51
|
Sarchami T, Batta N, Rehmann L, Berruti F. Removal of phenolics from aqueous pyrolysis condensate by activated biochar. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tahereh Sarchami
- Institute for Chemicals and Fuels from Alternative Resources, Department of Chemical and Biochemical Engineering Western University London Ontario Canada
| | - Neha Batta
- Institute for Chemicals and Fuels from Alternative Resources, Department of Chemical and Biochemical Engineering Western University London Ontario Canada
| | - Lars Rehmann
- Institute for Chemicals and Fuels from Alternative Resources, Department of Chemical and Biochemical Engineering Western University London Ontario Canada
| | - Franco Berruti
- Institute for Chemicals and Fuels from Alternative Resources, Department of Chemical and Biochemical Engineering Western University London Ontario Canada
| |
Collapse
|
52
|
Awasthi SK, Duan Y, Liu T, Zhang Z, Pandey A, Varjani S, Awasthi MK, Taherzadeh MJ. Can biochar regulate the fate of heavy metals (Cu and Zn) resistant bacteria community during the poultry manure composting? JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124593. [PMID: 33316669 DOI: 10.1016/j.jhazmat.2020.124593] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
In this study, the influence of coconut shell biochar addition (CSB) on heavy metals (Cu and Zn) resistance bacterial fate and there correlation with physicochemical parameters were evaluated during poultry manure composting. High-throughput sequencing was carried out on five treatments, namely T1-T5, where T2 to T5 were supplemented with 2.5%, 5%, 7.5% and 10% CSB, while T1 was used as control for the comparison. The results of HMRB indicated that the relative abundance of major potential bacterial host altered were Firmicutes (52.88-14.32%), Actinobacteria (35.20-4.99%), Bacteroidetes (0.05-15.07%) and Proteobacteria (0.01-20.28%) with elevated biochar concentration (0%-10%). Beta and alpha diversity as well as network analysis illustrated composting micro-environmental ecology with exogenous additive biochar to remarkably affect the dominant resistant bacterial community distribution by adjusting the interacting between driving environmental parameters with potential host bacterial in composting. Ultimately, the amendment of 7.5% CSB into poultry manure composting was able to significantly reduce the HMRB abundance, improve the composting efficiency and end product quality.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Frontier Research Lab, Yonsei University, Seoul, South Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar - 382010, Gujarat, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | | |
Collapse
|
53
|
Li G, Zhu Q, Niu Q, Meng Q, Yan H, Wang S, Li Q. The degradation of organic matter coupled with the functional characteristics of microbial community during composting with different surfactants. BIORESOURCE TECHNOLOGY 2021; 321:124446. [PMID: 33264744 DOI: 10.1016/j.biortech.2020.124446] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to investigate the effects of anionic and cationic surfactants on the physico-chemical properties, organic matter (OM) degradation, bacterial community structure and metabolic function during composting of dairy manure and sugarcane bagasse. The results showed that the surfactant could optimize the composting conditions to promote the degradation of OM. The most OM degradation and humic substances (HS) synthesis were observed in SAS. Firmicutes and Proteobacteria were more abundant in SAS and CTAC, and Actinobacteria in CK. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed that SAS and CTAC are more abundant than CK in genes related to metabolism, environmental and genetic information processing. The correlation analysis showed that the dominant bacteria had more significant correlation with environmental factors. In general, the anionic surfactant could better promote the degradation of OM, change the structure of microbial community, and improve the quality of compost.
Collapse
Affiliation(s)
- Gen Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiuhui Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qingran Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hailong Yan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Susu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
54
|
Thakare M, Sarma H, Datar S, Roy A, Pawar P, Gupta K, Pandit S, Prasad R. Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
55
|
Bianco F, Race M, Papirio S, Oleszczuk P, Esposito G. The addition of biochar as a sustainable strategy for the remediation of PAH-contaminated sediments. CHEMOSPHERE 2021; 263:128274. [PMID: 33297218 DOI: 10.1016/j.chemosphere.2020.128274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 09/03/2020] [Indexed: 05/27/2023]
Abstract
The contamination of sediments by polycyclic aromatic hydrocarbons (PAHs) has been widely spread for years due to human activities, imposing the research and development of effective remediation technologies for achieving efficient treatment and reuse of sediments. In this context, the amendment of biochar in PAH-contaminated sediments has been lately proposed as an innovative and sustainable technology. This review provides detailed information about the mechanisms and impacts associated with the supplementation of biochar to sediments polluted by PAHs. The properties of biochar employed in these applications have been thoroughly examined. Sorption onto biochar is the main mechanism involved in PAH removal from sediments. Sorption efficiency can be significantly improved even in the presence of a low remediation time (i.e. 30 d) when a multi-PAH system is used and biochar is provided with a high dosage (i.e. by 5% in a mass ratio with the sediment) and a specific surface area of approximately 360 m2 g-1. The use of biochar results in a decrease (i.e. up to 20%) of the PAH degradation during bioaugmentation and phytoremediation of sediments, as a consequence of the reduction of PAH bioavailability and an increase of water and nutrient retention. In contrast, PAH degradation has been reported to increase up to 54% when nitrate is used as electron acceptor in low-temperature biochar-amended sediments. Finally, biochar is effective in co-application with Fe2+ for the persulfate degradation of PAHs (i.e. up to 80%), mainly when a high catalyst dose and an acidic pH are used.
Collapse
Affiliation(s)
- Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
56
|
Antonangelo JA, Sun X, Zhang H. The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111443. [PMID: 33049617 DOI: 10.1016/j.jenvman.2020.111443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 05/22/2023]
Abstract
The use of co-composted biochar (COMBI) made by the addition of biochar at the beginning of the composting process has greatly increased in agriculture during the last decade. There are more benefits of using the co-composting end product COMBI than using compost and biochar separately or the mixture of the two products. We conducted an extensive review of the production of several COMBIs and their contribution to the composting process and biochar properties as well as the further use of COMBIs in agricultural lands to improve soil health and increase crop yields, and to remediate areas severely contaminated with potentially toxic metals (PTMs). Although the number of researches focused on COMBI production and its application is so far limited, there is enough evidence to elucidate the importance of creating such products to promote sustainable agriculture and environmental safety. Even if a few drawbacks or side effects are found, they are outweighed by the many benefits achieved with COMBIs production and application in comparison to other amendments. The quality of both biochar and compost is largely improved in so many ways during the co-composting process, which in turn improved soil health and crop yields of up to 300% in some particular cases. This work improved the overall understanding of COMBI production and application in agriculture. Based on the review, we suggested future researches to better understand the mechanisms of COMBI long-term application to promote awareness on its role over time through alterations in its surface chemistry, ionic nutrient adsorption, supply (aging effect), and environmental implications.
Collapse
Affiliation(s)
- João A Antonangelo
- Plant and Soil Sciences Department, Oklahoma State University, 371 Agricultural Hall, Stillwater, OK, 74078, USA.
| | - Xiao Sun
- Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave, Saint Paul, MN, 55108-6005, USA
| | - Hailin Zhang
- Plant and Soil Sciences Department, Oklahoma State University, 371 Agricultural Hall, Stillwater, OK, 74078, USA
| |
Collapse
|
57
|
Peiris C, Nawalage S, Wewalwela JJ, Gunatilake SR, Vithanage M. Biochar based sorptive remediation of steroidal estrogen contaminated aqueous systems: A critical review. ENVIRONMENTAL RESEARCH 2020; 191:110183. [PMID: 32919969 DOI: 10.1016/j.envres.2020.110183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/31/2020] [Accepted: 09/02/2020] [Indexed: 05/27/2023]
Abstract
Remediation of steroidal estrogens from aqueous ecosystems is of prevailing concern due to their potential impact on organisms even at trace concentrations. Biochar (BC) is capable of estrogen removal due to its rich porosity and surface functionality. The presented review emphasizes on the adsorption mechanisms, isotherms, kinetics, ionic strength and the effect of matrix components associated with the removal of steroidal estrogens. The dominant sorption mechanisms reported for estrogen were π-π electron donor-acceptor interactions and hydrogen bonding. Natural organic matter and ionic species were seen to influence the hydrophobicity of the estrogen in multiple ways. Zinc activation and magnetization of the BC increased the surface area and surface functionalities leading to high adsorption capacities. The contribution by persistent free radicals and the arene network of BC have promoted the catalytic degradation of adsorbates via electron transfer mechanisms. The presence of surface functional groups and the redox activity of BC facilitates the bacterial degradation of estrogens. The sorptive removal of estrogens from aqueous systems has been minimally reviewed as a part of a collective evaluation of micropollutants. However, to the best of our knowledge, a critique focusing specifically and comprehensively on BC-based removal of steroidal estrogens does not exist. The presented review is a critical assessment of the existing literature on BC based steroidal estrogen adsorption and attempts to converge the scattered knowledge regarding its mechanistic interpretations. Sorption studies using natural water matrices containing residue level concentrations, and dynamic sorption experiments can be identified as future research directions.
Collapse
Affiliation(s)
- Chathuri Peiris
- College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya, CO 10107, Sri Lanka
| | - Samadhi Nawalage
- College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya, CO 10107, Sri Lanka
| | - Jayani J Wewalwela
- Department of Agricultural Technology, Faculty of Technology, University of Colombo, CO 00300, Sri Lanka
| | - Sameera R Gunatilake
- College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya, CO 10107, Sri Lanka.
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka.
| |
Collapse
|
58
|
Liu B, Guo W, Wang H, Si Q, Zhao Q, Luo H, Ren N. Activation of peroxymonosulfate by cobalt-impregnated biochar for atrazine degradation: The pivotal roles of persistent free radicals and ecotoxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122768. [PMID: 32768854 DOI: 10.1016/j.jhazmat.2020.122768] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Cobalt-mediated activation of peroxymonosulfate (PMS) has been extensively investigated for the degradation of emerging organic pollutants. In this study, PMS activation via cobalt-impregnated biochar towards atrazine (ATZ) degradation was systematically examined, and the underlying reaction mechanism was explicated. It was found that persistent free radicals (PFRs) contained in biochar play a pivotal role in PMS activation process. The PFRs enabled an efficient transfer electron to both cobalt atom and O2, facilitating the recycle of Co(III)/Co(II), and thereby leaded to an excellent catalytic performance. In contrast to oxic condition, the elimination of dissolved oxygen significantly retarded the ATZ degradation efficiency from 0.76 to 0.36 min-1. Radical scavenging experiments and electron paramagnetic resonance (EPR) analysis confirmed that the ATZ degradation was primarily due to SO4·- and, to a lesser extent, ·OH. In addition, dual descriptor (DD) method was carried out to reveal reactive sites on ATZ for radicals attacking and predicted derivatives. Meanwhile, the possible ATZ degradation pathways were accordingly proposed, and the ecotoxicity evaluation of the oxidation intermediates was also conducted by ECOSAR. Consequently, the cobalt-impregnated biochar could be an efficient and environmentally friendly catalyst to activate PMS for abatement and detoxication of ATZ.
Collapse
Affiliation(s)
- Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
59
|
Zou Z, Wang Y, Huang J, Lei Z, Wan F, Dai Z, Yi L, Li J. A study on the mixture repairing effect of biochar and nano iron oxide on toxicity of Cd toward muskmelon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115371. [PMID: 32818669 DOI: 10.1016/j.envpol.2020.115371] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Soil contamination with cadmium (Cd) has become a serious problem, adversely affecting food safety and human health. Effective methods are urgently needed to alleviate toxicity of Cd in plants. In this study, a nine-week continuous pot experiments was conducted to explore the effectiveness of the different nano iron oxide (α-Fe2O3, γ-Fe2O3, Fe3O4) alone and combined with biochar in muskmelon grown on a Cd-contaminated soil. The antioxidant system, chlorophyll, soluble protein, other physiological indexes of muskmelon leaves and the distribution of Cd in matrix soil, leaves and fruit were detected. The results showed that Cd was readily absorbed by plants and caused oxidative stress on plants, while biochar, α-Fe2O3 nanoparticles (NPs) and their mixture group (BFe1 group) could significantly improve it. Specifically, the three treatments reduced the Cd content of the fruit by 19.51-78.86%, reduced the Cd content of leaves by 15.44-36.23% and 22.36-31.77% in weeks 3 and 5, respectively. For the activity of enzymes, three treatments decreased superoxide dismutase (SOD) activity and catalase (CAT) activity by 3.41-38.57% and 24.27-30.33% in week 7, respectively. So BFe1 group application immobilized Cd in soil and reduced Cd partitioning in the aboveground tissues. Overall the combination of biochar and α-Fe2O3 NPs can alleviate Cd toxicity in muskmelon and can protect human beings from Cd exposure.
Collapse
Affiliation(s)
- Zhengkang Zou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yunqiang Wang
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China; Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Sience, Wuhan, 430064, PR China
| | - Jiali Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhen Lei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Fengting Wan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhaoyi Dai
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China; Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Sience, Wuhan, 430064, PR China
| | - Licong Yi
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China; Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Sience, Wuhan, 430064, PR China
| | - Junli Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
60
|
Offiong NAO, Inam EJ, Etuk HS, Essien JP, Ofon UA, Una CC. Biochar and humus sediment mixture attenuates crude oil-derived PAHs in a simulated tropical ultisol. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03744-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
61
|
Shang H, Li Y, Liu J, Wan Y, Feng Y, Yu Y. Preparation of nitrogen doped magnesium oxide modified biochar and its sorption efficiency of lead ions in aqueous solution. BIORESOURCE TECHNOLOGY 2020; 314:123708. [PMID: 32599530 DOI: 10.1016/j.biortech.2020.123708] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
A N-doped couping MgO-modified biochar (MgO-N-BC) was synthesized from corncob-to-xylose residue by two-step slow pyrolysis method. The biochar exhibited a remarkable Pb(II) sorption capacity (maximum 1429 mg·g-1) in aqueous solution. The sorption of Pb(II) onto MgO-N-BC best fitted Freundlich model and pseudo-second-order equation. Further analysis demonstrated the final product of Pb were mainly hexagonal crystal hydrocerussite flakes. The combine of ion-exchange and precipitation process play key role in the sorption of Pb(II), while interactions between Pb(II) and functional groups work, too. The sorption capacity decreased by 63.5% with CO2 free, however over supply of CO2 effects little on the sorption capacity while that can shorten equilibrium time from near 360 min to about 30 min. Only few co-existing ions such as Ba2+ and Fe3+ can decrease the sorption partly, and NH4+ block the sorption obviously, while Mg2+ had an enhancement effect.
Collapse
Affiliation(s)
- Hongru Shang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yinxue Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jingyi Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuan Wan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanling Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
62
|
Pyrolysis Improves the Effect of Straw Amendment on the Productivity of Perennial Ryegrass (Lolium perenne L.). AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10101455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of straw as a soil amendment is a well-known and recommended agronomy practice, but it can lead to negative effects on the soil and crop yield. It has been hypothesized that many problems related to the burying of straw can be overcome by pyrolyzing it. The objective of this study was to determine the effect of straw and its biochar on the biomass production of perennial ryegrass. A pot-based experiment was conducted with three factors: (i) the crop species used as feedstock, (ii) raw or pyrolyzed organic material, and (iii) the rate of organic amendments. The soil in the pots was amended with straw and biochar produced from Miscanthus (Miscanthus × giganteus) or winter wheat (Triticum aestivum L.). After soil amendment application, perennial ryegrass (Lolium perenne L.) seeds were sown. During two years of the experiment, the perennial ryegrass above-ground biomass production and root biomass and morphology parameters were determined. Straw and biochar resulted in higher perennial ryegrass above-ground biomass compared with that of the non-fertilized control. However, straw amendment resulted in lower plant yields of above-ground biomass than those of the biochar treatments or the mineral fertilizer control treatment. The feedstock type (Miscanthus or wheat) significantly affected the perennial ryegrass yield. No difference was observed among wheat and Miscanthus biochar, while among straws, Miscanthus resulted in lower perennial ryegrass productivity (the higher rate of straw and biochar as soil amendments resulted in relatively high perennial ryegrass productivity). The organic amendments resulted in relatively high root biomass and length. The root:shoot ratio was lower in the treatments in which biochar was used, whereas feedstock species and amendment rate were not statistically significant for any of the root biomass and morphometric parameters. The results suggest that the use of pyrolyzed straw can be a reliable strategy instead of straw, increasing ryegrass growth and productivity.
Collapse
|
63
|
Baragaño D, Forján R, Fernández B, Ayala J, Afif E, Gallego JLR. Application of biochar, compost and ZVI nanoparticles for the remediation of As, Cu, Pb and Zn polluted soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33681-33691. [PMID: 32533482 DOI: 10.1007/s11356-020-09586-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Here we tested the capacity of zero valent iron nanoparticles (nZVI) combined with two organic amendments, namely, compost and biochar, to immobilize metal(oid)s such as As, Cu, Pb, and Zn. In addition, the effects of the amendments on the development of Brassica juncea L., a plant widely used for phytoremediation purposes, were also examined. To perform the experiments, pots containing polluted soil were treated with nZVI, compost-biochar, or a blend of compost-biochar-nZVI. Metal(oid)s availability and soil properties were evaluated after 15 and 75 days, and the height and weight of the plants were measured to determine development. The compost-biochar amendment showed excellent capacity to immobilize metals, but As availability was considerably increased. However, the addition of nZVI to the mixture corrected this effect considerably. In addition, soil treatment with nZVI alone led to a slight increase in Cu availability, which was not observed for the mixture with organic amendments. With respect to soil properties, the CEC and pH were enhanced by the compost-biochar amendment, thereby favoring plant growth. Nevertheless, the nanoparticles reduced the concentration of available P, which impaired plant growth to a certain extent. In conclusion, Fe-based nanoparticles combined with organic amendments emerge as powerful approaches to remediate soils contaminated by metals and metalloids.
Collapse
Affiliation(s)
- Diego Baragaño
- INDUROT and Environmental Technology, Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain.
| | - Rubén Forján
- INDUROT and Environmental Technology, Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain
| | - Begoña Fernández
- Departamento de Ciencia de Materiales e Ingeniería Metalúrgica and Environmental Technology, Biotechnology and Geochemistry Group, Universidad de Oviedo, Oviedo, Spain
| | - Julia Ayala
- Departamento de Ciencia de Materiales e Ingeniería Metalúrgica and Environmental Technology, Biotechnology and Geochemistry Group, Universidad de Oviedo, Oviedo, Spain
| | - Elias Afif
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, C/Gonzalo Gutiérrez Quirós s/n. 33600, Mieres, España
| | - José Luis R Gallego
- INDUROT and Environmental Technology, Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain
| |
Collapse
|
64
|
Cai H, Li J, Yin H, Yao G, Lai B. Degradation of atrazine in aqueous solution through peroxymonosulfate activated by Co-modified nano-titanium dioxide. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1363-1375. [PMID: 32159886 DOI: 10.1002/wer.1324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Peroxymonosulfate (PMS) heterogeneous activation by Co3 O4 -modified catalyst has shown significant implications to generate free radicals for organic pollutants degradation in water. In this study, PMS heterogeneous activation was applied to degrade atrazine (ATZ) using Co3 O4 -mediated titanium dioxide nanoparticles (Co3 O4 /TiO2 NPs), which were synthesized by sol-gel method. Firstly, characteristics of the fresh and used Co3 O4 /TiO2 NPs were analyzed via SEM, TEM, XRD, EDS, and XPS techniques. Then, the influences of several key parameters (i.e., Co3 O4 /TiO2 NPs dose (0.02-0.3 g/L), PMS dose (0-0.6 mM), initial pH (3.0-11.0), and co-existing anions) on the ATZ degradation were investigated systematically. Besides, control systems were set up to verify the high efficiency of Co3 O4 /TiO2 NPs. In addition, the radical scavenging experiments revealed that sulfate and hydroxyl radicals were generated in the Co3 O4 /TiO2 -PMS system, while sulfate radicals were the dominant reactive species responsible for ATZ degradation. Furthermore, the stability and reusability of the Co3 O4 /TiO2 NPs were investigated after four consecutive experiments. Based on the identified products, possible degradation pathways of ATZ in the Co3 O4 /TiO2 -PMS system were proposed. Finally, the possible reaction mechanism of Co3 O4 /TiO2 -PMS system was proposed according to the comprehensive analysis. Findings of this study provided useful information for the application of Co3 O4 /TiO2 NPs in recalcitrant organic contaminants degradation. PRACTITIONER POINTS: Co3 O4 /TiO2 NPs were synthesized via the simple sol-gel method. Co3 O4 /TiO2 NPs possessed excellent catalytic performance for PMS to eliminate ATZ. Sulfate radicals play a dominant role in the degradation of ATZ. ATZ degradation pathways and reaction mechanism in the system were proposed.
Collapse
Affiliation(s)
- Hanying Cai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China
| | - Jun Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China
| | - Haoxiang Yin
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China
- Institute of Environmental Engineering, RWTH Aachen University, Aachen, Germany
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China
| |
Collapse
|
65
|
Huang C, Wang W, Yue S, Adeel M, Qiao Y. Role of biochar and Eisenia fetida on metal bioavailability and biochar effects on earthworm fitness. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114586. [PMID: 32325356 DOI: 10.1016/j.envpol.2020.114586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/23/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Biochar has gained extensive attention due to its remediation role in soil pollution. However, its hazardous effects on the soil fauna in contaminated soil and its remediation efficiency affected by soil organisms are still obscure. The individual and combined effects of biochar and earthworms (Eisenia fetida) on soil properties, metal bioavailability, and earthworm fitness were investigated in historically heavy metal (HM)-contaminated soil. The results showed that biochar increased the soil pH by 0.31, decreased DTPA-extractable Cd, Cu, Zn and Pb contents by 11.9%, 14.3%, 5.27% and 23.8%, respectively, and immobilized the HMs from a bioavailable fraction to a residual fraction. The co-incubation of biochar and E. fetida decreased soil pH by 0.11 and increased DTPA-extractable Cu, Zn, and Pb contents by 3.75%, 20.9% and 4.43%, respectively. The results of the correlation analysis showed that soil pH was significantly negatively correlated with HM bioavailability, and it was a potential factor contributed to this opposite effect. Furthermore, biochar decreased the biomass growth of E. fetida and inhibited the activities of SOD, CAT and GSH in E. fetida by 31.1%, 51.3% and 29.6% after 28 days of incubation. Overall, biochar and E. fetida showed the opposite effects on the soil remediation, and biochar also led to a negative effect on earthworms. These findings provided insights on verifying the actual remediation effects of biochar and its ecological risk in situ soil remediation.
Collapse
Affiliation(s)
- Caide Huang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Weiyue Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Shizhong Yue
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Muhammad Adeel
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
66
|
Ameliorating the Drought Stress for Wheat Growth through Application of ACC-Deaminase Containing Rhizobacteria along with Biogas Slurry. SUSTAINABILITY 2020. [DOI: 10.3390/su12156022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The temperature increase around the world is leading to generation of drought, which is a big threat to the productivity of crops. Abiotic stresses like drought increase the ethylene level in plants. In higher plants, 1-aminocyclopropane-1-carboxylate (ACC) is considered as the immediate precursor of ethylene biosynthesis. The application of ACC-deaminase (ACCD) possessing rhizobacteria could ameliorate the harmful results of drought stress by transforming ACC into non-harmful products. Biogas slurry (BGS) improves the water-holding capacity and structure of the soil. Thus, we speculated that the integrated application of ACCD possessing rhizobacteria and BGS might be an efficient approach to mitigate the drought stress for better wheat productivity. A field experiment was conducted under skipped irrigation situations. On the tillering stage (SIT) and flowering stage (SIF), the irrigations were skipped, whereas the recommended four irrigations were maintained in the control treatment. The results of this field experiment exposed that the ACCD possessing rhizobacterial inoculations with BGS considerably improved the stomatal and sub-stomatal conductance, transpiration and photosynthetic rates up to 98%, 46%, 38%, and 73%, respectively, compared to the respective uninoculated controls. The Pseudomonas moraviensis with BGS application improved the grain yield and plant height up to 30.3% and 24.3%, respectively, where irrigation was skipped at the tillering stage, as compared to the uninoculated controls. The data obtained revealed that the P. moraviensis inoculation + BGS treatment significantly increased the relative water content (RWC), catalase (CAT) activity, ascorbate peroxidase (APX) activity, as well as grain and shoot phosphorus contents, up to 37%, 40%, 75%, 19%, and 84%, respectively, at SIF situation. The results depicted that the P. moraviensis with BGS application under drought stress could be applied for enhancing the physiological, yield, and growth attributes of wheat.
Collapse
|
67
|
Bello A, Han Y, Zhu H, Deng L, Yang W, Meng Q, Sun Y, Egbeagu UU, Sheng S, Wu X, Jiang X, Xu X. Microbial community composition, co-occurrence network pattern and nitrogen transformation genera response to biochar addition in cattle manure-maize straw composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137759. [PMID: 32172117 DOI: 10.1016/j.scitotenv.2020.137759] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
A better understanding of the microbial group influencing nitrogen (N) dynamics and cycling in composting matrix is critical in achieving good management to alleviate N loss and improve final compost quality. This study investigated the bacterial composition, structure, co-occurrence network patterns and topological roles of N transformation in cattle manure-maize straw composting using high-throughput sequencing. The two treatments used in this experiment were cattle manure and maize straw mixture (CM) and CM with 10% biochar addition (CMB). In both treatments, the bacterial community composition varied during composting and the major phyla included Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes and Chloroflexi. The phyla Actinobacteria and Proteobacteria were more abundant in CMB treatment while Firmicutes was abundant in CM piles. The metabolic functional profiles of bacteria was predicted using the "phylogenetic investigation of communities by reconstruction of unobserved states" (PICRUSt) which revealed that except for cellular processes pathway, CMB had slight higher abundance in metabolism, genetic information processing and environmental information processing than the CM. Pearson correlation revealed more significant relationship between the important bacteria communities and N transformation in CMB piles compared with CM. Furthermore, network pattern analysis revealed that the bacterial networks in biochar amended piles are more complex and harbored more positive links than that of no biochar piles. Corresponding agreement of multivariate analyses (correlation heatmap, stepwise regression, Path and network analyses) revealed that Psychrobacter, Thermopolyspora and Thermobifida in CM while Corynebacterium_1, Thermomonospora and Streptomyces in CMB were key bacterial genera affecting NH4+-N, NO3--N and total nitrogen (TN) transformation respectively during composting process. These results provide insight into nitrogen transformation and co-occurrence patterns mediating microbes and bacterial metabolism which could be useful in enhancing compost quality and mitigating N loss during composting.
Collapse
Affiliation(s)
- Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Haifeng Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingxin Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siyuan Sheng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaotong Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xin Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
68
|
Chen FQ, Zhao NK, Feng S, Liu HW, Liu YC. Effects of biochar content on gas diffusion coefficient of soil with different compactness and air contents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21497-21505. [PMID: 32277418 DOI: 10.1007/s11356-020-08594-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Biochar has been found to be a potentially suitable amendment for landfill cover material and agricultural soil. The addition of biochar can improve the physical (e.g., adsorption capacity) and hydrological properties (e.g., water/gas permeability) of soil. However, no experimental study is available about the effect of biochar content (BC) on the gas diffusion coefficient (DP) of soil. The present study investigated the effect of BC on DP under different degree of compaction (DOC; 85%, 90%, and 95%) and soil air contents (SAC; 5%, 10%, and 15%). It was found that DOC and BC had negligible effects on DP when SAC was low (~ 5%). In contrast, when the SAC was relatively high (~ 15%), soil with DOC of 85% had the largest DP for BC ranging from 0 to 15% (w/w). Only when the SAC was large (~ 15%), the addition of biochar generally increased DP.
Collapse
Affiliation(s)
- Fu Quan Chen
- College of Civil Engineering, Fuzhou University, Fuzhou, China
| | - Neng Kai Zhao
- College of Civil Engineering, Fuzhou University, Fuzhou, China
| | - Song Feng
- College of Civil Engineering, Fuzhou University, Fuzhou, China.
- Department of Civil Engineering, MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Zhejiang, China.
- Formerly Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hong Wei Liu
- Formerly Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- College of Environment and Resource, Fuzhou University, Fuzhou, China
| | - Yu Chuan Liu
- College of Civil Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
69
|
Awasthi SK, Liu T, Awasthi MK, Zhang Z. Evaluation of biochar amendment on heavy metal resistant bacteria abundance in biosolids compost. BIORESOURCE TECHNOLOGY 2020; 306:123114. [PMID: 32163868 DOI: 10.1016/j.biortech.2020.123114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
The present investigation was design to evaluate the impact of different dosages of biochar on heavy metal resistant bacterial (HMRB) dynamic in biosolid (BS) compost. The bacterial abundance map was reveals that all the samples have 35 prominent genera and showed significant alteration of HMRB among the all biochar applied treatment. The main phyla identify in each treatments were Proteobacteria, Firmicutes and Chloroflexi, however, Pseudomonas, T78, Acinetobacter and Urebacillus were most abundant genera in all the treatment. The visualization of HMRB bio-diversity by bioinformatic tools and krona were clearly indicated a considerable difference in classification tree complexes and network analysis among the all biochar added treatments. Thus, in present study was found that HMRB like Paracoccus, Planomicrobium, Devosia and Agrobacterium viable hyper-thermo tolerant in BS compost. In addition, heat map analysis also confirmed that Proteobacteria, Firmicutes and Chloroflexi have significant correlation with physicochemical parameters.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
70
|
Awasthi MK, Duan Y, Awasthi SK, Liu T, Zhang Z. Influence of bamboo biochar on mitigating greenhouse gas emissions and nitrogen loss during poultry manure composting. BIORESOURCE TECHNOLOGY 2020; 303:122952. [PMID: 32050126 DOI: 10.1016/j.biortech.2020.122952] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 05/22/2023]
Abstract
The effectiveness of specific concentrations of bamboo biochar (BB) on nutrient conservation based on gaseous emissions during poultry manure composting was investigated. The results indicate that the total carbon and nitrogen losses were significantly reduced with elevated of biochar from 542.8 to 148.9% and 53.5 to 12.6% (correspondingly with an additive of 0%, 2%, 4%, 6% and 8% to 10% BB dry weight based). The primary contributor was CO2 and NH3 losses (542.3-148.8% and 47.8-10.81%). The enzyme activities related to carbon and nitrogen metabolism indicated a positive and significantly enhanced with high concentration biochar amended composting. Simultaneously, the alteration of total organic carbon and total Kjeldahl nitrogen as well as maturity indexes during ultimate compost also confirmed a high quality product under higher content biochar amended composting. Carbon and nitrogen were best preserved with 10%BB and produced a superior final product. The analysis of a network and heat map illustrated the correlation of gaseous and physicochemical elements as well as enzyme activities, with an intersection of 68.81%.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | - Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
71
|
Ge M, Zhou H, Shen Y, Meng H, Li R, Zhou J, Cheng H, Zhang X, Ding J, Wang J, Wang J. Effect of aeration rates on enzymatic activity and bacterial community succession during cattle manure composting. BIORESOURCE TECHNOLOGY 2020; 304:122928. [PMID: 32106020 DOI: 10.1016/j.biortech.2020.122928] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
In order to explore changes in microbial enzyme activity and bacterial community, a 60-day composting experiment was conducted using cattle manure and straw under aeration rates of 0.45, 0.68, and 0.90 L min-1 kg-1 fresh weight. High aeration rate increased the cellulase, urease, alkaline and acid phosphatase activities, but decreased that of invertase and catalase. Cellulase, alkaline phosphatase and catalase were the main enzymes that affected the composting process. Microbial analysis showed that high aeration rate increased the uniformity of bacterial community in thermophilic phase, but decreased that in mature phase. Different aeration rate affected the bacterial community structure and further influenced the relationship between enzyme and functional bacteria. Regulating the temperature, moisture content and EC in specific phases to affect bacterial community succession could provide guidance for improving maturity of composting.
Collapse
Affiliation(s)
- Mianshen Ge
- Academy of Agricultural Engineering Planning and Design, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Haibin Zhou
- Academy of Agricultural Engineering Planning and Design, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Yujun Shen
- Academy of Agricultural Engineering Planning and Design, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Haibo Meng
- Academy of Agricultural Engineering Planning and Design, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China.
| | - Ran Li
- Academy of Agricultural Engineering Planning and Design, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Hongsheng Cheng
- Academy of Agricultural Engineering Planning and Design, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Xi Zhang
- Academy of Agricultural Engineering Planning and Design, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Jingtao Ding
- Academy of Agricultural Engineering Planning and Design, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Jian Wang
- Academy of Agricultural Engineering Planning and Design, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Jiarui Wang
- Academy of Agricultural Engineering Planning and Design, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| |
Collapse
|
72
|
Wu S, Liu H, Lin Y, Yang C, Lou W, Sun J, Du C, Zhang D, Nie L, Yin K, Zhong Y. Insights into mechanisms of UV/ferrate oxidation for degradation of phenolic pollutants: Role of superoxide radicals. CHEMOSPHERE 2020; 244:125490. [PMID: 31812060 DOI: 10.1016/j.chemosphere.2019.125490] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
In this study, the performances and mechanisms of UV/ferrate(VI) oxidation were investigated comprehensively using 2,4-dichlorophenol (2,4-DCP) as a probe compound. UV/ferrate(VI) oxidation could efficiently degrade 2,4-DCP and its oxidation ability outperformed conventional UV-based advanced oxidation processes. Moreover, the degradation process of 2,4-DCP followed the pseudo-first order kinetics. In the absence of phosphate buffer, the rate constant of 2,4-DCP degradation increased from 9.4 × 10-3 to 2.4 × 10-2 min-1 when pH value was increased from 3.0 to 6.0. However, the degradation was significantly inhibited by phosphate buffer at an identical pH due to the complexation of phosphate with the ferrate(VI) decay products. HCO3- appreciably accelerated the degradation of 2,4-DCP, while Cl- showed a negligible effect on the degradation. For the first time, combining with the results of chemical probe method, competitive kinetic experiment, electron spin resonance spectra and radical quenching studies, superoxide radicals were demonstrated as the dominant reactive species responsible for the degradation. On the basis of the intermediates detected by LC-MS/MS analysis, a pathway for 2,4-DCP degradation was proposed. This study provides a novel approach for contaminant removal using UV/ferrate(VI) oxidation and sheds new insights into the oxidation mechanisms.
Collapse
Affiliation(s)
- Shaohua Wu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Haiyang Liu
- Datang Environment Industry Group Co., Ltd, Beijing, 100097, China
| | - Yan Lin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan, 410001, China.
| | - Wei Lou
- Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan, 410001, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Cheng Du
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Dongmei Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Lijun Nie
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Kai Yin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yuanyuan Zhong
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| |
Collapse
|
73
|
Rees F, Sterckeman T, Morel JL. Biochar-assisted phytoextraction of Cd and Zn by Noccaea caerulescens on a contaminated soil: A four-year lysimeter study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135654. [PMID: 31784181 DOI: 10.1016/j.scitotenv.2019.135654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Amendments of biochar, the residual solid of biomass pyrolysis, have been shown to enhance metal phytoextraction from contaminated soils with hyperaccumulating plants in specific situations. In order to investigate this phenomenon over successive harvests in field conditions, two identical undisturbed soil cylinders (1-m2 section × 1.85-m height) were excavated from a contaminated agricultural plot and monitored with instrumented lysimeters. Wood-derived biochar was added at a rate of 5% (w/w) in the first 30 cm of one of the two lysimeters. The Cd/Zn-hyperaccumulator Noccaea caerulescens was then grown for the next four years on both lysimeters. Our results showed that the hyperaccumulating plant was able to remove about 2 g m-2 of Cd and 12-16 g m-2 of Zn within four years, representing about 40% and 4% of the initial Cd and Zn soil contamination, respectively. Biochar amendment improved plant germination and survival and increased root surface density. However, no significant effect of biochar on shoot metal content of N. caerulescens was observed. Mass balances suggested that up to 10% the metal contamination moved from the disturbed Ap horizon to the deeper horizons, particularly in the biochar-amended soil profile. Furthermore, shoot Cd and Zn concentration generally decreased over the successive harvests, together with soil metal availability. Depending on the way to account for this progressive decrease in efficiency, our estimations of the time necessary to remove the excess of metals in the topsoil in these conditions ranged from 11 to 111 years for Cd and from 97 years to an infinite time for Zn. In conclusion, the simultaneous use of N. caerulescens and biochar amendment can lead to a significant removal of specific metallic elements from the topsoil, but the risk of metal movement down the soil profile and the observed decrease in phytoextraction efficiency over time deserve further investigations.
Collapse
Affiliation(s)
- Frédéric Rees
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, F-54505 Vandœuvre-lès-Nancy, France.
| | - Thibault Sterckeman
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, F-54505 Vandœuvre-lès-Nancy, France
| | - Jean Louis Morel
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
74
|
Fan S, Sun Y, Yang T, Chen Y, Yan B, Li R, Chen G. Biochar derived from corn stalk and polyethylene co-pyrolysis: characterization and Pb(ii) removal potential. RSC Adv 2020; 10:6362-6376. [PMID: 35496019 PMCID: PMC9049695 DOI: 10.1039/c9ra09487c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
Biochar is widely used as adsorbents for gaseous or liquid pollutants due to its special pore structure. Previous studies have shown that the adsorption performance of untreated biomass pyrolysis crude carbon is poor, which can be improved by optimizing physicochemical properties such as pore structure and surface area. The study focused on the co-pyrolysis of skins, pith, and leaves with polyethylene and potassium hydroxide modification to adjust the quality of the biochar, compared with raw materials of corn stalks without separation. The physical and chemical properties of the biochar were analyzed and the adsorption effect, adsorption isotherms, and kinetics of Pb(ii) removal were investigated. Results demonstrated that co-pyrolysis of biomass and polyethylene increase the yield of biochar with an average increase of about 20%. Polyethylene brought high aromaticity, high calorific value and stable material structure to biochar. Potassium hydroxide modification increased its specific surface area and made the pore structure of biochar more uniform, mainly microporous structure. The specific surface areas of the four modified biochar were 521.07 m2 g-1, 581.85 m2 g-1, 304.99 m2 g-1, and 429.97 m2 g-1. The adsorption capacity of biochar for Pb(ii) was greatly improved with the increase of the OH functional group of biochar. The stem-pith biochar had the best adsorption effect, with an adsorption amount of 99.95 mg g-1 and a removal efficiency of 50.35%. The Pseudo-second-order model and Langmuir adsorption isotherm model could preferably describe the adsorption process, indicating the adsorption of lead was monolayer accompanied by chemical adsorption. It can be concluded that co-pyrolysis of biomass and polyethylene and modification may be favorable to enhance the properties of biochar. In addition to syngas and bio-oil from co-pyrolysis, biochar may be a valuable by-product for commercial use, which can be used to remove heavy metals in water, especially stem-pith biochar.
Collapse
Affiliation(s)
- Sichen Fan
- School of Energy and Environment, Liaoning Province Key Laboratory of Clean Energy, Shenyang Aerospace University Shenyang 110036 China
| | - Yang Sun
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Wastes Utilization, Tianjin University No. 135 Yaguan Road, Haihe Education Park, Jinnan District Tianjin 300072 China +862489724558
- School of Energy and Environment, Liaoning Province Key Laboratory of Clean Energy, Shenyang Aerospace University Shenyang 110036 China
| | - Tianhua Yang
- School of Energy and Environment, Liaoning Province Key Laboratory of Clean Energy, Shenyang Aerospace University Shenyang 110036 China
| | - Yongsheng Chen
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Wastes Utilization, Tianjin University No. 135 Yaguan Road, Haihe Education Park, Jinnan District Tianjin 300072 China +862489724558
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Wastes Utilization, Tianjin University No. 135 Yaguan Road, Haihe Education Park, Jinnan District Tianjin 300072 China +862489724558
| | - Rundong Li
- School of Energy and Environment, Liaoning Province Key Laboratory of Clean Energy, Shenyang Aerospace University Shenyang 110036 China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Wastes Utilization, Tianjin University No. 135 Yaguan Road, Haihe Education Park, Jinnan District Tianjin 300072 China +862489724558
| |
Collapse
|
75
|
Guo XX, Liu HT, Zhang J. The role of biochar in organic waste composting and soil improvement: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:884-899. [PMID: 31837554 DOI: 10.1016/j.wasman.2019.12.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 05/22/2023]
Abstract
Large amounts of organic wastes, which pose a severe threat to the environment, can be thermally pyrolyzed to produce biochar. Biochar has many potential uses owing to its unique physicochemical properties and attracts increasing attentions. Therefore, this review focuses on the agronomic functions of biochar used as compost additives and soil amendments. As a compost additive, biochar provides multiple benefits including improving composting performance and humification process, enhancing microbial activities, reducing greenhouse gas and NH4 emissions, immobilizing heavy metals and organic pollutants. As a soil amendment, biochar shows a good performance in improving soil properties and plant growth, alleviating drought and salinity stresses, interacting with heavy metals and organic pollutants and changing their fate of being uptaken from soils to plants. Furthermore, combined application of biochar and compost shows a good performance and a high agricultural value when applied to soils. Objectively and undeniably, there are still negative or ineffective cases of biochar amendment on crop yield and heavy metal immobilization, which is worthy of further attention. The medium-long term field monitoring of biochar-specific agricultural functions, as well as the exploration of wider sources for biochar feedstocks, are still needed.
Collapse
Affiliation(s)
- Xiao-Xia Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Tao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Engineering Laboratory for Yellow River Delta Modern Agriculture, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| |
Collapse
|
76
|
Saleem MH, Fahad S, Khan SU, Ahmar S, Ullah Khan MH, Rehman M, Maqbool Z, Liu L. Morpho-physiological traits, gaseous exchange attributes, and phytoremediation potential of jute (Corchorus capsularis L.) grown in different concentrations of copper-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109915. [PMID: 31722799 DOI: 10.1016/j.ecoenv.2019.109915] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 05/07/2023]
Abstract
Jute (Corchorus capsularis L.) is the most commonly used natural fiber as reinforcement in green composites and, due to its huge biomass, deep rooting system, and metal tolerance in stressed environments, it is an excellent candidate for the phytoremediation of different heavy metals. Therefore, the present study was carried out to examine the growth, antioxidant capacity, gaseous exchange attributes, and phytoremediation potential of C. capsularis grown at different concentrations of Cu (0, 100, 200, 300, and 400 mg kg-1) in a glass house environment. The results illustrate that C. capsularis can tolerate Cu concentrations of up to 300 mg kg-1 without significant decreases in growth or biomass, but further increases in Cu concentration (i.e., 400 mg kg-1) lead to significant reductions in plant growth and biomass. The photosynthetic pigments and gaseous exchange attributes in the leaves of C. capsularis decreased as the Cu concentration in the soil increased. Furthermore, high concentrations of Cu in the soil caused lipid peroxidation by increasing the malondialdehyde content in the leaves. This implies that elevated Cu levels cause oxidative damage in C. capsularis. Antioxidants, such as superoxidase dismutase and peroxidase, come into play to scavenge the reactive oxygen species which are generated as a result of oxidative stress. In the present study, the concentrations of Cu in different parts of the plant (the roots, leaves, stem core, and fibers) were also investigated at four different stages of the life cycle of C. capsularis, i.e., 30, 60, 90, and 120 days after sowing (DAS). The results of this investigation reveal that, in the earlier stages of the growth, Cu was highly accumulated in the belowground parts of the plant while little was transported to the aboveground parts. Contrastingly, at a fully mature stage of the growth (120 DAS), it was observed that the majority of Cu was transported to the aboveground parts of the plant and very little accumulated in the belowground parts. The results also show a progressive increase in Cu uptake in response to increasing Cu concentrations in the soil, suggesting that C. capsularis is a potential bio-resource for the phytoremediation of Cu in Cu-contaminated soil.
Collapse
Affiliation(s)
- Muhammad Hamzah Saleem
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shah Fahad
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Hafeez Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muzammal Rehman
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Zahid Maqbool
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Lijun Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
77
|
Evaluation of Spent Grain Biochar Impact on Hop (Humulus lupulus L.) Growth by Multivariate Image Analysis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biochar is generally considered as an effective soil amendment, which can improve soil organic matter and nutrients content and enhance crop productivity. In this study, biochar derived from brewers’ spent grain (BSG) was used in a pot and field experiment to assess whether its addition to soil could affect hop plant growth. The experiment was conducted in Central Italy during the period March–August 2017. Three different German cultivars of hop plant (Hallertau Magnum, Perle, Spalter spalt) were considered. Biochar was added to the pot soil at 20% level. Its effect on the roots was evaluated using multivariate image analysis (MIA) and the statistical technique of general linear models (GLM), whereas the shoots, bines length and yield using GLM. Results showed that biochar significantly improved root growth (p < 0.0001). Regarding shoots, no variability for the genotypes was observed during the vegetative period, whereas slight differences resulted before plant dormancy, especially for the Hallertau Magnum cultivar. No differences in the number of leaves or bines length were observed between the two treatments for all cultivars. The addition of biochar to the soil significantly improved yield (number of cones). These results highlighted that BSG-derived biochar can be useful to improve hop plant growth and cones production.
Collapse
|
78
|
Sun X, Atiyeh HK, Li M, Chen Y. Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: A review. BIORESOURCE TECHNOLOGY 2020; 295:122252. [PMID: 31669180 DOI: 10.1016/j.biortech.2019.122252] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 05/22/2023]
Abstract
Biochar is traditionally used to improve soil properties in arable land and as adsorbent or precursor of activated carbon in wastewater treatment. Recent advances have shown biochar potentials in enhancing productions of biofuels and chemicals such as bio-ethanol, butanol, methane, hydrogen, bio-diesel, hydrocarbons and carboxylic acids. The properties of biochar such as high levels of porosity, functional groups, cation exchange capacity, pH buffering capacity, electron conductivity, and macro-/micro- nutrients (Na, K, Ca, Mg, P, S, Fe, etc.) provide appropriate conditions to relieve physicochemical stresses on microorganisms through pH buffering, detoxification, nutrients supply, serving as electron carrier and supportive microbial habitats. This paper critically reviewed biochar production and characteristics, biochar utilization in anaerobic digestion, composting, microbial fermentation, hydrolysate detoxification, catalysis in biomass refinery and biodiesel synthesis. This review provides novel vision of biochar application, which could guide future research towards cleaner and more economic production of renewable fuels and bio-based chemicals.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul 55108, MN, USA.
| | - Hasan K Atiyeh
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater 74078, OK, USA
| | - Mengxing Li
- Department of Biological Systems Engineering, University of Nebraska, Lincoln 68583, NE, USA
| | - Yan Chen
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
79
|
Guimarães T, de Carvalho Teixeira AP, de Oliveira AF, Lopes RP. Biochars obtained from arabica coffee husks by a pyrolysis process: characterization and application in Fe(ii) removal in aqueous systems. NEW J CHEM 2020. [DOI: 10.1039/c9nj04144c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this work biochars were synthesized from arabica coffee husks and were used for Fe(ii) adsorption by a pyrolysis process at 350 and 600 °C.
Collapse
Affiliation(s)
- Tiago Guimarães
- Universidade Federal de Viçosa
- Chemistry Department
- Viçosa
- Brazil
| | | | | | | |
Collapse
|
80
|
Silva MR, Lecus A, Gajdardziska-Josifovska M, Schofield M, Virnoche M, Chang J, Chen J, Garman D. Graphene-oxide loading on natural zeolite particles for enhancement of adsorption properties. RSC Adv 2020; 10:4589-4597. [PMID: 35495264 PMCID: PMC9049076 DOI: 10.1039/c9ra00572b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 12/26/2019] [Indexed: 11/21/2022] Open
Abstract
Multiple methods of grafting graphene oxide (GO) nanosheets to natural clinoptilolite-rich zeolite particles were developed in our laboratory. In this study, we have systematically characterized the GO coated particles prepared by various methods to select the most promising method for further research efforts. This study revealed that the most promising coating method was the clean-acid-treated zeolite particles followed by deposition of GO nanosheets onto the zeolite surface and mild thermal treatment of the particles. GO and its synergistic interaction in zeolite was attributed to electrostatic interactions, hydrophobic interactions and hydrogen bonds. Hydrophobic interactions are enhanced both due to dealumination of zeolite caused by the cleaning method followed by acid treatment and due to partial thermal deoxygenation of GO. This method provided a ten times larger surface area (from 10.55 m2 g−1 to 117.96 m2 g−1) and three times smaller pore diameter (from 81.91 Å to 30.68 Å), providing great particles for a variety of applications as adsorbents or catalysts. Multiple methods of grafting graphene oxide (GO) nanosheets to natural clinoptilolite-rich zeolite particles were developed in our laboratory.![]()
Collapse
Affiliation(s)
- M. R. Silva
- Water Technology Accelerator (WaTA)
- University of Wisconsin-Milwaukee
- Milwaukee
- USA
| | - A. Lecus
- Water Technology Accelerator (WaTA)
- University of Wisconsin-Milwaukee
- Milwaukee
- USA
| | | | - M. Schofield
- Department of Physics
- University of Wisconsin-Milwaukee
- USA
| | - M. Virnoche
- Water Technology Accelerator (WaTA)
- University of Wisconsin-Milwaukee
- Milwaukee
- USA
| | - J. Chang
- Water Technology Accelerator (WaTA)
- University of Wisconsin-Milwaukee
- Milwaukee
- USA
- Department of Mechanical Engineering
| | - J. Chen
- Water Technology Accelerator (WaTA)
- University of Wisconsin-Milwaukee
- Milwaukee
- USA
- Department of Mechanical Engineering
| | - D. Garman
- Water Technology Accelerator (WaTA)
- University of Wisconsin-Milwaukee
- Milwaukee
- USA
- Centre for Infrastructure Engineering
| |
Collapse
|
81
|
Xu J, Liu X, Huang J, Huang M, Wang T, Bao S, Tang W, Fang T. The contributions and mechanisms of iron-microbes-biochar in constructed wetlands for nitrate removal from low carbon/nitrogen ratio wastewater. RSC Adv 2020; 10:23212-23220. [PMID: 35520335 PMCID: PMC9054680 DOI: 10.1039/d0ra03609a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/11/2020] [Indexed: 11/21/2022] Open
Abstract
The removal efficiency of nitrate from low carbon/nitrogen ratio wastewater has been restricted by the lack of organics for several decades. Here, a system coupling chemical reduction, microbial denitrification and constructed wetlands (RDCWs) was developed to investigate the effect and possible mechanisms for nitrate degradation. The results showed that this coupling system could achieve a nitrate removal efficiency of 97.07 ± 1.76%, 85.91 ± 3.02% and 56.63 ± 2.88% at a hydraulic retention time of 24 h, 12 h and 6 h with feeding nitrate of 15 mg L−1, respectively. These removal efficiencies of nitrate were partly caused by microbes and biochar with a contribution rate of 31.08 ± 4.43% and 9.50 ± 3.30%. Besides, microbes were closely related to iron and biochar for the removal of nitrate. Simplicispira was able to utilize hydrogen produced by iron corrosion as an electron donor while nitrate accepted electrons to be reduced. Porous biochar could release dissolved organic matter, which provided a good living circumstance and carbon source for microbes. Therefore, the RDCW system is potential for large-scale application due to its low cost and simple operation. Schematic diagram of RDCWs system and proposed mechanisms for nitrate removal.![]()
Collapse
Affiliation(s)
- Jian Xu
- Institute of Hydrobiology
- Chinese Academy of Sciences
- Wuhan 430072
- China
- University of Chinese Academy of Sciences
| | - Xiawei Liu
- Institute of Hydrobiology
- Chinese Academy of Sciences
- Wuhan 430072
- China
- University of Chinese Academy of Sciences
| | - Jiaolong Huang
- Institute of Hydrobiology
- Chinese Academy of Sciences
- Wuhan 430072
- China
- University of Chinese Academy of Sciences
| | - Manqi Huang
- Institute of Hydrobiology
- Chinese Academy of Sciences
- Wuhan 430072
- China
- University of Chinese Academy of Sciences
| | - Tao Wang
- Institute of Hydrobiology
- Chinese Academy of Sciences
- Wuhan 430072
- China
- University of Chinese Academy of Sciences
| | - Shaopan Bao
- Institute of Hydrobiology
- Chinese Academy of Sciences
- Wuhan 430072
- China
| | - Wei Tang
- Institute of Hydrobiology
- Chinese Academy of Sciences
- Wuhan 430072
- China
| | - Tao Fang
- Institute of Hydrobiology
- Chinese Academy of Sciences
- Wuhan 430072
- China
- University of Chinese Academy of Sciences
| |
Collapse
|
82
|
A Review on Recent Treatment Technology for Herbicide Atrazine in Contaminated Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16245129. [PMID: 31888127 PMCID: PMC6950201 DOI: 10.3390/ijerph16245129] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022]
Abstract
Atrazine is a kind of triazine herbicide that is widely used for weed control due to its good weeding effect and low price. The study of atrazine removal from the environment is of great significance due to the stable structure, difficult degradation, long residence time in environment, and toxicity on the organism and human beings. Therefore, a number of processing technologies are developed and widely employed for atrazine degradation, such as adsorption, photochemical catalysis, biodegradation, etc. In this article, with our previous research work, the progresses of researches about the treatment technology of atrazine are systematically reviewed, which includes the four main aspects of physicochemical, chemical, biological, and material-microbial-integrated aspects. The advantages and disadvantages of various methods are summarized and the degradation mechanisms are also evaluated. Specially, recent advanced technologies, both plant-microbial remediation and the material-microbial-integrated method, have been highlighted on atrazine degradation. Among them, the plant-microbial remediation is based on the combined system of soil-plant-microbes, and the material-microbial-integrated method is based on the synergistic effect of materials and microorganisms. Additionally, future research needs to focus on the excellent removal effect and low environmental impact of functional materials, and the coordination processing of two or more technologies for atrazine removal is also highlighted.
Collapse
|
83
|
Awasthi MK, Wang Q, Chen H, Liu T, Awasthi SK, Duan Y, Varjani S, Pandey A, Zhang Z. Role of compost biochar amendment on the (im)mobilization of cadmium and zinc for Chinese cabbage (Brassica rapa L.) from contaminated soil. JOURNAL OF SOILS AND SEDIMENTS 2019; 19:3883-3897. [DOI: 10.1007/s11368-019-02277-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/04/2019] [Indexed: 08/20/2023]
|
84
|
Wu S, Lin Y, Yang C, Du C, Teng Q, Ma Y, Zhang D, Nie L, Zhong Y. Enhanced activation of peroxymonosulfte by LaFeO 3 perovskite supported on Al 2O 3 for degradation of organic pollutants. CHEMOSPHERE 2019; 237:124478. [PMID: 31394447 DOI: 10.1016/j.chemosphere.2019.124478] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/06/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
In this study, the effect of various supports on activation of peroxymonosulfate and consequent degradation of Acid Orange 7 (AO7) in aqueous solutions was examined at the presence of LaFeO3 perovskite as catalyst. Results showed that the AO7 degradation efficiency by LaFeO3 supported on different supports was in an order of LaFeO3/Al2O3 (86.2%) > LaFeO3 (70.8%) > LaFeO3/CeO2 (59.0%) > LaFeO3/SiO2 (52.3%) > LaFeO3/TiO2 (32.2%). Moreover, the pseudo first-order rate constant for AO7 degradation by LaFeO3/Al2O3 was 3.2 times than that by LaFeO3. The enhancement was attributed to its large surface area, abundant chemisorbed surface-active oxygen, redox property and faster electron transfer. AO7 degradation and the leaching of iron ions decreased with the increase of pH. Data of electron spin resonance spectroscopy and quenching experiments revealed that sulfate and hydroxyl radicals were generated on LaFeO3/Al2O3 surface, while sulfate radicals were identified to be the main reactive species responsible for AO7 degradation. Mechanisms for peroxymonosulfate activation were consequently proposed. Furthermore, LaFeO3/Al2O3 catalyst exhibited a superior stability after five cycles. This work provides a new approach for design of iron-based perovskite catalysts with high and stable catalytic activity for removal of organic pollutants from aqueous solutions.
Collapse
Affiliation(s)
- Shaohua Wu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yan Lin
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Cheng Du
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Qing Teng
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Yin Ma
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Dongmei Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Lijun Nie
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Yuanyuan Zhong
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| |
Collapse
|
85
|
Wang N, Li Q, Liu H, Lin L, Han W, Hao W. Role of C/EBPα hypermethylation in diesel engine exhaust exposure-induced lung inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109500. [PMID: 31450033 DOI: 10.1016/j.ecoenv.2019.109500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Exposure to diesel engine exhaust (DEE) impairs lung function. But the underlying mechanisms are still not fully understood. The aim of this study was to investigate the effects of long-term DEE exposure on lung inflammation and the underlying mechanisms. Sprague-Dawley male rats were exposed to DEE with 3 mg/m3 of diesel exhaust particles (DEP) for 12 weeks. Then urine, blood, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for the determination of biochemistry indexes, DNA methylation status, and histological changes in the lung. The results showed that the metabolites of polycyclic aromatic hydrocarbons (PAHs) 2-hydroxyphenanthrene (2-OHPh) and 9-OHPh, and 8-hydroxy-2'-deoxyguanosine (8-OHdG), and malondialdehyde (MDA) level were higher in urine of DEE-exposed rats than control group. The level of proinflammatory cytokines IL-8, IL-6, and TNF-α was significantly higher in serum (1.8, 3.5, and nearly 1.0-fold increase, respectively), BALF (2.2, 3.8, and 2.0-fold increase, respectively) and lung tissues (3.5, 4.3, and 2.4-fold increase, respectively) of DEE-exposed rats than control group. While the level of clara cell secretory protein (CC16) and pulmonary surfactant protein D (SP-D) with anti-inflammatory property was obviously lower in serum (reduction of 29% and 38%, respectively), BALF (reduction of 50% and 46%, respectively) and lung tissues (reduction of 50% and 55%, respectively) of DEE-exposed rats than control group. Exposure to DEE also resulted in significant increases in total white blood cell (WBC), neutrophil, eosinophil, and lymphocyte number in BALF. Airway inflammation and remolding were apparent in DEE group. The methylation level of CCAAT/enhancer-binding protein alpha (C/EBPα) promoter was markedly increased (about 3.2-fold increase), and its mRNA and protein expression were significantly decreased (about 62% and 68% decrease, respectively) in the lungs of DEE-exposed rats compared with the group. Further, cell experiments were performed to investigate the relationship between C/EBPα and CC16, and CC16 function under DEP conditions. The results showed that DEP inhibited CC16 expression via methylation of C/EBPα promoter, and the increase of CC16 level significantly relieved the proinflammatory effects caused by DEP exposure. In conclusion, our data indicated that long-term exposure to DEE can cause lung inflammation, at least in part via methylation of C/EBPα promoter, and inhibition of CC16 expression.
Collapse
Affiliation(s)
- Ning Wang
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China
| | - Qinghai Li
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China
| | - Hong Liu
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China
| | - Li Lin
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China
| | - Wei Han
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China.
| | - Wanming Hao
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China.
| |
Collapse
|
86
|
Environmentally Friendly Mesoporous Nanocomposite Prepared from Al-Dross Waste with Remarkable Adsorption Ability for Toxic Anionic Dye. J CHEM-NY 2019. [DOI: 10.1155/2019/7685204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, a mesoporous nanocomposite composed of nanogibbsite (α-Al(OH)3) and nanosilica was prepared. Gibbsite nanoparticles (GNPs) with a crystal size of ≈38 nm were prepared from Al-dross industrial waste products in an acidic environment at 100°C. Nanosilica (NS) with a crystal size of ≈13 nm was prepared from sodium silicate using dilute hydrochloric acid. The deposition of nanosilica onto gibbsite particles was investigated. The mesoporous silica-gibbsite (NSG) nanocomposite was examined by evaluating its ability to adsorb the toxic anionic dye Eriochrome black T (EBT) from aqueous solution. The compositional and morphological properties of NSG nanocomposites were studied by means of the FTIR spectroscopy, X-ray fluorescence (XRF), XRD, SEM, and TEM techniques. The effect of dye concentration, pH, adsorbent dose, contact time, and temperature was investigated. The sorption models, the isotherms, and the thermodynamic parameters ΔHo, ΔGo, and ΔSo were evaluated. The N2 adsorption-desorption isotherms revealed that mixing the two prepared materials (NS and GNPs) to form the NSG nanocomposite resulted in good properties (a surface area of 62.34 m2·g−1, a pore radius of 22.717 nm, and a pore volume of 0.7081 cm3·g−1). The results show that the prepared NSG nanocomposite has a remarkable ability to adsorb toxic anionic dyes.
Collapse
|
87
|
Benavides M, Chu Van T, Mari X. Amino acids promote black carbon aggregation and microbial colonization in coastal waters off Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:527-532. [PMID: 31176973 DOI: 10.1016/j.scitotenv.2019.05.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
The combustion of fossil fuels and biomass produces pyrogenic organic matter usually known as 'black carbon' (BC), which are transported across the atmosphere as particulate aerosol, eventually deposited on land and oceans. Soil studies have investigated the potential microbial colonization and remineralization of BC particles, but this process has been seldom studied in marine waters. BC provides a significant input of organic carbon to the oceans, yet its fate and role in biogeochemical cycling remains unknown. Here we explored the microbial colonization of BC particles in coastal seawater samples collected in Halong Bay (northern Vietnam). Using high-resolution mass spectrometry and microscopy methods, we observed an increasing colonization of BC particles by marine microbes in the presence of amino acids. Our results suggest that natural organic matter (NOM) present in seawater may promote the microbial colonization and eventual remineralization of BC particles. Future experiments should explore the potential microbial remineralization of BC particles to unveil the role of this massive source of carbon to marine ecosystems.
Collapse
Affiliation(s)
- Mar Benavides
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France.
| | - Thuoc Chu Van
- Institute of Marine Environment and Resources (IMER), Vietnam Academy of Science and Technology (VAST), 246 Da Nang Street, Haiphong, Viet Nam
| | - Xavier Mari
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France; Institute of Marine Environment and Resources (IMER), Vietnam Academy of Science and Technology (VAST), 246 Da Nang Street, Haiphong, Viet Nam; University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Viet Nam
| |
Collapse
|
88
|
Li L, Lai C, Huang F, Cheng M, Zeng G, Huang D, Li B, Liu S, Zhang M, Qin L, Li M, He J, Zhang Y, Chen L. Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: Synergism of bio-char and Fe-Mn binary oxides. WATER RESEARCH 2019; 160:238-248. [PMID: 31152949 DOI: 10.1016/j.watres.2019.05.081] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/16/2019] [Accepted: 05/25/2019] [Indexed: 05/22/2023]
Abstract
This study investigated the hydrogen peroxide (H2O2) activation potential of Fe-Mn binary oxides modified bio-char (FeMn/bio-char) for the degradation of naphthalene, the dominant PAHs in drinking water. Results showed that FeMn/bio-char exhibited 80.7- and 2.18-times decomposition rates towards H2O2 than that of pure bio-char and Fe-Mn binary oxides, respectively, and consequently the FeMn/bio-char/H2O2 photo-Fenton system presented highest naphthalene removal efficiency. The enhanced catalytic activity could be ascribed to the synergistic effect of the combination of bio-char and Fe-Mn binary oxides, such as promoting the adsorption capacity towards contaminant, increasing concentration of persistent free radicals (PFRs) and introducing Fe-Mn binary oxides as new activator. According to the batch-scale experiments, FeMn/bio-char/H2O2 photo-Fenton system could degrade naphthalene effectively at a wide pH ranges, and 82.2% of naphthalene was degraded under natural pH of 5.6 within 148 min. Free radicals quenching studies and electron spin resonance (ESR) analyses verified that the dominant free radical within FeMn/bio-char/H2O2 photo-Fenton system was hydroxyl radical (•OH). According to the preliminary analysis, the generation of •OH were ascribed to the activation of H2O2 by Fe (II), Mn (II) and PFRs on the catalyst surface. The mainly degradation intermediates of naphthalene were identified by GC-MS analysis. Consequently, the possible degradation pathways were proposed. Moreover, naphthalene degradation experiments were also conducted in river, tap water, industrial wastewater as well as medical wastewater, and the results indicated that the FeMn/bio-char/H2O2 photo-Fenton system was effective in the treatment of naphthalene in natural waters. This study brings a valuable insight for the potential environmental applications of modified bio-char.
Collapse
Affiliation(s)
- Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Fanglong Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - MingMing Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Minfang Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Jiangfan He
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yujin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| |
Collapse
|
89
|
Cheng P, Osei-Wusu D, Zhou C, Wang Y, Xu Z, Chang T, Huo S. The effects of refractory pollutants in swine wastewater on the growth of Scenedesmus sp. with biofilm attached culture. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:241-250. [PMID: 31475567 DOI: 10.1080/15226514.2019.1658706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microalgae have been widely used for treatment of swine wastewater. However, the research on combined treatment of refractory pollutants ammonia nitrogen, Cu (II) and antibiotics from swine wastewater was still scattered. This study, the growth and removal efficiency of NH4Cl, CuSO4, tetracycline, norfloxacin and sulfadimidine with selected Scenedsmus sp. was investigated by biofilm attached culture. The results showed that low concentration of ammonia nitrogen had little effect on algae growth. The highest biomass productivity was 6.2 g/(m2d) at the concentration of NH4Cl of 50.0 mg/L, which was similar to that of a standard growth medium BG 11. Cu (II) concentration of 1.0 mg/L could accelerate the growth of Scenedsmus sp., and the highest biomass was 57.2 g/m2 in 8 days. Moreover, the highest biomass mean values was 59.5 g/m2, 57.1 g/m2, and 58.1 g/m2, respectively, when tetracycline concentration was 20.0 mg/L, norfloxacin concentration was 100.0 mg/L and sulfadimidine concentration was 10.0 mg/L. The removal efficiency of ammonia nitrogen, copper, tetracycline, norfloxacin and sulfadimidine with Scenedsmus sp. at their optimal initial concentration by biofilm attached culture was 85.2%, 64.6%, 74.6%,71.2%, and 62.3%, respectively. This study provides a theoretical basis for the purification of refractory substances from swine wastewater.
Collapse
Affiliation(s)
- Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - David Osei-Wusu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yan Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zhihui Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ting Chang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
90
|
Hernández-García A, Velásquez-Orta SB, Novelo E, Yáñez-Noguez I, Monje-Ramírez I, Orta Ledesma MT. Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:435-444. [PMID: 30852308 DOI: 10.1016/j.ecoenv.2019.02.052] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 05/03/2023]
Abstract
Increases in wastewater discharges and the generation of municipal solid wastes have resulted in deleterious effects on the environment, causing eutrophication and pollution of water bodies. It is therefore necessary to investigate sustainable bioremediation alternatives. Wastewater treatment using consortia of microalgae-bacteria is an attractive alternative because it allows the removal and recycling of nutrients, with the additional advantage of biomass production and its subsequent conversion into valuable by-products. The present study aims to integrate wastewater and landfill leachate treatment with the production of microalgal biomass, considering not only its valorization in terms of lipid and carbohydrate content but also the effect of nutrient limitation on biomass formation. The effect of treating a mixture of raw wastewater with different leachate ratios (0%, 7%, 10% and 15%) was investigated using a microalgae-bacteria consortium. Two microalgae (Desmodesmus spp. and Scenedesmus obliquus) were used. Nutrient removal, biomass concentration, carbohydrate, lipid and Fatty Acid Methyl Ester (FAMEs) content and morphological changes were evaluated. Removals of 82% of NH4+ and 43% of orthophosphate from a wastewater-leachate mixture (containing 167 mg/L NH4+ and 23 mg/L PO43-) were achieved. The highest final yield was obtained using Desmodesmus spp. (1.95 ± 0.3 g/L). The microalgae were observed to accumulate high lipid (20%) and carbohydrate (41%) contents under nutrient limiting conditions. The concentration of Polyunsaturated Fatty Acids (PUFAs) also increased. Morphological changes including the disintegration of coenobia were observed. By using a mixture of wastewater-leachate it is possible to remove nutrients, since microalgae tolerate high ammonia concentrations, and simultaneously increase the algal biomass concentration containing precursors to allow biofuel production.
Collapse
Affiliation(s)
- Andrea Hernández-García
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, Delegación Coyoacán, CP 04510 México, D.F, Mexico
| | - Sharon B Velásquez-Orta
- School of Chemical Engineering and Advanced Materials, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Eberto Novelo
- Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Av. Universidad 3000, Delegación Coyoacán, CP 04510 México, D.F, Mexico
| | - Isaura Yáñez-Noguez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, Delegación Coyoacán, CP 04510 México, D.F, Mexico
| | - Ignacio Monje-Ramírez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, Delegación Coyoacán, CP 04510 México, D.F, Mexico
| | - María T Orta Ledesma
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, Delegación Coyoacán, CP 04510 México, D.F, Mexico.
| |
Collapse
|
91
|
Dong J, Du Y, Duyu R, Shang Y, Zhang S, Han R. Adsorption of copper ion from solution by polyethylenimine modified wheat straw. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
92
|
Song Y, Kirkwood N, Maksimović Č, Zheng X, O'Connor D, Jin Y, Hou D. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:568-579. [PMID: 30726765 DOI: 10.1016/j.scitotenv.2019.01.347] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 05/26/2023]
Abstract
Urban industrialization has caused severe land contamination at hundreds of thousands of sites in cities all around the world, posing a serious health risk to millions of people. Many contaminated brownfield sites are being left abandoned due to the high cost of remediation. Traditional physical and chemical remediation technologies also require high energy and resource input, and can result in loss of land functionality and cause secondary pollution. Nature-based solutions (NBS) including phytoremediation and conversion of brownfield sites to public greenspaces, holds much promise in maximizing a sustainable urban renaissance. NBS is an umbrella concept that can be used to capture nature based, cost effective and eco-friendly treatment technologies, as well as redevelopment strategies that are socially inclusive, economically viable, and with good public acceptance. The NBS concept is novel and in urgent need of new research to better understand the pros and cons, and to enhance its practicality. This review article summarizes NBS's main features, key technology choices, case studies, limitations, and future trends for urban contaminated land remediation and brownfield redevelopment.
Collapse
Affiliation(s)
- Yinan Song
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Niall Kirkwood
- Graduate School of Design, Harvard University, 48 Quincy Street, Cambridge, MA 02138, USA
| | - Čedo Maksimović
- Department of Civil Engineering, Imperial College, London SW7 2AZ, UK
| | - Xiaodi Zheng
- School of Architecture, Tsinghua University, Beijing 100084, China
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuanliang Jin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
93
|
Shim J, Kumar M, Mukherjee S, Goswami R. Sustainable removal of pernicious arsenic and cadmium by a novel composite of MnO 2 impregnated alginate beads: A cost-effective approach for wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 234:8-20. [PMID: 30599330 DOI: 10.1016/j.jenvman.2018.12.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/10/2018] [Accepted: 12/22/2018] [Indexed: 05/21/2023]
Abstract
There is a dire necessity of developing low cost waste water treatment systems, for the efficient removal of noxious heavy metals (and metalloids) such as Arsenic (As) and Cadmium (Cd). Magnetic biopolymer (CABs-MO) was synthesized by the entrapment of nanocrystalline MnO2 in the polymeric microcapsules of calcium alginate (CABs). Batch experiments were conducted under constant pH (6.5), temperature (25OC), different initial concentrations (30-300 mg L-1) and contact times (0-48 h) to study the adsorption isotherms and removal kinetics of pristine (CABs) and hybrid biopolymer (CABs-MO) for the removal of As and Cd. The pseudo-equilibrium process was mathematically well explained by the pseudo-second-order kinetic (R2 ≥ 0.99) and Langmuir isotherm model (R2 ≥ 0.99) with the highest monolayer sorption capacity of 63.6 mg g-1 for Cd on CABs-MO. The As removal rate was maximum up to 6.5 mg g-1 after 12 h of contact period in a single contaminant system than in the mixed contaminant (As + Cd) system (0.8 mg g-1), though the effect was non-significant for Cd (p < 0.05; t-test). The performance of the 10 mM HCl as a regenerating agent was superior (for As in comparison to Cd, p < 0.05; t-test) compared to distilled water (DW) through three to five regeneration cycles. Therefore, the obtained results clearly validate the feasibility of CABs-MO as a potential promising adsorbent for removing metal contaminants from the wastewater. Further research is required to study the decontamination of emerging contaminants with such novel composite beads characterized by varied physico-chemical properties.
Collapse
Affiliation(s)
- Jaehong Shim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, Chonbuk National University, Iksan, Jeonbuk, 570-752, South Korea
| | - Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India.
| | - Santanu Mukherjee
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Ritusmita Goswami
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| |
Collapse
|
94
|
Solubility Enhancement of Atrazine by Complexation with Cyclosophoraose Isolated from Rhizobium leguminosarum biovar trifolii TA-1. Polymers (Basel) 2019; 11:polym11030474. [PMID: 30960458 PMCID: PMC6473739 DOI: 10.3390/polym11030474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 11/23/2022] Open
Abstract
Rhizobium leguminosarum biovar trifolii TA-1, a kind of soil bacteria, produces cyclosophoraoses (Cys). Cyclosophoraoses contain various ring sizes with degrees of polymerization ranging from 17 to 23. Atrazine is a hardly-soluble herbicide that contaminates soil and drinking water, and remains in soil for a long time. To remove this insoluble contaminant from aqueous solutions, we have enhanced the solubility of atrazine by complexation with Cys. The complex formation of Cys and atrazine was confirmed using 1H nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), field emission scanning electron microscopy (FE-SEM), rotating frame nuclear overhauser spectroscopy (ROESY), and molecular modeling studies. The aqueous solubility of atrazine was enhanced 3.69-fold according to the added concentrations (20 mM) of Cys, compared to the 1.78-fold enhancements by β-cyclodextrin (β-CD). Cyclosophoraoses as an excellent solubility enhancer with long glucose chains that can effectively capture insoluble materials showed a potential application of microbial polysaccharides in the removal of hazardous hardly-soluble materials from aqueous solutions in the fields of biological and environmental industry.
Collapse
|
95
|
Huang D, Liu C, Zhang C, Deng R, Wang R, Xue W, Luo H, Zeng G, Zhang Q, Guo X. Cr(VI) removal from aqueous solution using biochar modified with Mg/Al-layered double hydroxide intercalated with ethylenediaminetetraacetic acid. BIORESOURCE TECHNOLOGY 2019; 276:127-132. [PMID: 30616211 DOI: 10.1016/j.biortech.2018.12.114] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
In this study, the bamboo biomass loaded with ethylenediaminetetraacetic acid (EDTA) intercalated Mg/Al-layered double hydroxides (LDH) was calcined to obtain a novel nano-adsorbent (BC@EDTA-LDH), and BC@EDTA-LDH was used to remove hexavalent chromium (Cr(VI)) in aqueous solutions. The results showed that the interaction between LDH and Cr(VI) on biochar played a dominant part in adsorption. The LDH of Cr(VI) intercalation was successfully reconstructed after adsorption. Fourier transform infrared spectra and X-ray diffraction results confirmed the reconstruction of Mg/Al-LDH. LDH had sustained release effect on the solution. As the pH values increased, the electrostatic repulsion between Cr2O72- and OH- increased, and there existed competition for adsorption sites. The maximum adsorption capacity of Cr(VI) was 38 mg/g. The data was well-fitted with pseudo second-order model and Langmuir-Freundlich model. BC@EDTA-LDH showed a high adsorption capacity and was potentially suitable for removing heavy metals in wastewater.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Caihong Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Rongzhong Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hao Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Qing Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xueying Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
96
|
Guo J, Jiang S, Pang Y. Rice straw biochar modified by aluminum chloride enhances the dewatering of the sludge from municipal sewage treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:338-344. [PMID: 30445332 DOI: 10.1016/j.scitotenv.2018.10.429] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Enhancement of the dewatering of the sludge by using rice straw biochar (RSB) modified by aluminum chloride (AlCl3) was investigated, and the possible enhancing mechanisms were discussed. Results showed that the settled volume after 30 min (SV30%), specific resistance to filtration (SRF), moisture content (MC) and capillary suction time (CST) of the sludge were decreased and the net sludge solids yield (YN) was increased by the increasing raw or modified RSB, which indicated a higher sludge dewaterability. When the dosage of the modified RSB was adjusted to 0.3 g(RSB)/g(dry sludge), SV30%, SRF, MC and CST were decreased to 79.8%, 1.2 × 1012 m/kg, 81.4% and 38 s, respectively, YN was increased to 19.4 kg/(m2·h). Furthermore, performance of the modified RSB in the dewatering of the sludge was significantly better than that of the raw RSB. For the enhancing mechanisms, charge neutralization occurred when the modified RSB (loaded with positively charged aluminum species on its surface) was dosed into the sludge system, thus destroying the stable sludge colloidal system, thus far easier to congregate the sludge particles, which enhanced the dewatering of the sludge. Another main enhancing mechanism was that after conditioned by the modified RSB, certain skeleton structures were formed in sludge cake to make water pass through easily by decreasing the extracellular polymeric substances (EPS) of the sludge. We found that the effectiveness of using the modified RSB to enhance the dewatering of the sludge is substantial and promising.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China.
| | - Shilin Jiang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Yujie Pang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| |
Collapse
|
97
|
Inthapanya X, Wu S, Han Z, Zeng G, Wu M, Yang C. Adsorptive removal of anionic dye using calcined oyster shells: isotherms, kinetics, and thermodynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5944-5954. [PMID: 30612377 DOI: 10.1007/s11356-018-3980-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Oyster shells are a type of biogenic materials with excellent characteristics in surface area, porosity, sorption capacity, and high concentration of CaCO3 (up to 90 wt%), and can be easily converted into a calcium-based alkali adsorbent. In this research, oyster shells calcined at 900 °C were applied as an adsorbent for acid green 25 (AG25) removal from aqueous solutions. The adsorption performances were evaluated, and the FTIR, SEM, and BET techniques were employed to characterize this material. Results showed that AG25 removal performance depended on adsorbent dosage, pH, adsorption temperature, contact time, and initial concentration. Adsorption capacity was maximized at 34.1 mg g-1 at pH of 11.0, an adsorbent dosage of 2.0 g L-1, an AG25 concentration of 70 mg L-1, and adsorption temperature of 40 °C. Both the Ho-McKay model and the pseudo-second-order model correlated with the adsorption kinetics well with the values of R2 > 0.99 (closer to unity). The Langmuir isotherm showed an excellent correlation coefficient of R2 > 0.99 with the equilibrium data. The thermodynamics study indicates that the adsorption was spontaneous and endothermic. These results demonstrate that the calcined oyster shells has the potential to be used as an eco-friendly and low-cost effective adsorbent for anionic dye removal from water.
Collapse
Affiliation(s)
- Xayanto Inthapanya
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Shaohua Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Zhenfeng Han
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Mengjie Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Management and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| |
Collapse
|
98
|
Effects of Pretreatment Methods of Wheat Straw on Adsorption of Cd(II) from Waterlogged Paddy Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16020205. [PMID: 30642075 PMCID: PMC6352147 DOI: 10.3390/ijerph16020205] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 11/21/2022]
Abstract
Two types of pretreatment categories, namely microwave-assisted alkalization and microwave-assisted acid oxidation, were used to synthesize novel wheat straw adsorbents for the effective removal of Cd(II) in simulated waterlogged paddy soil. A systematic adsorption behavior study, including adsorption kinetics and adsorption isotherms was conducted. Results showed that wheat straw pretreated by microwave-assisted soaking of NaOH and ethanol solution obtained the highest Cd(II) removal efficiency of 96.4% at a reaction temperature of 25 ℃, pH of 7.0, initial Cd(II) concentration of 50 mg/L, and adsorbent/adsorbate ratio of 10 g/L. Sequential extraction experiment was carried out to analyze the changes of different of Cd(II) in soil, the aim of which was to study the mobility of Cd(II) and then evaluate the toxicity that Cd(II) might bring to plants. A 60-day incubation was performed to investigate the dynamic variations of soil pH and dissolved organic carbon content over incubation time. Characterization analyses revealed the morphological changes of wheat straw adsorbents, which suggested that those pretreatment methods were of significance. This study provided an environmentally friendly way to reuse agricultural wastes and remedy Cd(II) contaminated soil.
Collapse
|
99
|
Xu Y, Li R, Zhou Y. An eco-friendly route for template-free synthesis of high specific surface area mesoporous CeO2 powders and their adsorption for acid orange 7. RSC Adv 2019; 9:22366-22375. [PMID: 35519489 PMCID: PMC9066840 DOI: 10.1039/c9ra02294e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/10/2019] [Indexed: 11/21/2022] Open
Abstract
An eco-friendly route was developed for the synthesis of mesoporous CeO2 powders without any additional template. The original cerium precursors were separated from Ce3+ aqueous solution by (NH4)2CO3 or Na2CO3via a chemical precipitation method, then H2O2 was introduced to induce the phase transformation from original cerium precursors to CeO2 precursors with initial porous structures, finally the crystallinities of CeO2 precursors were improved by a hydrothermal treatment, meanwhile the mesoporous structures of final CeO2 powders were formed. The BET surface areas of mesoporous CeO2 powders synthesized using (NH4)2CO3 and Na2CO3 as precipitants were 106.1 and 76.9 m2 g−1, respectively. Moreover, a mesoporous CeO2 sample with BET surface area of 100.0 m2 g−1 was also synthesized using commercial Ce2(CO3)3·xH2O as an existing cerium precursor under the same conditions as control, which could shorten experimental processes and reduce costs. The oxidation-induced phase transformation from original cerium precursors to CeO2 precursors with initial porous structures was the precondition for further forming of mesoporous structures of final CeO2 powders during the hydrothermal process. These mesoporous CeO2 powders showed the rapid and effective adsorption for acid orange 7 dye from simulated wastewater without pH pre-adjustment at room temperature. Furthermore, the adsorption capacities of these mesoporous CeO2 powders for removal of acid orange 7 dye were determined according to the Langmuir linear fits. An eco-friendly route for template-free synthesis of mesoporous CeO2 powders with high specific surface areas.![]()
Collapse
Affiliation(s)
- Yaohui Xu
- School of Physics and Electronic Engineering
- Laboratory for Functional Materials
- Leshan Normal University
- Leshan
- China
| | - Ruixing Li
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education)
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- China
| | - Yang Zhou
- School of Textile Science and Engineering
- National Engineering Laboratory for Advanced Yarn and Clean Production
- Wuhan Textile University
- Wuhan
- China
| |
Collapse
|
100
|
Oh SY, Seo TC. Upgrading biochar via co-pyrolyzation of agricultural biomass and polyethylene terephthalate wastes. RSC Adv 2019; 9:28284-28290. [PMID: 35530497 PMCID: PMC9071198 DOI: 10.1039/c9ra05518e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
Spent polyethylene terephthalate (PETE) bottles were collected and co-pyrolyzed with rice straw (RS) to examine the characteristics and performance of biochar as a sorbent for various types of U.S. EPA priority pollutants, including 2,4-dinitrotoluene (DNT), 2,4-dichlorophenol (DCP), Pb, chromate (CrO42−), and selenate (SeO42−). During sorption of contaminants to PETE/RS-derived biochar, PETE residues from pyrolysis, pH, and pyrolysis temperature greatly affected the sorption process. Depending on the types of contaminants and experimental conditions, co-pyrolysis of PETE and RS may enhance the sorption of contaminants through different sorption mechanisms, including hydrophobicity, electrostatic force, ion exchange, surface complexation, and surface precipitation. Unlike other contaminants, selenate was reductively transformed by delocalized electrons from the graphitic structure in biochar. Our results strongly suggest that co-pyrolysis of PETE and agricultural wastes may be favorable to enhance the properties of biochar. In addition to syn-gas and bio-oil from co-pyrolysis, biochar may be a valuable by-product for commercial use. Spent polyethylene terephthalate (PETE) bottles were co-pyrolyzed with rice straw to examine the performance of biochar as a sorbent for various types of pollutants, including 2,4-dinitrotoluene, 2,4-dichlorophenol, Pb, chromate, and selenate.![]()
Collapse
Affiliation(s)
- Seok-Young Oh
- Department of Civil and Environmental Engineering
- University of Ulsan
- Ulsan 44610
- South Korea
| | - Tae-Cheol Seo
- Department of Civil and Environmental Engineering
- University of Ulsan
- Ulsan 44610
- South Korea
| |
Collapse
|