51
|
Garg P, Awasthi S, Horne D, Salgia R, Singhal SS. The innate effects of plant secondary metabolites in preclusion of gynecologic cancers: Inflammatory response and therapeutic action. Biochim Biophys Acta Rev Cancer 2023; 1878:188929. [PMID: 37286146 DOI: 10.1016/j.bbcan.2023.188929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Gynecologic cancers can make up the bulk of cancers in both humans and animals. The stage of diagnosis and the type of tumor, its origin, and its spread are a few of the factors that influence how effectively a treatment modality works. Currently, radiotherapy, chemotherapy, and surgery are the major treatment options recommended for the eradication of malignancies. The use of several anti-carcinogenic drugs increases the chance of harmful side effects, and patients might not react to the treatments as expected. The significance of the relationship between inflammation and cancer has been underscored by recent research. As a result, it has been shown that a variety of phytochemicals with beneficial bioactive effects on inflammatory pathways have the potential to act as anti-carcinogenic medications for the treatment of gynecologic cancer. The current paper reviews the significance of inflammatory pathways in gynecologic malignancies and discusses the role of plants-derived secondary metabolites that are useful in the treatment of cancer.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sanjay Awasthi
- Cayman Health, CTMH Doctors Hospital in Cayman Islands, George Town, Grand Cayman, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
52
|
Strawa JW, Jakimiuk K, Pawlikowska-Pawlęga B, Gruszecki WI, Kapral-Piotrowska J, Wiater A, Tomczyk M. Polar localization of new flavonoids from aerial parts of Scleranthus perennis and Hottonia palustris and their modulatory action on lipid membranes properties. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184142. [PMID: 36848998 DOI: 10.1016/j.bbamem.2023.184142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/27/2023]
Abstract
The aim of this study was to characterize, for the first time, the interactions, location, and influence of flavonoids isolated from aerial parts of Scleranthus perennis (Caryophyllaceae) and Hottonia palustris (Primulaceae) on the properties of model lipid membranes prepared from dipalmitoylphosphatidylcholine (DPPC) and egg yolk phosphatidylcholine (EYPC). The tested compounds incorporated into liposomes into the region of the polar heads or at the water/membrane interface of DPPC phospholipids. Spectral effects accompanying the presence of polyphenols revealed their effect on ester carbonyl groups apart from SP8. All polyphenols brought about reorganization of the polar zone of liposomes as it was observed by FTIR technique. Additionally, fluidization effect was noted in the region of symmetric and antisymmetric stretching vibrations of the CH2 and CH3 groups with exception to HZ2 and HZ3. Similarly, in EYPC liposomes, they interacted mainly with the regions of the choline heads of the lipids and had various effects on the carbonyl ester groups with exception to SP8. The region of polar head groups is restructured due to the presence of the additives in liposomes. The outcomes obtained using the NMR technique confirmed the locations of all of the tested compounds in the polar zone and indicated a flavonoid-dependent modifying effect towards lipid membranes. HZ1 and SP8 raised motional freedom in this region whereas opposite effect was revealed for HZ2 and HZ3. In the hydrophobic region restricted mobility was noted. In this report we discuss the mechanism of previously undescribed flavonoids in terms of their actions on membranes.
Collapse
Affiliation(s)
- Jakub W Strawa
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| | - Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| | - Bożena Pawlikowska-Pawlęga
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland.
| | - Wiesław I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, ul. Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland.
| | - Justyna Kapral-Piotrowska
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland.
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland.
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| |
Collapse
|
53
|
Pathak MP, Pathak K, Saikia R, Gogoi U, Patowary P, Chattopadhyay P, Das A. Therapeutic potential of bioactive phytoconstituents found in fruits in the treatment of non-alcoholic fatty liver disease: A comprehensive review. Heliyon 2023; 9:e15347. [PMID: 37101636 PMCID: PMC10123163 DOI: 10.1016/j.heliyon.2023.e15347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a chronic liver condition affects a large number of people around the world with a frequency of 25% of all the chronic liver disease worldwide. Several targets viz. anti-inflammatory, anti-apoptotic and, anti-fibrotic factors, anti-oxidant and insulin-sensitizing pathways, metabolic regulators as well as repurposing traditional medications have been studied for the pharmacologic therapy of NAFLD. Newer pharmacotherapies like caspases blockade, agonists of PPAR and farnesoid X receptor agonists are currently being investigated in treating human NAFLD. However, NAFLD has no FDA-approved pharmacological therapy, therefore there is a considerable unmet therapy need. Apart from the conventional treatment regime, the current approaches to treating NAFLD include lifestyle interventions including healthy diet with adequate nutrition and physical activity. Fruits are known to play a key role in the well-being of human health. Fruits are loaded with a repertoire of bioactive phytoconstituents like catechins, phytosterols, proanthocyanidin, genestin, daidzen, resveratrol, magiferin found in fruits like pear, apricot, strawberries, oranges, apples, bananas, grapes, kiwi, pineapple, watermelon, peach, grape seed and skin, mango, currants, raisins, dried dates, passion fruit and many more. These bioactive phytoconstituents are reported to demonstrate promising pharmacological efficacy like reduction in fatty acid deposition, increased lipid metabolism, modulation of insulin signaling pathway, gut microbiota and hepatic inflammation, inhibition of histone acetyltransferase enzymatic activity to name a few. Not only fruits, but their derivatives like oils, pulp, peel, or their preparations are also found to be equally beneficial in various liver diseases like NAFLD, NASH. Although most of the fruits contains potent bioactive phytoconstituents, however, the presence of sugar in fruits put a question mark on the ameliorative property of the fruits and there has been contrasting reports on the glycemic control post fruit consumption in type 2 diabetic patients. This review is an attempt to summarize the beneficial effects of fruit phytoconstituents on NAFLD based on epidemiological, clinical and experimental evidence, focusing especially on their mechanisms of action.
Collapse
Affiliation(s)
- Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati-781026, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Pompy Patowary
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur 784001, Assam, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur 784001, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| |
Collapse
|
54
|
Sales D, Lin E, Stoffel V, Dickson S, Khan ZK, Beld J, Jain P. Apigenin improves cytotoxicity of antiretroviral drugs against HTLV-1 infected cells through the modulation of AhR signaling. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:49-62. [PMID: 37027342 PMCID: PMC10070013 DOI: 10.1515/nipt-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/19/2023]
Abstract
Objectives HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neuroinflammatory autoimmune disease characterized by high levels of infected immortalized T cells in circulation, which makes it difficult for antiretroviral (ART) drugs to work effectively. In previous studies, we established that Apigenin, a flavonoid, can exert immunomodulatory effects to reduce neuroinflammation. Flavonoids are natural ligands for the aryl hydrocarbon receptor (AhR), which is a ligand activated endogenous receptor involved in the xenobiotic response. Consequently, we tested Apigenin's synergy in combination with ART against the survival of HTLV-1-infected cells. Methods First, we established a direct protein-protein interaction between Apigenin and AhR. We then demonstrated that Apigenin and its derivative VY-3-68 enter activated T cells, drive nuclear shuttling of AhR, and modulate its signaling both at RNA and protein level. Results In HTLV-1 producing cells with high AhR expression, Apigenin cooperates with ARTs such as Lopinavir (LPN) and Zidovudine (AZT), to impart cytotoxicity by exhibiting a major shift in IC50 that was reversed upon AhR knockdown. Mechanistically, Apigenin treatment led to an overall downregulation of NF-κB and several other pro-cancer genes involved in survival. Conclusions This study suggest the potential combinatorial use of Apigenin with current first-line antiretrovirals for the benefit of patients affected by HTLV-1 associated pathologies.
Collapse
Affiliation(s)
- Dominic Sales
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Edward Lin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Victoria Stoffel
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shallyn Dickson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Zafar K. Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
55
|
Espíndola C. Some Nanocarrier's Properties and Chemical Interaction Mechanisms with Flavones. Molecules 2023; 28:molecules28062864. [PMID: 36985836 PMCID: PMC10051830 DOI: 10.3390/molecules28062864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Flavones such as 7,8-dihydroxyflavone (tropoflavin), 5,6,7-trihydroxyflavone (baicalein), 3',4',5,6-tetrahydroxyflavone (luteolin), 3,3',4',5,5',7-hexahydroxyflavone (myricetin), 4',5,7-trihydroxyflavone (apigenin), and 5,7-dihydroxyflavone (chrysin) are important both for their presence in natural products and for their pharmacological applications. However, due to their chemical characteristics and their metabolic processes, they have low solubility and low bioavailability. Knowledge about the physicochemical properties of nanocarriers and the possible mechanisms of covalent and non-covalent interaction between nanoparticles (NPs) and drugs is essential for the design of nanocarriers to improve the bioavailability of molecules with pharmacological potential, such as tropoflavin, baicalein, luteolin, myricetin, apigenin, and chrysin. The parameters of characterization of some NPs of these flavones, such as size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE), and % release/time, utilized in biomedical applications and the covalent and non-covalent interactions existing between the polymeric NPs and the drug were analyzed. Similarly, the presence of functional groups in the functionalized carbon nanotubes (CNTs), as well as the effect of pH on the % adsorption of flavonoids on functionalized multi-walled carbon nanotubes (MWCNT-COOH), were analyzed. Non-covalent interaction mechanisms between polymeric NPs and flavones, and covalent interaction mechanisms that could exist between the NPs and the amino and hydroxyl functional groups, are proposed.
Collapse
Affiliation(s)
- Cecilia Espíndola
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain
| |
Collapse
|
56
|
Wang Y, Sun W, Yan S, Meng Z, Jia M, Tian S, Huang S, Sun X, Han S, Pan C, Diao J, Wang Q, Zhu W. A new strategy to alleviate the obesity induced by endocrine disruptors-A unique lysine metabolic pathway of nanoselenium Siraitia grosvenorii to repair gut microbiota and resist obesity. Food Chem Toxicol 2023; 175:113737. [PMID: 36944396 DOI: 10.1016/j.fct.2023.113737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
Obesity caused by endocrine disruptors (EDCs) has become a hot topic threatening human health. Recently, Nanoselenium Siraitia grosvenorii (NSG) has been shown to have potential health-modulating uses. Based on the results of 16S rRNA sequencing and metabolomics analysis, NSG has the unique function of improving gut microbiota and inhibiting obesity. Specifically, NSG can enhance gut microbiota diversity and change their composition. A significant positive correlation exists between the liver change in lysine and the high-importance dominant species ([Ruminococcus]_gnavus, Alistipes_finegoldii, etc.). NSG metabolites analysis showed that the lysine level increased by 44.45% and showed a significantly negatively correlated with (TG, TC, Leptin, etc.). Significantly, NSG reduces the degradation of lysine metabolism in the liver and inhibits fatty acid β-oxidation. In addition, NSG decreased Acetyl-CoA levels by 24% and regulated the downregulation of TCA genes (CS, Ogdh, Fh1, and Mdh2) and the upregulation of ketone body production genes (BDH1). NSG may have a positive effect on obesity by reducing the participation of Acetyl-CoA in the TCA cycle pathway and enhancing the ketogenic conversion of Acetyl-CoA. In conclusion, the results of this study may provide a new dietary intervention strategy for preventing endocrine disruptor-induced obesity.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zhiyuan Meng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China; College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China; Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Xiaoxuan Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Shihang Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, China.
| |
Collapse
|
57
|
The Role of Selective Flavonoids on Triple-Negative Breast Cancer: An Update. SEPARATIONS 2023. [DOI: 10.3390/separations10030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Among the many types of breast cancer (BC), Triple-Negative Breast Cancer (TNBC) is the most alarming. It lacks receptors for the three main biomarkers: estrogen, progesterone, and human epidermal growth factor, hence the name TNBC. This makes its treatment a challenge. Surgical procedures and chemotherapy, performed either alone or in combination, seem to be the primary therapeutic possibilities; however, they are accompanied by severe complications. Currently, the formulation of drugs using natural products has been playing an important role in the pharmaceutical industries, owing to the drugs’ increased efficacies and significantly lessened side effects. Hence, treating TNBC with chemotherapeutic drugs developed using natural products such as flavonoids in the near future is much warranted. Flavonoids are metabolic compounds largely present in all plants, vegetables, and fruits, such as blueberries, onions, (which are widely used to make red wine,) chocolates, etc. Flavonoids are known to have enormous health benefits, such as anticancer, antiviral, anti-inflammatory, and antiallergic properties. They are known to arrest the cell cycle of the tumor cells and induces apoptosis by modulating Bcl-2, Bax, and Caspase activity. They show a considerable effect on cell proliferation and viability and angiogenesis. Various studies were performed at both the biochemical and molecular levels. The importance of flavonoids in cancer treatment and its methods of extraction and purification to date have been reported as individual publications. However, this review article explains the potentiality of flavonoids against TNBC in the preclinical levels and also emphasizes their molecular mechanism of action, along with a brief introduction to its methods of extraction, isolation, and purification in general, emphasizing the fact that its quantum of yield if enhanced and its possible synergistic effects with existing chemotherapeutics may pave the way for better anticancer agents of natural origin and significantly lessened side-effects.
Collapse
|
58
|
Sharifiaghdam Z, Amini SM, Dalouchi F, Behrooz AB, Azizi Y. Apigenin-coated gold nanoparticles as a cardioprotective strategy against doxorubicin-induced cardiotoxicity in male rats via reducing apoptosis. Heliyon 2023; 9:e14024. [PMID: 36915508 PMCID: PMC10006676 DOI: 10.1016/j.heliyon.2023.e14024] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Aims Cardiotoxicity is associated with doxorubicin (DOX), an effective anticancer drug. Apigenin has cardioprotective properties; it may be employed as a capping and reducing agent in synthesizing gold nanoparticles (AuNPs). This study examined the cardioprotective impact of AuNPs synthesized with apigenin (Api) in DOX-induced cardiotoxicity (DIC). Main methods Api-AuNPs were synthesized in a single pot without needing additional reagents for reducing gold ions or stabilizing the NPs. The cytotoxicity of Api-AuNPs on H9c2 heart cells was subsequently determined using the MTT assay. In the animal investigation, 40 male rats were randomly assigned to one of four groups: control, cardiotoxicity (DOX), DOX treated with apigenin (DOX + Api), or DOX treated with Api-AuNPs (DOX + Api-AuNPs). To examine heart function, echocardiography was conducted. Blood samples were obtained to evaluate injury indicators (Lactate dehydrogenase (LDH), creatine kinase MB (CK-MB), Cardiac Troponin I (cTn-I), Alanine transaminase (ALT), and Aspartate transaminase (AST)). The heart was removed under general anesthetic, weighed, and preserved in formalin solution. Six micrometer-thick cardiac tissue sections were stained with hematoxylin, eosin (H&E), and immunohistochemistry to identify cardiomyocyte apoptotic markers (Bax, Bcl-2, and caspase3). Key findings Api-AuNPs have an average size of 21.4 ± 11.6 nm and are stable in physiological environments. Api-AuNPs therapy substantially reduced body and heart weight loss compared to the DOX group. Injury indicators were reduced dramatically by Api-AuNPs treatment. Api-AuNPs inhibited myocardial apoptosis via modulating Bax, caspase3, and Bcl-2 and ameliorating tissue damage caused by DOX. Significance Api-AuNPs' anti-apoptotic activities provide cardioprotection against DIC. It has the potential to reduce cardiotoxicity and boost myocardial performance.
Collapse
Affiliation(s)
- Zeynab Sharifiaghdam
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fereshteh Dalouchi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Barzegar Behrooz
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia.,Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
59
|
Hossain MA, Rahman MH, Sultana H, Ahsan A, Rayhan SI, Hasan MI, Sohel M, Somadder PD, Moni MA. An integrated in-silico Pharmaco-BioInformatics approaches to identify synergistic effects of COVID-19 to HIV patients. Comput Biol Med 2023; 155:106656. [PMID: 36805222 PMCID: PMC9911982 DOI: 10.1016/j.compbiomed.2023.106656] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND With high inflammatory states from both COVID-19 and HIV conditions further result in complications. The ongoing confrontation between these two viral infections can be avoided by adopting suitable management measures. PURPOSE The aim of this study was to figure out the pharmacological mechanism behind apigenin's role in the synergetic effects of COVID-19 to the progression of HIV patients. METHOD We employed computer-aided methods to uncover similar biological targets and signaling pathways associated with COVID-19 and HIV, along with bioinformatics and network pharmacology techniques to assess the synergetic effects of apigenin on COVID-19 to the progression of HIV, as well as pharmacokinetics analysis to examine apigenin's safety in the human body. RESULT Stress-responsive, membrane receptor, and induction pathways were mostly involved in gene ontology (GO) pathways, whereas apoptosis and inflammatory pathways were significantly associated in the Kyoto encyclopedia of genes and genomes (KEGG). The top 20 hub genes were detected utilizing the shortest path ranked by degree method and protein-protein interaction (PPI), as well as molecular docking and molecular dynamics simulation were performed, revealing apigenin's strong interaction with hub proteins (MAPK3, RELA, MAPK1, EP300, and AKT1). Moreover, the pharmacokinetic features of apigenin revealed that it is an effective therapeutic agent with minimal adverse effects, for instance, hepatoxicity. CONCLUSION Synergetic effects of COVID-19 on the progression of HIV may still be a danger to global public health. Consequently, advanced solutions are required to give valid information regarding apigenin as a suitable therapeutic agent for the management of COVID-19 and HIV synergetic effects. However, the findings have yet to be confirmed in patients, suggesting more in vitro and in vivo studies.
Collapse
Affiliation(s)
- Md Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, 7003, Bangladesh; Center for Advanced Bioinformatics and Artificial Intelligent Research, Islamic University, Kushtia, 7003, Bangladesh.
| | - Habiba Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Asif Ahsan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Saiful Islam Rayhan
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Imran Hasan
- Department of Computer Science and Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Pratul Dipta Somadder
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
60
|
Batool R, Khan MR, Ijaz MU, Naz I, Batool A, Ali S, Zahra Z, Gul S, Uddin MN, Kazi M, Khan R. Linum corymbulosum Protects Rats against CCl 4-Induced Hepatic Injuries through Modulation of an Unfolded Protein Response Pathway and Pro-Inflammatory Intermediates. Molecules 2023; 28:2257. [PMID: 36903503 PMCID: PMC10004795 DOI: 10.3390/molecules28052257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Liver fibrosis is a major pathological feature of chronic liver disease and effective therapies are limited at present. The present study focuses on the hepatoprotective potential of L. corymbulosum against carbon tetrachloride (CCl4)-induced liver damage in rats. Analysis of Linum corymbulosum methanol extract (LCM) using high-performance liquid chromatography (HPLC) revealed the presence of rutin, apigenin, catechin, caffeic acid and myricetin. CCl4 administration lowered (p < 0.01) the activities of antioxidant enzymes and reduced glutathione (GSH) content as well as soluble proteins, whereas the concentration of H2O2, nitrite and thiobarbituric acid reactive substances was higher in hepatic samples. In serum, the level of hepatic markers and total bilirubin was elevated followed by CCl4 administration. The expression of glucose-regulated protein (GRP78), x-box binding protein-1 total (XBP-1 t), x-box binding protein-1 spliced (XBP-1 s), x-box binding protein-1 unspliced (XBP-1 u) and glutamate-cysteine ligase catalytic subunit (GCLC) was enhanced in CCl4-administered rats. Similarly, the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemo attractant protein-1 (MCP-1) was strongly increased with CCl4 administration to rats. Co-administration of LCM along with CCl4 to rats lowered (p < 0.05) the expression of the above genes. Histopathology of the liver showed hepatocyte injury, leukocyte infiltration and damaged central lobules in CCl4-treated rats. However, LCM administration to CCl4-intoxicated rats restored the altered parameters towards the levels of control rats. These outcomes indicate the existence of antioxidant and anti-inflammatory constituents in the methanol extract of L. corymbulosum.
Collapse
Affiliation(s)
- Riffat Batool
- Directorate of BASR, Allama Iqbal Open University, Islamabad 44310, Pakistan
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| | - Irum Naz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Afsheen Batool
- Faculty RMU & Allied Hospitals, Rawalpindi Medical University and Allied Hospital, Rawalpindi 46000, Pakistan
| | - Saima Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zartash Zahra
- Gujrat Institute of Management Sciences, Peer Mehar Ali Shah Arid Agriculture University, Gujrat 50700, Pakistan
| | - Safia Gul
- Department of Botany, Sardar Bahadur Khan Women’s University Quetta, Quetta 87300, Pakistan
| | - Mohammad N. Uddin
- College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raees Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
61
|
Mahboubi-Rabbani M, Abbasi M, Zarghi A. Natural-Derived COX-2 Inhibitors as Anticancer Drugs: A Review of their Structural Diversity and Mechanism of Action. Anticancer Agents Med Chem 2023; 23:15-36. [PMID: 35638275 DOI: 10.2174/1389450123666220516153915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
Abstract
Cyclooxygenase-2 (COX-2) is a key-type enzyme playing a crucial role in cancer development, making it a target of high interest for drug designers. In the last two decades, numerous selective COX-2 inhibitors have been approved for various clinical conditions. However, data from clinical trials propose that the prolonged use of COX-2 inhibitors is associated with life-threatening cardiovascular side effects. The data indicate that a slight structural modification can help develop COX-2 selective inhibitors with comparative efficacy and limited side effects. In this regard, secondary metabolites from natural sources offer great hope for developing novel COX-2 inhibitors with potential anticancer activity. In recent years, various nature-derived organic scaffolds are being explored as leads for developing new COX-2 inhibitors. The current review attempts to highlight the COX-2 inhibition activity of some naturally occurring secondary metabolites, concerning their capacity to inhibit COX-1 and COX-2 enzymes and inhibit cancer development, aiming to establish a structure-activity relationship.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
62
|
Tabolacci C, De Vita D, Facchiano A, Bozzuto G, Beninati S, Failla CM, Di Martile M, Lintas C, Mischiati C, Stringaro A, Del Bufalo D, Facchiano F. Phytochemicals as Immunomodulatory Agents in Melanoma. Int J Mol Sci 2023; 24:2657. [PMID: 36768978 PMCID: PMC9916941 DOI: 10.3390/ijms24032657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma is an immunogenic highly heterogenic tumor characterized by poor outcomes when it is diagnosed late. Therefore, immunotherapy in combination with other anti-proliferative approaches is among the most effective weapons to control its growth and metastatic dissemination. Recently, a large amount of published reports indicate the interest of researchers and clinicians about plant secondary metabolites as potentially useful therapeutic tools due to their lower presence of side effects coupled with their high potency and efficacy. Published evidence was reported in most cases through in vitro studies but also, with a growing body of evidence, through in vivo investigations. Our aim was, therefore, to review the published studies focused on the most interesting phytochemicals whose immunomodulatory activities and/or mechanisms of actions were demonstrated and applied to melanoma models.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico, 00128 Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, School of Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
63
|
Alghamdi K, Alehaideb Z, Kumar A, Al-Eidi H, Alghamdi SS, Suliman R, Ali R, Almourfi F, Alghamdi SM, Boudjelal M, Matou-Nasri S. Stimulatory effects of Lycium shawii on human melanocyte proliferation, migration, and melanogenesis: In vitro and in silico studies. Front Pharmacol 2023; 14:1169812. [PMID: 37197407 PMCID: PMC10184183 DOI: 10.3389/fphar.2023.1169812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/03/2023] [Indexed: 05/19/2023] Open
Abstract
There is no first-line treatment for vitiligo, a skin disease characterized by a lack of melanin produced by the melanocytes, resulting in an urgent demand for new therapeutic drugs capable of stimulating melanocyte functions, including melanogenesis. In this study, traditional medicinal plant extracts were tested for cultured human melanocyte proliferation, migration, and melanogenesis using MTT, scratch wound-healing assays, transmission electron microscopy, immunofluorescence staining, and Western blot technology. Of the methanolic extracts, Lycium shawii L. (L. shawii) extract increased melanocyte proliferation at low concentrations and modulated melanocyte migration. At the lowest tested concentration (i.e., 7.8 μg/mL), the L. shawii methanolic extract promoted melanosome formation, maturation, and enhanced melanin production, which was associated with the upregulation of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1 and TRP-2 melanogenesis-related proteins, and melanogenesis-related proteins. After the chemical analysis and L. shawii extract-derived metabolite identification, the in silico studies revealed the molecular interactions between Metabolite 5, identified as apigenin (4,5,6-trihydroxyflavone), and the copper active site of tyrosinase, predicting enhanced tyrosinase activity and subsequent melanin formation. In conclusion, L. shawii methanolic extract stimulates melanocyte functions, including melanin production, and its derivative Metabolite 5 enhances tyrosinase activity, suggesting further investigation of the L. shawii extract-derived Metabolite 5 as a potential natural drug for vitiligo treatment.
Collapse
Affiliation(s)
- Khalid Alghamdi
- Department of Dermatology (DOD), College of Medicine (COM), King Saud University (KSU), Riyadh, Saudi Arabia
- Vitiligo Research Chair, DOD, COM, KSU, Riyadh, Saudi Arabia
| | - Zeyad Alehaideb
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Ashok Kumar
- Department of Dermatology (DOD), College of Medicine (COM), King Saud University (KSU), Riyadh, Saudi Arabia
- Vitiligo Research Chair, DOD, COM, KSU, Riyadh, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, KAIMRC, KSAU-HS, MNGHA, Riyadh, Saudi Arabia
| | - Sahar S. Alghamdi
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, KSAU-HS, KAIMRC, MNGHA, Riyadh, Saudi Arabia
| | - Rasha Suliman
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi, United Arab Emirates
| | - Rizwan Ali
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Feras Almourfi
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | | | - Mohamed Boudjelal
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, KAIMRC, KSAU-HS, MNGHA, Riyadh, Saudi Arabia
- Blood and Cancer Research Department, KAIMRC, KSAU-HS, MNGHA, Riyadh, Saudi Arabia
- *Correspondence: Sabine Matou-Nasri,
| |
Collapse
|
64
|
Moslehi M, Rezaei S, Talebzadeh P, Ansari MJ, Jawad MA, Jalil AT, Rastegar-Pouyani N, Jafarzadeh E, Taeb S, Najafi M. Apigenin in cancer therapy: Prevention of genomic instability and anticancer mechanisms. Clin Exp Pharmacol Physiol 2023; 50:3-18. [PMID: 36111951 DOI: 10.1111/1440-1681.13725] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
The incidence of cancer has been growing worldwide. Better survival rates following the administration of novel drugs and new combination therapies may concomitantly cause concern regarding the long-term adverse effects of cancer therapy, for example, second primary malignancies. Moreover, overcoming tumour resistance to anticancer agents has been long considered as a critical challenge in cancer research. Some low toxic adjuvants such as herb-derived molecules may be of interest for chemoprevention and overcoming the resistance of malignancies to cancer therapy. Apigenin is a plant-derived molecule with attractive properties for chemoprevention, for instance, promising anti-tumour effects, which may make it a desirable adjuvant to reduce genomic instability and the risks of second malignancies among normal tissues. Moreover, it may improve the efficiency of anticancer modalities. This paper aims to review various effects of apigenin in both normal tissues and malignancies. In addition, we explain how apigenin may have the ability to protect usual cells against the genotoxic repercussions following radiotherapy and chemotherapy. Furthermore, the inhibitory effects of apigenin on tumours will be discussed.
Collapse
Affiliation(s)
- Masoud Moslehi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepideh Rezaei
- Department of Chemistry, University of Houston, Houston, Texas, USA
| | - Pourya Talebzadeh
- Student Research Committee, Tehran Medical Faculty, Islamic Azad University, Tehran, Iran
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
65
|
Miao L, Cheong MS, Zhou C, Farag M, Cheang WS, Xiao J. Apigenin alleviates diabetic endothelial dysfunction through activating AMPK/PI3K/Akt/eNOS and Nrf2/HO‐1 signaling pathways. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lingchao Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau SAR China
| | - Meng Sam Cheong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau SAR China
| | - Chunxiu Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau SAR China
| | - Mohamed Farag
- Pharmacognosy Department, Faculty of Pharmacy Cairo University Cairo Egypt
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau SAR China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences Universidade de Vigo, Nutrition and Bromatology Group Ourense Spain
| |
Collapse
|
66
|
Comparative Metabolomic Profiling Reveals Key Secondary Metabolites Associated with High Quality and Nutritional Value in Broad Bean ( Vicia faba L.). Molecules 2022; 27:molecules27248995. [PMID: 36558128 PMCID: PMC9787534 DOI: 10.3390/molecules27248995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
High quality and nutritional benefits are ultimately the desirable features that influence the commercial value and market share of broad bean (Vicia faba L.). Different cultivars vary greatly in taste, flavor, and nutrition. However, the molecular basis of these traits remains largely unknown. Here, the grain metabolites of the superior Chinese landrace Cixidabaican (CX) were detected by a widely targeted metabolomics approach and compared with the main cultivar Lingxiyicun (LX) from Japan. The analyses of global metabolic variations revealed a total of 149 differentially abundant metabolites (DAMs) were identified between these two genotypes. Among them, 84 and 65 were up- and down-regulated in CX compared with LX. Most of the DAMs were closely related to healthy eating substances known for their antioxidant and anti-cancer properties, and some others were involved in the taste formation. The KEGG-based classification further revealed that these DAMs were significantly enriched in 21 metabolic pathways, particularly in flavone and flavonol biosynthesis. The differences in key secondary metabolites, including flavonoids, terpenoids, amino acid derivates, and alkaloids, may lead to more nutritional value in a healthy diet and better adaptability for the seed germination of CX. The present results provide important insights into the taste/quality-forming mechanisms and contributes to the conservation and utilization of germplasm resources for breeding broad bean with superior eating quality.
Collapse
|
67
|
Lei L, Yuan X, Fu K, Chen Y, Lu Y, Shou N, Wu D, Chen X, Shi J, Zhang M, Chen Z, Shi Z. Pseudotargeted metabolomics revealed the adaptive mechanism of Draba oreades Schrenk at high altitude. FRONTIERS IN PLANT SCIENCE 2022; 13:1052640. [PMID: 36570906 PMCID: PMC9784223 DOI: 10.3389/fpls.2022.1052640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Strong ultraviolet radiation and low temperature environment on Gangshika Mountain, located in the eastern part of the Qilian Mountains in Qinghai Province, can force plants to produce some special secondary metabolites for resisting severe environmental stress. However, the adaptive mechanism of Draba oreades Schrenk at high altitude are still unclear. In the current study, Draba oreades Schrenk from the Gangshika Mountain at altitudes of 3800 m, 4000 m and 4200 m were collected for comprehensive metabolic evaluation using pseudotargeted metabolomics method. Through KEGG pathway enrichment analysis, we found that phenylpropanoid biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism related to the biosynthesis of flavonoids were up-regulated in the high-altitude group, which may enhance the environmental adaptability to strong ultraviolet intensity and low temperature stress in high altitude areas. By TopFc20 distribution diagram, the content of flavonoids gradually increased with the elevation of altitude, mainly including apigenin, luteolin, quercetin, hesperidin, kaempferol and their derivatives. Based on the random forest model, 10 important metabolites were identified as potential biomarkers. L-phenylalanine, L-histidine, naringenin-7-O-Rutinoside-4'-O-glucoside and apigenin related to the flavonoids biosynthesis and plant disease resistance were increased with the elevation of altitude. This study provided important insights for the adaptive mechanism of Draba oreades Schrenk at high altitude by pseudotargeted metabolomics.
Collapse
Affiliation(s)
- Ling Lei
- Clinical Psychology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Xuefeng Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuan Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yijun Lu
- Clinical Psychology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Na Shou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dandan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jian Shi
- Metabolomics Detection Department, Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Minjuan Zhang
- Metabolomics Detection Department, Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Zhe Chen
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
68
|
Luo C, Liu L, Zhao J, Xu Y, Liu H, Chen D, Cheng X, Gao J, Hong B, Huang C, Ma C. CmHY5 functions in apigenin biosynthesis by regulating flavone synthase II expression in chrysanthemum flowers. PLANTA 2022; 257:7. [PMID: 36478305 DOI: 10.1007/s00425-022-04040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The predominant flavones in the ray florets of chrysanthemum flowers are apigenin and its derivatives. CmHY5 participates in apigenin biosynthesis by directly regulating the expression of FNSII-1 in chrysanthemum. Chrysanthemum (Chrysanthemum morifolium) flowers have been used for centuries as functional food and in herbal tea and traditional medicine. The chrysanthemum flower contains significant amounts of the biologically active compound flavones, which has medicinal properties. However, the mechanism regulating flavones biosynthesis in chrysanthemum flowers organs is still unclear. Here, we compared the transcriptomes and metabolomes of different floral organs between two cultivars with contrasting flavone levels in their flowers. We identified 186 flavonoids by metabolome analysis. The predominant flavones in the ray florets of chrysanthemum flowers are apigenin and its derivatives, of which the contents are highly correlated with the expression of flavones synthase II gene CmFNSII-1. We also determined that CmHY5 is a direct upstream regulator of CmFNSII-1 transcription. We showed that CmHY5 RNAi interference lines in chrysanthemum have lower contents of apigenin compared to wild-type chrysanthemum. Our results demonstrated that CmHY5 participates in flavone biosynthesis by directly regulating the expression of FNSII-1 in chrysanthemum.
Collapse
Affiliation(s)
- Chang Luo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lei Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jian Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanjie Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hua Liu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Dongliang Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Xi Cheng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Conglin Huang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China.
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
69
|
Gaurav, Khan MU, Basist P, Zahiruddin S, Ibrahim M, Parveen R, Krishnan A, Ahmad S. Nephroprotective potential of Boerhaavia diffusa and Tinospora cordifolia herbal combination against diclofenac induced nephrotoxicity. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 151:238-247. [DOI: 10.1016/j.sajb.2022.01.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
70
|
Ngernyuang N, Wongwattanakul M, Charusirisawad W, Shao R, Limpaiboon T. Green synthesized apigenin conjugated gold nanoparticles inhibit cholangiocarcinoma cell activity and endothelial cell angiogenesis in vitro. Heliyon 2022; 8:e12028. [PMID: 36506385 PMCID: PMC9732323 DOI: 10.1016/j.heliyon.2022.e12028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/05/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy of the biliary tract with extremely poor clinical outcomes due to a lack of effective therapies to improve disease management. The emerging green synthesis of gold nanoparticles (AuNPs) has extensively provided their use in biomedical applications. In this study, we developed AuNPs via reducing gold salts with apigenin (4',5,7-trihydroxyflavone). The synthesized apigenin-conjugated AuNPs (api-AuNPs) were physicochemically characterized by various techniques before evaluation their biological and functional inhibition in a CCA cell line, KKU-M055. The mean size of api-AuNPs was 90.34 ± 22.82 nm with zeta potential of -36 ± 0.55. The half-maximal inhibitory concentration (IC50, 0.8 mg/mL) of api-AuNPs on cell proliferation of KKU-M055 was 1.9-fold less than that of an immortalized human cholangiocyte cell line, MMNK1 (IC50, 1.5 mg/mL). Moreover, api-AuNPs induced cell apoptosis via the up-regulation of Bax, Bid, and Caspase 3, and down-regulation of Bcl2, leading to elevated caspase 3/7, 8, 9 activities and reactive oxygen species (ROS) production. The api-AuNPs significantly inhibited the migration of KKU-M055 cells and suppressed the proliferation, migration, and in vitro tube formation of vascular endothelial cells. Collectively, our findings indicate the dual abilities of api-AuNPs that potentially inhibit cancer cell growth and motility as well as endothelial cell-mediated angiogenesis, which may offer a novel therapeutic avenue to treat CCA patients effectively.
Collapse
Affiliation(s)
- Nipaporn Ngernyuang
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Molin Wongwattanakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wannit Charusirisawad
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Rong Shao
- Development of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
71
|
Crosstalk between xanthine oxidase (XO) inhibiting and cancer chemotherapeutic properties of comestible flavonoids- a comprehensive update. J Nutr Biochem 2022; 110:109147. [PMID: 36049673 DOI: 10.1016/j.jnutbio.2022.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Gout is an inflammatory disease caused by metabolic disorder or genetic inheritance. People throughout the world are strongly dependent on ethnomedicine for the treatment of gout and some receive satisfactory curative treatment. The natural remedies as well as established drugs derived from natural sources or synthetically made exert their action by mechanisms that are closely associated with anticancer treatment mechanisms regarding inhibition of xanthine oxidase, feedback inhibition of de novo purine synthesis, depolymerization and disappearance of microtubule, inhibition of NF-ĸB activation, induction of TRAIL, promotion of apoptosis, and caspase activation and proteasome inhibition. Some anti-gout and anticancer novel compounds interact with same receptors for their action, e.g., colchicine and colchicine analogues. Dietary flavonoids, i.e., chrysin, kaempferol, quercetin, fisetin, pelargonidin, apigenin, luteolin, myricetin, isorhamnetin, phloretinetc etc. have comparable IC50 values with established anti-gout drug and effective against both cancer and gout. Moreover, a noticeable number of newer anticancer compounds have already been isolated from plants that have been using by local traditional healers and herbal practitioners to treat gout. Therefore, the anti-gout plants might have greater potentiality to become selective candidates for screening of newer anticancer leads.
Collapse
|
72
|
Lo Iacono M, Gaggianesi M, Bianca P, Brancato OR, Muratore G, Modica C, Roozafzay N, Shams K, Colarossi L, Colarossi C, Memeo L, Turdo A, Veschi V, Di Franco S, Todaro M, Stassi G. Destroying the Shield of Cancer Stem Cells: Natural Compounds as Promising Players in Cancer Therapy. J Clin Med 2022; 11:6996. [PMID: 36498571 PMCID: PMC9737492 DOI: 10.3390/jcm11236996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
In a scenario where eco-sustainability and a reduction in chemotherapeutic drug waste are certainly a prerogative to safeguard the biosphere, the use of natural products (NPs) represents an alternative therapeutic approach to counteract cancer diseases. The presence of a heterogeneous cancer stem cell (CSC) population within a tumor bulk is related to disease recurrence and therapy resistance. For this reason, CSC targeting presents a promising strategy for hampering cancer recurrence. Increasing evidence shows that NPs can inhibit crucial signaling pathways involved in the maintenance of CSC stemness and sensitize CSCs to standard chemotherapeutic treatments. Moreover, their limited toxicity and low costs for large-scale production could accelerate the use of NPs in clinical settings. In this review, we will summarize the most relevant studies regarding the effects of NPs derived from major natural sources, e.g., food, botanical, and marine species, on CSCs, elucidating their use in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Melania Lo Iacono
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Paola Bianca
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Ornella Roberta Brancato
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Giampaolo Muratore
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Narges Roozafzay
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Kimiya Shams
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
73
|
Dewi MK, Chaerunisaa AY, Muhaimin M, Joni IM. Improved Activity of Herbal Medicines through Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224073. [PMID: 36432358 PMCID: PMC9695685 DOI: 10.3390/nano12224073] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/12/2023]
Abstract
Phytochemicals or secondary metabolites are substances produced by plants that have been shown to have many biological activities, providing a scientific basis for using herbs in traditional medicine. In addition, the use of herbs is considered to be safe and more economical compared to synthetic medicine. However, herbal medicines have disadvantages, such as having low solubility, stability, and bioavailability. Some of them can undergo physical and chemical degradation, which reduces their pharmacological activity. In recent decades, nanotechnology-based herbal drug formulations have attracted attention due to their enhanced activity and potential for overcoming the problems associated with herbal medicine. Approaches using nanotechnology-based delivery systems that are biocompatible, biodegradable, and based on lipids, polymers, or nanoemulsions can increase the solubility, stability, bioavailability, and pharmacological activity of herbals. This review article aims to provide an overview of the latest advances in the development of nanotechnology-based herbal drug formulations for increased activity, as well as a summary of the challenges these delivery systems for herbal medicines face.
Collapse
Affiliation(s)
- Mayang Kusuma Dewi
- Doctoral Study Program, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Jatinangor Km 21,5, Sumedang 45363, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Muhaimin Muhaimin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km 21, Jatinangor 45363, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor 45363, Indonesia
| |
Collapse
|
74
|
A Solid Self-Emulsifying Formulation for the Enhanced Solubility, Release and Digestion of Apigenin. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
75
|
Peanlikhit T, Honikel L, Liu J, Zimmerman T, Rithidech K. Countermeasure efficacy of apigenin for silicon-ion-induced early damage in blood and bone marrow of exposed C57BL/6J mice. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:44-52. [PMID: 36336369 DOI: 10.1016/j.lssr.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
We investigated the countermeasure efficacy of apigenin (AP), given as a diet supplement, for radiation-induced damage in the hematopoietic tissues collected on day 7 after a total-body exposure of male C57BL/6J mice to 0 or 0.5 Gy of 260 MeV/n silicon (28Si) ions. We gave food with AP at the concentration of 20 mg/kg body weight (bw) (AP20) or without AP (AP0) to mice before and after irradiation. There were four groups of mice (six mice in each): Group 1- Control, i.e. No Radiation (0 Gy) with AP0; Group 2 - Radiation (0.5 Gy) with AP0; Group 3 - No Radiation (0 Gy) with AP20; and Group 4 - Radiation (0.5 Gy) with AP20. The complete blood count (CBC) and differential blood count were performed for each mouse. In the same mouse, an anti-clastogenic activity of AP was evaluated using the in vivo blood-erythrocyte micronucleus (MN) assay. Further in each mouse, bone marrow (BM) cells were collected and used for measuring the levels of activated nuclear factor-kappa B (NF-κB), and pro-inflammatory cytokines (i.e. tumor necrotic factor-alpha (TNF-α), interleukin-1α (IL-1α), IL-1 beta (IL-1β), and IL-6). We used the colony-forming unit assay (CFU-A) as a tool to study the countermeasure efficacy of AP against the harmful effects of 28Si ions on the proliferation of the hematopoietic stem/progenitor cells (HSPCs). Our results showed that AP is highly effective not only in the prevention of leukopenia and thrombocytopenia but also in the enhancement of erythropoiesis and the proliferation of HSPCs. We also observed the potent anti-clastogenic activity of AP given to mice as a diet supplement. Further, we found that AP is very effective in the suppression of activated NF-κB and pro-inflammatory cytokines, suggesting that AP given as a diet supplement protects mice from 28Si-ion-induced damage in the hematopoietic tissues of irradiated male C57BL/6J mice via its anti-inflammation activity.
Collapse
Affiliation(s)
- Tanat Peanlikhit
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - Louise Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - Jingxuan Liu
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - Thomas Zimmerman
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Division of Laboratory Animal Resources, Stony Brook University, Stony Brook, NY 11794-8611, USA
| | - Kanokporn Rithidech
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| |
Collapse
|
76
|
Anticancer natural products targeting immune checkpoint protein network. Semin Cancer Biol 2022; 86:1008-1032. [PMID: 34838956 DOI: 10.1016/j.semcancer.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
Normal cells express surface proteins that bind to immune checkpoint proteins on immune cells to turn them off, whereby the immune system does not attack normal healthy cells. Cancer cells can also utilize this same protective mechanism by expressing surface proteins that can interact with checkpoint proteins on immune cells to overcome the immune surveillance. Immunotherapy is making the best use of the body's own immune system to reinforce anti-tumor responses. The most generally used immunotherapy is the control of immune checkpoints including the cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), programmed cell deathreceptor 1 (PD-1), or programmed cell death ligand-1 (PD-L1). In spite of the clinical effectiveness of immune checkpoint inhibitors, the overall response rate still remains low. Therefore, there have been considerable efforts in searching for alternative immune checkpoint proteins that may work as new therapeutic targets for treatment of cancer. Recent studies have identified several additional novel immune checkpoint targets, including lymphocyte activation gene-3, T cell immunoglobulin and mucin-domain containing-3, T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain, V-domain Ig suppressor of T cell activation, B7 homolog 3 protein, B and T cell lymphocyte attenuator, and inducible T cell COStimulator. Natural compounds, especially those present in medicinal or dietary plants, have been investigated for their anti-tumor effects in various in vitro and in vivo models. Some phytochemicals exert anti-tumor activities based on immunoregulatioby blocking interaction between proteins involved in immune checkpoint signal transduction or regulating their expression/activity. Recently, synergistic anti-cancer effects of diverse phytochemicals with anti-PD-1/PD-L1 or anti-CTLA-4 monoclonal antibody drugs have been continuously reported. Considering an increasing attention to noteworthy therapeutic effects of immune checkpoint inhibitors in the cancer therapy, this review focuses on regulatory effects of selected phytochemicals on immune checkpoint protein network and their combinational effectiveness with immune checkpoint inhibitors targeting tumor cells.
Collapse
|
77
|
Asadi A, Goudarzi F, Ghanadian M, Mohammadalipour A. Evaluation of the osteogenic effect of apigenin on human mesenchymal stem cells by inhibiting inflammation through modulation of NF-κB/IκBα. Res Pharm Sci 2022; 17:697-706. [PMID: 36704428 PMCID: PMC9872176 DOI: 10.4103/1735-5362.359436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/31/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background and purpose Apigenin has stimulatory effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) as well as anti-inflammatory properties. This study investigated the osteogenic differentiation of hMSCs in inflammatory conditions treated with apigenin focusing on nuclear factor kappa-light-chain-enhancer of activated B (NF-кB), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammatory pathways. Experimental approach Along with osteogenic differentiation of the hMSCs, they became inflamed with lipopolysaccharide (LPS)/palmitic acid (PA) and treated with apigenin. Alizarin red staining, alkaline phosphatase (ALP) activity, and Runt-related transcription factor 2 (RUNX2) gene expression were used to determine the degree of differentiation. Also, gene expression of NLRP3 was performed along with protein expression of interleukin 1-beta (IL-1β), NF-кB, and IκBα. Findings / Results Apigenin was shown to be effective in neutralizing the inhibitory impact of LPS/PA on osteogenesis. Apigenin increased MSC osteogenic capacity by inhibiting NLRP3 expression and the activity of caspase-1. It was also associated with a considerable decrease in the protein expression of NF-κB and IκBα, as well as IL-1β, in these cells. Conclusion and implications The effects of apigenin on osteogenesis under inflammatory conditions were cautiously observed.
Collapse
Affiliation(s)
- Azita Asadi
- Department of Clinical Biochemistry and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Corresponding author: A. Mohammadalipour Tel: +98-3137927043, Fax: +98-3136680011
| |
Collapse
|
78
|
Cunha C, Daniel-da-Silva AL, Oliveira H. Drug Delivery Systems and Flavonoids: Current Knowledge in Melanoma Treatment and Future Perspectives. MICROMACHINES 2022; 13:1838. [PMID: 36363859 PMCID: PMC9693869 DOI: 10.3390/mi13111838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Melanoma is an aggressive form of skin cancer with a high prevalence in the population. An early diagnosis is crucial to cure this disease. Still, when this is not possible, combining potent pharmacological agents and effective drug delivery systems is essential to achieve optimal treatment and improve patients' quality of life. Nanotechnology application in biomedical sciences to encapsulate anticancer drugs, including flavonoids, in order to enhance therapeutic efficacy has attracted particular interest. Flavonoids have shown effectiveness against various types of cancers including in melanoma, but they show low aqueous solubility, low stability and very poor oral bioavailability. The utilization of novel drug delivery systems could increase flavonoid bioavailability, thereby potentiating its antitumor effects in melanoma. This review summarizes the potential of different flavonoids in melanoma treatment and the several nanosystems used to improve their biological activity, considering published information that reported improved biological and pharmacological properties of encapsulated flavonoids.
Collapse
Affiliation(s)
- Catarina Cunha
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L. Daniel-da-Silva
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
79
|
Ge R, Zhu H, Zhong J, Wang H, Tao N. Storage stability and in vitro digestion of apigenin encapsulated in Pickering emulsions stabilized by whey protein isolate–chitosan complexes. Front Nutr 2022; 9:997706. [PMID: 36245522 PMCID: PMC9556715 DOI: 10.3389/fnut.2022.997706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Few studies have investigated the encapsulation of apigenin in solid particle-stabilized emulsions. In this work, Pickering emulsions containing apigenin and stabilized by whey protein isolate-chitosan (WPI-CS) complexes were created to enhance the bioavailability of apigenin. Different lipids including medium-chain triglycerides (MCTs), ethyl oleate (EO), and corn oil (CO) were selected to fabricate lipid-based delivery systems. The microstructure of the Pickering emulsions, as revealed by optical and cryo-scanning electron microscopies, showed that the oil droplets were dispersed evenly and trapped by a three-dimensional network formed by the WPI-CS complexes, which was further confirmed by rheology properties. After 30 days of storage, Pickering emulsions with MCTs achieved the highest apigenin retention rate, exhibiting 95.05 ± 1.45% retention when stored under 4°C. In vitro gastrointestinal tract experiments indicated that the lipid types of the emulsions also affected the lipid digestion and release rate of apigenin. Pickering emulsions with MCTs achieved a higher bioaccessibility compared to that of the other two emulsions (p < 0.01). These results indicate that the delivery system of Pickering emulsions with MCTs stabilized by WPI-CS complexes offers good storage stability and improved bioaccessibility of apigenin.
Collapse
Affiliation(s)
- Ruihong Ge
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haihua Zhu
- Henan Commerce Science Institute Co., Ltd., Zhengzhou, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- *Correspondence: Ningping Tao
| |
Collapse
|
80
|
In vitro cytotoxicity against breast cancer using biogenically synthesized gold and iron oxide nanoparticles derived from the hydroethanolic extract of Salvia officinalis L. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractNanotechnology has a real-world impact on every aspect of life. Many researchers have been drawn to the biosynthesis of gold and iron oxide nanoparticles (Au-NPs and SPIONS) because they have a wide range of life applications. In this work, a single-step environmentally friendly biosynthesis of Au-NPs and SPIONS is reported by reducing solutions of gold aureate and ferric chloride is reported for the first time using the hydroethanolic extract (HEE) of Salvia officinalis (S. officinalis), an edible plant found in Egypt. The phytochemicals present in HEE were responsible for the reduction as well as stabilization of these nanoparticles. Before using the HEE, it was phytochemically screened for its constituents. Qualitatively, the HEE was found to have comparable levels of phenolics, flavonoids, tannins, proteins, carbohydrates, terpenoids, steroids, and polysaccharides. Quantitatively, total phenolics (236.91 ± 2.15 mg GAE/g extract), flavonoids (91.38 ± 0.97 mg QE/g extract), tannins (101.60 ± 1.33 mg/g extract), proteins (284.62 ± 2.65 mg/g extract), carbohydrates (127.73 ± 1.68 mg/g extract), soluble sugars (52.3 ± 0.67 mg/g extract), and polysaccharides (75.43 ± 1.01 mg/g extract) were estimated. In addition, HPLC analysis revealed the identification of seven phenolic compounds [ferulic (67.26%), chlorogenic (3.12%), caffeic (3.11%), p-coumaric (1.13%), protocatechuic (0.65%), catechin (0.69%), rosmarinic (0.53%)] and three flavonoids [apigenin (5.29%), quercetin-7-O-glucoside (3.39%), and luteolin-7-O-rutinose (2.01%)]. The characterization of the biosynthesized NPs was confirmed by Fourier transform infrared (FT-IR) spectroscopy, UV–Vis absorption spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). In vitro cytotoxic studies showed that Au-NPs, SPIONS, and HEE have an inhibitory effect on the growth of human breast cancer (MCF-7) cells at an IC50 of 6.53, 6.97, and 26.12 µg mL−1, respectively, by comparison with the standard drug (Doxorubicin) effect (0.18 µg mL−1).
Collapse
|
81
|
Mondal J, An JM, Surwase SS, Chakraborty K, Sutradhar SC, Hwang J, Lee J, Lee YK. Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform. BIOSENSORS 2022; 12:731. [PMID: 36140116 PMCID: PMC9496036 DOI: 10.3390/bios12090731] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
After the COVID-19 pandemic, the development of an accurate diagnosis and monitoring of diseases became a more important issue. In order to fabricate high-performance and sensitive biosensors, many researchers and scientists have used many kinds of nanomaterials such as metal nanoparticles (NPs), metal oxide NPs, quantum dots (QDs), and carbon nanomaterials including graphene and carbon nanotubes (CNTs). Among them, CNTs have been considered important biosensing channel candidates due to their excellent physical properties such as high electrical conductivity, strong mechanical properties, plasmonic properties, and so on. Thus, in this review, CNT-based biosensing systems are introduced and various sensing approaches such as electrochemical, optical, and electrical methods are reported. Moreover, such biosensing platforms showed excellent sensitivity and high selectivity against not only viruses but also virus DNA structures. So, based on the amazing potential of CNTs-based biosensing systems, healthcare and public health can be significantly improved.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Sachin S. Surwase
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea
| | - Sabuj Chandra Sutradhar
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Joon Hwang
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Aeronautical & Mechanical Design Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jaewook Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Yong-Kyu Lee
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea
| |
Collapse
|
82
|
Jiang J, Tang T, Peng Y, Liu M, Liu Q, Mi P, Yang Z, Chen H, Zheng X. Research progress on antidiabetic activity of apigenin derivatives. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
83
|
Apigenin in cancer therapy: From mechanism of action to nano-therapeutic agent. Food Chem Toxicol 2022; 168:113385. [PMID: 36007853 DOI: 10.1016/j.fct.2022.113385] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Apigenin (APG) is a flavonoid presence in beverages, vegetables, and fruits containing anti-diabetic, anti-oxidant, and anti-viral activities, as well as cancer management properties. There is growing evidence that APG presented extensive anti-cancer effects in several cancer types by modulating various cellular processes, including angiogenesis, apoptosis, metastasis, autophagy, cell cycle, and immune responses, through activation or inhibition of different cell signaling pathways and molecules. By emerging nanotechnology and its advent in the biomedicine field, cancer therapy has been changed based on nanotechnology-based delivery systems. APG nanoformulations have been used to target tumor cells specifically, improve cellular uptake of APG, and overcome limitations of the free form of APG, such as low solubility and poor bioavailability. In this review, the biotherapeutic activity of APG and its mechanisms, both in free form and nanoformulation, toward cancer cells are discussed to shed some light on APG anti-tumor activity in different cancers.
Collapse
|
84
|
Husain K, Villalobos-Ayala K, Laverde V, Vazquez OA, Miller B, Kazim S, Blanck G, Hibbs ML, Krystal G, Elhussin I, Mori J, Yates C, Ghansah T. Apigenin Targets MicroRNA-155, Enhances SHIP-1 Expression, and Augments Anti-Tumor Responses in Pancreatic Cancer. Cancers (Basel) 2022; 14:3613. [PMID: 35892872 PMCID: PMC9331563 DOI: 10.3390/cancers14153613] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer (PC) is a deadly disease with a grim prognosis. Pancreatic tumor derived factors (TDF) contribute to the induction of an immunosuppressive tumor microenvironment (TME) that impedes the effectiveness of immunotherapy. PC-induced microRNA-155 (miRNA-155) represses expression of Src homology 2 (SH2) domain-containing Inositol 5'-phosphatase-1 (SHIP-1), a regulator of myeloid cell development and function, thus impacting anti-tumor immunity. We recently reported that the bioflavonoid apigenin (API) increased SHIP-1 expression which correlated with the expansion of tumoricidal macrophages (TAM) and improved anti-tumor immune responses in the TME of mice with PC. We now show that API transcriptionally regulates SHIP-1 expression via the suppression of miRNA-155, impacting anti-tumor immune responses in the bone marrow (BM) and TME of mice with PC. We discovered that API reduced miRNA-155 in the PC milieu, which induced SHIP-1 expression. This promoted the restoration of myelopoiesis and increased anti-tumor immune responses in the TME of heterotopic, orthotopic and transgenic SHIP-1 knockout preclinical mouse models of PC. Our results suggest that manipulating SHIP-1 through miR-155 may assist in augmenting anti-tumor immune responses and aid in the therapeutic intervention of PC.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Krystal Villalobos-Ayala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Valentina Laverde
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Oscar A. Vazquez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Bradley Miller
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Samra Kazim
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Margaret L. Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne 3004, Australia;
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
| | - Isra Elhussin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Joakin Mori
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Tomar Ghansah
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
85
|
Differential Flavonoids and Carotenoids Profiles in Grains of Six Poaceae Crops. Foods 2022; 11:foods11142068. [PMID: 35885312 PMCID: PMC9325323 DOI: 10.3390/foods11142068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/12/2022] Open
Abstract
Poaceae practically dominate staple crops for humans. In addition to the issue of sustenance, there is a growing interest in the secondary metabolites of these staple crops and their functions on health. In this study, metabolomic variations were investigated among six important species of Poaceae with a total of 17 cultivars, including wheat, maize, rice, sorghum, foxtail millet, and broomcorn millet. A total of 201 flavonoid metabolites and 29 carotenoid metabolites were identified based on the UPLC-ESI-MS/MS system. Among them, 114, 128, 101, 179, 113, and 92 flavonoids and 12, 22, 17, 15, 21, and 18 carotenoids were found in wheat, maize, rice, sorghum, foxtail millet, and broomcorn millet, respectively. Only 46 flavonoids and 8 carotenoids were shared by the six crops. Crop-specific flavonoids and carotenoids were identified. Flavone, anthocyanins, flavanone and polyphenol were the major metabolite differences, which showed species specificity. The flavonoid content of the grains from 17J1344 (sorghum), QZH and NMB (foxtail millet) and carotenoids from Mo17 (maize) were higher than the other samples. This study provides a better knowledge of the differences in flavonoid and carotenoid metabolites among Poaceae crops, as well as provides a theoretical basis for the identification of functional metabolites in these grains.
Collapse
|
86
|
Hu X, Li X, Deng P, Zhang Y, Liu R, Cai D, Xu Q, Jiang X, Sun J, Bai W. The consequence and mechanism of dietary flavonoids on androgen profiles and disorders amelioration. Crit Rev Food Sci Nutr 2022; 63:11327-11350. [PMID: 35796699 DOI: 10.1080/10408398.2022.2090893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Androgen is a kind of steroid hormone that plays a vital role in reproductive system and homeostasis of the body. Disrupted androgen balance serves as the causal contributor to a series of physiological disorders and even diseases. Flavonoids, as an extremely frequent family of natural polyphenols, exist widely in plants and foods and have received great attention when considering their inevitable consumption and estrogen-like effects. Mounting evidence illustrates that flavonoids have a propensity to interfere with androgen synthesis and metabolism, and also have a designated improvement effect on androgen disorders. Therefore, flavonoids were divided into six subclasses based on the structural feature in this paper, and the literature about their effects on androgens published in the past ten years was summarized. It could be concluded that flavonoids have the potential to regulate androgen levels and biological effects, mainly by interfering with the hypothalamic-pituitary-gonadal axis, androgen synthesis and metabolism, androgen binding with its receptors and membrane receptors, and antioxidant effects. The faced challenges about androgen regulation by flavonoids masterly include target mechanism exploration, individual heterogeneity, food matrixes interaction, and lack of clinical study. This review also provides a scientific basis for nutritional intervention using flavonoids to improve androgen disorder symptoms.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Qingjie Xu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
87
|
Mokhtari T. Targeting autophagy and neuroinflammation pathways with plant-derived natural compounds as potential antidepressant agents. Phytother Res 2022; 36:3470-3489. [PMID: 35794794 DOI: 10.1002/ptr.7551] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Major depressive disorder (MDD) is a life-threatening disease that presents several characteristics. The pathogenesis of depression still remains poorly understood. Moreover, the mechanistic interactions of natural components in treating depression to target autophagy and neuroinflammation are yet to be evaluated. This study overviewed the effects of plant-derived natural components in regulating critical pathways, particularly neuroinflammation and autophagy, associated with depression. A list of natural components, including luteolin, apigenin, hyperforin, resveratrol, salvianolic acid b, isoliquiritin, nobiletin, andrographolide, and oridonin, have been investigated. All peer-reviewed journal articles were searched by Scopus, MEDLINE, PubMed, Web of Science, and Google Scholar using the appropriated keywords, including depression, neuroinflammation, autophagy, plant, natural components, etc. The neuroinflammation and autophagy dysfunction are critically associated with the pathophysiology of depression. Natural components with higher efficiency and lower complications can be used for targeting neuroinflammation and autophagy. These components with different doses showed the beneficial antidepressant properties in rodents. These can modulate autophagy markers, mainly AMPK, LC3II/LC3I ratio, Beclin-1. Moreover, they can regulate the NLRP3 inflammasome, resulting in the suppression of proinflammatory cytokines (e.g., IL-1β and IL-18). Future in vitro and in vivo studies are required to develop novel therapeutic approaches based on plant-derived active components to treat MDD.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
88
|
Gupta M, Chandan K, Sarwat M. Natural Products and their Derivatives as Immune Check Point Inhibitors: Targeting Cytokine/Chemokine Signalling in Cancer. Semin Cancer Biol 2022; 86:214-232. [PMID: 35772610 DOI: 10.1016/j.semcancer.2022.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
Cancer immunotherapy is the new generation and widely accepted form of tumour treatment. It is, however, associated with exclusive challenges which include organ-specific inflammation, and single-target strategies. Therefore, approaches that can enhance the efficiency of existing immunotherapies and expand their indications are required for the further development of immunotherapy. Natural products and medicines are stated to have this desired effect on cancer immunotherapy (adoptive immune-cells therapy, cancer vaccines, and immune-check point inhibitors). They refurbish the immunosuppressed tumour microenvironment, which is the primary location of interaction of tumour cells with the host immune system. Various immune cell subsets, via interaction with cytokine/chemokine receptors, are recruited into this microenvironment, and these subsets have roles in tumour progression and treatment responsiveness. This review summarises cytokine/chemokine signalling, types of cancer immunotherapy and the herbal medicine-derived natural products targeting cytokine/chemokines and immune checkpoints. These natural compounds possess immunomodulatory activities and exert their anti-tumour effect by either blocking the interaction or modulating the expression of the proteins linked with immune checkpoint signaling pathways. Some compounds also show a synergistic effect in combination with existing monoclonal antibody drugs to reverse the tumour microenvironment. Additionally, we have also reported some studies about the derivatives and formulations used to overcome the limitations of natural forms. This review can provide important insights for directing future research.
Collapse
Affiliation(s)
- Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India
| | - Kumari Chandan
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India.
| |
Collapse
|
89
|
Adel M, Zahmatkeshan M, Akbarzadeh A, Rabiee N, Ahmadi S, Keyhanvar P, Rezayat SM, Seifalian AM. Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles. BIOTECHNOLOGY REPORTS 2022; 34:e00730. [PMID: 35686000 PMCID: PMC9171451 DOI: 10.1016/j.btre.2022.e00730] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
|
90
|
Zhong Z, Vong CT, Chen F, Tan H, Zhang C, Wang N, Cui L, Wang Y, Feng Y. Immunomodulatory potential of natural products from herbal medicines as immune checkpoints inhibitors: Helping to fight against cancer via multiple targets. Med Res Rev 2022; 42:1246-1279. [PMID: 35028953 PMCID: PMC9306614 DOI: 10.1002/med.21876] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
Immunotherapy sheds new light to cancer treatment and is satisfied by cancer patients. However, immunotoxicity, single-source antibodies, and single-targeting stratege are potential challenges to the success of cancer immunotherapy. A huge number of promising lead compounds for cancer treatment are of natural origin from herbal medicines. The application of natural products from herbal medicines that have immunomodulatory properties could alter the landscape of immunotherapy drastically. The present study summarizes current medication for cancer immunotherapy and discusses the potential chemicals from herbal medicines as immune checkpoint inhibitors that have a broad range of immunomodulatory effects. Therefore, this review provides valuable insights into the efficacy and mechanism of actions of cancer immunotherapies, including natural products and combined treatment with immune checkpoint inhibitors, which could confer an improved clinical outcome for cancer treatment.
Collapse
Affiliation(s)
- Zhangfeng Zhong
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | - Feiyu Chen
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| | - Horyue Tan
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| | - Cheng Zhang
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| | - Ning Wang
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural DrugsGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | - Yibin Feng
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| |
Collapse
|
91
|
Suvarna V, Bore B, Bhawar C, Mallya R. Complexation of phytochemicals with cyclodextrins and their derivatives- an update. Biomed Pharmacother 2022; 149:112862. [PMID: 35339826 DOI: 10.1016/j.biopha.2022.112862] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/02/2022] Open
Abstract
Bioactive phytochemicals from natural source have gained tremendous interest over several decades due to their wide and diverse therapeutic activities playing key role as functional food supplements, pharmaceutical and nutraceutical products. Nevertheless, their application as therapeutically active moieties and formulation into novel drug delivery systems are hindered due to major drawbacks such as poor solubility, bioavailability and dissolution rate and instability contributing to reduction in bioactivity. These drawbacks can be effectively overcome by their complexation with different cyclodextrins. Present article discusses complexation of phytochemicals varying from flavonoids, phenolics, triterpenes, and tropolone with different natural and synthetic cyclodextrins. Moreover, the article summarizes complexation methods, complexation efficiency, stability, stability constants and enhancement in rate and extent of dissolution, bioavailability, solubility, in vivo and in vitro activities of reported complexed phytochemicals. Additionally, the article presents update of published patent details comprising of complexed phytochemicals of therapeutic significance. Thus, phytochemical cyclodextrin complexes have tremendous potential for transformation into drug delivery systems as substantiated by significant outcome of research findings.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India.
| | - Bhunesh Bore
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Chaitanya Bhawar
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Rashmi Mallya
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| |
Collapse
|
92
|
Hussain A, Bourguet-Kondracki ML, Hussain F, Rauf A, Ibrahim M, Khalid M, Hussain H, Hussain J, Ali I, Khalil AA, Alhumaydhi FA, Khan M, Hussain R, Rengasamy KRR. The potential role of dietary plant ingredients against mammary cancer: a comprehensive review. Crit Rev Food Sci Nutr 2022; 62:2580-2605. [DOI: 10.1080/10408398.2020.1855413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amjad Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
| | - Farhad Hussain
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pukhtanuk (KP), Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Punjab, Pakistan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Salle), Germany
| | - Javid Hussain
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Khan
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Kannan R. R. Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
93
|
Anticancer Effects and Molecular Mechanisms of Apigenin in Cervical Cancer Cells. Cancers (Basel) 2022; 14:cancers14071824. [PMID: 35406599 PMCID: PMC8998024 DOI: 10.3390/cancers14071824] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is the fourth most frequent malignancy in women. Apigenin is a natural plant-derived flavonoid present in common fruit, vegetables, and herbs, and has been found to possess antioxidant and anti-inflammatory properties as a health-promoting agent. It also exhibits important anticancer effects in various cancers, but its effects are not widely accepted by clinical practitioners. The present study investigated the anticancer effects and molecular mechanisms of apigenin in cervical cancer in vitro and in vivo. HeLa and C33A cells were treated with different concentrations of apigenin. The effects of apigenin on cell viability, cell cycle distribution, migration potential, phosphorylation of PI3K/AKT, the integrin β1-FAK signaling pathway, and epithelial-to-mesenchymal transition (EMT)-related protein levels were investigated. Mechanisms identified from the in vitro study were further validated in a cervical tumor xenograft mouse model. Apigenin effectively inhibited the growth of cervical cancer cells and cervical tumors in xenograft mice. Furthermore, the apigenin down-regulated FAK signaling (FAK, paxillin, and integrin β1) and PI3K/AKT signaling (PI3K, AKT, and mTOR), inactivated or activated various signaling targets, such as Bcl-2, Bax, p21cip1, CDK1, CDC25c, cyclin B1, fibronectin, N-cadherin, vimentin, laminin, and E-cadherin, promoted mitochondrial-mediated apoptosis, induced G2/M-phase cell cycle arrest, and reduced EMT to inhibit HeLa and C33A cancer cell migration, producing anticancer effects in cervical cancer. Thus, apigenin may act as a chemotherapeutic agent for cervical cancer treatment.
Collapse
|
94
|
Al-Otaibi JS, Sheena Mary Y, Shyma Mary Y, Thomas R. Electronic Structure, Solvation Effects and Wave Function Based Properties of a New Triazole Based Symmetric Chromene Derivative of Apigenin. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2055583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jamelah S. Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - Renjith Thomas
- Deparment of Chemistry, St Berchmans College, (Autonomous), Mahatma Gandhi University, Changanassery, Kerala, India
| |
Collapse
|
95
|
Li RL, Wang LY, Liu S, Duan HX, Zhang Q, Zhang T, Peng W, Huang Y, Wu C. Natural Flavonoids Derived From Fruits Are Potential Agents Against Atherosclerosis. Front Nutr 2022; 9:862277. [PMID: 35399657 PMCID: PMC8987282 DOI: 10.3389/fnut.2022.862277] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis, as a chronic inflammatory response, is one of the main causes of cardiovascular diseases. Atherosclerosis is induced by endothelial cell dysfunction, migration and proliferation of smooth muscle cells, accumulation of foam cells and inflammatory response, resulting in plaque accumulation, narrowing and hardening of the artery wall, and ultimately leading to myocardial infarction or sudden death and other serious consequences. Flavonoid is a kind of natural polyphenol compound widely existing in fruits with various structures, mainly including flavonols, flavones, flavanones, flavanols, anthocyanins, isoflavones, and chalcone, etc. Because of its potential health benefits, it is now used in supplements, cosmetics and medicines, and researchers are increasingly paying attention to its role in atherosclerosis. In this paper, we will focus on several important nodes in the development of atherosclerotic disease, including endothelial cell dysfunction, smooth muscle cell migration and proliferation, foam cell accumulation and inflammatory response. At the same time, through the classification of flavonoids from fruits, the role and potential mechanism of flavonoids in atherosclerosis were reviewed, providing a certain direction for the development of fruit flavonoids in the treatment of atherosclerosis drugs.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuqin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Peng,
| | - Yongliang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Yongliang Huang,
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chunjie Wu,
| |
Collapse
|
96
|
The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions. Biomolecules 2022; 12:biom12030367. [PMID: 35327559 PMCID: PMC8945214 DOI: 10.3390/biom12030367] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a complex disease resulting from the genetic and epigenetic disruption of normal cells. The mechanistic understanding of the pathways involved in tumor transformation has implicated a priori predominance of epigenetic perturbations and a posteriori genetic instability. In this work, we aimed to explain the mechanistic involvement of epigenetic pathways in the cancer process, as well as the abilities of natural bioactive compounds isolated from medicinal plants (flavonoids, phenolic acids, stilbenes, and ketones) to specifically target the epigenome of tumor cells. The molecular events leading to transformation, angiogenesis, and dissemination are often complex, stochastic, and take turns. On the other hand, the decisive advances in genomics, epigenomics, transcriptomics, and proteomics have allowed, in recent years, for the mechanistic decryption of the molecular pathways of the cancerization process. This could explain the possibility of specifically targeting this or that mechanism leading to cancerization. With the plasticity and flexibility of epigenetic modifications, some studies have started the pharmacological screening of natural substances against different epigenetic pathways (DNA methylation, histone acetylation, histone methylation, and chromatin remodeling) to restore the cellular memory lost during tumor transformation. These substances can inhibit DNMTs, modify chromatin remodeling, and adjust histone modifications in favor of pre-established cell identity by the differentiation program. Epidrugs are molecules that target the epigenome program and can therefore restore cell memory in cancerous diseases. Natural products isolated from medicinal plants such as flavonoids and phenolic acids have shown their ability to exhibit several actions on epigenetic modifiers, such as the inhibition of DNMT, HMT, and HAT. The mechanisms of these substances are specific and pleiotropic and can sometimes be stochastic, and their use as anticancer epidrugs is currently a remarkable avenue in the fight against human cancers.
Collapse
|
97
|
Shimada T, Nagayoshi H, Murayama N, Sawai A, Kim V, Kim D, Yamazaki H, Guengerich FP, Takenaka S. Oxidation of 3'-methoxyflavone, 4'-methoxyflavone, and 3',4'-dimethoxyflavone and their derivatives having 5,7-dihydroxyl moieties by human cytochromes P450 1B1 and 2A13. Xenobiotica 2022; 52:134-145. [PMID: 35387543 PMCID: PMC9896170 DOI: 10.1080/00498254.2022.2062486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidation of 3'-methoxyflavone, 4'-methoxyflavone, and 3',4'-dimethoxyflavone and their derivatives containing 5,7-dihydroxyl groups by human cytochrome P450 (P450 or CYP) 1B1 and 2A13 was determined using LC-MS/MS systems.3'-Methoxyflavone and 4'-methoxyflavone were mainly O-demethylated to form 3'-hydroxyflavone and 4'-hydroxyflavone, respectively, and then 3',4'-dihydroxyflavone at higher rates with CYP1B1 than with CYP2A13. 4'-Methoxy-5,7-dihydroxyflavone (acacetin) was found to be demethylated by CYP1B1 and 2A13 to form 4',5,7-trihydroxyflavone (apigenin) at rates of 0.098-1 and 0.42 min-1, respectively. 3'-Methoxy-5,7-dihydroxyflavone was also demethylated by both P450s, with CYP2A13 being more active.3',4'-Dimethoxyflavone was a good substrate for CYP1B1 but not for CYP2A13 and was found to be mainly O-demethylated to form 3',4'-dihydroxyflavone (at a rate of 4.2 min-1) and also several ring-oxygenated products having m/z 299 fragments. Molecular docking analysis supported the proper orientation for formation of these products by CYP1B1.Our present results showed that 3'- and 4'-methoxyflavone can be oxidised to their O-demethylated products and, to a lesser extent, to ring oxidation products by both P450s 1B1 and 2A13 and that 3',4'-dimethoxyflavone is a good substrate for CYP1B1 in forming both O-demethylated and ring-oxidation products. Introduction of a 57diOHF moiety into these methoxylated flavonoids caused decreased in oxidation by CYP1B1 and 2A13.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Haruna Nagayoshi
- Laboratory of Food Sanitation, Osaka Institute of Public Health, Osaka, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Atsuki Sawai
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| |
Collapse
|
98
|
Bao Y, Wu X, Jin X, Kanematsu A, Nojima M, Kakehi Y, Yamamoto S. Apigenin inhibits renal cell carcinoma cell proliferation through G2/M phase cell cycle arrest. Oncol Rep 2022; 47:60. [PMID: 35088891 DOI: 10.3892/or.2022.8271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/04/2022] [Indexed: 11/05/2022] Open
Abstract
Apigenin is a flavonoid widely presented in fruits and vegetables, and is known to possess anti‑inflammatory, antioxidant, and anticancer properties. The present study was designed to investigate the effects of apigenin on renal cell carcinoma (RCC) cells. These effects on cell growth were evaluated using a cell counting kit, while cell cycle distribution was investigated by flow cytometry following propidium iodide DNA staining. The human RCC cell lines, Caki‑1, ACHN, and NC65, were each treated with 1‑100 µM apigenin for 24 h, which resulted in concentration‑dependent cell growth inhibition, with the effects confirmed by trypan blue staining. Furthermore, even when the apigenin treatment period was shortened to 3 h, the same cytostatic effect on RCC cells was noted. Similarly, a concentration‑dependent cell growth inhibitory effect was also observed in primary RCC cells, as apigenin induced G2/M phase cell cycle arrest and reduced the expression levels of cyclin A, B1, D3, and E in RCC cells in both dose‑ and time‑dependent manners. These findings suggest the possibility of the use of apigenin as a novel therapeutic strategy for treatment of RCC due to its anticancer activity and ability to function as a cell cycle modulating agent.
Collapse
Affiliation(s)
- Yuhang Bao
- Department of Urology, Hyogo College of Medicine, Hyogo 663‑8501, Japan
| | - Xiuxian Wu
- Department of Urology, Hyogo College of Medicine, Hyogo 663‑8501, Japan
| | - Xinghua Jin
- Department of Urology, Hyogo College of Medicine, Hyogo 663‑8501, Japan
| | - Akihiro Kanematsu
- Department of Urology, Hyogo College of Medicine, Hyogo 663‑8501, Japan
| | - Michio Nojima
- Department of Urology, Hyogo College of Medicine, Hyogo 663‑8501, Japan
| | - Yoshiyuki Kakehi
- Department of Urology, Kagawa University Faculty of Medicine, Kagawa 761‑0793, Japan
| | - Shingo Yamamoto
- Department of Urology, Hyogo College of Medicine, Hyogo 663‑8501, Japan
| |
Collapse
|
99
|
Hong S, Dia VP, Baek SJ, Zhong Q. Nanoencapsulation of apigenin with whey protein isolate: physicochemical properties, in vitro activity against colorectal cancer cells, and bioavailability. Lebensm Wiss Technol 2022; 154:112751. [PMID: 34840350 PMCID: PMC8612601 DOI: 10.1016/j.lwt.2021.112751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Incorporating lipophilic phytochemicals with anti-cancer activities in functional beverages requires an appropriate nanoencapsulation technology. The present objective was to encapsulate apigenin with whey protein isolate (WPI) utilizing a pH-cycle method and subsequently characterize physicochemical properties, the in vitro anticancer activities against human colorectal HCT-116 and HT-29 cancer cells, and the in vivo bioavailability. Up to 2.0 mg/mL of apigenin was nanoencapsulated with 1.0 mg/mL WPI, with an encapsulation efficiency of up to 98.15% and loading capacity of up to 196.21 mg/g-WPI. Nanodispersions were stable during storage, and apigenin became amorphous after encapsulation. Nanoencapsulation and in vitro digestion did not reduce the anti-proliferative activity of apigenin. Nanoencapsulation of apigenin enhanced the cellular uptake, the pro-apoptotic effects, and the bioavailability in the mice's blood and colon mucosa when comparing to the unencapsulated apigenin. Therefore, the present work may be significant to incorporate lipophilic phytochemicals in functional beverages for disease prevention.
Collapse
Affiliation(s)
- Shan Hong
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA
| | - Vermont P Dia
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA
| | - Seung Joon Baek
- College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA,Corresponding Author: Department of Food Science, The University of Tennessee, 2510 River Drive, Knoxville, TN 37996, United States,
| |
Collapse
|
100
|
Aryal YP, Yeon CY, Kim TY, Lee ES, Sung S, Pokharel E, Kim JY, Choi SY, Yamamoto H, Sohn WJ, Lee Y, An SY, An CH, Jung JK, Ha JH, Kim JY. Facilitating Reparative Dentin Formation Using Apigenin Local Delivery in the Exposed Pulp Cavity. Front Physiol 2021; 12:773878. [PMID: 34955887 PMCID: PMC8703200 DOI: 10.3389/fphys.2021.773878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023] Open
Abstract
Apigenin, a natural product belonging to the flavone class, affects various cell physiologies, such as cell signaling, inflammation, proliferation, migration, and protease production. In this study, apigenin was applied to mouse molar pulp after mechanically pulpal exposure to examine the detailed function of apigenin in regulating pulpal inflammation and tertiary dentin formation. In vitro cell cultivation using human dental pulp stem cells (hDPSCs) and in vivo mice model experiments were employed to examine the effect of apigenin in the pulp and dentin regeneration. In vitro cultivation of hDPSCs with apigenin treatment upregulated bone morphogenetic protein (BMP)- and osteogenesis-related signaling molecules such as BMP2, BMP4, BMP7, bone sialoprotein (BSP), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN) after 14 days. After apigenin local delivery in the mice pulpal cavity, histology and cellular physiology, such as the modulation of inflammation and differentiation, were examined using histology and immunostainings. Apigenin-treated specimens showed period-altered immunolocalization patterns of tumor necrosis factor (TNF)-α, myeloperoxidase (MPO), NESTIN, and transforming growth factor (TGF)-β1 at 3 and 5 days. Moreover, the apigenin-treated group showed a facilitated dentin-bridge formation with few irregular tubules after 42 days from pulpal cavity preparation. Micro-CT images confirmed obvious dentin-bridge structures in the apigenin-treated specimens compared with the control. Apigenin facilitated the reparative dentin formation through the modulation of inflammation and the activation of signaling regulations. Therefore, apigenin would be a potential therapeutic agent for regenerating dentin in exposed pulp caused by dental caries and traumatic injury.
Collapse
Affiliation(s)
- Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Chang-Yeol Yeon
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Shijin Sung
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Elina Pokharel
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon, South Korea
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Wern-Joo Sohn
- Pre-major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| |
Collapse
|