51
|
Xu J, Cai S, Zhao J, Xu K, Ji H, Wu C, Xiao J, Wu Y. Advances in the Relationship Between Pyroptosis and Diabetic Neuropathy. Front Cell Dev Biol 2021; 9:753660. [PMID: 34712670 PMCID: PMC8545826 DOI: 10.3389/fcell.2021.753660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyroptosis is a novel programmed cell death process that promotes the release of interleukin-1β (IL-1β) and interleukin-18 (IL-18) by activating inflammasomes and gasdermin D (GSDMD), leading to cell swelling and rupture. Pyroptosis is involved in the regulation of the occurrence and development of cardiovascular and cerebrovascular diseases, tumors, and nerve injury. Diabetes is a metabolic disorder characterized by long-term hyperglycemia, insulin resistance, and chronic inflammation. The people have paid more and more attention to the relationship between pyroptosis, diabetes, and its complications, especially its important regulatory significance in diabetic neurological diseases, such as diabetic encephalopathy (DE) and diabetic peripheral neuropathy (DPN). This article will give an in-depth overview of the relationship between pyroptosis, diabetes, and its related neuropathy, and discuss the regulatory pathway and significance of pyroptosis in diabetes-associated neuropathy.
Collapse
Affiliation(s)
- Jingyu Xu
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Shufang Cai
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jiaxin Zhao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Hao Ji
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengbiao Wu
- Clinical Research Center, Affiliated Xiangshan Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yanqing Wu
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
52
|
Xu Y, Hu X, Li F, Zhang H, Lou J, Wang X, Wang H, Yin L, Ni W, Kong J, Wang X, Li Y, Zhou K, Xu H. GDF-11 Protects the Traumatically Injured Spinal Cord by Suppressing Pyroptosis and Necroptosis via TFE3-Mediated Autophagy Augmentation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8186877. [PMID: 34712387 PMCID: PMC8548157 DOI: 10.1155/2021/8186877] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) refers to a major worldwide cause of accidental death and disability. However, the complexity of the pathophysiological mechanism can result in less-effective clinical treatment. Growth differentiation factor 11 (GDF-11), an antiageing factor, was reported to affect the development of neurogenesis and exert a neuroprotective effect after cerebral ischaemic injury. The present work is aimed at investigating the influence of GDF-11 on functional recovery following SCI, in addition to the potential mechanisms involved. We employed a mouse model of spinal cord contusion injury and assessed functional outcomes via the Basso Mouse Scale and footprint analysis following SCI. Using western blot assays and immunofluorescence, we analysed the levels of pyroptosis, autophagy, necroptosis, and molecules related to the AMPK-TRPML1-calcineurin signalling pathway. The results showed that GDF-11 noticeably optimized function-related recovery, increased autophagy, inhibited pyroptosis, and alleviated necroptosis following SCI. Furthermore, the conducive influences exerted by GDF-11 were reversed with the application of 3-methyladenine (3MA), an autophagy suppressor, indicating that autophagy critically impacted the therapeutically related benefits of GDF-11 on recovery after SCI. In the mechanistic study described herein, GDF-11 stimulated autophagy improvement and subsequently inhibited pyroptosis and necroptosis, which were suggested to be mediated by TFE3; this effect resulted from the activity of TFE3 through the AMPK-TRPML1-calcineurin signalling cascade. Together, GDF-11 protects the injured spinal cord by suppressing pyroptosis and necroptosis via TFE3-mediated autophagy augmentation and is a potential agent for SCI therapy.
Collapse
Affiliation(s)
- Yu Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Junsheng Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xingyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Lingyan Yin
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jianzhong Kong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
53
|
Hu T, Sun Q, Gou Y, Zhang Y, Ding Y, Ma Y, Liu J, Chen W, Lan T, Wang P, Li Q, Yang F. Salidroside Alleviates Chronic Constriction Injury-Induced Neuropathic Pain and Inhibits of TXNIP/NLRP3 Pathway. Neurochem Res 2021; 47:493-502. [PMID: 34626306 DOI: 10.1007/s11064-021-03459-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Neuropathic pain is one of the most common conditions requiring treatment worldwide. Salidroside (SAL), a phenylpropanoid glucoside extracted from Rhodiola, has been suggested to produce an analgesic effect in chronic pain. However, whether SAL could alleviate pain hypersensitivity after peripheral nerve injury and its mode of action remains unclear. Several studies suggest that activation of the spinal NOD-like receptor protein 3 (NLRP3) inflammasome and its related proteins contribute to neuropathic pain's pathogenesis. This study investigates the time course of activation of spinal NLRP3 inflammasome axis in the development of neuropathic pain and also whether SAL could be an effective treatment for this type of pain by modulating NLRP3 inflammasome. In the chronic constriction injury (CCI) mice model, spinal NLRP3 inflammasome-related proteins and TXNIP, the mediator of NLRP3, were upregulated from the 14th to the 28th day after injury. The TXNIP and NLRP3 inflammasome-related proteins were mainly present in neurons and microglial cells in the spinal dorsal horn after CCI. Intraperitoneal injection of SAL at 200 mg/kg for 14 consecutive days starting from the 7th day of CCI injury could ameliorate mechanical and thermal hypersensitivity in the CCI model. Moreover, SAL inhibited the activation of the TXNIP/NLRP3 inflammasome axis and mitigated the neuronal loss of spinal dorsal horn induced by nerve injury. These results indicate that SAL could produce analgesic and neuroprotective effects in the CCI model of neuropathic pain.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Qingyu Sun
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Yu Gou
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yurui Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Yumeng Ding
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Yiran Ma
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Jing Liu
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Wen Chen
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Ting Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
54
|
Amo-Aparicio J, Garcia-Garcia J, Puigdomenech M, Francos-Quijorna I, Skouras DB, Dinarello CA, Lopez-Vales R. Inhibition of the NLRP3 inflammasome by OLT1177 induces functional protection and myelin preservation after spinal cord injury. Exp Neurol 2021; 347:113889. [PMID: 34624330 DOI: 10.1016/j.expneurol.2021.113889] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) leads to irreversible functional deficits due to the disruption of axons and the death of neurons and glial cells. The inflammatory response that occurs in the injured spinal cord results in tissue degeneration; thus, targeting inflammation after acute SCI is expected to ameliorate histopathological evidence indicative of damage and, consequently, reduce functional disabilities. Interleukin 1 beta (IL-1β) and interleukin 18 (IL-18) are pro-inflammatory cytokines members of the IL-1 family that initiate and propagate inflammation. Here, we report that protein levels of IL-1β and IL-18 were increased in spinal cord parenchyma after SCI, but with different expression profiles. Whereas levels of IL-1β were rapidly increased reaching peak levels at 12 h after the injury, levels of IL-18 did not increase until 7 days after the injury. Since activation of the NLRP3 inflammasome is required for the processing and release of IL-1β and IL-18, we intraperitoneally administered OLT1177, a selective inhibitor of the NLRP3 inflammasome, to reduce the contribution of these cytokines to SCI. At a dose of 200 mg/kg, OLT1177 protected against neurological deficits and histological evidence of damage. OLT1177 also reduced the levels of IL-1β in the spinal cord after contusion injury and diminished the accumulation of neutrophils and macrophages at later time points. These data suggest that targeting the NLRP3 inflammasome with OLT1177 could be a novel therapeutic strategy to arrest neuroinflammation and reduce functional impairments after acute SCI in humans.
Collapse
Affiliation(s)
- Jesus Amo-Aparicio
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Joana Garcia-Garcia
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain
| | - Maria Puigdomenech
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain
| | - Isaac Francos-Quijorna
- Regeneration Group, Wolfson Centre for Age-Related Diseases, IoPPN, King's College London, London, UK
| | | | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Medicine, Radboud University Medical Center, 6500 Nijmegen, the Netherlands
| | - Ruben Lopez-Vales
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain.
| |
Collapse
|
55
|
Mi J, Yang Y, Yao H, Huan Z, Xu C, Ren Z, Li W, Tang Y, Fu R, Ge X. Inhibition of heat shock protein family A member 8 attenuates spinal cord ischemia-reperfusion injury via astrocyte NF-κB/NLRP3 inflammasome pathway : HSPA8 inhibition protects spinal ischemia-reperfusion injury. J Neuroinflammation 2021; 18:170. [PMID: 34362408 PMCID: PMC8349068 DOI: 10.1186/s12974-021-02220-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Astrocyte over-activation and extensive neuron loss are the main characteristic pathological features of spinal cord ischemia-reperfusion injury (SCII). Prior studies have placed substantial emphasis on the role of heat shock protein family A member 8 (HSPA8) on postischemic myocardial inflammation and cardiac dysfunction. However, it has never been determined whether HSPA8 participates in astrocyte activation and thus mediated neuroinflammation associated with SCII. METHODS The left renal artery ligation-induced SCII rat models and oxygen-glucose deprivation and reoxygenation (OGD/R)-induced rat primary cultured astrocytes were established. The lentiviral vector encoding short hairpin RNA targeting HSPA8 was delivered to the spinal cord by intrathecal administration or to culture astrocytes. Then, the spinal neuron survival, gliosis, and nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome and its related pro-inflammatory cytokines were analyzed. RESULTS SCII significantly enhanced the GFAP and HSPA8 expression in the spinal cord, resulting in blood-brain barrier breakdown and the dramatical loss of spinal neuron and motor function. Moreover, injury also increased spinal nuclear factor-kappa B (NF-κB) p65 phosphorylation, NLRP3 inflammasome-mediated caspase-1 activation, and subsequent interleukin (IL)-1β as well as IL-18 secretion. Silencing the HSPA8 expression efficiently ameliorated the spinal cord tissue damage and promoted motor function recovery after SCII, through blockade of the astrocyte activation and levels of phosphorylated NF-κB, NLRP3, caspase-1, IL-1β, and IL-18. Further in vitro studies confirmed that HSPA8 knockdown protected astrocytes from OGD/R-induced injury via the blockade of NF-κB and NLRP3 inflammasome activation. CONCLUSION Our findings indicate that knockdown of HSPA8 inhibits spinal astrocytic damage after SCII, which may provide a promising therapeutic strategy for SCII treatment.
Collapse
Affiliation(s)
- Jingyi Mi
- Department of Sports Medicine, Wuxi 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China
| | - Yang Yang
- Department of Neurosurgery, Central Hospital of Jinzhou, Jinzhou, 121001, Liaoning, China
| | - Hao Yao
- Department of ICU, Wuxi 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China
| | - Zhirong Huan
- Department of ICU, Wuxi 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China
| | - Ce Xu
- Department of ICU, Wuxi 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China
| | - Zhiheng Ren
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Ying Tang
- Department of Microbiology, Biochemistry, & Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, 07103, NJ, USA
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Xin Ge
- Department of ICU, Wuxi 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China.
- Orthopedic Institution of Wuxi City, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
56
|
Cheng J, Hao J, Jiang X, Ji J, Wu T, Chen X, Zhang F. Ameliorative effects of miR-423-5p against polarization of microglial cells of the M1 phenotype by targeting a NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2021; 99:108006. [PMID: 34339965 DOI: 10.1016/j.intimp.2021.108006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) causes sensation and motion dysfunction. Activation of microglial cells (MCs) in the central nervous system (CNS) is heterogeneous. Heterogeneous types of MCs can produce cytotoxic or neuroprotective effects, secrete proinflammatory or anti-inflammatory factors. The cytotoxic effect of MCs is one of the reasons for secondary damage after SCI. The NLR family pyrin domain containing 3 (NLRP3) inflammasome is a protein that can recognize pathogen-related molecular patterns or host-derived danger signal molecules, responses to microbial infection, and sterile stressors. SCI triggers activation of the NLRP3 inflammasome in the CNS. We investigated the interaction between miR-423-5p and NLRP3 in MCs polarization after SCI. A rat model of SCI was established by a modified version of Allen's method. Spinal samples were adopted for preparation and sequencing of RNA. We screenedapromising microRNA (miR-423-5p) according to the results. Then, we found that NLRP3 was one of the prediction targets of miR-423-5p. By intervening in expression of miR-423-5p and NLRP3, we observed the different polarization of MCs. We employeda dual-luciferase reporter study, proteomics, and transcriptomicsto ascertain the direct targeting relationship between miR-423-5p and NLRP3. MiR-423-5p expression was decreased significantly after SCI in vivo and in vitro. Upregulation of miR-423-5p expression could prevent MCs from lipopolysaccharide-induced M1 polarization. Knockdown of NLRP3 expression could prevent MCs from lipopolysaccharide-induced M1 polarization. MiR-423-5p inhibited MCs polarization to the M1 phenotype by targeting NLRP3.
Collapse
Affiliation(s)
- Jiaqi Cheng
- Medical School of Nantong University, Nantong, Jiangsu Province 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jie Hao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xingjie Jiang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jiawei Ji
- Medical School of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Tong Wu
- Medical School of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xiaoqing Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
57
|
Wang S, Mobasheri A, Zhang Y, Wang Y, Dai T, Zhang Z. Exogenous stromal cell-derived factor-1 (SDF-1) suppresses the NLRP3 inflammasome and inhibits pyroptosis in synoviocytes from osteoarthritic joints via activation of the AMPK signaling pathway. Inflammopharmacology 2021; 29:695-704. [PMID: 34085175 PMCID: PMC8233244 DOI: 10.1007/s10787-021-00814-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/24/2021] [Indexed: 01/21/2023]
Abstract
Objective NLRP3 inflammasome may play a key role in OA pathogenesis. Stromal cell-derived factor-1 (SDF-1) is a homeostatic CXC chemokine. Since the role of SDF-1 in OA has not been explored, this study aimed to examine the effect of SDF-1 on NLRP3 inflammasome and pyroptosis in synoviocytes from OA joints. Materials and methods Human synovium was obtained from OA patients for isolation of primary synoviocytes and a murine model of collagenase-induced OA was established for testing intra-articular injections of SDF-1. Immunoblotting assays were used to examine the effects and underlying mechanism of action of SDF-1 on NLRP3 inflammasome and synoviocyte pyroptosis in synoviocytes. Inhibitors of AMPK and PI3K–mTOR were utilized to investigate the key signaling pathways involved in SDF-1-mediated OA inflammasome formation and pyroptosis. Results Synoviocytes from OA joints exhibited significantly higher expression of NLRP3 inflammasome and biomarkers of synoviocyte pyroptosis relative to healthy individuals. This was confirmed in the collagenase-induced OA model, where OA synoviocytes had a significantly lower SDF-1 expression than healthy ones. SDF-1 treatment in synoviocytes of OA patients and collagenase-induced OA led to significant downregulation in the expression of NLRP3 inflammasome and synoviocyte pyroptosis biomarkers. Inhibition of the AMPK signaling pathway significantly suppressed the inhibitory effect of SDF-1 on NLRP3 inflammasome expression of OA synoviocytes. However, blocking the SDF-1-activated PI3K–mTOR signaling pathway could still suppress the expression of NLRP3 inflammasome and synoviocyte pyroptosis biomarkers. Conclusions SDF-1 ameliorates NLRP3 inflammasome and pyroptosis in OA synoviocytes through activation of the AMPK signaling pathway. Therefore, SDF-1 may be a novel therapeutic target for OA. Supplementary Information The online version contains supplementary material available at 10.1007/s10787-021-00814-x.
Collapse
Affiliation(s)
- Shuya Wang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China
| | - Ali Mobasheri
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, PO Box 5000, 90014, Oulu, Finland. .,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406, Vilnius, Lithuania. .,Department of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA, Utrecht, The Netherlands.
| | - Yue Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China
| | - Yanli Wang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China
| | - Tianqi Dai
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China.
| |
Collapse
|
58
|
Abstract
OBJECTIVE The exact mechanism, by which spinal cord injury (SCI) leads to a male subfertility is not well-known. Present study was conducted to determine the mechanisms that lead to the elevated end-product cytokines and inflammasomes in the testes of an SCI rat model. Moreover, we evaluated the inflammasome components following SCI in testis over a defined time periods. METHODS Weight drop technique was used to induce SCI at the level of the T10 vertebra in male Wistar rats. The animals were sacrificed at specific time intervals (3, 7, 14, 21, and 28 day's post-SCI). mRNA levels of inflammasomes and cytokines were measured by real-time PCR, germ cells apoptosis was evaluated by TUNEL staining, and the epithelium of seminiferous tubules by Miller's and Johnsen's scores. RESULTS The results showed activation of Nlrp3 in the testes of SCI animals at different time points. Expression of Nlrp3 and IL-1β sharply increased 14 days after the SCI. Upregulation of IL-1β and IL-18 at days 14 and 21 post-SCI might disintegrate the epithelium of seminiferous tubules at day 14 and induce germ cells apoptosis, increase abnormal sperm cells, and attenuate motility and viability at 21 days post-SCI. CONCLUSION This study provided further evidence of innate immunity activation in testes that could lead to more disruption of spermatogenesis in SCI patients at specific times.
Collapse
|
59
|
Lin J, Tian H, Zhao X, Lin S, Li D, Liu Y, Xu C, Mei X. Zinc provides neuroprotection by regulating NLRP3 inflammasome through autophagy and ubiquitination in a spinal contusion injury model. CNS Neurosci Ther 2021; 27:413-425. [PMID: 33034415 PMCID: PMC7941232 DOI: 10.1111/cns.13460] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
AIM Spinal cord injury (SCI) is a serious disabling injury worldwide, and the excessive inflammatory response it causes plays an important role in secondary injury. Regulating the inflammatory response can be a potential therapeutic strategy for improving the prognosis of SCI. Zinc has been demonstrated to have a neuroprotective effect in experimental spinal cord injury models. In this study, we aimed to explore the neuroprotective effect of zinc through the suppression of the NLRP3 inflammasome. METHOD Allen's method was used to establish an SCI model in C57BL/6J mice. The Basso Mouse Scale (BMS), Nissl staining were employed to confirm the protective effect of zinc on neuronal survival and functional recovery in vivo. Western blotting (WB), immunofluorescence (IF), and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression levels of NLRP3 inflammasome and autophagy-related proteins. Transmission electron microscopy (TEM) was used to confirm the occurrence of zinc-induced autophagy. In vitro, lipopolysaccharide (LPS) and ATP polarized BV2 cells to a proinflammatory phenotype. 3-Methyladenine (3-MA) and bafilomycin A1 (BafA1) were chosen to explore the relationship between the NLRP3 inflammasome and autophagy. A coimmunoprecipitation assay was used to detect the ubiquitination of the NLRP3 protein. RESULTS Our data showed that zinc significantly promoted motor function recovery after SCI. In vivo, zinc treatment inhibited the protein expression level of NLRP3 while increasing the level of autophagy. These effects were fully validated by the polarization of BV2 cells to a proinflammatory phenotype. The results showed that when 3-MA and BafA1 were applied, the promotion of autophagy by zinc was blocked and that the inhibitory effect of zinc on NLRP3 was reversed. Furthermore, co-IP confirmed that the promotion of autophagy by zinc also activated the protein expression of ubiquitin and suppressed high levels of NLRP3. CONCLUSION Zinc provides neuroprotection by regulating NLRP3 inflammasome through autophagy and ubiquitination after SCI.
Collapse
Affiliation(s)
- Jia‐quan Lin
- Department of OrthopedicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - He Tian
- Department of Histology and EmbryologyJinzhou Medical UniversityJinzhouChina
| | - Xiao‐guang Zhao
- Department of EmergencyThe First Affifiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Sen Lin
- Department of OrthopedicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Dao‐yong Li
- Department of OrthopedicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Yuan‐ye Liu
- Department of OrthopedicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Chang Xu
- Department of OrthopedicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Xi‐fan Mei
- Department of OrthopedicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| |
Collapse
|
60
|
Hummel C, Leylamian O, Pösch A, Weis J, Aronica E, Beyer C, Johann S. Expression and Cell Type-specific Localization of Inflammasome Sensors in the Spinal Cord of SOD1 (G93A) Mice and Sporadic Amyotrophic lateral sclerosis Patients. Neuroscience 2021; 463:288-302. [PMID: 33781799 DOI: 10.1016/j.neuroscience.2021.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/17/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Inflammasomes are key components of the innate immune system and activation of these multiprotein platforms is a crucial event in the etiopathology of amyotrophic lateral sclerosis (ALS). Inflammasomes consist of a pattern recognition receptor (PRR), the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) and caspase 1. Exogenous or endogenous "danger signals" can trigger inflammasome assembly and promote maturation and release of pro-inflammatory cytokines, including interleukin 1β. Previous studies have demonstrated presence and activation of NLRP3 in spinal cord tissue from SOD1(G93A) mice and human sporadic ALS (sALS) patients. However, regulation and cell type-specific localization of other well-known PRRs has not yet been analysed in ALS. Here, we explored gene expression, protein concentration and cell type-specific localization of the NLRP1, NLRC4 and AIM2 inflammasomes in spinal cord samples from SOD1(G93A) mice and sALS patients. Transcription levels of NLRP1 and NLRC4, but not AIM2, were elevated in symptomatic SOD1(G93A) animals. Immunoblotting revealed elevated protein levels of NLRC4, which were significantly increased in sALS vs. control patients. Immunofluorescence studies revealed neuronal labelling of all investigated PRRs. Staining of AIM2 was detected in all types of glia, whereas glial type-specific labelling was observed for NLRP1 and NLRC4. Our findings revealed pathology-related and cell type-specific differences in the expression of subsets of PRRs. Besides NLRP3, NLRC4 appears to be linked more closely to ALS pathogenesis.
Collapse
Affiliation(s)
- Carmen Hummel
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Omid Leylamian
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Anna Pösch
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Pauwelsstraße 30, Aachen, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Sonja Johann
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany; Center of Experimental Medicine, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany.
| |
Collapse
|
61
|
Roosen K, Scheld M, Mandzhalova M, Clarner T, Beyer C, Zendedel A. CXCL12 inhibits inflammasome activation in LPS-stimulated BV2 cells. Brain Res 2021; 1763:147446. [PMID: 33766517 DOI: 10.1016/j.brainres.2021.147446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
The activation of the CXCL12-CXCR4 signaling axis is implicated in the regulation of cell survival, proliferation, and mobilization of bone marrow stem cells into the injured site. We have shown in a previous study that intrathecal administration of CXCL12 reduces spinal cord tissue damage and neuroinflammation and provides functional improvement by reducing inflammasome activity and local inflammatory processes in an experimental spinal cord injury (SCI) rat model. Here, we aimed at investigating whether these neuroprotective effects rely on the control of CXCL12 signaling on microglial activation as microglia cells are known to be the primary immune cells of the brain. LPS induced the expression of the inflammasome components NLRP3, NLRC4 and ASC, the secretion of the cytokines IL-1b and IL-18 and the activation of caspase-1 protease in BV2 cells. Pre-treatment with CXCL12 significantly reduced LPS-induced IL-1b/IL-18 secretion and inflammasome induction. Our results also showed that CXCL12 can suppress caspase-1 activity, which leads to a decrease of SCI-related induction of active IL-1b.
Collapse
Affiliation(s)
- Kenza Roosen
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Miriam Scheld
- Anatomy and Cell Biology, University of Augsburg, 86159 Augsburg, Germany
| | | | - Tim Clarner
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
62
|
CXCL12 promotes spinal nerve regeneration and functional recovery after spinal cord injury. Neuroreport 2021; 32:450-457. [PMID: 33657074 DOI: 10.1097/wnr.0000000000001613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI) leads to permanent loss of motor and sensory function due to the complex mechanisms of the external microenvironment and internal neurobiochemistry that restrict neuronal plasticity and axonal regeneration. Chemokine CXCL12 was verified in regulating the development of central nervous system (CNS) and repairing of CNS disease. In the present study, CXCL12 was downregulated in the spinal cord after SCI. SCI also induced gliosis and loss of synapse. Intrathecal treatment of CXCL12 promoted the functional recovery of SCI by inducing the formation of neuronal connections and suppressing glia scar. To confirm whether CXCL12 promoted synapse formation and functional neuronal connections, the primary cortical neurons were treated with CXCL12 peptide, the synapse was examined using Immunofluorescence staining and the function of synapse was tested using a whole-cell patch clamp. The results indicated that CXCL12 peptide promoted axonal elongation, branche formation, dendrite generation and synaptogenesis. The electrophysiological results showed that CXCL12 peptide increased functional connections among neurons. Taken together, the present study illustrated an underlying mechanism of the development of SCI and indicated a potential approach to facilitate functional recovery of spinal cord after SCI.
Collapse
|
63
|
Pearce L, Davidson SM, Yellon DM. Does remote ischaemic conditioning reduce inflammation? A focus on innate immunity and cytokine response. Basic Res Cardiol 2021; 116:12. [PMID: 33629195 PMCID: PMC7904035 DOI: 10.1007/s00395-021-00852-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
The benefits of remote ischaemic conditioning (RIC) have been difficult to translate to humans, when considering traditional outcome measures, such as mortality and heart failure. This paper reviews the recent literature of the anti-inflammatory effects of RIC, with a particular focus on the innate immune response and cytokine inhibition. Given the current COVID-19 pandemic, the inflammatory hypothesis of cardiac protection is an attractive target on which to re-purpose such novel therapies. A PubMed/MEDLINE™ search was performed on July 13th 2020, for the key terms RIC, cytokines, the innate immune system and inflammation. Data suggest that RIC attenuates inflammation in animals by immune conditioning, cytokine inhibition, cell survival and the release of anti-inflammatory exosomes. It is proposed that RIC inhibits cytokine release via a reduction in nuclear factor kappa beta (NF-κB)-mediated NLRP3 inflammasome production. In vivo, RIC attenuates pro-inflammatory cytokine release in myocardial/cerebral infarction and LPS models of endotoxaemia. In the latter group, cytokine inhibition is associated with a profound survival benefit. Further clinical trials should establish whether the benefits of RIC in inflammation can be observed in humans. Moreover, we must consider whether uncomplicated MI and elective surgery are the most suitable clinical conditions in which to test this hypothesis.
Collapse
Affiliation(s)
- Lucie Pearce
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
64
|
Picard K, St-Pierre MK, Vecchiarelli HA, Bordeleau M, Tremblay MÈ. Neuroendocrine, neuroinflammatory and pathological outcomes of chronic stress: A story of microglial remodeling. Neurochem Int 2021; 145:104987. [PMID: 33587954 DOI: 10.1016/j.neuint.2021.104987] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Microglia, the resident macrophage cells of the central nervous system (CNS), are involved in a myriad of processes required to maintain CNS homeostasis. These cells are dynamic and can adapt their phenotype and functions to the physiological needs of the organism. Microglia rapidly respond to changes occurring in their microenvironment, such as the ones taking place during stress. While stress can be beneficial for the organism to adapt to a situation, it can become highly detrimental when it turns chronic. Microglial response to prolonged stress may lead to an alteration of their beneficial physiological functions, becoming either maladaptive or pro-inflammatory. In this review, we aim to summarize the effects of chronic stress exerted on microglia through the neuroendocrine system and inflammation at adulthood. We also discuss how these effects of chronic stress could contribute to microglial involvement in neuropsychiatric and sleep disorders, as well as neurodegenerative diseases.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | | | - Maude Bordeleau
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
65
|
Zhang W, Jia L, Zhao B, Xiong Y, Wang YN, Liang J, Xu X. Quercetin reverses TNF‑α induced osteogenic damage to human periodontal ligament stem cells by suppressing the NF‑κB/NLRP3 inflammasome pathway. Int J Mol Med 2021; 47:39. [PMID: 33537804 PMCID: PMC7891819 DOI: 10.3892/ijmm.2021.4872] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
Quercetin (Quer) is a typical antioxidant flavonoid from plants that is involved in bone metabolism, as well as in the progression of inflammatory diseases. Elevated levels of tumor necrosis factor-α (TNF-α), a typical pro-inflammatory cytokine, can affect osteogenesis. In the present study, TNF-α was used to establish an in vitro model of periodontitis. The effects of Quer on, as well as its potential role in the osteogenic response of human periodontal ligament stem cells (hPDLSCs) under TNF-α-induced inflammatory conditions and the underlying mechanisms were then investigated. Within the appropriate concentration range, Quer did not exhibit any cytotoxicity. More importantly, Quer significantly attenuated the TNF-α induced the suppression of osteogenesis-related genes and proteins, alkaline phosphatase (ALP) activity and mineralized matrix in the hPDLSCs. These findings were associated with the fact that Quer inhibited the activation of the NF-κB signaling pathway, as well as the expression of NLRP3 inflammation-associated proteins in the inflammatory microenvironment. Moreover, the silencing of NLRP3 by small interfering RNA (siRNA) was found to protect the hPDLSCs against TNF-α-induced osteogenic damage, which was in accordance with the effects of Quer. On the whole, the present study demonstrates that Quer reduces the impaired osteogenesis of hPDLSCs under TNF-α-induced inflammatory conditions by inhibiting the NF-κB/NLRP3 inflammasome pathway. Thus, Quer may prove to be a potential remedy against periodontal bone defects.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Linglu Jia
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Zhao
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yixuan Xiong
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ya-Nan Wang
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jin Liang
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
66
|
Rosa JM, Camargo A, Wolin IAV, Kaster MP, Rodrigues ALS. Physical exercise prevents amyloid β 1-40-induced disturbances in NLRP3 inflammasome pathway in the hippocampus of mice. Metab Brain Dis 2021; 36:351-359. [PMID: 33211258 DOI: 10.1007/s11011-020-00646-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Amyloid beta (Aβ), one of the main hallmarks of Alzheimer's Disease (AD), may stimulate pattern recognition receptors (PRR) such as the NLRP3 inflammasome, inducing a pro-inflammatory state in the brain that contributes to disease development. Physical exercise can have multiple beneficial effects on brain function, including anti-inflammatory and neuroprotective roles. The objective of this study was to investigate the prophylactic effect of moderate treadmill exercise for 4 weeks on inflammatory events related to NLRP3 signaling in the hippocampus of mice after intracerebroventricular Aβ1-40 administration. Our results show that Aβ1-40 administration (400 pmol/mouse, i.c.v.) significantly increased the immunocontent Iba-1 (a microglial reactivity marker), NLRP3, TXNIP, and caspase-1 in the hippocampus of mice. However, physical exercise prevented the hippocampal increase in Iba-1, TXNIP, and activation of the NLRP3 inflammasome pathway caused by Aβ1-40. Moreover, physical exercise per se reduced the TXNIP and caspase-1 immunocontent in the hippocampus. No alterations were observed on the immunocontent of GFAP, ASC, and IL-1β in the hippocampus after Aβ1-40 and/or physical exercise. These results reinforce the role of NLRP3 inflammasome pathway in AD and point to physical exercise as a possible non-pharmacological strategy to prevent inflammatory events triggered by Aβ1-40 in mice.
Collapse
Affiliation(s)
- Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ingrid A V Wolin
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil.
| |
Collapse
|
67
|
Al Mamun A, Wu Y, Monalisa I, Jia C, Zhou K, Munir F, Xiao J. Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res 2021; 28:97-109. [PMID: 33364048 PMCID: PMC7753222 DOI: 10.1016/j.jare.2020.08.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Currently, spinal cord injury (SCI) is a pathological incident that triggers several neuropathological conditions, leading to the initiation of neuronal damage with several pro-inflammatory mediators' release. However, pyroptosis is recognized as a new programmed cell death mechanism regulated by the stimulation of caspase-1 and/or caspase-11/-4/-5 signaling pathways with a series of inflammatory responses. AIM Our current review concisely summarizes the potential role of pyroptosis-regulated programmed cell death in SCI, according to several molecular and pathophysiological mechanisms. This review also highlights the targeting of pyroptosis signaling pathways and inflammasome components and its therapeutic implications for the treatment of SCI. KEY SCIENTIFIC CONCEPTS Multiple pieces of evidence have illustrated that pyroptosis plays significant roles in cell swelling, plasma membrane lysis, chromatin fragmentation and intracellular pro-inflammatory factors including IL-18 and IL-1β release. In addition, pyroptosis is directly mediated by the recently discovered family of pore-forming protein known as GSDMD. Current investigations have documented that pyroptosis-regulated cell death plays a critical role in the pathogenesis of multiple neurological disorders as well as SCI. Our narrative article suggests that inhibiting the pyroptosis-regulated cell death and inflammasome components could be a promising therapeutic approach for the treatment of SCI in the near future.
Collapse
Key Words
- AIM2, Absent in melanoma 2
- ASC, apoptosis-associated speck-like protein
- ATP, Adenosine triphosphate
- BBG, Brilliant blue G
- CCK-8, Cell Counting Kit-8
- CNS, central nervous system
- CO, Carbon monoxide
- CORM-3, Carbon monoxide releasing molecle-3
- Caspase-1
- Cx43, Connexin 43
- DAMPs, Damage-associated molecular patterns
- DRD1, Dopamine Receptor D1
- ECH, Echinacoside
- GSDMD, Gasdermin D
- Gal-3, Galectin-3
- H2O2, Hydrogen peroxide
- HO-1, Heme oxygenase-1
- IL-18, Interleukin-18
- IL-1β, Interleukin-1 beta
- IRE1, Inositol requiring enzyme 1
- JOA, Japanese orthopedics association
- LPS, Lipopolysaccharide
- NDI, Neck data index
- NF-κB, Nuclear factor-kappa B
- NLRP1, NOD-like receptor protein 1
- NLRP1b, NOD-like receptor protein 1b
- NLRP3
- NLRP3, Nucleotide-binding domain-like receptor protein 3
- Neuroinflammation
- Nrf2, Nuclear factor erythroid 2-related factor 2
- OPCs, Oligodendrocyte progenitor cells
- PAMPs, Pathogen-associated molecular patterns
- PRRs, Pattern recognition receptors
- Pyroptosis
- ROS, Reactive oxygen species
- Spinal cord injury
- TLR4, Toll-like receptor 4
- TXNIP, Thioredoxin-interacting protein
- Therapeutic implications
- double stranded DNAIR, Ischemia reperfusion
- si-RNA, Small interfering RNA
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035 Zhejiang Province, China
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| |
Collapse
|
68
|
Kong G, Liu J, Li R, Lin J, Huang Z, Yang Z, Wu X, Huang Z, Zhu Q, Wu X. Ketone Metabolite β-Hydroxybutyrate Ameliorates Inflammation After Spinal Cord Injury by Inhibiting the NLRP3 Inflammasome. Neurochem Res 2021; 46:213-229. [PMID: 33108630 DOI: 10.1007/s11064-020-03156-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/18/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Ketogenic diet (KD) has been shown to be beneficial in a range of neurological disorders, with ketone metabolite β-hydroxybutyrate (βOHB) reported to block the nucleotide oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in bone marrow-derived macrophages. In this study, we show that pretreatment with KD or in situ βOHB suppressed macrophages/microglia activation and the overproduction of inflammatory cytokines, while KD downregulated the expression of NLRP3 inflammasome. Moreover, KD promoted macrophages/microglia transformation from the M1 phenotype to the M2a phenotype following spinal cord injury (SCI) in the in vivo study. Rats in the KD group demonstrated improved behavioral and electrophysiological recovery after SCI when compared to those rats in the standard diet group. The in vitro study performed on BV2 cells indicated that βOHB inhibited an LPS+ATP-induced inflammatory response and decreased NLRP3 protein levels. Our data demonstrated that pretreatment with KD attenuated neuroinflammation following SCI, probably by inhibiting NLRP3 inflammasome and shifting the activation state of macrophages/microglia from the M1 to the M2a phenotype. Therefore, the ketone metabolite βOHB might provide a potential future therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Ganggang Kong
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junhao Liu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Rong Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Junyu Lin
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zucheng Huang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zhou Yang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Xiuhua Wu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Qingan Zhu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| | - Xiaoliang Wu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
69
|
Xu S, Wang J, Zhong J, Shao M, Jiang J, Song J, Zhu W, Zhang F, Xu H, Xu G, Zhang Y, Ma X, Lyu F. CD73 alleviates GSDMD-mediated microglia pyroptosis in spinal cord injury through PI3K/AKT/Foxo1 signaling. Clin Transl Med 2021; 11:e269. [PMID: 33463071 PMCID: PMC7774461 DOI: 10.1002/ctm2.269] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Neuroinflammation-induced secondary injury is an important cause of sustained progression of spinal cord injury. Inflammatory programmed cell death pyroptosis executed by the pore-forming protein gasdermin D (GSDMD) is an essential step of neuroinflammation. However, it is unclear whether CD73, a widely accepted immunosuppressive molecule, can inhibit pyroptosis via mediating GSDMD. METHODS C57BL/6J CD73 deficient mice and wild-type mice, Lipopolysaccharide (LPS)-induced primary microglia and BV2 cells were respectively used to illustrate the effect of CD73 on microglia pyroptosis in vivo and in vitro. A combination of molecular and histological methods was performed to assess pyroptosis and explore the mechanism both in vivo and in vitro. RESULTS We have shown molecular evidence for CD73 suppresses the activation of NLRP3 inflammasome complexes to reduce the maturation of GSDMD, leading to decreased pyroptosis in microglia. Further analysis reveals that adenosine-A2B adenosine receptor-PI3K-AKT-Foxo1 cascade is a possible mechanism of CD73 regulation. Importantly, we determine that CD73 inhibits the expression of GSDMD at the transcriptional level through Foxo1. What's more, we confirm the accumulation of HIF-1α promotes the overexpression of CD73 after spinal cord injury (SCI), and the increased CD73 in turn upregulates the expression of HIF-1α, eventually forming a positive feedback regulatory loop. CONCLUSION Our data reveal a novel function of CD73 on microglia pyroptosis, suggesting a unique therapeutic opportunity for mitigating the disease process in SCI.
Collapse
Affiliation(s)
- Shun Xu
- Department of OrthopedicsShanghai Fifth People's HospitalFudan UniversityShanghaiChina
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Jin Wang
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Junjie Zhong
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityFudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Minghao Shao
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Jianyuan Jiang
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Jian Song
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Wei Zhu
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Fan Zhang
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Haocheng Xu
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Guangyu Xu
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Yuxuan Zhang
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Xiaosheng Ma
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Feizhou Lyu
- Department of OrthopedicsShanghai Fifth People's HospitalFudan UniversityShanghaiChina
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
70
|
Therapeutic role of inflammasome inhibitors in neurodegenerative disorders. Brain Behav Immun 2021; 91:771-783. [PMID: 33157255 DOI: 10.1016/j.bbi.2020.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation, characterized by the activation of glial cells, is a hallmark in several neurological and neurodegenerative disorders. Inadequate inflammation cannot eliminate the infection of pathogens, while excessive or hyper-reactive inflammation can cause chronic or systemic inflammatory diseases affecting the central nervous system (CNS). In response to a brain injury or pathogen invasion, the pathogen recognition receptors (PRRs) expressed on glial cells are activated via binding to cellular damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs). This subsequently leads to the activation of NOD (nucleotide-binding oligomerization domain)-like receptor proteins (NLRs). In neurodegenerative diseases such as HIV-1-associated neurocognitive disorders (HAND), Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), chronic inflammation is a critical contributing factor for disease manifestation including pathogenesis. Emerging evidence points to the involvement of "inflammasomes", especially the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing (NLRP) complex in the development of these diseases. The activated NLRP3 results in the proteolytic activation of caspase-1 that facilitates the cleavage of pro-IL-1β and the secretion of IL-1β and IL-18 proinflammatory cytokines. Accordingly, these and other seminal findings have led to the development of NLRP-targeting small-molecule therapeutics as possible treatment options for neurodegenerative disorders. In this review, we will discuss the new advances and evidence-based literature concerning the role of inflammasomes in neurodegenerative diseases, its role in the neurological repercussions of CNS chronic infection, and the examples of preclinical or clinically tested NLRP inhibitors as potential strategies for the treatment of chronic neurological diseases.
Collapse
|
71
|
NIMA-related kinase 7 amplifies NLRP3 inflammasome pro-inflammatory signaling in microglia/macrophages and mice models of spinal cord injury. Exp Cell Res 2020; 398:112418. [PMID: 33309808 DOI: 10.1016/j.yexcr.2020.112418] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND NIMA-related kinase-7 (NEK7) is a serine/threonine kinase that drives cell-cycle dynamics by modulating mitotic spindle formation and cytokinesis. It is also a crucial modulator of the pro-inflammatory effects of NOD-like receptor 3 (NLRP3) inflammasome. However, the role of NEK7 in microglia/macrophages post-spinal cord injury (SCI) is not well defined. METHODS In this study, we performed both in vivo and in vitro experiments. Using an in vivo mouse SCI model, NEK7 siRNAs were administered intraspinally. For in vitro analysis, BV-2 microglia cells with NEK7-siRNA were stimulated with 1 μg/ml lipopolysaccharide (LPS) and 2 mM Adenosine triphosphate (ATP). RESULTS Here, we found that the mRNA and protein levels of NEK7 and NLRP3 inflammasomes were upregulated in spinal cord tissues of injured mice and BV-2 microglia cells exposed to Lipopolysaccharide (LPS) and Adenosine triphosphate (ATP). Further experiments established that NEK7 and NLRP3 interacted in BV-2 microglia cells, an effect that was eliminated following NEK7 ablation. Moreover, NEK7 ablation suppressed the activation of NLRP3 inflammasomes. Although NEK7 inhibition did not significantly improve motor function post-SCI in mice, it was found to attenuate local inflammatory response and inhibit the activation of NLRP3 inflammasome in microglia/macrophages of the injured spinal cord. CONCLUSION NEK7 amplifies NLRP3 inflammasome pro-inflammatory signaling in BV-2 microglia cells and mice models of SCI. Therefore, agents targeting the NEK7/NLRP3 signaling offers great promise in the treatment of inflammatory response post-SCI.
Collapse
|
72
|
Ultrashort Wave Combined with Human Umbilical Cord Mesenchymal Stem Cell (HUC-MSC) Transplantation Inhibits NLRP3 Inflammasome and Improves Spinal Cord Injury via MK2/TTP Signalling Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3021750. [PMID: 33376718 PMCID: PMC7738785 DOI: 10.1155/2020/3021750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
Objective To investigate the curative effects of HUC-MSCs combined with USW on spinal cord injury (SCI) and the effects on inflammatory microenvironment and to explore the regulatory mechanisms of MK2/TTP signalling pathway and NLRP3 inflammasome. Methods The SCI rat model was established using the modified Allen method; rats were administered with USW, HUC-MSCs, and combination therapy of USW and HUC-MSCs; the therapeutic efficacies in each group of rats were monitored and represented in BBB score. SCI levels were observed using HE staining and IF. The microglia polarisation state and released contents of inflammatory factors were detected. IF and Western Blotting were performed on to detect the expression levels of MK2/TTP signalling pathway and NLRP3 inflammasome-related proteins. Furthermore, the regulatory mechanisms of MK2/TTP pathway and NLRP3 were explored by performing on the in vitro study. Results Combination therapy of USW and HUC-MSCs was found of significant efficacy on improving motor functions of SCI rats, and it was further proved that this combination therapy can reduce spinal cord injury in SCI rats, of which USW plays a more important role. While transplantation of HUC-MSCs can promote microglial cells developing to SCI repair, and M2 microglial cells were taking advantages gradually. The combination therapy can inhibit the expression of MK2; downregulate NLRP3 inflammasome; suppress the expression levels of pro-caspase-1, pro-IL-1β, and pro-IL-18; and simultaneously suppress the release of IL-1β and IL-18, thereby reducing spinal cord neurons apoptosis. It was found that the steady state of microglial polarisation maintained by combined treatment of USW and HUC-MSCs was destroyed with the upregulation of MK2 expression in cells, of which, M1 type microglial cell was dominant and the increased contents of inflammatory factors were detected. However, overexpressed MK2 relieved the inhibition of NLRP3 expression by TTP. Conclusions Combination therapy of USW and HUC-MSCs can downregulate NLRP3 expression, relieve inflammatory responses, improve immune microenvironment, and rescue spinal cord injury via suppressing phosphorylation level of MK2.
Collapse
|
73
|
Nógrádi B, Nyúl-Tóth Á, Kozma M, Molnár K, Patai R, Siklós L, Wilhelm I, Krizbai IA. Upregulation of Nucleotide-Binding Oligomerization Domain-, LRR- and Pyrin Domain-Containing Protein 3 in Motoneurons Following Peripheral Nerve Injury in Mice. Front Pharmacol 2020; 11:584184. [PMID: 33328988 PMCID: PMC7732612 DOI: 10.3389/fphar.2020.584184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Neuronal injuries are accompanied by release and accumulation of damage-associated molecules, which in turn may contribute to activation of the immune system. Since a wide range of danger signals (including endogenous ones) are detected by the nucleotide-binding oligomerization domain-, LRR- and pyrin domain-containing protein 3 (NLRP3) pattern recognition receptor, we hypothesized that NLRP3 may become activated in response to motor neuron injury. Here we show that peripheral injury of the oculomotor and the hypoglossal nerves results in upregulation of NLRP3 in corresponding motor nuclei in the brainstem of mice. Although basal expression of NLRP3 was observed in microglia, astroglia and neurons as well, its upregulation and co-localization with apoptosis-associated speck-like protein containing a caspase activation and recruitment domain, suggesting inflammasome activation, was only detected in neurons. Consequently, increased production of active pro-inflammatory cytokines interleukin-1β and interleukin-18 were detected after hypoglossal nerve axotomy. Injury-sensitive hypoglossal neurons responded with a more pronounced NLRP3 upregulation than injury-resistant motor neurons of the oculomotor nucleus. We further demonstrated that the mitochondrial protector diazoxide was able to reduce NLRP3 upregulation in a post-operative treatment paradigm. Our results indicate that NLRP3 is activated in motoneurons following acute nerve injury. Blockade of NLRP3 activation might contribute to the previously observed anti-inflammatory and neuroprotective effects of diazoxide.
Collapse
Affiliation(s)
- Bernát Nógrádi
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, Szeged, Hungary
| | - Ádám Nyúl-Tóth
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Department of Biochemistry and Molecular Biology, Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Mihály Kozma
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - László Siklós
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| |
Collapse
|
74
|
Hong X, Jiang F, Li Y, Fang L, Qian Z, Chen H, Kong R. Treatment with 5-methoxytryptophan attenuates microglia-induced neuroinflammation in spinal cord trauma. Int Immunopharmacol 2020; 88:106988. [PMID: 33182019 DOI: 10.1016/j.intimp.2020.106988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
Neuroinflammation following spinal cord injury (SCI) leads to extensive secondary damage in neural tissue adjacent to the primary lesion foci. 5-Methoxytryptophan (5MTP) is a metabolite of tryptophan and proven to play a protective role in several inflammation-related diseases. However, the specific efficacy and molecular mechanism of 5MTP in SCI remains unknown. Here, we aimed to investigate the anti-inflammatory role of 5MTP in microglia-induced neuroinflammation and its therapeutic effect in SCI. To assess the effect of 5MTP in neuroinflammation, we used lipopolysaccharide (LPS) to stimulate microglia in vitro and detected the microglial phenotype using immunofluorescence staining, the inflammatory-related pathway using western blotting, and pro-inflammatory cytokines using ELISA and immunofluorescence. To explore the therapeutic effect of 5MTP in SCI, we performed contusion of the spinal cord in mice and measured the levels of neuroinflammation, glial accumulation, histological and functional recovery using ELISA, immunofluorescence staining, immunohistochemical staining, hematoxylin-eosin staining, Nissl staining and the Basso Mouse Scale, respectively. We found that treatment with 5MTP contributed to decreased activation of pro-inflammatory microglia and reduced the generation of inflammatory cytokines, including TNF-α, IL-1β, IL-6 and IL-18, by negative regulation of the p38-MAPK signaling pathway and NLRP3/caspase-1 expression. In vivo, administration of 5MTP showed mitigatory neuroinflammation levels associated with alleviated glial scar in SCI mice; hence, the neurological integrity and the neuronal survival, as well as locomotor function, were improved following 5MTP administration. 5MTP, as a novel anti-neuroinflammatory reagent, can attenuate activated microglia-induced secondary injury following SCI, and therefore, shows promise as a potential compound for application in a clinical trial for SCI therapy.
Collapse
Affiliation(s)
- Xin Hong
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Fan Jiang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - You Li
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Le Fang
- Department of Critical Care Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanyang Qian
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China.
| | - Hongtao Chen
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Renyi Kong
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
75
|
Qian X, An N, Ren Y, Yang C, Zhang X, Li L. Immunosuppressive Effects of Mesenchymal Stem Cells-derived Exosomes. Stem Cell Rev Rep 2020; 17:411-427. [PMID: 32935222 DOI: 10.1007/s12015-020-10040-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) have become important seed cells in therapy because of their immunosuppressive function and anti-inflammatory effects. MSCs exert immunosuppressive effects through direct contact or paracrine action. The paracrine functions of MSCs are at least partially mediated by exosomes, which are membrane vesicles, carrying abundant proteins, nucleic acids and other active molecules. MSC-exos have heterogeneity. The exosomes from different donors, tissues generations of MSCs carry different bioactive molecules. These cargos are transferred to recipient cells by endocytosis or binding to proteins on the receptor surface to mediate intercellular communication between different cell types and affect the functions of the recipient cells. Exosomes play an important role in the regulation of the immune system. Exosomes derived from MSCs (MSC-exos) carry immunomodulatory effectors or transmit active signal molecules to regulate the biological activities of immune cells and thus mediating immune suppression, especially on macrophages and T cells. Mitochondria and autophagy-related pathways are also associated with MSC-exos immunosuppressive effects. Graphical Abstract.
Collapse
Affiliation(s)
- Xiaoli Qian
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Nan An
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Yifan Ren
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Chenxin Yang
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
76
|
Li X, Yu Z, Zong W, Chen P, Li J, Wang M, Ding F, Xie M, Wang W, Luo X. Deficiency of the microglial Hv1 proton channel attenuates neuronal pyroptosis and inhibits inflammatory reaction after spinal cord injury. J Neuroinflammation 2020; 17:263. [PMID: 32891159 PMCID: PMC7487532 DOI: 10.1186/s12974-020-01942-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/25/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) causes neurological dysfunction with devastating consequences. SCI pathogenesis is accompanied by inflammasome activation and neuronal damage. But the spatial pattern and the time course of neuronal pyroptosis and apoptosis after SCI should be further elucidated. The microglial voltage-gated proton channel (Hv1) is implicated in reactive oxygen species (ROS)-induced neuronal damage following ischemic stroke. However, there is a lack of quantification on the neuronal pyroptosis and apoptosis associated with microglial Hv1 after SCI. METHODS We analyzed spatial and temporal characteristics of neuronal pyroptosis and apoptosis following SCI and investigated the effects of Hv1 deficiency on neuronal pyroptosis and the nod-like receptor 3 (NLRP3) inflammasome pathway by using a mouse model of SCI. We tested the effects of Hv1-deficient microglia on ROS production in vivo and examined the relationship between ROS and neuronal pyroptosis in vitro. RESULTS We observed that apoptosis was detected closer to the injury core than pyroptosis. The incidence of neuronal apoptosis peaked on day 1 after SCI and occurred before pyroptosis. Hv1 deficiency reduced neuronal apoptosis and NLRP3-inflammasome-mediated pyroptosis, improved axonal regeneration, and reduced motor deficits. SCI led to elevated ROS levels, whereas Hv1 deficiency downregulated microglial ROS generation. In vitro, ROS upregulated neuronal pyroptosis and activated the NLRP3 inflammasome pathway, both of which were reversed by addition of a ROS scavenger. Our results suggested that microglial Hv1 regulated neuronal apoptosis and NLRP3-induced neuronal pyroptosis after SCI by mediating ROS production. CONCLUSION Following SCI, neuronal pyroptosis lasted longer and occurred farther away from the injury core compared with that of neuronal apoptosis. Microglial Hv1 deficiency downregulated microglial ROS generation and reduced apoptosis and NLRP3-induced neuronal pyroptosis. Our findings may provide novel insights into Hv1-associated mechanisms underlying neuronal damage after SCI.
Collapse
Affiliation(s)
- Xuefei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weifeng Zong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengfei Ding
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
77
|
Scheld M, Heymann F, Zhao W, Tohidnezhad M, Clarner T, Beyer C, Zendedel A. Modulatory effect of 17β-estradiol on myeloid cell infiltration into the male rat brain after ischemic stroke. J Steroid Biochem Mol Biol 2020; 202:105667. [PMID: 32407868 DOI: 10.1016/j.jsbmb.2020.105667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022]
Abstract
Ischemic stroke is the leading cause of human disability and mortality in the world. Neuroinflammation is the main pathological event following ischemia which contributes to secondary brain tissue damage and is driven by infiltration of circulating immune cells such as macrophages. Because of neuroprotective properties against ischemic brain damage, estrogens have the potential to become of therapeutic interest. However, the exact mechanisms of neuroprotection and signaling pathways is not completely understood. In the current study, 12-week-old male Wistar rats underwent an experimental ischemia by occluding the middle cerebral artery transiently (tMCAO) for 1 h. Male rats subjected to tMCAO were randomly assigned to receive 17β-estradiol or vehicle treatment. The animals were sacrificed 72 h post tMCAO, transcardially perfused and the brains were proceeded either for TTC staining and gene analysis or for flow cytometry (CD45, CD11b, CD11c, CD40). We found that 17β-estradiol substitution significantly reduced the cortical infarct which was paralleled by an improved Garcia test scoring. Flow cytometry revealed that CD45+ cells as well as CD45+CD11b+CD11c+ cells were massively increased in tMCAO animals and numbers were nearly restored to sham levels after 17β-estradiol treatment. Gene expression analysis showed a reperfusion time-dependent upregulation of the markers CD45, CD11b and the activation marker CD40. The reduction in gene expression after 72 h of reperfusion and simultaneous 17β-estradiol substitution did not reach statistical significance. These data indicate that 17β-estradiol alleviated the cerebral ischemia-reperfusion injury and selectively suppressed the activation of the neuroinflammatory cascade via reduction of the number of activated microglia or infiltrated monocyte-derived macrophages in brain.
Collapse
Affiliation(s)
- Miriam Scheld
- University Clinic, Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany; Anatomy and Cell Biology, University of Augsburg, Augsburg, Germany.
| | - F Heymann
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - W Zhao
- University Clinic, Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany.
| | - M Tohidnezhad
- University Clinic, Institute of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany.
| | - T Clarner
- University Clinic, Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany.
| | - C Beyer
- University Clinic, Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany.
| | - A Zendedel
- University Clinic, Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
78
|
Chen YQ, Wang SN, Shi YJ, Chen J, Ding SQ, Tang J, Shen L, Wang R, Ding H, Hu JG, Lü HZ. CRID3, a blocker of apoptosis associated speck like protein containing a card, ameliorates murine spinal cord injury by improving local immune microenvironment. J Neuroinflammation 2020; 17:255. [PMID: 32861243 PMCID: PMC7456508 DOI: 10.1186/s12974-020-01937-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/20/2020] [Indexed: 01/25/2023] Open
Abstract
Background After spinal cord injury (SCI), destructive immune cell subsets are dominant in the local microenvironment, which are the important mechanism of injury. Studies have shown that inflammasomes play an important role in the inflammation following SCI, and apoptosis-associated speck-like protein containing a card (ASC) is the adaptor protein shared by inflammasomes. Therefore, we speculated that inhibiting ASC may improve the local microenvironment of injured spinal cord. Here, CRID3, a blocker of ASC oligomerization, was used to study its effect on the local microenvironment and the possible role in neuroprotection following SCI. Methods Murine SCI model was created using an Infinite Horizon impactor at T9 vertebral level with a force of 50 kdynes and CRID3 (50 mg/kg) was intraperitoneally injected following injury. ASC and its downstream molecules in inflammasome signaling pathway were measured by western blot. The immune cell subsets were detected by immunohistofluorescence (IHF) and flow cytometry (FCM). The spinal cord fibrosis area, neuron survival, myelin preservation, and functional recovery were assessed. Results Following SCI, CRID3 administration inhibited inflammasome-related ASC and caspase-1, IL-1β, and IL-18 activation, which consequently suppressed M1 microglia, Th1 and Th1Th17 differentiation, and increased M2 microglia and Th2 differentiation. Accordingly, the improved histology and behavior have also been found. Conclusions CRID3 may ameliorate murine SCI by inhibiting inflammasome activation, reducing proinflammatory factor production, restoring immune cell subset balance, and improving local immune microenvironment, and early administration may be a promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 233004, Bengbu, Anhui, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu, 233004, Anhui, People's Republic of China.,Department of Immunology, Bengbu Medical College, 233030, Bengbu, Anhui, People's Republic of China.,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, 233030, Bengbu, Anhui, People's Republic of China
| | - Sai-Nan Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 233004, Bengbu, Anhui, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu, 233004, Anhui, People's Republic of China.,Department of Immunology, Bengbu Medical College, 233030, Bengbu, Anhui, People's Republic of China.,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, 233030, Bengbu, Anhui, People's Republic of China
| | - Yu-Jiao Shi
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 233004, Bengbu, Anhui, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu, 233004, Anhui, People's Republic of China
| | - Jing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 233004, Bengbu, Anhui, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu, 233004, Anhui, People's Republic of China.,Department of Immunology, Bengbu Medical College, 233030, Bengbu, Anhui, People's Republic of China.,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, 233030, Bengbu, Anhui, People's Republic of China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 233004, Bengbu, Anhui, People's Republic of China
| | - Jie Tang
- Department of Immunology, Bengbu Medical College, 233030, Bengbu, Anhui, People's Republic of China.,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, 233030, Bengbu, Anhui, People's Republic of China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu, 233004, Anhui, People's Republic of China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu, 233004, Anhui, People's Republic of China
| | - Hai Ding
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu, 233004, Anhui, People's Republic of China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 233004, Bengbu, Anhui, People's Republic of China. .,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu, 233004, Anhui, People's Republic of China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 233004, Bengbu, Anhui, People's Republic of China. .,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu, 233004, Anhui, People's Republic of China. .,Department of Immunology, Bengbu Medical College, 233030, Bengbu, Anhui, People's Republic of China. .,Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, 233030, Bengbu, Anhui, People's Republic of China.
| |
Collapse
|
79
|
Wang L, Hauenstein AV. The NLRP3 inflammasome: Mechanism of action, role in disease and therapies. Mol Aspects Med 2020; 76:100889. [PMID: 32859386 DOI: 10.1016/j.mam.2020.100889] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/29/2020] [Accepted: 07/29/2020] [Indexed: 01/01/2023]
Abstract
NLRP3 is the best characterized cytosolic nod-like pattern recognition receptor which can detect microbial motifs, endogenous danger and stress signals. Activation of NLRP3 leads to the formation of a cytosolic multiprotein signaling complex called the inflammasome, which serves as a platform for caspase-1 activation leading to the processing of proinflammatory cytokines IL-1β, IL-18 and GSDMD mediated cell death. This form of pyroptotic cell death represents a major pathway of inflammation. Growing evidence has indicated hyperactivation of NLRP3 inflammasome is involved in a wide range of inflammatory diseases. In this review we present the recent advances in understanding the mechanism of NLRP3 activation, its role in driving inflammatory diseases, and the development of NLRP3 targeted therapies.
Collapse
Affiliation(s)
- Li Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Arthur V Hauenstein
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
80
|
Ibuprofen Exerts Antiepileptic and Neuroprotective Effects in the Rat Model of Pentylenetetrazol-Induced Epilepsy via the COX-2/NLRP3/IL-18 Pathway. Neurochem Res 2020; 45:2516-2526. [PMID: 32789796 DOI: 10.1007/s11064-020-03109-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/29/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the most common diseases of the central nervous system. Recent studies have shown that a variety of inflammatory mediators play a key role in the pathogenesis of the disease. Ibuprofen (IBP) is a well-known anti-inflammatory agent that reduces the neuroinflammatory response and neuronal damage. In this study, we examined the effect of IBP in a rat model of pentylenetetrazol (PTZ)-induced chronic epilepsy. PTZ injection was given a total of 15 times on alternate days (over a period of 29 days) to induce epilepsy. The effects of IBP were evaluated by behavioral observation, EEG recording, Nissl staining, immunohistochemistry, Western blot analysis, and electrophysiological recording. The results showed that IBP alone affected the expression of cyclooxygenase-2 (COX-2) and neuronal excitability but did not cause epilepsy. IBP reduced seizure scores in the PTZ-treated rats, and it minimized the loss of hippocampal neurons. In addition, IBP decreased the secretion of COX-2, inhibited the activation of the NOD-like receptor 3 inflammasome, and reduced the secretion of the inflammatory cytokine interleukin-18. Furthermore, the results of whole-cell patch-clamp revealed that IBP affected action potential properties, including frequency, latency and duration in epileptic rats, suggesting that it may impact neuronal excitability. These effects of IBP may underlie its antiepileptic and neuroprotective actions.
Collapse
|
81
|
TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by activating PI3K/AKT pathway after spinal cord injury. Cell Death Dis 2020; 11:693. [PMID: 32826878 PMCID: PMC7443136 DOI: 10.1038/s41419-020-02824-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022]
Abstract
Neuroinflammation plays a crucial role in the secondary phase of spinal cord injury (SCI), and is initiated following the activation of toll-like receptor 4 (TLR4). However, the downstream mechanism remains unknown. Pyroptosis is a form of inflammatory programmed cell death, which is closely involved in neuroinflammation, and it can be regulated by TLR4 according to a recent research. In addition, several studies have shown that long non-coding RNAs (lncRNAs) based mechanisms were related to signal transduction downstream of TLR4 in the regulation of inflammation. Thus, in this study, we want to determine whether TLR4 can regulate pyroptosis after SCI via lncRNAs. Our results showed that TLR4 was activated following SCI and promoted the expression of lncRNA-F630028O10Rik. This lncRNA functioned as a ceRNA for miR-1231-5p/Col1a1 axis and enhanced microglial pyroptosis after SCI by activating the PI3K/AKT pathway. Furthermore, we determined STAT1 was the upstream transcriptional factor of IncRNA-F630028O10Rik and was induced by the damage-responsive TLR4/MyD88 signal. Our findings provide new insights and a novel therapeutic strategy for treating SCI.
Collapse
|
82
|
Noori L, Arabzadeh S, Mohamadi Y, Mojaverrostami S, Mokhtari T, Akbari M, Hassanzadeh G. Intrathecal administration of the extracellular vesicles derived from human Wharton's jelly stem cells inhibit inflammation and attenuate the activity of inflammasome complexes after spinal cord injury in rats. Neurosci Res 2020; 170:87-98. [PMID: 32717259 DOI: 10.1016/j.neures.2020.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Activation of inflammasome complexes during spinal cord injury (SCI) lead to conversion of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and interleukin-18 (IL-18) to their active form to initiates the neuroinflammation. Mesenchymal stem cells (MSCs) showed anti-inflammatory properties through their extracellular vehicles (EVs). We investigated immunomodulatory potential of human Wharton's jelly mesenchymal stem cells derived extracellular vesicles (hWJ-MSC-EVs) on inflammasome activity one week after SCI in rats. The gene expression and protein level of IL-1β, IL-18, tumor necrosis factor alpha (TNF-α) and caspase1, were assessed by QPCR and western blotting. Immunohistochemistry (IHC) was done to measure the glial fibrillary acidic protein (GFAP) and Nestin expression. Cell death, histological evaluation and hind limb locomotion was studied by TUNEL assay, Nissl staining and Basso, Beattie, Bresnaham (BBB), respectively. Our finding represented that intrathecally administrated of hWJ-MSC-EVs significantly attenuated expression of the examined factors in both mRNA (P < 0.05 and P ≤ 0.01) and protein levels (P < 0.05 and P ≤ 0.01), decreased GFAP and increased Nestin expression (P < 0.05), reduced cell death and revealed the higher number of typical neurons in ventral horn of spinal cord. Consequently, progress in locomotion. We came to the conclusion that hWJ-MSC-EVs has the potential to control the inflammasome activity after SCI in rats. Moreover, EVs stimulated the neural progenitor cells and modulate the astrocyte activity.
Collapse
Affiliation(s)
- Leila Noori
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Arabzadeh
- Department of Biology, School of Basic Sciences, Ale Taha Institute of Higher Education, Tehran, Iran
| | - Yousef Mohamadi
- Department of Anatomy, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and addiction studies, School of advanced technologies in medicine, Tehran University of Medical Sciences, Tehran, Iran; Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.
| |
Collapse
|
83
|
Dong Y, Li S, Lu Y, Li X, Liao Y, Peng Z, Li Y, Hou L, Yuan Z, Cheng J. Stress-induced NLRP3 inflammasome activation negatively regulates fear memory in mice. J Neuroinflammation 2020; 17:205. [PMID: 32635937 PMCID: PMC7341659 DOI: 10.1186/s12974-020-01842-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/14/2020] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Persistent inflammation dysregulation and cognitive decline have been associated with several trauma- and stress-related disorders such as posttraumatic stress disorder (PTSD) and anxiety disorder. Despite the abundant discoveries of neuroinflammation in such disorders, the underlying mechanisms still remain unclear. METHOD Wild-type and Nlrp3-/- mice were exposed to the electric foot shocks in the contextual fear memory paradigm. Three hours after the electric foot shocks, activation of the NLRP3 inflammasome was investigated through immunoblotting and ELISA. Microglia were isolated and analyzed by quantitative real-time PCR. Hippocampal tissues were collected 3 h and 72 h after the electric foot shocks and subjected to RNA sequencing. MCC950 was administrated to mice via intraperitoneal (i.p.) injection. Interleukin-1 receptor antagonist (IL-ra) and interleukin-1β (IL-1β) were delivered via intracerebroventricular (i.c.v.) infusion. Contextual fear responses of mice were tested on 4 consecutive days (test days 1-4) starting at 48 h after the electric foot shocks. Anxiety-like behaviors were examined by elevated plus maze and open-field test. RESULTS We demonstrated that, in the contextual fear memory paradigm, the NLRP3 inflammasome was activated 3 h after electric foot shocks. We also found an upregulation in toll-like receptor and RIG-I-like receptor signaling, and a decrease in postsynaptic density (PSD) related proteins, such as PSD95 and Shank proteins, in the hippocampus 72 h after the electric foot shocks, indicating an association between neuroinflammation and PSD protein loss after stress encounter. Meanwhile, Nlrp3 knockout could significantly prevent both neuroinflammation and loss of PSD-related proteins, suggesting a possible protective role of NLRP3 deletion during this process. For further studies, we demonstrated that both genetic knockout and pharmaceutical inhibition of the NLRP3 inflammasome remarkably enhanced the extinction of contextual fear memory and attenuated anxiety-like behavior caused by electric foot shocks. Moreover, cytokine IL-1β administration inhibited the extinction of contextual fear memory. Meanwhile, IL-1ra significantly enhanced the extinction of contextual fear memory and attenuated anxiety-like behavior. CONCLUSION Taken together, our data revealed the pivotal role of NLRP3 inflammasome activation in the regulation of fear memory and the development of PTSD and anxiety disorder, providing a novel target for the clinical treatment of such disorders.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, 266071, Shandong, China
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Shuoshuo Li
- The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Lu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaoheng Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Zhixin Peng
- School of Medicine, University of South China, Hengyang, Hunan, China
| | - Yunfeng Li
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
84
|
Paeoniflorin attenuates chronic constriction injury-induced neuropathic pain by suppressing spinal NLRP3 inflammasome activation. Inflammopharmacology 2020; 28:1495-1508. [DOI: 10.1007/s10787-020-00737-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/20/2020] [Indexed: 12/24/2022]
|
85
|
Mohammed I, Ijaz S, Mokhtari T, Gholaminejhad M, Mahdavipour M, Jameie B, Akbari M, Hassanzadeh G. Subventricular zone-derived extracellular vesicles promote functional recovery in rat model of spinal cord injury by inhibition of NLRP3 inflammasome complex formation. Metab Brain Dis 2020; 35:809-818. [PMID: 32185593 DOI: 10.1007/s11011-020-00563-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is the destruction of spinal cord motor and sensory resulted from an attack on the spinal cord, which can cause significant physiological damage. The inflammasome is a multiprotein oligomer resulting in inflammation; the NLRP3 inflammasome composed of NLRP3, apoptosis-associated speck-like protein (ASC), procaspase-1, and cleavage of procaspase-1 into caspase-1 initiates the inflammatory response. Subventricular Zone (SVZ) is the origin of neural stem/progenitor cells (NS/PCs) in the adult brain. Extracellular vesicles (EVs) are tiny lipid membrane bilayer vesicles secreted by different types of cells playing an important role in cell-cell communications. The aim of this study was to investigate the effect of intrathecal transplantation of EVs on the NLRP3 inflammasome formation in SCI rats. Male wistar rats were divided into three groups as following: laminectotomy group, SCI group, and EVs group. EVs was isolated from SVZ, and characterized by western blot and DLS, and then injected into the SCI rats. Real-time PCR and western blot were carried out for gene expression and protein level of NLRP3, ASC, and Caspase-1. H&E and cresyl violet staining were performed for histological analyses, as well as BBB test for motor function. The results indicated high level in mRNA and protein level in SCI group in comparison with laminectomy (p < 0.001), and injection of EVs showed a significant reduction in the mRNA and protein levels in EVs group compared to SCI (p < 0.001). H&E and cresyl violet staining showed recovery in neural cells of spinal cord tissue in EVs group in comparison with SCI group. BBB test showed the promotion of motor function in EVs group compared to SCI in 14 days (p < 0.05). We concluded that the injection of EVs could recover the motor function in rats with SCI and rescue the neural cells of spinal cord tissue by suppressing the formation of the NLRP3 inflammasome complex.
Collapse
Affiliation(s)
- Ibrahim Mohammed
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Ijaz
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Morteza Gholaminejhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdavipour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnamedin Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
86
|
Xia W, Zhu J, Wang X, Tang Y, Zhou P, Wei X, Chang B, Zheng X, Zhu W, Hou M, Li S. Overexpression of Foxc1 regenerates crushed rat facial nerves by promoting Schwann cells migration via the Wnt/β-catenin signaling pathway. J Cell Physiol 2020; 235:9609-9622. [PMID: 32391604 PMCID: PMC7586989 DOI: 10.1002/jcp.29772] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
Abstract
Facial paralysis can result in severe implications for patients. A good prognosis depends on the degree of nerve regeneration. Schwann cells (SCs) play an important role in facial nerve development and regeneration through migration. Forkhead box C1 (Foxc1), a member of the forkhead transcription factor family, is implicated in cell migration. However, the role of Foxc1 in the progression after facial nerve crush remains unknown. Our aim was to evaluate the effect of Foxc1 overexpression on SC migration and recovery of facial nerves after crush injury. The rat facial nerve crush injury model was established through the use of unilateral surgery. The results showed that the expression of Foxc1 was increased in the surgery group compared to that of the control group. SCs were isolated from the sciatic nerves and cultured. Foxc1, delivered by an adeno‐associated virus in vivo, or adenovirus in vitro, both induced overexpression of Foxc1, and increased the expression of CXCL12 and β‐catenin. After the transfection of Foxc1, the migration of SC was increased both in vitro and in vivo, was reduced by the inhibition of CXCL12 or β‐catenin. The facial nerve function and the nerve axon remyelination of the rats transfected with Foxc1 were significantly improved after nerve crush injury. Overall, the results demonstrated that overexpression of Foxc1 promoted SC migration by regulating CXCL12 via the Wnt/β‐catenin pathway, thus contributing to improved facial nerve function after crush injury.
Collapse
Affiliation(s)
- Wenzheng Xia
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Zhu
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyi Wang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Yinda Tang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Zhou
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Wei
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Chang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Zheng
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Wanchun Zhu
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Center for Diagnosis and Treatment of Cranial Nerve Diseases, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
87
|
Su XQ, Wang XY, Gong FT, Feng M, Bai JJ, Zhang RR, Dang XQ. Oral treatment with glycyrrhizin inhibits NLRP3 inflammasome activation and promotes microglial M2 polarization after traumatic spinal cord injury. Brain Res Bull 2020; 158:1-8. [DOI: 10.1016/j.brainresbull.2020.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/19/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
|
88
|
Voet S, Srinivasan S, Lamkanfi M, van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med 2020; 11:emmm.201810248. [PMID: 31015277 PMCID: PMC6554670 DOI: 10.15252/emmm.201810248] [Citation(s) in RCA: 519] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation and neurodegeneration often result from the aberrant deposition of aggregated host proteins, including amyloid‐β, α‐synuclein, and prions, that can activate inflammasomes. Inflammasomes function as intracellular sensors of both microbial pathogens and foreign as well as host‐derived danger signals. Upon activation, they induce an innate immune response by secreting the inflammatory cytokines interleukin (IL)‐1β and IL‐18, and additionally by inducing pyroptosis, a lytic cell death mode that releases additional inflammatory mediators. Microglia are the prominent innate immune cells in the brain for inflammasome activation. However, additional CNS‐resident cell types including astrocytes and neurons, as well as infiltrating myeloid cells from the periphery, express and activate inflammasomes. In this review, we will discuss current understanding of the role of inflammasomes in common degenerative diseases of the brain and highlight inflammasome‐targeted strategies that may potentially treat these diseases.
Collapse
Affiliation(s)
- Sofie Voet
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sahana Srinivasan
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine, Ghent University, Ghent, Belgium .,Janssen Immunosciences, World without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, Ghent, Belgium .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
89
|
Park HS, Yoo MH, Koh JY. Role of zinc dyshomeostasis in inflammasome formation in cultured cortical cells following lipopolysaccharide or oxygen-glucose deprivation/reperfusion exposure. Neurobiol Dis 2020; 137:104771. [DOI: 10.1016/j.nbd.2020.104771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/27/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
|
90
|
Critical Role of p38 in Spinal Cord Injury by Regulating Inflammation and Apoptosis in a Rat Model. Spine (Phila Pa 1976) 2020; 45:E355-E363. [PMID: 31725126 DOI: 10.1097/brs.0000000000003282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN To evaluate the effect of p38 pathway on spinal cord injury (SCI), a rat model of SCI was performed. OBJECTIVE We determined the effect of p38 on SCI and SCI related inflammation, apoptosis, and autophagy. SUMMARY OF BACKGROUND DATA SCI is a severe clinical problem worldwide. It is difficult to prevent cell necroptosis and promote the survival of residual neurons after SCI. p38, a class of mitogen-activated protein kinases, its effect on SCI and SCI related inflammation, apoptosis, and autophagy have not been studied very well. METHODS The rats were randomly divided into the following four groups: the sham-operated (sham) group, the SCI group, the SCI + vehicle group, and the SCI + SB203580 (10 mg/kg) group. The p38 inhibitor SB203580 was administered by oral (10 mg/kg/d) gavage once per day for 14 days. Neurological recovery was assessed using the Basso, Beattie, and Bresnahan locomotion rating scale. Apoptosis, autophagy, and inflammation related proteins were measured by enzyme-linked immunosorbent assay kits or western blotting. RESULTS Our results showed that p38 was upregulated after SCI from day 3, which was paralleled with the levels of its proteins ATF-2, suggesting an increase in p38 activity. Our results showed administration of SB203580 attenuated histopathology and promoted locomotion recovery in rats after SCI. SB203580 administration significantly inhibited inflammatory cytokines levels as well as the inflammation signaling pathway. SB203580 administration also modulated the apoptosis and autophagy signaling pathway. CONCLUSION Our findings suggest that p38 inhibitor SB203580 treatment alleviates secondary SCI by inhibiting inflammation and apoptosis, thereby promoting neurological and locomoter functional recovery, thus suggest the important role of p38 in neuronal protection after SCI. LEVEL OF EVIDENCE N/A.
Collapse
|
91
|
Jiao J, Zhao G, Wang Y, Ren P, Wu M. MCC950, a Selective Inhibitor of NLRP3 Inflammasome, Reduces the Inflammatory Response and Improves Neurological Outcomes in Mice Model of Spinal Cord Injury. Front Mol Biosci 2020; 7:37. [PMID: 32195267 PMCID: PMC7062868 DOI: 10.3389/fmolb.2020.00037] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a serious condition that affects bodily function; however, there is no effective therapy in clinical practice. MCC950, a selective NOD-like receptor protein-3 (NLRP3) inflammasome inhibitor, has been reported to alleviate canonical and non-canonical NLRP3 inflammasome activation of the inflammatory response in vitro and in vivo. However, the effect of MCC950 treatment on neurological post-SCI recovery remains unclear. In this study, we assessed the pharmacological effect of MCC950 on an experimental SCI model in vivo and neuronal injury in vitro. We found that MCC950 improved the grip strength, hind limb movements, spinal cord edema, and pathological injury in the SCI mice. We demonstrated that it exerted this effect by blocking NLRP3 inflammasome assembly, including NLRP3-ASC and NLRP3-Caspase-1 complexes, as well as the release of pro-inflammatory cytokines TNF-α, IL-1β, and IL-18. Moreover, we found that MCC950 reduced spinal neuron injury and NLRP3 inflammasome activation, which had been induced by oxygen–glucose deprivation (OGD) or lipopolysaccharides (LPS) in vitro. In conclusion, our findings indicate that MCC950 alleviates inflammatory response and improves functional recovery in the acute mice model of SCI by blocking NLRP3 inflammasome assembly and alleviating downstream neuroinflammation. Therefore, these findings could prove useful in the development of effective therapeutic strategies for the treatment and prognosis of SCI.
Collapse
Affiliation(s)
- Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Guanjie Zhao
- Department of Kidney Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Pengfei Ren
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
92
|
Baazm M, Ghafarizadeh AA, Noshad Kamran AR, Beyer C, Zendedel A. Presence of The NLRP3 Inflammasome Components in Semen of Varicocele Patients. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2020; 14:46-50. [PMID: 32112635 PMCID: PMC7139229 DOI: 10.22074/ijfs.2020.5734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 08/31/2019] [Indexed: 12/17/2022]
Abstract
Background Varicocele is a common cause of male infertility with multifactorial etiology. Inflammation is a
characteristic pathological event that occurs in the testis tissue following the varicocele. The aim of this study was to
investigate expression of nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome components
and cytokines in semen of varicocele and control subjects. Materials and Methods In this case-control study, seminal plasma was collected from 32 varicocele patients (with
grades 2 and 3) and 20 fertile men as control group. Semen analysis was performed in all subjects. Concentrations
of interleukin-1b (IL-1b), IL-18 and caspase-1 in seminal plasma were measured by enzyme-linked immunosorbent
assay (ELISA). Apoptosis-associated speck-like protein containing a caspase activation and recruitment domain, in
addition to NALP3 were identified in seminal plasma by Western blot. Statistical significance between the mean
values was determined by student’s t test. Results According to our data, the level of IL-1b was significantly (P=0.03) increased in the seminal plasma of
varicocele patients, compared to the control subjects. We analyzed amount of IL-18 in the both groups. The level of
this interleukin was markedly (P=0.002) decreased in varicocele patients. No change was observed in the level of
caspase-1 in both groups. Western blot analysis revealed that apoptosis associated speck-like protein (ASC, P=0.0002)
and NLRP3 (P=0.005) were significantly elevated in the semen of varicocele patients. Conclusion This study provides the first evidence of activation of NLRP3 components in semen of men with varicocele.
Collapse
Affiliation(s)
- Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran. Electronic Address:
| | | | - Ali Reza Noshad Kamran
- Department of Urology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.,Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
93
|
Hachim MY, Khalil BA, Elemam NM, Maghazachi AA. Pyroptosis: The missing puzzle among innate and adaptive immunity crosstalk. J Leukoc Biol 2020; 108:323-338. [PMID: 32083338 DOI: 10.1002/jlb.3mir0120-625r] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pyroptosis is a newly discovered programmed cell death with inflammasome formation. Pattern recognition receptors that identify repetitive motifs of prospective pathogens such as LPS of gram-negative bacteria are crucial to pyroptosis. Upon stimulation by pathogen-associated molecular patterns or damage-associated molecular patterns, proinflammatory cytokines, mainly IL-1 family members IL-1β and IL-18, are released through pyroptosis specific pore-forming protein, gasdermin D. Even though IL-1 family members are mainly involved in innate immunity, they can be factors in adaptive immunity. Given the importance of IL-1 family members in health and diseases, deciphering the role of pyroptosis in the regulation of innate and adaptive immunity is of great importance, especially with the recent progress in identifying the exact mechanism of such a pathway. In this review, we will focus on how the innate inflammatory mediators can regulate the adaptive immune system and vice versa via pyroptosis.
Collapse
Affiliation(s)
- Mahmood Y Hachim
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Noha M Elemam
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
94
|
Wu C, Zhang G, Chen L, Kim S, Yu J, Hu G, Chen J, Huang Y, Zheng G, Huang S. The Role of NLRP3 and IL-1β in Refractory Epilepsy Brain Injury. Front Neurol 2020; 10:1418. [PMID: 32116990 PMCID: PMC7025579 DOI: 10.3389/fneur.2019.01418] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/30/2019] [Indexed: 12/25/2022] Open
Abstract
Objective: The objective of this study was to investigate the roles and mechanisms of inflammatory mediators NLRP3 and IL-1β in refractory temporal epilepsy brain injury. Method: First, the brain tissue and the peripheral blood of children undergoing intractable temporal lobe epilepsy surgery were analyzed as research objects. The expression levels of NLRP3 in brain tissue and IL-1β in blood were measured. A model of temporal lobe epilepsy was established using wild-type and NLRP3 knockout 129 mice. Pilocarpine was injected intraperitoneally into the experimental group, and isovolumetric saline was injected intraperitoneally into the control group (n = 8 in each group). The expression of IL-1β in the peripheral blood, cerebral cortex, and hippocampus of mice was measured by ELISA at 3 h, 24 h, 3 days, and 7 days after modeling. Fluoro-Jade B (FJB) and TUNEL methods were used to determine necrosis and apoptosis in hippocampal neurons, respectively, and the expression of NLRP3 in the cortex was measured by immunofluorescence methods. Result: (1) The IL-1β levels in the peripheral blood of children with intractable temporal lobe epilepsy were higher than those in the control group (t = 2.813, P = 0.01). There was also a positive correlation between IL-1β expression levels and the onset time of a single convulsion in patients with refractory epilepsy (r = 0.9735, P < 0.05). The expression level of NLRP3 in the cerebral cortex of patients with refractory temporal lobe epilepsy was higher than that in the control group. (2) The expression level of NLRP3 in the hippocampus of wild-type mice increased 3 days after modeling and decreased slightly at 7 days but remained higher than that of the control group. IL-1β levels in peripheral blood were significantly higher than those in the control group at 3 days (t = 8.259, P < 0.0001). The IL-1β levels in the peripheral blood of NLRP3 knockout mice were lower than those in the wild-type group at 3 days (t = 3.481, P = 0.004). At day 7, the neuronal necrosis and apoptosis levels in the CA3 region of the hippocampus decreased. Conclusion: NLRP3 may be involved in the development of refractory temporal lobe epilepsy. Inhibiting NLRP3 may alleviate local brain injury by downregulating the IL-1β expression. The IL-1β levels in the peripheral blood of patients with refractory temporal lobe epilepsy may reflect the severity of convulsions.
Collapse
Affiliation(s)
- Chunfeng Wu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Gang Zhang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Samuel Kim
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jie Yu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guo Hu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Chen
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yanjun Huang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guo Zheng
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
95
|
Hu T, Lu XY, Shi JJ, Liu XQ, Chen QB, Wang Q, Chen YB, Zhang SJ. Quercetin protects against diabetic encephalopathy via SIRT1/NLRP3 pathway in db/db mice. J Cell Mol Med 2020; 24:3449-3459. [PMID: 32000299 PMCID: PMC7131910 DOI: 10.1111/jcmm.15026] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022] Open
Abstract
Epidemiological studies have found that diabetes and cognitive dysfunction are closely related. Quercetin has been certified with the effect on improving diabetes mellitus (DM) and cognitive impairment. However, the effect and related mechanism of quercetin on diabetic encephalopathy (DE) are still ambiguous. In this study, we used the db/db mice (diabetic model) to discover whether quercetin could improve DE through the Sirtuin1/NLRP3 (NOD‐, LRR‐ and pyrin domain‐containing 3) pathway. Behavioural results (Morris water maze and new object recognition tests) showed that quercetin (70 mg/kg) improved the learning and memory. Furthermore, quercetin alleviated insulin resistance and the level of fasting blood glucose. Besides, Western blot analysis also showed that quercetin increased the protein expressions of nerve‐ and synapse‐related protein, including postsynapticdensity 93 (PSD93), postsynapticdensity 95 (PSD95), brain‐derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brain of db/db mice. Quercetin also increased the protein expression of SIRT1 and decreased the expression of NLRP3 inflammation‐related proteins, including NLRP3, the adaptor protein ASC and cleaved Caspase‐1, the pro‐inflammatory cytokines IL‐1β and IL‐18. In conclusion, the present results indicate that the SIRT1/NLRP3 pathway may be a crucial mechanism for the neuroprotective effect of quercetin against DE.
Collapse
Affiliation(s)
- Tian Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin-Yi Lu
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing-Jing Shi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Qi Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qu-Bo Chen
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun-Bo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
96
|
Modulating Pro-inflammatory Cytokines, Tissue Damage Magnitude, and Motor Deficit in Spinal Cord Injury with Subventricular Zone-Derived Extracellular Vesicles. J Mol Neurosci 2019; 70:458-466. [DOI: 10.1007/s12031-019-01437-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
|
97
|
Westfall S, Pasinetti GM. The Gut Microbiota Links Dietary Polyphenols With Management of Psychiatric Mood Disorders. Front Neurosci 2019; 13:1196. [PMID: 31749681 PMCID: PMC6848798 DOI: 10.3389/fnins.2019.01196] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
The pathophysiology of depression is multifactorial yet generally aggravated by stress and its associated physiological consequences. To effectively treat these diverse risk factors, a broad acting strategy is required and is has been suggested that gut-brain-axis signaling may play a pinnacle role in promoting resilience to several of these stress-induced changes including pathogenic load, inflammation, HPA-axis activation, oxidative stress and neurotransmitter imbalances. The gut microbiota also manages the bioaccessibility of phenolic metabolites from dietary polyphenols whose multiple beneficial properties have known therapeutic efficacy against depression. Although several potential therapeutic mechanisms of dietary polyphenols toward establishing cognitive resilience to neuropsychiatric disorders have been established, only a handful of studies have systematically identified how the interaction of the gut microbiota with dietary polyphenols can synergistically alleviate the biological signatures of depression. The current review investigates several of these potential mechanisms and how synbiotics, that combine probiotics with dietary polyphenols, may provide a novel therapeutic strategy for depression. In particular, synbiotics have the potential to alleviate neuroinflammation by modulating microglial and inflammasome activation, reduce oxidative stress and balance serotonin metabolism therefore simultaneously targeting several of the major pathological risk factors of depression. Overall, synbiotics may act as a novel therapeutic paradigm for neuropsychiatric disorders and further understanding the fundamental mechanisms of gut-brain-axis signaling will allow full utilization of the gut microbiota's as a therapeutic tool.
Collapse
Affiliation(s)
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
98
|
Chen H, Zhou C, Xie K, Meng X, Wang Y, Yu Y. Hydrogen-rich Saline Alleviated the Hyperpathia and Microglia Activation via Autophagy Mediated Inflammasome Inactivation in Neuropathic Pain Rats. Neuroscience 2019; 421:17-30. [PMID: 31689487 DOI: 10.1016/j.neuroscience.2019.10.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/20/2023]
Abstract
Neuropathic pain is a complication after a spinal nerve injury. The inflammasomes are now identified to be responsible for triggering inflammation in neuropathic pain. Autophagy participates in the process of neuropathic pain and can regulate the inflammasome activation in different diseases. Our previous research reported that hydrogen exerted a protective effect against neuropathic pain. Therefore, we focused on the mechanism and role of autophagy and inflammasome, by which hydrogen alleviated the hyperpathia induced by neuropathic pain. The results showed that neuropathic pain stimulated activation of inflammasome NLRP3 and autophagy pathway in the microglial cells of the spinal cord. The inhibition of NLRP3 inhibited the hyperpathia induced by spinal nerve litigation surgery. The absence of autophagy aggravated the inflammasome activity and hyperpathia. Hydrogen promoted autophagy related protein expression, inhibited the inflammasome NLRP3 pathway activation, and relieved the hyperpathia induced by neuropathic pain. Hydrogen treatment could alleviate hyperpathia by autophagy-mediated NLRP3 inactivation.
Collapse
Affiliation(s)
- Hongguang Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Chunjing Zhou
- Department of Anesthesiology, Tianjin 4th Center Hospital, Tianjin 300140, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Xiaoyin Meng
- Department of Gynaecology and Obstetrics, Tianjin Hospital, Tianjin 300211, China
| | - Yaoqi Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
99
|
Mousavi M, Hedayatpour A, Mortezaee K, Mohamadi Y, Abolhassani F, Hassanzadeh G. Schwann cell transplantation exerts neuroprotective roles in rat model of spinal cord injury by combating inflammasome activation and improving motor recovery and remyelination. Metab Brain Dis 2019; 34:1117-1130. [PMID: 31165391 DOI: 10.1007/s11011-019-00433-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
Inflammasome activation in the traumatic central nervous system (CNS) injuries is responsible for propagation of an inflammatory circuit and neuronal cell death resulting in sensory/motor deficiencies. NLRP1 and NLRP3 are known as activators of inflammasome complex in the spinal cord injury (SCI). In this study, cell therapy using Schwann cells (SCs) was applied for targeting NLRP inflammasome complexes outcomes in the motor recovery. These cells were chosen due to their regenerative roles for CNS injuries. SCs were isolated from sciatic nerves and transplanted to the contusive SCI-induced Wistar rats. NLRP1 and NLRP3 inflammasome complexes and their related pro-inflammatory cytokines were assayed in both mRNA and protein levels. Neuronal cell survival (Nissl staining), motor recovery and myelination (Luxol fast blue/LFB) were also evaluated. The groups were laminectomy, SCI, vehicle and treatment. The treatment group received Schwann cells, and the vehicle group received solvent for the cells. SCI caused increased expressions for both NLRP1 and NLRP3 inflammasome complexes along with their related pro-inflammatory cytokines, all of which were abrogated after administration of SCs (except for IL-18 protein showing no change to the cell therapy). Motor deficits in the hind limb, neuronal cell death and demyelination were also found in the SCI group, which were counteracted in the treatment group. From our findings we conclude promising role for cell therapy with SCs for targeting axonal demyelination and degeneration possibly through attenuation of the activity for inflammasome complexes and related inflammatory circuit.
Collapse
Affiliation(s)
- Mahboubeh Mousavi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yousef Mohamadi
- Department of Anatomy, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Farid Abolhassani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
100
|
Yanagisawa S, Katoh H, Imai T, Nomura S, Watanabe M. The relationship between inflammasomes and the endoplasmic reticulum stress response in the injured spinal cord. Neurosci Lett 2019; 705:54-59. [DOI: 10.1016/j.neulet.2019.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
|