51
|
Ou J, Huang J, Zhao D, Du B, Wang M. Protective effect of rosmarinic acid and carnosic acid against streptozotocin-induced oxidation, glycation, inflammation and microbiota imbalance in diabetic rats. Food Funct 2018; 9:851-860. [PMID: 29372208 DOI: 10.1039/c7fo01508a] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
This study evaluated the protective effects of two rosemary components, rosmarinic acid (RA) and carnosic acid (CA), against hypoglycemia, hyperlipidemia, oxidative stress and an imbalanced gut microbiota architecture in diabetic rats. Treatment with RA and CA (30 mg kg-1) decreased the levels of fasting plasma glucose (23.7%, 15.6%), total cholesterol (30.4%, 14.1%) and triglyceride (65.7%, 47.8%) at 15 weeks. RA and CA also exhibited an anti-oxidative and anti-glycative effect by lowering the formation of malondialdehyde and advanced glycation end products. In addition, they showed protective effects against tissue damage and inflammation in the abdominal aorta, based on microscopic observations and the analysis of protein expression. Finally, the prebiotic effects of RA and CA on gut microbiota were demonstrated by increasing the population of diabetes-resistant bacteria and decreasing the amounts of diabetes-sensitive bacteria. Overall, RA showed a stronger protective effect than CA in mitigating diabetic symptoms in rats.
Collapse
Affiliation(s)
- Juanying Ou
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China.
| | | | | | | | | |
Collapse
|
53
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. Featured article: Structure moderation of gut microbiota in liraglutide-treated diabetic male rats. Exp Biol Med (Maywood) 2017; 243:34-44. [PMID: 29171288 DOI: 10.1177/1535370217743765] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The change of gut microbiome is associated with a serious of metabolic disorders, such as diabetes. As a glucagon-like peptide 1 analogue, liraglutide is a potent antidiabetic drug in clinical practice. However, the effect of liraglutide on the community of gut microbiota is still unknown. We aimed to determine the influence of liraglutide on fecal microbiota in diabetic male rats. Five-week-old male Sprague-Dawley rats were fed with a control diet or a high-fat diet for four weeks. By injecting streptozotocin, the diabetic rat model was performed. Diabetic male rats were injected subcutaneously with a low dose of liraglutide (liraglutide 0.2 mg/kg/day), a high dose of liraglutide (liraglutide 0.4 mg/kg/day), or normal saline for 12 weeks. Our data showed that liraglutide effectively prevented the development of diabetes in male rats. Pyrosequencing of the V3-V4 region of 16S rRNA genes manifested a remarkable transfer of gut microbiota construction in liraglutide-treated male rats compared with that of the diabetic male rats. Further analysis identified 879 liraglutide-treated specific operational taxonomic units. Some short-chain fatty acid (SCFA)-producing bacteria, including Bacteroides, Lachnospiraceae, and probiotic bacteria, Bifidobacterium, were selectively enhanced in liraglutide-treated diabetic male rats. Lactobacillus was negatively correlated with fasting blood glucose. To sum up, our findings propose that the prevention of diabetes by liraglutide in the diabetic male rats may be associated with the structural change of the gut microbiota, inflammation alleviation, and abundantly elevated SCFA-producing bacteria in the intestine. Impact statement Our findings suggest that significant changes in gut microbiota are associated with liraglutide treatment on the diabetic male rats, including enrichment of short-chain fatty acid producers and probiotic bacteria. This may help alleviate systemic inflammation and contribute to the beneficial effects of liraglutide against diabetes.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ming Li
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Tong Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
54
|
Bento-Silva A, Vaz Patto MC, do Rosário Bronze M. Relevance, structure and analysis of ferulic acid in maize cell walls. Food Chem 2017; 246:360-378. [PMID: 29291861 DOI: 10.1016/j.foodchem.2017.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/15/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
Phenolic compounds in foods have been widely studied due to their health benefits. In cereals, phenolic compounds are extensively linked to cell wall polysaccharides, mainly arabinoxylans, which cross-link with each other and with other cell wall components. In maize, ferulic acid is the phenolic acid present in the highest concentration, forming ferulic acid dehydrodimers, trimers and tetramers. The cross-linking of polysaccharides is important for the cell wall structure and growth, and may protect against pathogen invasion. In addition to the importance for maize physiology, ferulic acid has been recognized as an important chemical structure with a wide range of health benefits when consumed in a diet rich in fibre. This review paper presents the different ways ferulic acid can be present in maize, the importance of ferulic acid derivatives and the methodologies that can be used for their analysis.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Maria do Rosário Bronze
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal; Faculty of Pharmacy, University of Lisbon (FFULisboa), Av. Prof. Gama Pinto, 1649-019, Lisbon, Portugal; Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901, Oeiras, Portugal.
| |
Collapse
|
55
|
Zhao Q, Yao S, Ou SY. Maillard volatiles in baked products as affected by feruloylated oligosaccharides from maize bran. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1285788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Qianzhu Zhao
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Shengwen Yao
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Shi-Yi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
56
|
Iwai K, Yoshikawa Y, Miyoshi N, Fukutomi R, Asada K, Ohashi N. Effects of Short-Term Intake of Wheat Bran with Different Particle Sizes on the Murine Intestinal Environment. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Katsuki Iwai
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Department of Food and Nutritional Sciences, University of Shizuoka
| | - Yuko Yoshikawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Department of Food and Nutritional Sciences, University of Shizuoka
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Department of Food and Nutritional Sciences, University of Shizuoka
| | | | | | - Norio Ohashi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Department of Food and Nutritional Sciences, University of Shizuoka
| |
Collapse
|