51
|
Pasquarelli-do-Nascimento G, Machado SA, de Carvalho JMA, Magalhães KG. Obesity and adipose tissue impact on T-cell response and cancer immune checkpoint blockade therapy. IMMUNOTHERAPY ADVANCES 2022; 2:ltac015. [PMID: 36033972 PMCID: PMC9404253 DOI: 10.1093/immadv/ltac015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Many different types of cancer are now well known to have increased occurrence or severity in individuals with obesity. The influence of obesity on cancer and the immune cells in the tumor microenvironment has been thought to be a pleiotropic effect. As key endocrine and immune organs, the highly plastic adipose tissues play crucial roles in obesity pathophysiology, as they show alterations according to environmental cues. Adipose tissues of lean subjects present mostly anti-inflammatory cells that are crucial in tissue remodeling, favoring uncoupling protein 1 expression and non-shivering thermogenesis. Oppositely, obese adipose tissues display massive proinflammatory immune cell infiltration, dying adipocytes, and enhanced crown-like structure formation. In this review, we discuss how obesity can lead to derangements and dysfunctions in antitumor CD8+ T lymphocytes dysfunction. Moreover, we explain how obesity can affect the efficiency of cancer immunotherapy, depicting the mechanisms involved in this process. Cancer immunotherapy management includes monoclonal antibodies targeting the immune checkpoint blockade. Exhausted CD8+ T lymphocytes show elevated programmed cell death-1 (PD-1) expression and highly glycolytic tumors tend to show a good response to anti-PD-1/PD-L1 immunotherapy. Although obesity is a risk factor for the development of several neoplasms and is linked with increased tumor growth and aggressiveness, obesity is also related to improved response to cancer immunotherapy, a phenomenon called the obesity paradox. However, patients affected by obesity present higher incidences of adverse events related to this therapy. These limitations highlight the necessity of a deeper investigation of factors that influence the obesity paradox to improve the application of these therapies.
Collapse
Affiliation(s)
| | - Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia , DF , Brazil
| | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia , DF , Brazil
| |
Collapse
|
52
|
Cancanelli L, Rivano M, Di Spazio L, Chiumente M, Mengato D, Messori A. Efficacy of Immune Checkpoint Inhibitors in Patients with Mismatch Repair-Deficient or Microsatellite Instability-High Metastatic Colorectal Cancer: Analysis of Three Phase-II Trials. Cureus 2021; 13:e19893. [PMID: 34966607 PMCID: PMC8710086 DOI: 10.7759/cureus.19893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Programmed cell death ligand 1 (PD-L1) and programmed cell death protein 1 (PD-1) inhibitors are increasingly used in a variety of solid tumors. In patients with DNA mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) metastatic colorectal cancer, their efficacy has been demonstrated in recently published phase-II trials. However, an indirect comparison of effectiveness between pembrolizumab, nivolumab, and nivolumab+ipilimumab is not yet available. After a standard literature search, we analyzed four overall survival (OS) curves from three phase-II trials. Individual patient data were reconstructed from each curve using a specific web-based technique (Shiny method). Indirect statistical comparisons were made based on hazard ratio (HR) and restricted mean survival time (RMST). Nivolumab+ipilumumab had a better HR compared with pembrolizumab (0.65, 95% confidence interval [CI], 0.43 to 1.002, p=0.051); the difference being close to statistical significance. In the analysis based on RMST, the combination of nivolumab+ipilimumab showed a significantly longer OS than pembrolizumab (improvement in RMST, 1.08 mos; 95%CI, 0.11 to 2.06; p=0.029). The other two pairwise differences in RMST (nivolumab vs. pembrolizumab and nivolumab+ ipilimumab vs. nivolumab) had a smaller magnitude (0.25 mos, 95%CI, -0.99 to 1.48, and 0.84 mos, 95%CI, -0.40 to 2.07, respectively) and were far from statistical significance. Our results favoring the combination of nivolumab+ipilimumab in metastatic colorectal cancer must be viewed with caution owing to the indirect nature of our statistical comparisons. With this limitation in mind, the magnitude of the incremental benefit for the above combination treatment was estimated to be around one month over a follow-up of 15 months.
Collapse
Affiliation(s)
- Luca Cancanelli
- Hospital Pharmacy Department, Azienda Unità Locale Socio Sanitaria (ULSS) 2 Marca Trevigiana, Treviso, ITA
| | - Melania Rivano
- Clinical Oncology Pharmacy Department, Armando (A) Businco Hospital, Cagliari, ITA
| | - Lorenzo Di Spazio
- Hospital Pharmacy Department, Santa (S) Chiara Hospital, Trento, ITA
| | - Marco Chiumente
- Scientific Direction, Italian Society for Clinical Pharmacy and Therapeutics, Milano, ITA
| | - Daniele Mengato
- Hospital Pharmacy Department, Azienda Ospedaliera Universitaria di Padova, Padova, ITA
| | - Andrea Messori
- Health Technology Assessment (HTA) Unit, Regione Toscana, Firenze, ITA
| |
Collapse
|
53
|
Shi J, Bao M, Wang W, Wu X, Li Y, Zhao C, Liu W. Integrated Profiling Identifies PLOD3 as a Potential Prognostic and Immunotherapy Relevant Biomarker in Colorectal Cancer. Front Immunol 2021; 12:722807. [PMID: 34646265 PMCID: PMC8503557 DOI: 10.3389/fimmu.2021.722807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 3 (PLOD3) is related to a variety of human diseases. However, its function in Colorectal cancer (CRC) remains uncertain. PLOD3 expression was analyzed using The Cancer Genome Atlas (TCGA) pan-cancer data. DAVID was used for enrichment analysis of PLOD3-related genes. The correlation between PLOD3 expression and immune cell infiltration was evaluated. Four expression profile datasets (GSE17536, GSE39582, GSE74602, and GSE113513) from Gene Expression Omnibus, and two proteomic datasets were used as validation cohorts for assessing the diagnostic and prognostic value of PLOD3 in CRC. What's more, we performed immunohistochemistry (IHC) staining for PLOD3 in 160 paired CRC specimens and corresponding adjacent non-tumor tissues. PLOD3 was highly expressed in many tumors including CRC. PLOD3 was upregulated in advanced stage CRCs, and high PLOD3 expression was associated with poor survival. High PLOD3 expression was associated with low levels of B cells, CD4+ T cells, M1 macrophages, CD8+ T cells, and multiple immunerelated characteristics. In addition, the high PLOD3 expression group had a higher TIDE score and a lower tumor mutation burden and microsatellite instability, indicating that patients with high PLOD3 expression may be resistant to immunotherapy. Additional datasets and IHC analysis were used to validate the diagnostic and prognostic value of PLOD3 at the mRNA and protein levels in CRC. Patients with non-response to immunotherapy showed increased PLOD3 expression in an immunotherapy treated dataset. PLOD3 is a potential biomarker for CRC diagnosis and prognosis prediction. CRCs with high PLOD3 expression may be resistant to immune checkpoint therapy.
Collapse
Affiliation(s)
- Junhong Shi
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meiyu Bao
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Weifeng Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xuan Wu
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yueying Li
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changdong Zhao
- Department of Gastroenterology, Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Weiwei Liu
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Laboratory Medicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
54
|
Shadbad MA, Asadzadeh Z, Derakhshani A, Hosseinkhani N, Mokhtarzadeh A, Baghbanzadeh A, Hajiasgharzadeh K, Brunetti O, Argentiero A, Racanelli V, Silvestris N, Baradaran B. A scoping review on the potentiality of PD-L1-inhibiting microRNAs in treating colorectal cancer: Toward single-cell sequencing-guided biocompatible-based delivery. Biomed Pharmacother 2021; 143:112213. [PMID: 34560556 DOI: 10.1016/j.biopha.2021.112213] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Tumoral programmed cell death ligand 1 (PD-L1) has been implicated in the immune evasion and development of colorectal cancer. Although monoclonal immune checkpoint inhibitors can exclusively improve the prognosis of patients with microsatellite instability-high (MSI-H) and tumor mutational burden-high (TMB-H) colorectal cancer, specific tumor-suppressive microRNAs (miRs) can regulate multiple oncogenic pathways and inhibit the de novo expression of oncoproteins, like PD-L1, both in microsatellite stable (MSS) and MSI-H colorectal cancer cells. This scoping review aimed to discuss the currently available evidence regarding the therapeutic potentiality of PD-L1-inhibiting miRs for colorectal cancer. For this purpose, the Web of Science, Scopus, and PubMed databases were systematically searched to obtain peer-reviewed studies published before 17 March 2021. We have found that miR-191-5p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p, miR-138-5p, miR-140-3p, and miR-15b-5p can inhibit tumoral PD-L1 in colorectal cancer cells. Besides inhibiting PD-L1, miR-140-3p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p, miR-138-5p, and miR-15b-5p can substantially reduce tumor migration, inhibit tumor development, stimulate anti-tumoral immune responses, decrease tumor viability, and enhance the chemosensitivity of colorectal cancer cells regardless of the microsatellite state. Concerning the specific, effective, and safe delivery of these miRs, the single-cell sequencing-guided biocompatible-based delivery of these miRs can increase the specificity of miR delivery, decrease the toxicity of traditional nanoparticles, transform the immunosuppressive tumor microenvironment into the proinflammatory one, suppress tumor development, decrease tumor migration, and enhance the chemosensitivity of tumoral cells regardless of the microsatellite state.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | | | - Oronzo Brunetti
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy
| | - Antonella Argentiero
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Nicola Silvestris
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy; Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
55
|
Ma SM, Dong J, Liang L, Liu XT, Meng XY, Zhang HS, Yang J. The prognostic and clinicopathological roles of microsatellite instability, PD-L1 expression and tumor-infiltrating leukocytes in familial adenomatous polyposis. Eur J Surg Oncol 2021; 48:211-217. [PMID: 34483031 DOI: 10.1016/j.ejso.2021.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/31/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Microsatellite instability, programmed death-ligand 1 and tumor-infiltrating leukocytes are prognostic biomarkers in colorectal cancer but unknown toward familial adenomatous polyposis. AIM To investigate the prognostic and clinicopathological roles of microsatellite instability, programmed death-ligand 1 and tumor-infiltrating leukocytes in familial adenomatous polyposis. METHODS Clinical data and paraffin embedded tissues from 45 familial adenomatous polyposis patients were collected. Microsatellite instability was detected by immunohistochemistry and polymerase chain reaction. Programmed death-ligand 1 was detected by immunohistochemistry. Tumor-infiltrating leukocytes comprising CD8+ T cells, M1 and M2 tumor associated macrophages, CD56bright and CD56dim natural killer cells were analyzed using multiple fluorescence immunohistochemistry. RESULTS Microsatellite instability high was noted in 6 samples but not associated with overall survival or progression-free survival. Programmed death-ligand 1 is negative on tumor cells but positive on tumor-infiltrating leukocytes, and positive programmed death-ligand 1 expression on tumor-infiltrating leucocytes is associated with overall survival. Low CD56bright natural killer cell infiltration was associated with longer progression-free survival and was an independent prognostic factor in FAP. CONCLUSION For familial adenomatous polyposis, microsatellite instability high can be found but has no correlation with prognosis; programmed death-ligand 1 on tumor-infiltrating leukocytes is related with overall survival; CD56bright natural killer cell is an independent prognostic factor associating with longer progression-free survival.
Collapse
Affiliation(s)
- Shu-Min Ma
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jian Dong
- Department of Internal Medicine-Oncology, Yunnan Cancer Hospital, Kunming, 650106, China
| | - Lei Liang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiao-Ting Liu
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xuan-Yu Meng
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Hu-Shan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
56
|
Wookey V, Grothey A. Update on the role of pembrolizumab in patients with unresectable or metastatic colorectal cancer. Therap Adv Gastroenterol 2021; 14:17562848211024460. [PMID: 34262612 PMCID: PMC8246487 DOI: 10.1177/17562848211024460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer type in both men and women in the USA. Most patients with CRC are diagnosed as local or regional disease. However, the survival rate for those diagnosed with metastatic disease remains disappointing, despite multiple treatment options. Cancer therapies for patients with unresectable or metastatic CRC are increasingly being driven by particular biomarkers. The development of various immune checkpoint inhibitors has revolutionized cancer therapy over the last decade by harnessing the immune system in the treatment of cancer, and the role of immunotherapy continues to expand and evolve. Pembrolizumab is an anti-programmed cell death protein 1 immune checkpoint inhibitor and has become an essential part of the standard of care in the treatment regimens for multiple cancer types. This paper reviews the increasing evidence supporting and defining the role of pembrolizumab in the treatment of patients with unresectable or metastatic CRC.
Collapse
Affiliation(s)
- Vanessa Wookey
- Department of Hematology and Oncology, University of Tennessee Health Science Center, Memphis, TN, USA
- West Cancer Center and Research Institute, Germantown, TN, USA
| | - Axel Grothey
- West Cancer Center and Research Institute, 7945 Wolf River Blvd, Germantown, TN 38138, USA
| |
Collapse
|
57
|
Ghidini M, Fusco N, Salati M, Khakoo S, Tomasello G, Petrelli F, Trapani D, Petrillo A. The Emergence of Immune-checkpoint Inhibitors in Colorectal Cancer Therapy. Curr Drug Targets 2021; 22:1021-1033. [PMID: 33563194 DOI: 10.2174/1389450122666210204204415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/06/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022]
Abstract
Immunotherapy has revolutionized the treatment landscape in a number of solid tumors. In colorectal cancer, evidence suggests that microsatellite high (MSI-H) tumors are the most responsive to immune checkpoint blockade due to increased neo-antigen load and a favorable tumor microenvironment. Indeed, Pembrolizumab now represents a first-line option in such patients. However, MSI-H tumors represent the minority and a proportion of patients' progress despite initially responding. Trials are investigating different immunotherapy combinatorial strategies to enhance immune response in less immunogenic colorectal tumors. Such strategies include dual immune checkpoint blockade, combining immune checkpoint inhibitors with other treatment modalities such as radiotherapy, chemotherapy or other biological or targeted agents. Moreover, there is an increasing drive to identify biomarkers to better select patients most likely to respond to immunotherapy and understand intrinsic and acquired resistance mechanisms. Apart from MSI-H tumors, there is a strong rationale to suggest that tumors with alterations in DNA polymerase epsilon and DNA polymerase delta are also likely to respond to immunotherapy and trials in this subpopulation are underway. Other strategies such as priming O6-methylguanineDNA methyltransferase silenced tumors with alkylating agents to make them receptive to immune checkpoint blockade are also being investigated. Here we discuss different colorectal subpopulations together with their likelihood of response to immune checkpoint blockade and strategies to overcome barriers to a successful clinical outcome. We summarize evidence from published clinical trials and provide an overview of trials in progress whilst discussing newer immunotherapy strategies such as adoptive cell therapies and cancer vaccines.
Collapse
Affiliation(s)
- Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Massimiliano Salati
- PhD Program, Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Shelize Khakoo
- Department of Medicine, The Royal Marsden Hospital NHS Foundation Trust, London and Surrey, United Kingdom
| | - Gianluca Tomasello
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fausto Petrelli
- Medical Oncology Unit, Azienda Socio-Sanitaria Territoriale Bergamo Ovest, Treviglio, Bergamo, Italy
| | - Dario Trapani
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | | |
Collapse
|
58
|
Wilson KC, Flood MP, Oh D, Calvin N, Michael M, Ramsay RG, Heriot AG. Immune Checkpoint Blockade in Lower Gastrointestinal Cancers: A Systematic Review. Ann Surg Oncol 2021; 28:7463-7473. [PMID: 34047860 DOI: 10.1245/s10434-021-10192-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Limited therapy options exist for patients with treatment-refractory metastatic colorectal or anal cancers, prompting investigation into alternative therapies. Immunotherapy in the form of immune checkpoint blockade is one such emerging treatment that has demonstrated promising results in other tumour streams.x This review aims to assess the current use of immune checkpoint blockade in patients with lower gastrointestinal tumours. PATIENTS AND METHODS Embase, Medline and Cochrane databases were searched for included studies. Clinical trials published in English and utilising immune checkpoint blockade for primary tumours situated in the lower gastrointestinal tract were included. Databases were searched for studies reporting on at least one of overall survival, progression-free survival or response to therapy. RESULTS In total, 972 abstracts were screened, with 10 studies included in the final review. Eight trials (833 patients) assessed immune checkpoint blockade in the setting of colorectal cancers. These included pembrolizumab, nivolumab, durvalumab, atezolizumab, tremelimumab and ipilimumab. A total of 20 patients across all studies achieved a complete response, and 111 patients achieved a partial response to treatment. Two trials (62 patients) assessed immune checkpoint blockade in anal cancer, utilising nivolumab and pembrolizumab. Two patients across both studies achieved a complete response, and 11 patients achieved a partial response. CONCLUSIONS A number of patients with advanced lower gastrointestinal tumours achieved a complete response to treatment for what would otherwise be considered palliative disease. Presented data have highlighted that particular patients may benefit from first-line or combination immunotherapy, and thus, further investigation is warranted to individualise treatment.
Collapse
Affiliation(s)
- K C Wilson
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia. .,Differentiation and Transcription Laboratory, Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| | - M P Flood
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Differentiation and Transcription Laboratory, Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - D Oh
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - N Calvin
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - M Michael
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - R G Ramsay
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Differentiation and Transcription Laboratory, Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - A G Heriot
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
59
|
Hanna CR, O'Cathail SM, Graham J, Adams R, Roxburgh CS. Immune Checkpoint Inhibition as a Strategy in the Neoadjuvant Treatment of Locally Advanced Rectal Cancer. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:86-104. [PMID: 35663532 PMCID: PMC9153256 DOI: 10.36401/jipo-20-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 06/15/2023]
Abstract
The treatment of locally advanced rectal cancer (LARC) has seen major advances over the past 3 decades, with multimodality treatment now standard of care. Combining surgical resection with radiotherapy and/or chemotherapy can reduce local recurrence from around 20% to approximately 5%. Despite improvements in local control, distant recurrence and subsequent survival rates have not changed. Immune checkpoint inhibitors have improved patient outcomes in several solid tumor types in the neoadjuvant, adjuvant, and advanced disease setting; however, in colorectal cancer, most clinical trials have been performed in the metastatic setting and the benefits confined to microsatellite instability-high tumors. In this article, we review the current preclinical and clinical evidence for using immune checkpoint inhibition in the treatment of LARC and discuss the rationale for specifically exploring the use of this therapy in the neoadjuvant setting. We summarize and discuss relevant clinical trials that are currently in setup and recruiting to test this treatment strategy and reflect on unanswered questions that still need to be addressed within future research efforts.
Collapse
Affiliation(s)
- Catherine R. Hanna
- Cancer Research United Kingdom Clinical Trials Unit, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- Beatson West of Scotland Cancer Centre, Glasgow, Scotland
| | - Séan M. O'Cathail
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- Beatson West of Scotland Cancer Centre, Glasgow, Scotland
| | - Janet Graham
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- Beatson West of Scotland Cancer Centre, Glasgow, Scotland
| | - Richard Adams
- Centre for Trials Research, Cardiff University and Velindre Cancer Centre, Cardiff, Wales
| | - Campbell S.D. Roxburgh
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- Glasgow Royal Infirmary, Glasgow, Scotland
| |
Collapse
|
60
|
Fang C, Lin J, Zhang T, Luo J, Nie D, Li M, Hu X, Zheng Y, Huang X, Xiao Z. Metastatic Colorectal Cancer Patient With Microsatellite Stability and BRAF V600E Mutation Showed a Complete Metabolic Response to PD-1 Blockade and Bevacizumab: A Case Report. Front Oncol 2021; 11:652394. [PMID: 33987088 PMCID: PMC8112237 DOI: 10.3389/fonc.2021.652394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 01/11/2023] Open
Abstract
A vast majority of colorectal cancer (CRC) patients with microsatellite stability (MSS) or proficient mismatch repair (pMMR) are refractory to immunotherapeutic strategies. The current research focusses on the combined treatment strategies for identification and optimization in order to improve the efficacy of immunotherapy among patients with microsatellite stability (MSS), who account for the majority of metastatic colorectal cancer (mCRC) cases. mCRC patients harboring MSS and the BRAFV600E mutation show a worse prognosis and barely benefit from immunotherapy. In this report, we discuss the case of a mCRC patient with MSS and BRAFV600E mutation, who exhibited significant response to the combined treatment with nivolumab and bevacizumab, and has been exhibiting a progression-free survival (PFS) of more than 17 months. Our findings indicate that combined anti-angiogenic therapy can improve the efficacy of immunotherapy, which results in the prolong survival of the patient. This is a case report on MSS and BRAFV600E colorectal cancer which presents with a response to immunotherapy and anti-angiogenic therapy.
Collapse
Affiliation(s)
- Chongkai Fang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jietao Lin
- Cancer Center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Zhang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiajun Luo
- Cancer Center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Duorui Nie
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Li
- Oncology Department, Shenzhen Hospital Affiliated to Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xue Hu
- Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yating Zheng
- Medical Department, 3D Medicines Inc., Shanghai, China
| | - Xuewu Huang
- Cancer Center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiwei Xiao
- Cancer Center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
61
|
Pramil E, Dillard C, Escargueil AE. Colorectal Cancer and Immunity: From the Wet Lab to Individuals. Cancers (Basel) 2021; 13:cancers13071713. [PMID: 33916641 PMCID: PMC8038567 DOI: 10.3390/cancers13071713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Tackling the current dilemma of colorectal cancer resistance to immunotherapy is puzzling and requires novel therapeutic strategies to emerge. However, characterizing the intricate interactions between cancer and immune cells remains difficult because of the complexity and heterogeneity of both compartments. Developing rationales is intellectually feasible but testing them can be experimentally challenging and requires the development of innovative procedures and protocols. In this review, we delineated useful in vitro and in vivo models used for research in the field of immunotherapy that are or could be applied to colorectal cancer management and lead to major breakthroughs in the coming years. Abstract Immunotherapy is a very promising field of research and application for treating cancers, in particular for those that are resistant to chemotherapeutics. Immunotherapy aims at enhancing immune cell activation to increase tumor cells recognition and killing. However, some specific cancer types, such as colorectal cancer (CRC), are less responsive than others to the current immunotherapies. Intrinsic resistance can be mediated by the development of an immuno-suppressive environment in CRC. The mutational status of cancer cells also plays a role in this process. CRC can indeed be distinguished in two main subtypes. Microsatellite instable (MSI) tumors show a hyper-mutable phenotype caused by the deficiency of the DNA mismatch repair machinery (MMR) while microsatellite stable (MSS) tumors show a comparatively more “stable” mutational phenotype. Several studies demonstrated that MSI CRC generally display good prognoses for patients and immunotherapy is considered as a therapeutic option for this type of tumors. On the contrary, MSS metastatic CRC usually presents a worse prognosis and is not responsive to immunotherapy. According to this, developing new and innovative models for studying CRC response towards immune targeted therapies has become essential in the last years. Herein, we review the in vitro and in vivo models used for research in the field of immunotherapy applied to colorectal cancer.
Collapse
Affiliation(s)
- Elodie Pramil
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (E.P.); (C.D.)
- Alliance Pour la Recherche en Cancérologie—APREC, Tenon Hospital, F-75012 Paris, France
| | - Clémentine Dillard
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (E.P.); (C.D.)
- Alliance Pour la Recherche en Cancérologie—APREC, Tenon Hospital, F-75012 Paris, France
| | - Alexandre E. Escargueil
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (E.P.); (C.D.)
- Correspondence: ; Tel.: +33-(0)1-49-28-46-44
| |
Collapse
|
62
|
Sherman SK, Schuitevoerder D, Chan CHF, Turaga KK. Metastatic Colorectal Cancers with Mismatch Repair Deficiency Result in Worse Survival Regardless of Peritoneal Metastases. Ann Surg Oncol 2020; 27:5074-5083. [PMID: 32583196 PMCID: PMC9782694 DOI: 10.1245/s10434-020-08733-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mismatch-repair deficiency (dMMR) predicts worse chemoresponsiveness but better survival in early-stage colorectal adenocarcinoma. This study examined metastatic colorectal and appendix cancers with and without peritoneal metastasis (PM) in the National Cancer Database (NCDB), hypothesizing that dMMR tumors show better survival. METHODS Stage 4 colon, rectum, and appendix cancers (2010-2016) were identified in the NCDB (including goblet cell carcinoids, excluding neuroendocrine tumors). Stage 4 disease without liver, bone, brain, lung, or distant nodal metastases defined PM. Fisher's exact tests were used to compare proportions, and Kaplan-Meier analysis was used to evaluate survival. RESULTS Of 130,125 stage 4 colon, rectum, and appendix cancers, 27,848 (21.4%) had PM. Appendix primary tumors had PM more commonly than colon or rectum cancer (83.6% vs. 20.6% and 12.1% of stage 4 cases; p < 0.0001). More PM patients had MMR testing than patients with other metastasis (OM) (21.4% vs. 16.1%), and testing increased from 9.6% in 2010 to 26.3% in 2016 (both p < 0.0001). Among the PM patients, MMR testing was least common for appendix cancers (9.0%). When tested, PM patients more often had dMMR (22.9% [1122/4900] vs. 15.4% [2532/16,495] of OM patients; p < 0.0001). Colon primary tumor had dMMR most frequently (25.0% vs. 14.6% and 14.5% for rectal and appendix tumor; p < 0.0001). Most PM patients received chemotherapy (66.2%). Immunotherapy use increased over time (1.1% of PM diagnoses in 2010 vs. 20.8% in 2016). For MMR-tested stage 4 patients, dMMR correlated with worse survival (median OM, 19.7 vs. 23.9 months, p < 0.0001; median PM, 19.9 vs. 24.6 months, p = 0.035). CONCLUSIONS The NCDB showed dMMR predicting worse survival for stage 4 colorectal cancers with and without PM and dMMR existing in 14.5-25% of tested patients, suggesting that increased attention to MMR testing in stage 4 colorectal and appendix cancers can identify many patients who could potentially benefit from immunotherapy.
Collapse
Affiliation(s)
- Scott K. Sherman
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | | | - Carlos H. F. Chan
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | | |
Collapse
|
63
|
Li X, Ling A, Kellgren TG, Lundholm M, Löfgren-Burström A, Zingmark C, Rutegård M, Ljuslinder I, Palmqvist R, Edin S. A Detailed Flow Cytometric Analysis of Immune Activity Profiles in Molecular Subtypes of Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12113440. [PMID: 33228141 PMCID: PMC7699331 DOI: 10.3390/cancers12113440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer is one of the deadliest cancers worldwide, with around 40% of patients dying from distant metastasis. Tumour immune cell infiltration has powerful positive prognostic value in this disease, suggesting immunotherapy as a potential treatment modality. The aim of this explorative study was to assess in detail the local and systemic immune response in different molecular subgroups of colorectal cancer. An improved molecular understanding of the disease may lead to important advances in personalised medicine, identifying prognostic and predictive tools, in addition to new therapeutic targets. Abstract The local anti-tumour immune response has important prognostic value in colorectal cancer (CRC). In the era of immunotherapy, a better understanding of the immune response in molecular subgroups of CRC may lead to significant advances in personalised medicine. On this note, microsatellite instable (MSI) tumours have been characterised by increased immune infiltration, suggesting MSI as a marker for immune inhibitor checkpoint therapy. Here, we used flow cytometry to perform a comprehensive analysis of immune activity profiles in tumour tissues, adjacent non-malignant tissues and blood, from a cohort of 69 CRC patients. We found several signs of immune suppression in tumours compared to adjacent non-malignant tissues, including T cells more often expressing the immune checkpoint molecules programmed cell death protein (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). We further analysed immune cell infiltration in molecular subgroups of CRC. MSI tumours were indeed found to be associated with increased immune infiltration, including increased fractions of PD-1+ T cells. No correlation was, however, found between MSI and the fraction of CTLA-4+ T cells. Interestingly, within the group of patients with microsatellite stable (MSS) tumours, some also presented with increased immune infiltration, including comparably high portions of PD-1+ T cells, but also CTLA-4+ T cells. Furthermore, no correlation was found between PD-1+ and CTLA-4+ T cells, suggesting that different tumours may, to some extent, be regulated by different immune checkpoints. We further evaluated the distribution of immune activity profiles in the consensus molecular subtypes of CRC. In conclusion, our findings suggest that different immune checkpoint inhibitors may be beneficial for selected CRC patients irrespective of MSI status. Improved predictive tools are required to identify these patients.
Collapse
Affiliation(s)
- Xingru Li
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
| | - Agnes Ling
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
| | - Therese G. Kellgren
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
| | - Marie Lundholm
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
| | - Anna Löfgren-Burström
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
| | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
| | - Martin Rutegård
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, 90185 Umeå, Sweden;
- Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, 90185 Umeå, Sweden;
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
- Correspondence: ; Tel.: +46-(0)907854431; Fax: +46-(0)90-121562
| |
Collapse
|
64
|
Huang WJ, Wang X, Zhang ML, Li L, Wang RT. Association between apoptosis inhibitor of macrophage and microsatellite instability status in colorectal cancer. BMC Gastroenterol 2020; 20:373. [PMID: 33172404 PMCID: PMC7654032 DOI: 10.1186/s12876-020-01520-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The microsatellite instability (MSI) in colorectal cancer (CRC) has a more favorable clinical outcome and is characterized by highly upregulated expression of various immunological checkpoints than microsatellite stable (MSS) tumors. Apoptosis inhibitor of macrophage (AIM) is a circulating protein and circulates throughout the body to remove cellular debris. The aim of this study was to evaluate the association between MSI status and AIM levels in CRC patients. METHODS In this study, we evaluated the levels of AIM by Enzyme Linked Immuno-Sorbent Assay (ELISA) in serum of 430 CRC patients. All patients' clinical and laboratory characteristics at initial diagnosis were collected. The relationship between AIM levels and MSI status was examined. RESULTS 64 patients (14.9%) were identified as having MSI-H (high-frequency MSI) and 366 casess (85.1%) having MSS. Patients with an MSI-H phenotype had lower AIM levels compared with MSS patients. Moreover, AIM levels were correlated with histological type and MSI status. Logistic regression analysis revealed that decreased AIM levels were independently associated with MSI-H phenotype after adjusting confounding factors. CONCLUSION Reduced AIM levels are associated with MSI-H subtyping of CRC. Further research on the involvement of AIM in MSI-H CRC is needed.
Collapse
Affiliation(s)
- Wen-Juan Huang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, No. 150 Haping ST, Nangang District, Harbin, Heilongjiang, 150081, China
| | - Xin Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, No. 150 Haping ST, Nangang District, Harbin, Heilongjiang, 150081, China
| | - Meng-Lin Zhang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, No. 150 Haping ST, Nangang District, Harbin, Heilongjiang, 150081, China
| | - Li Li
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, No. 150 Haping ST, Nangang District, HarbinHeilongjiang, 150081, China.
| | - Rui-Tao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, No. 150 Haping ST, Nangang District, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
65
|
Cohen R, Bennouna J, Meurisse A, Tournigand C, De La Fouchardière C, Tougeron D, Borg C, Mazard T, Chibaudel B, Garcia-Larnicol ML, Svrcek M, Vernerey D, Menu Y, André T. RECIST and iRECIST criteria for the evaluation of nivolumab plus ipilimumab in patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the GERCOR NIPICOL phase II study. J Immunother Cancer 2020; 8:e001499. [PMID: 33148693 PMCID: PMC7640587 DOI: 10.1136/jitc-2020-001499] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are highly effective in patients with microsatellite instability/mismatch repair-deficient (MSI/dMMR) metastatic colorectal cancer (mCRC). Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria may underestimate response to ICIs due to the pseudoprogression phenomenon. The GERCOR NIPICOL phase II study aimed to evaluate the frequency of pseudoprogressions in patients with MSI/dMMR mCRC treated with nivolumab and ipilimumab. METHODS Patients with MSI/dMMR mCRC previously treated with fluoropyrimidines, oxaliplatin, and irinotecan with/without targeted therapies received nivolumab 3 mg/kg plus ipilimumab 1 mg/kg every 3 weeks for four cycles then nivolumab 3 mg/kg every 2 weeks until progression or a maximum of 20 cycles. Computed tomography scan tumor assessments were done every 6 weeks for 24 weeks and then every 12 weeks. The primary endpoint was disease control rate at 12 weeks according to RECIST 1.1 and iRECIST by central review. RESULTS Of 57 patients included between December 2017 and November 2018, 48.0% received ≥3 prior lines of chemotherapy, 18.0% had BRAFV600E mutation, and 56.0% had Lynch syndrome-related cancer. Seven patients (12.0%) discontinued treatment due to adverse events; one died due to a treatment-related adverse event. The disease control rate (DCR) at 12 weeks was 86.0% with RECIST 1.1% and 87.7% with iRECIST. Two pseudoprogressions (3.5%) were observed, at week 6 and at week 36, representing 18% of patients with disease progression per RECIST 1.1 criteria. With a median follow-up of 18.4 months, median progression-free survival (PFS) and overall survival (OS) were not reached. The 12-month PFS rate was 72.9% with RECIST 1.1% and 76.5% with iRECIST. The 12-month OS rate was 84%. Overall response rate was 59.7% with both criteria. RAS/BRAF status, sidedness, Lynch syndrome, and other baseline parameters were not associated with PFS. CONCLUSION Pseudoprogression is rare in patients with MSI/dMMR mCRC treated with nivolumab and ipilimumab. This combined ICI therapy confirms impressive DCR and survival outcomes in these patients. TRIAL REGISTRATION NUMBER NCT03350126.
Collapse
Affiliation(s)
- Romain Cohen
- Sorbonne University, Department of Medical Oncology, Saint-Antoine Hospital, APHP, Paris, France
| | - Jaafar Bennouna
- Department of Medical Oncology, University Hospital of Nantes, Nantes, France
| | - Aurélia Meurisse
- Department of Oncology, Besançon University Hospital, Methodology and Quality of Life Unit, Besançon, France
| | - Christophe Tournigand
- Department of Gastroenterology and Digestive Oncology, Henri Mondor University Hospital, APHP, Creteil, France
| | | | - David Tougeron
- Department of Gastroenterology, Poitiers University Hospital and University of Poitiers, Poitiers, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Thibault Mazard
- Department of Medical Oncology, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Montpellier University, INSERM U1194, Montpellier, France
| | - Benoist Chibaudel
- Department of Medical Oncology, Franco-British Hospital, Fondation Cognacq-Jay, Levallois-Perret, France
| | | | - Magali Svrcek
- Sorbonne University, Department of Pathology, Saint-Antoine Hospital, AP-HP, Paris, France
| | - Dewi Vernerey
- Department of Oncology, Besançon University Hospital, Methodology and Quality of Life Unit, Besançon, France
| | - Yves Menu
- Sorbonne University, Department of Radiology, Saint-Antoine Hospital, AP-HP, Paris, France
| | - Thierry André
- Sorbonne University, Department of Medical Oncology, Saint-Antoine Hospital, APHP, Paris, France
| |
Collapse
|
66
|
Li R, Liu X, Zhou XJ, Chen X, Li JP, Yin YH, Qu YQ. Identification of a Prognostic Model Based on Immune-Related Genes of Lung Squamous Cell Carcinoma. Front Oncol 2020; 10:1588. [PMID: 33014809 PMCID: PMC7493716 DOI: 10.3389/fonc.2020.01588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Immune-related genes (IRGs) play considerable roles in tumor immune microenvironment (IME). This research aimed to discover the differentially expressed immune-related genes (DEIRGs) based on the Cox predictive model to predict survival for lung squamous cell carcinoma (LUSC) through bioinformatics analysis. First of all, the differentially expressed genes (DEGs) were acquired based on The Cancer Genome Atlas (TCGA) using the limma R package, the DEIRGs were obtained from the ImmPort database, whereas the differentially expressed transcription factors (DETFs) were acquired from the Cistrome database. Thereafter, a TFs-mediated IRGs network was constructed to identify the candidate mechanisms for those DEIRGs in LUSC at molecular level. Moreover, Gene Ontology (GO), together with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, was conducted for exploring those functional enrichments for DEIRGs. Besides, univariate as well as multivariate Cox regression analysis was conducted for establishing a prediction model for DEIRGs biomarkers. In addition, the relationship between the prognostic model and immunocytes was further explored through immunocyte correlation analysis. In total, 3,599 DEGs, 223 DEIRGs, and 46 DETFs were obtained from LUSC tissues and adjacent non-carcinoma tissues. According to multivariate Cox regression analysis, 10 DEIRGs (including CALCB, GCGR, HTR3A, AMH, VGF, SEMA3B, NRTN, ENG, ACVRL1, and NR4A1) were retrieved to establish a prognostic model for LUSC. Immunocyte infiltration analysis showed that dendritic cells and neutrophils were positively correlated with IRGs, which possibly exerted an important part within the IME of LUSC. Our study identifies a prognostic model based on IRGs, which is then used to predict LUSC prognosis and analyze immunocyte infiltration. This may provide a novel insight for exploring the potential IRGs in the IME of LUSC.
Collapse
Affiliation(s)
- Rui Li
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xi-Jia Zhou
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao Chen
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China.,Department of Respiratory Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Jian-Ping Li
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Yun-Hong Yin
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
67
|
Cohen R, Shi Q, André T. Immunotherapy for Early Stage Colorectal Cancer: A Glance into the Future. Cancers (Basel) 2020; 12:E1990. [PMID: 32708216 PMCID: PMC7409300 DOI: 10.3390/cancers12071990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) have reshaped therapeutic strategies for cancer patients. The development of ICI for early stage colorectal cancer is accompanied by specific challenges: (i) the selection of patients who are likely to benefit from these treatments, i.e., patients with tumors harboring predictive factors of efficacy of ICI, such as microsatellite instability and/or mismatch repair deficiency (MSI/dMMR), or other potential parameters (increased T cell infiltration using Immunoscore® or others, high tumor mutational burden, POLE mutation), (ii) the selection of patients at risk of disease recurrence (poor prognostic features), and (iii) the choice of an accurate clinical trial methodological framework. In this review, we will discuss the ins and outs of clinical research of ICI for early stage MSI/dMMR CC patients in adjuvant and neoadjuvant settings. We will then summarize data that might support the development of ICI in localized colorectal cancer beyond MSI/dMMR.
Collapse
Affiliation(s)
- Romain Cohen
- Department of Medical Oncology, Hôpital Saint-Antoine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), F-75012 Paris, France;
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Qian Shi
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Thierry André
- Department of Medical Oncology, Hôpital Saint-Antoine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), F-75012 Paris, France;
| |
Collapse
|
68
|
Onuma AE, Zhang H, Huang H, Williams TM, Noonan A, Tsung A. Immune Checkpoint Inhibitors in Hepatocellular Cancer: Current Understanding on Mechanisms of Resistance and Biomarkers of Response to Treatment. Gene Expr 2020; 20:53-65. [PMID: 32340652 PMCID: PMC7284108 DOI: 10.3727/105221620x15880179864121] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy worldwide and a leading cause of death worldwide. Its incidence continues to increase in the US due to hepatitis C infection and nonalcoholic steatohepatitis. Liver transplantation and resection remain the best therapeutic options for cure, but these are limited by the shortage of available organs for transplantation, diagnosis at advanced stage, and underlying chronic liver disease found in most patients with HCC. Immune checkpoint inhibitors (ICIs) have been shown to be an evolving novel treatment option in certain advanced solid tumors and have been recently approved for inoperable, advanced, and metastatic HCC. Unfortunately, a large cohort of patients with HCC fail to respond to immunotherapy. In this review, we discuss the ICIs currently approved for HCC treatment and their various mechanisms of action. We will highlight current understanding of mechanism of resistance and limitations to ICIs. Finally, we will describe emerging biomarkers of response to ICIs and address future direction on overcoming resistance to immune checkpoint therapy.
Collapse
Affiliation(s)
- Amblessed E. Onuma
- *Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hongji Zhang
- *Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- †Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hai Huang
- *Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Terence M. Williams
- ‡Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Anne Noonan
- §Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Allan Tsung
- *Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
69
|
Zhang Z, Duan FX, Gu GL, Yu PF. Mutation analysis of related genes in hamartoma polyp tissue of Peutz-Jeghers syndrome. World J Gastroenterol 2020; 26:1926-1937. [PMID: 32390703 PMCID: PMC7201153 DOI: 10.3748/wjg.v26.i16.1926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/29/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Peutz-Jeghers syndrome (PJS) is a rare disease with clinical manifestations of pigmented spots on the lips, mucous membranes and extremities, scattered gastrointestinal polyps, and susceptibility to tumors. The clinical heterogeneity of PJS is obvious, and the relationship between clinical phenotype and genotype is still unclear.
AIM To investigate the mutation status of hereditary colorectal tumor-associated genes in hamartoma polyp tissue of PJS patients and discuss its relationship with the clinicopathological data of PJS.
METHODS Twenty patients with PJS were randomly selected for this study and were treated in the Air Force Medical Center (former Air Force General Hospital) PLA between 2008 and 2017. Their hamartoma polyp tissues were used for APC, AXIN2, BMPR1A, EPCAM, MLH1, MLH3, MSH2, MSH6, MUTYH, PMS1, PMS2, PTEN, SMAD4, and LKB1/STK11 gene sequencing using next-generation sequencing technology. The correlations between the sequencing results and clinical pathological data of PJS were analyzed.
RESULTS Fourteen types of LKB1/STK11 mutations were detected in 16 cases (80.0%), of which 8 new mutations were found (3 types of frameshift deletion mutations: c.243delG, c.363_364delGA, and c.722delC; 2 types of frameshift insertions: c. 144_145insGCAAG, and c.454_455insC; 3 types of splice site mutations: c.464+1G>T, c.464+1G>A, and c.598-1G>A); 9 cases (45.0%) were found to have 18 types of heterozygous mutations in the remaining 13 genes except LKB1/STK11. Of these, MSH2: c.792+1G>A, MSH6: c.3689C>G, c.4001+13C>CTTAC, PMS1: c.46C>t, and c.922G>A were new mutations.
CONCLUSION The genetic mutations in hamartoma polyp tissue of PJS are complex and diverse. Moreover, other gene mutations in PJS hamartoma polyp tissue were observed, with the exception of LKB1/STK11 gene, especially the DNA mismatch repair gene (MMR). Colorectal hamartoma polyps with LKB1/STK11 mutations were larger in diameter than those with other gene mutations.
Collapse
Affiliation(s)
- Zhi Zhang
- Air Force Clinical College (Air Force Medical Center) of Anhui Medical University, Beijing 100142, China
| | - Fu-Xiao Duan
- Department of General Surgery, the General Hospital of Northern Theater Command PLA, Shenyang 110016, Liaoning Province, China
| | - Guo-Li Gu
- Department of General Surgery, Air Force Medical Center, PLA, Beijing 100142, China
| | - Peng-Fei Yu
- Department of General Surgery, Air Force Medical Center, PLA, Beijing 100142, China
| |
Collapse
|