89. [PMID: 26839248 PMCID: PMC4839273 DOI: 10.1039/c5cs00693g] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 12/26/2022]
Abstract
Optical microscopy techniques have emerged as a cornerstone of biomedical research, capable of probing the cellular functions of a vast range of substrates, whilst being minimally invasive to the cells or tissues of interest. Incorporating biological imaging into the early stages of the drug discovery process can provide invaluable information about drug activity within complex disease models. Spontaneous Raman spectroscopy has been widely used as a platform for the study of cells and their components based on chemical composition; but slow acquisition rates, poor resolution and a lack of sensitivity have hampered further development. A new generation of stimulated Raman techniques is emerging which allows the imaging of cells, tissues and organisms at faster acquisition speeds, and with greater resolution and sensitivity than previously possible. This review focuses on the development of stimulated Raman scattering (SRS), and covers the use of bioorthogonal tags to enhance sample detection, and recent applications of both spontaneous Raman and SRS as novel imaging platforms to facilitate the drug discovery process.
Collapse
Affiliation(s)
- W. J. Tipping
- EaStCHEM School of Chemistry , The University of Edinburgh , Joseph Black Building , David Brewster Road , Edinburgh , EH9 3FJ , UK .
- Edinburgh Cancer Research Centre , Institute of Genetics and Molecular Medicine , The University of Edinburgh , Crewe Road South , Edinburgh , EH4 2XR , UK
| | - M. Lee
- Edinburgh Cancer Research Centre , Institute of Genetics and Molecular Medicine , The University of Edinburgh , Crewe Road South , Edinburgh , EH4 2XR , UK
| | - A. Serrels
- Edinburgh Cancer Research Centre , Institute of Genetics and Molecular Medicine , The University of Edinburgh , Crewe Road South , Edinburgh , EH4 2XR , UK
| | - V. G. Brunton
- Edinburgh Cancer Research Centre , Institute of Genetics and Molecular Medicine , The University of Edinburgh , Crewe Road South , Edinburgh , EH4 2XR , UK
| | - A. N. Hulme
- EaStCHEM School of Chemistry , The University of Edinburgh , Joseph Black Building , David Brewster Road , Edinburgh , EH9 3FJ , UK .
| |
Collapse
|
95
|
Campos PM, Praça FSG, Bentley MVLB. Quantification of lipoic acid from skin samples by HPLC using ultraviolet, electrochemical and evaporative light scattering detectors. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1019:66-71. [DOI: 10.1016/j.jchromb.2015.07.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
|
96
|
Abdel-Salam FS, Mahmoud AA, Ammar HO, Elkheshen SA. Nanostructured lipid carriers as semisolid topical delivery formulations for diflucortolone valerate. J Liposome Res 2016; 27:41-55. [DOI: 10.3109/08982104.2016.1149866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Azza A. Mahmoud
- Department of Pharmaceutical Technology, National Research Center, Dokki, Cairo, Egypt,
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt, and
| | - Hussein O. Ammar
- Department of Pharmaceutical Technology, National Research Center, Dokki, Cairo, Egypt,
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt, and
| | - Seham A. Elkheshen
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt, and
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
97
|
Chen Y, Zahui T, Alberti I, Kalia YN. Cutaneous biodistribution of ionizable, biolabile aciclovir prodrugs after short duration topical iontophoresis: Targeted intraepidermal drug delivery. Eur J Pharm Biopharm 2016; 99:94-102. [DOI: 10.1016/j.ejpb.2015.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
|
98
|
Skin Delivery and in Vitro Biological Evaluation of Trans-Resveratrol-Loaded Solid Lipid Nanoparticles for Skin Disorder Therapies. Molecules 2016; 21:E116. [PMID: 26805794 PMCID: PMC6273087 DOI: 10.3390/molecules21010116] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate the skin delivery and in vitro biological activity of trans-resveratrol (RES)-loaded solid lipid nanoparticles (SLNs). The SLNs were composed of stearic acid, poloxamer 407, soy phosphatidylcholine (SPC), an aqueous phase and 0.1% RES. The particle size, polydispersity index (PdI) and zeta potential were analyzed by dynamic light scattering (DLS). The SLNs were analyzed by scanning electron microscopy (SEM-FEG) and differential scanning calorimetry (DSC). In vitro RES-SLN skin permeation/retention assays were conducted, and their tyrosinase inhibitory activity was evaluated. An MTT reduction assay was performed on HaCat keratinocytes to determine in vitro cytotoxicity. The formulations had average diameter lower than 200 nm, the addition of SPC promoted increases in PdI in the RES-SLNs, but decreases PdI in the RES-free SLNs and the formulations exhibited zeta potentials smaller than −3 mV. The DSC analysis of the SLNs showed no endothermic peak attributable to RES. Microscopic analysis suggests that the materials formed had nanometric size distribution. Up to 45% of the RES permeated through the skin after 24 h. The RES-loaded SLNs were more effective than kojic acid at inhibiting tyrosinase and proved to be non-toxic in HaCat keratinocytes. The results suggest that the investigated RES-loaded SLNs have potential use in skin disorder therapies.
Collapse
|
99
|
Abd E, Roberts MS, Grice JE. A Comparison of the Penetration and Permeation of Caffeine into and through Human Epidermis after Application in Various Vesicle Formulations. Skin Pharmacol Physiol 2016; 29:24-30. [DOI: 10.1159/000441040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
<b><i>Background/Aims:</i></b> A range of vesicles is now widely used to carry various solutes into and through the epidermis. These usually have the active solute encapsulated within and may be modified to confer flexibility and skin penetration enhancement. Here, we compared the ability of five different vesicle systems to deliver a model hydrophilic drug, caffeine, into and through excised human skin. <b><i>Methods:</i></b> In addition to lipids, the vesicle excipients included eucalyptol or oleic acid as penetration enhancers, and decyl polyglucoside as a non-ionic surfactant. Vesicle particle sizes ranged between 135 and 158 nm, and caffeine encapsulation efficiencies were between 46 and 66%. Caffeine penetration and permeation were measured using high-performance liquid chromatography. <b><i>Results:</i></b> We found that niosomes, which are liposomes containing a non-ionic surfactant, and transferosomes (ultraflexible vesicles) showed significantly greater penetration into the skin and permeation across the stratum corneum. Significant enhancement of caffeine penetration into hair follicles was found for transferosomes and those liposomes containing oleic acid. <b><i>Conclusions:</i></b> We conclude that targeted delivery of the hydrophilic drug caffeine into the skin compartments can be modified using optimized vesicular formulations.
Collapse
|
100
|
Soares KCC, Moraes MV, Gelfuso GM, Gratieri T. [Bioequivalence of dermatological topical medicines:the Brazilian scenario and the challenges for health surveillance]. CIENCIA & SAUDE COLETIVA 2015; 20:3599-608. [PMID: 26602737 DOI: 10.1590/1413-812320152011.01082015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/01/2015] [Indexed: 11/22/2022] Open
Abstract
The comparative evaluation required for the registration of generic topical medicines in Brazil is conducted by means of a pharmaceutical equivalence study, which merely assesses the physical/chemical and microbiological parameters of the formulations. At the international level, clinical or pharmacodynamic studies are now being required to prove the efficacy and safety of semisolid topical generic formulations. This work presents a comparison of the different requirements for the registration of topical formulations, taking into consideration the various regulatory authorities, and presents a survey of topical medicines registered in Brazil prior to 2013. The survey revealed that in comparison with the USA there were many more copies of these formulations registered in Brazil. This fact, together with the large number of studies in the literature showing the lack of bioequivalence of topical medication, is clear proof of the major importance of the need to realign Brazilian legislation with respect to the technical requirements for the registration of generic and similar medication for dermatological topical application in Brazil.
Collapse
Affiliation(s)
- Kelen Carine Costa Soares
- Laboratório de Tecnologia de Medicamentos, Alimentos e Cosméticos, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brasil,
| | - Marcelo Vogler Moraes
- Laboratório de Tecnologia de Medicamentos, Alimentos e Cosméticos, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brasil,
| | - Guilherme Martins Gelfuso
- Laboratório de Tecnologia de Medicamentos, Alimentos e Cosméticos, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brasil,
| | - Taís Gratieri
- Laboratório de Tecnologia de Medicamentos, Alimentos e Cosméticos, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brasil,
| |
Collapse
|