51
|
Zheng JJ, Song JH, Yu CX, Wang F, Wang PC, Meng JW. Difference in vaginal microecology, local immunity and HPV infection among childbearing-age women with different degrees of cervical lesions in Inner Mongolia. BMC WOMENS HEALTH 2019; 19:109. [PMID: 31405377 PMCID: PMC6689872 DOI: 10.1186/s12905-019-0806-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Abstract
Background This study aims to investigate the difference in vaginal microecology, local immunity and HPV infection among childbearing-age women with different degrees of cervical lesions. Methods A total of 432 patients were included in this study. Among these patients, 136 patients had LSIL, 263 patients had HSIL and 33 patients had CSCC. These patients were assigned as the research groups. In addition, 100 healthy females were enrolled and assigned as the control group. Results The microbiological indexes of vaginal secretions were evaluated. Furthermore, the concentrations of SIgA, IgG, IL-2 and IL-10 in vaginal lavage fluid, as well as the presence of HPV, mycoplasma and Chlamydia in cervical secretions, were detected. The results is that: (1) Differences in evaluation indexes of vaginal microecology among all research groups and the control group were statistically significant (P < 0.0001). As the degree of cervical lesions increased, the number of Lactobacillus decreased, and there was an increase in prevalence of bacterial imbalance, and the diversity, density and normal proportion of bacteria was reduced. Furthermore, the incidence of HPV, trichomonads, clue cell and Chlamydia infection increased. Moreover, the positive rate of H2O2 decreased, while the positive rates of SNa and GADP increased. (2) Differences in the ratio of IL-2 and IL-10 in the female genital tract among all research groups and the control group were statistically significant (P < 0.0001). Conclusions As the degree of cervical lesions increased, IL-2 decreased, IL-10 increased and IL-2/IL-10 decreased, while SIgA and IgG were elevated. The reduction of dominant Lactobacillus in the vagina, impairment of H2O2 function, flora ratio imbalance, pathogen infections, reduction in IL-2/IL-10 ratio, and changes in SIgA and IgG levels could all be potential factors that influenced the pathogenicity of HPV infection and the occurrence and development of cervical lesions.
Collapse
Affiliation(s)
- Jing-Jing Zheng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, No. 1 of TongDao North Street, HuiMin District, Huhhot, 010059, Inner Mongolia, China
| | - Jing-Hui Song
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, No. 1 of TongDao North Street, HuiMin District, Huhhot, 010059, Inner Mongolia, China.
| | - Cong-Xiang Yu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, No. 1 of TongDao North Street, HuiMin District, Huhhot, 010059, Inner Mongolia, China
| | - Fei Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, No. 1 of TongDao North Street, HuiMin District, Huhhot, 010059, Inner Mongolia, China
| | - Peng-Cheng Wang
- Department of Obstetrics and Gynecology, Inner Mongolia Maternal and Child Health Care Hospital, Huhhot, 010020, Inner Mongolia, China
| | - Jing-Wei Meng
- Department of Obstetrics and Gynecology, Inner Mongolia Maternal and Child Health Care Hospital, Huhhot, 010020, Inner Mongolia, China
| |
Collapse
|
52
|
Leach DG, Young S, Hartgerink JD. Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomater 2019; 88:15-31. [PMID: 30771535 PMCID: PMC6632081 DOI: 10.1016/j.actbio.2019.02.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Macroscale biomaterials, such as preformed implantable scaffolds and injectable soft materials, possess powerful synergies with anti-cancer immunotherapies. Immunotherapies on their own typically have poor delivery properties, and often require repeated high-dose injections that result in serious off-tumor effects and/or limited efficacy. Rationally designed biomaterials allow for discrete localization and controlled release of immunotherapeutic agents, and have been shown in a large number of applications to improve outcomes in the treatment of cancers via immunotherapy. Among various strategies, macroscale biomaterial delivery systems can take the form of robust tablet-like scaffolds that are surgically implanted into a tumor resection site, releasing programmed immune cells or immunoregulatory agents. Alternatively they can be developed as soft gel-like materials that are injected into solid tumors or sites of resection to stimulate a potent anti-tumor immune response. Biomaterials synthesized from diverse components such as polymers and peptides can be combined with any immunotherapy in the modern toolbox, from checkpoint inhibitors and stimulatory adjuvants, to cancer antigens and adoptive T cells, resulting in unique synergies and improved therapeutic efficacy. The field is growing rapidly in size as publications continue to appear in the literature, and biomaterial-based immunotherapies are entering clinical trials and human patients. It is unarguably an exciting time for cancer immunotherapy and biomaterial researchers, and further work seeks to understand the most critical design considerations in the development of the next-generation of immunotherapeutic biomaterials. This review will discuss recent advances in the delivery of immunotherapies from localized biomaterials, focusing on macroscale implantable and injectable systems. STATEMENT OF SIGNIFICANCE: Anti-cancer immunotherapies have shown exciting clinical results in the past few decades, yet they suffer from a few distinct limitations, such as poor delivery kinetics, narrow patient response profiles, and systemic side effects. Biomaterial systems are now being developed that can overcome many of these problems, allowing for localized adjuvant delivery, focused dose concentrations, and extended therapy presentation. The field of biocompatible carrier materials is uniquely suited to be combined with immunotherapy, promising to yield significant improvements in treatment outcomes and clinical care. In this review, the first pioneering efforts and most recent advances in biomaterials for immunotherapeutic applications are explored, with a specific focus on implantable and injectable biomaterials such as porous scaffolds, cryogels, and hydrogels.
Collapse
Affiliation(s)
- David G Leach
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Simon Young
- Department of Oral & Maxillofacial Surgery, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States.
| |
Collapse
|
53
|
Davies G, Firnhaber C, Pantanowitz L, Michelow P. The relationship between menopausal women infected with the human immunodeficiency virus and cervical atrophy: A cytologic study. Diagn Cytopathol 2018; 47:302-306. [PMID: 30588777 DOI: 10.1002/dc.24092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/18/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND With the advent of combined antiretroviral therapy (cART), HIV positive women are expected to live longer. The effect of chronic HIV infection and cART on cervical epithelial maturation has not been well studied in postmenopausal woman. The objective of this study was to determine whether HIV positive postmenopausal women on cART show expected atrophic changes in cervical Pap tests. METHODS The maturation index (MI) was performed on routine cervical smears from HIV-infected, postmenopausal women attending an HIV clinic in a tertiary hospital in Johannesburg, over a 4-year period from January 2009 to December 2012. RESULTS In Pap smears of 111 patients on cART, 58 (52%) showed an unexpected predominantly mature squamous epithelial pattern whereas 53 (48%) were predominantly immature or atrophic (P = .0001). There was no significant statistical difference in maturation according to cART use. CONCLUSION HIV-infected, postmenopausal women in this study had reduced rates of cervical atrophy than expected, irrespective of cART use and CD4 count. Initiation of cART before menopause was associated with greater cervical epithelium maturation than those women who started cART after menopause. Additional, larger studies are required to confirm this novel finding and to investigate the reason for this phenomenon.
Collapse
Affiliation(s)
- Gillian Davies
- National Health Laboratory Services and Department of Anatomical Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Cynthia Firnhaber
- Department of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Pamela Michelow
- National Health Laboratory Services and Department of Anatomical Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
54
|
Martin Lluesma S, Graciotti M, Chiang CLL, Kandalaft LE. Does the Immunocompetent Status of Cancer Patients Have an Impact on Therapeutic DC Vaccination Strategies? Vaccines (Basel) 2018; 6:E79. [PMID: 30477198 PMCID: PMC6313858 DOI: 10.3390/vaccines6040079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
Although different types of therapeutic vaccines against established cancerous lesions in various indications have been developed since the 1990s, their clinical benefit is still very limited. This observed lack of effectiveness in cancer eradication may be partially due to the often deficient immunocompetent status of cancer patients, which may facilitate tumor development by different mechanisms, including immune evasion. The most frequently used cellular vehicle in clinical trials are dendritic cells (DCs), thanks to their crucial role in initiating and directing immune responses. Viable vaccination options using DCs are available, with a positive toxicity profile. For these reasons, despite their limited therapeutic outcomes, DC vaccination is currently considered an additional immunotherapeutic option that still needs to be further explored. In this review, we propose potential actions aimed at improving DC vaccine efficacy by counteracting the detrimental mechanisms recognized to date and implicated in establishing a poor immunocompetent status in cancer patients.
Collapse
Affiliation(s)
- Silvia Martin Lluesma
- Center of Experimental Therapeutics, Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| | - Michele Graciotti
- Vaccine development laboratory, Ludwig Center for Cancer Research, Lausanne 1011, Switzerland.
| | - Cheryl Lai-Lai Chiang
- Vaccine development laboratory, Ludwig Center for Cancer Research, Lausanne 1011, Switzerland.
| | - Lana E Kandalaft
- Center of Experimental Therapeutics, Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
- Vaccine development laboratory, Ludwig Center for Cancer Research, Lausanne 1011, Switzerland.
| |
Collapse
|
55
|
Heeren AM, van Dijk I, Berry DRAI, Khelil M, Ferns D, Kole J, Musters RJP, Thijssen VL, Mom CH, Kenter GG, Bleeker MCG, de Gruijl TD, Jordanova ES. Indoleamine 2,3-Dioxygenase Expression Pattern in the Tumor Microenvironment Predicts Clinical Outcome in Early Stage Cervical Cancer. Front Immunol 2018; 9:1598. [PMID: 30050535 PMCID: PMC6050387 DOI: 10.3389/fimmu.2018.01598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
The indoleamine 2,3-dioxygenase (IDO) enzyme can act as an immunoregulator by inhibiting T cell function via the degradation of the essential amino acid tryptophan (trp) into kynurenine (kyn) and its derivates. The kyn/trp ratio in serum is a prognostic factor for cervical cancer patients; however, information about the relationship between serum levels and IDO expression in the tumor is lacking. IDO expression was studied in 71 primary and 14 paired metastatic cervical cancer samples by various immunohistochemical (IHC) techniques, including 7-color fluorescent multiparameter IHC, and the link between the concentration of IDO metabolites in serum, clinicopathological characteristics, and the presence of (proliferating) T cells (CD8, Ki67, and FoxP3) was examined. In addition, we compared the relationships between IDO1 and IFNG gene expression and clinical parameters using RNAseq data from 144 cervical tumor samples published by The Cancer Genome Atlas (TCGA). Here, we demonstrate that patchy tumor IDO expression is associated with an increased systemic kyn/trp ratio in cervical cancer (P = 0.009), whereas marginal tumor expression at the interface with the stroma is linked to improved disease-free (DFS) (P = 0.017) and disease-specific survival (P = 0.043). The latter may be related to T cell infiltration and localized IFNγ release inducing IDO expression. Indeed, TCGA analysis of 144 cervical tumor samples revealed a strong and positive correlation between IDO1 and IFNG mRNA expression levels (P < 0.001) and a significant association with improved DFS for high IDO1 and IFNG transcript levels (P = 0.031). Unexpectedly, IDO+ tumors had higher CD8+Ki67+ T cell rates (P = 0.004). Our data thus indicate that the serum kyn/trp ratio and IDO expression in primary tumor samples are not clear-cut biomarkers for prognosis and stratification of patients with early stage cervical cancer for clinical trials implementing IDO inhibitors. Rather, a marginal IDO expression pattern in the tumor dominantly predicts favorable outcome, which might be related to IFNγ release in the cervical tumor microenvironment.
Collapse
Affiliation(s)
- A Marijne Heeren
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, Netherlands.,Cancer Center Amsterdam, Departments of Medical Oncology & Radiation Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Ilse van Dijk
- Cancer Center Amsterdam, Departments of Medical Oncology & Radiation Oncology, VU University Medical Center, Amsterdam, Netherlands
| | | | - Maryam Khelil
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, Netherlands
| | - Debbie Ferns
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, Netherlands
| | - Jeroen Kole
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, Netherlands
| | - René J P Musters
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, Netherlands
| | - Victor L Thijssen
- Cancer Center Amsterdam, Departments of Medical Oncology & Radiation Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Constantijne H Mom
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, Academic Medical Center, Amsterdam, Netherlands
| | - Gemma G Kenter
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, Netherlands.,Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, Academic Medical Center, Amsterdam, Netherlands.,Center Gynecological Oncology Amsterdam (CGOA), Department of Gynecology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Maaike C G Bleeker
- Department of Pathology, VU University Medical Center, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Cancer Center Amsterdam, Departments of Medical Oncology & Radiation Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Ekaterina S Jordanova
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
56
|
Han S, Shi X, Liu L, Zong L, Zhang J, Chen Q, Qian Q, Chen L, Wang Y, Jin J, Ma Y, Cui B, Yang X, Zhang Y. Roles of B7-H3 in Cervical Cancer and Its Prognostic Value. J Cancer 2018; 9:2612-2624. [PMID: 30087701 PMCID: PMC6072813 DOI: 10.7150/jca.24959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/14/2018] [Indexed: 01/11/2023] Open
Abstract
B7-H3, which has been reported to be a co-regulatory ligand of the B7 family, can suppress T cell-mediated immunity and has also been reported to be expressed in many malignancies. In this study, we found that B7-H3 was primarily expressed in the cytoplasm of cervical cancer cells and was associated with deep stromal invasion (P=0.0013). The disease-free survival data showed that cervical cancer patients whose tumours were positive for B7-H3 expression had higher mortality rates compared with patients whose tumours lacked B7-H3 expression (P=0.0317), representing an advantage over P16 (P=0.3486). In contrast, the level of serum B7-H3 was low in cases of cervical intraepithelial neoplasia and cervical cancer. The silencing of B7-H3 in the SiHa, CaSki and H8 cell lines inhibited cell proliferation and enhanced apoptosis, while the over-expression of B7-H3 in HeLa cells showed inverse changes. These changes were partially due to the regulation of cell cycle- and apoptosis-related proteins, such as E2F, P21, P16, PARP-1, Caspase-8, Bax, Bcl-2 and Bcl-xl. The results of in vivo experiments revealed that the knockdown of B7-H3 in tumour cells suppressed SiHa cell growth in nude mice. Overall, B7-H3 is involved in the development and progression of cervical intraepithelial neoplasia and cervical cancer through its effects on the cell cycle and apoptosis, which are mediated via the E7/Rb pathway. B7-H3 also has the potential to be a useful prognostic marker for patients with cervical cancer.
Collapse
Affiliation(s)
- Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuejiao Shi
- Department of Rheumatism and Immunology, General Hospital of Tianjin Medical University, Tianjin 300000, P.R. China
| | - Lu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liju Zong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jingjing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qiuhong Qian
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Li Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jing Jin
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yana Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
57
|
Jin BY, Campbell TE, Draper LM, Stevanović S, Weissbrich B, Yu Z, Restifo NP, Rosenberg SA, Trimble CL, Hinrichs CS. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI Insight 2018; 3:99488. [PMID: 29669936 DOI: 10.1172/jci.insight.99488] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/14/2018] [Indexed: 01/01/2023] Open
Abstract
T cell receptor (TCR) T cell therapy is a promising cancer treatment modality. However, its successful development for epithelial cancers may depend on the identification of high-avidity TCRs directed against tumor-restricted target antigens. The human papillomavirus (HPV) E7 antigen is an attractive therapeutic target that is constitutively expressed by HPV+ cancers but not by healthy tissues. It is unknown if genetically engineered TCR T cells that target E7 can mediate regression of HPV+ cancers. We identified an HPV-16 E7-specific, HLA-A*02:01-restricted TCR from a uterine cervix biopsy from a woman with cervical intraepithelial neoplasia. This TCR demonstrated high functional avidity, with CD8 coreceptor-independent tumor targeting. Human T cells transduced to express the TCR specifically recognized and killed HPV-16+ cervical and oropharyngeal cancer cell lines and mediated regression of established HPV-16+ human cervical cancer tumors in a mouse model. These findings support the therapeutic potential of this approach and established the basis for an E7 TCR gene therapy clinical trial in patients with metastatic HPV+ cancers (NCT02858310).
Collapse
Affiliation(s)
- Benjamin Y Jin
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Tracy E Campbell
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Lindsey M Draper
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Sanja Stevanović
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | - Zhiya Yu
- Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | - Christian S Hinrichs
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
58
|
Wu L, Liu H, Guo H, Wu Q, Yu S, Qin Y, Wang G, Wu Q, Zhang R, Wang L, Zhang L, Liu C, Jiao S, Liu T. Circulating and tumor-infiltrating myeloid-derived suppressor cells in cervical carcinoma patients. Oncol Lett 2018; 15:9507-9515. [PMID: 29844835 DOI: 10.3892/ol.2018.8532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/20/2018] [Indexed: 12/18/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) serve an immunosuppressive role in human tumors. Human Lin-/low human leukocyte antigen-antigen D related (HLA-DR-) cluster of differentiation (CD)-11b+CD33+ MDSCs are closely linked with tumor staging, progression, clinical therapeutic efficacy and prognosis for various types of tumors. The present study employed multiparametric flow cytometry to measure the proportion of Lin-/lowHLA-DR-CD11b+CD33+ MDSCs in the peripheral blood of 105 cervical cancer patients and 50 healthy subjects. The level of MDSC was higher in tumor patients than in the normal control group and this was closely associated with clinical staging. Further analysis of tumor-infiltrating MDSCs was performed in 22 patients. The MDSC proportions in tumor tissue were significantly higher than those in the corresponding adjacent tissue. The phenotypic characteristics of Lin-/lowHLA-DR-CD11b+CD33+ MDSCs were then evaluated and the results revealed that they express high CD13 and CD39, and low CD115, CD117, CD124 and programmed cell death ligand 1; they were also devoid of CD14, CD15 and CD66b. MDSCs and T-cells from peripheral blood were sorted by flow cytometry for co-culture experiments. Lin-/lowHLA-DR-CD11b+CD33+ MDSCs from patients significantly inhibited the proliferation of CD4 and CD8 T-cells. Furthermore, functional analysis verified that MDSCs from cervical cancer patients could inhibit interleukin-2 and interferon-γ production from T-cells. In addition, the associations between peripheral circulating MDSCs and tumor infiltrating MDSCs, and tumor relapse and metastasis were analyzed. The number of peripheral MDSCs and MDSCs in tumor tissue were observed to be associated with relapse-free survival. Thus, MDSCs in the peripheral blood and tumors of cervical cancer patients have a significant immunosuppressive effect, and are associated with cervical cancer staging and metastasis. These results suggest that targeting MDSCs may increase antitumor immunity and increase the efficacy of cervical cancer therapies.
Collapse
Affiliation(s)
- Liangliang Wu
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hongyu Liu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hongchuan Guo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Qiong Wu
- Department of Gynaecology and Obstetrics, Dongzhimen Hospital, Beijing 100700, P.R. China
| | - Songyan Yu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yuanyuan Qin
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Gang Wang
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Qiyan Wu
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Rong Zhang
- Department of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Lingxiong Wang
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lijun Zhang
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Chunxi Liu
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shunchang Jiao
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Tianyi Liu
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
59
|
Marquina G, Manzano A, Casado A. Targeted Agents in Cervical Cancer: Beyond Bevacizumab. Curr Oncol Rep 2018; 20:40. [DOI: 10.1007/s11912-018-0680-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
60
|
Ou Y, Cannon MJ, Nakagawa M. Regulatory T Cells in Gynecologic Cancer. MOJ IMMUNOLOGY 2018; 6:34-42. [PMID: 30637330 PMCID: PMC6329475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Increasing evidence supports that regulatory T cells (Tregs) within the tumor, tumor draining lymph nodes, ascites and peripheral blood of patients with cancer are associated with poor prognosis. Tregs are important mediators of active immune evasion in cancer. In this review, the potential mechanisms of Treg actions and the roles of Tregs specifically in the tumor microenvironment derived from three types of gynecological cancers, cervical, vulvar and ovarian, are described. The correlations between Tregs and clinical immunotherapeutic study outcomes are discussed. Successful modulation of Tregs would likely have significant impact on the effectiveness of immunotherapeutic treatments in cancer patients.
Collapse
Affiliation(s)
- Yang Ou
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Martin J. Cannon
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Mayumi Nakagawa
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| |
Collapse
|
61
|
Gearing up T-cell immunotherapy in cervical cancer. Curr Probl Cancer 2018; 42:175-188. [DOI: 10.1016/j.currproblcancer.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/04/2018] [Indexed: 01/08/2023]
|
62
|
Verma V, Kim Y, Lee MC, Lee JT, Cho S, Park IK, Min JJ, Lee JJ, Lee SE, Rhee JH. Activated dendritic cells delivered in tissue compatible biomatrices induce in-situ anti-tumor CTL responses leading to tumor regression. Oncotarget 2018; 7:39894-39906. [PMID: 27223090 PMCID: PMC5129979 DOI: 10.18632/oncotarget.9529] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/25/2016] [Indexed: 12/26/2022] Open
Abstract
Dendritic cell (DC) based anti-cancer immunotherapy is well tolerated in patients with advanced cancers. However, the clinical responses seen after adoptive DC therapy have been suboptimal. Several factors including scarce DC numbers in tumors and immunosuppressive tumor microenvironments contribute to the inefficacy of DCs as cellular vaccines. Hence DC based vaccines can benefit from novel methods of cell delivery that would prevent the direct exposure of immune cells to suppressive tumor microenvironments. Here we evaluated the ability of DCs harbored in biocompatible scaffolds (referred to as biomatrix entrapped DCs; beDCs) in activating specific anti-tumor immune responses against primary and post-surgery secondary tumors. Using a preclinical cervical cancer and a melanoma model in mice, we show that single treatment of primary and post-surgery secondary tumors using beDCs resulted in significant tumor growth retardation while multiple inoculations were required to achieve a significant anti-tumor effect when DCs were given in free form. Additionally, we found that, compared to the tumor specific E6/E7 peptide vaccine, total tumor lysate induced higher expression of CD80 and CD40 on DCs that induced increased levels of IFNγ production upon interaction with host lymphocytes. Remarkably, a strong immunocyte infiltration into the host-implanted DC-scaffold was observed. Importantly, the host-implanted beDCs induced the anti-tumor immune responses in the absence of any stromal cell support, and the biomatrix structure was eventually absorbed into the surrounding host tissue. Collectively, these data indicate that the scaffold-based DC delivery may provide an efficient and safe way of delivering cell-based vaccines for treatment of primary and post-surgery secondary tumors.
Collapse
Affiliation(s)
- Vivek Verma
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea.,Present address: GRU Cancer Center, GRU, Augusta, GA, USA
| | - Young Kim
- Department of Pathology, Chonnam National University Medical School, Gwangju, South Korea
| | - Min-Cheol Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, South Korea
| | - Jae-Tae Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Sunghoon Cho
- School of Mechanical Systems Engineering, Chonnam National University, Gwangju, South Korea
| | - In-Kyu Park
- Department of Biomedical Science, Chonnam National University Medical School, Gwangju, South Korea
| | - Jung Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Je Jung Lee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Research Center for Cancer Immunotherapy, Hwasun Hospital, Chonnam National University, Hwasun, South Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
63
|
Immunotherapy for cervical cancer: Can it do another lung cancer? Curr Probl Cancer 2018; 42:148-160. [PMID: 29500076 DOI: 10.1016/j.currproblcancer.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/10/2017] [Indexed: 02/04/2023]
Abstract
Cervical cancer, although preventable, is still the second most common cancer among women worldwide. In developing countries like India, where screening for cervical cancer is virtually absent, most women seek treatment only at advanced stages of the disease. Although standard treatment is curative in more than 90% of women during the early stages, for stage IIIb and above this rate drops to 50% or less. Hence, novel therapeutic adjuvants are required to improve survival at advanced stages. Lung cancer has shown the way forward with the use of Immunotherapeutic interventions as standard line of treatment in advanced stages. In this review, we provide an overview of mechanisms of immune evasion, strategies that can be employed to boost the immune system in order to improve the overall survival of the patients and summarize briefly the clinical trials that have been completed or that are underway to bring therapeutic vaccines for cervical cancer to the clinics.
Collapse
|
64
|
|
65
|
Joh J, Chilton PM, Wilcher SA, Zahin M, Park J, Proctor ML, Ghim SJ, Jenson AB. T cell-mediated antitumor immune response eliminates skin tumors induced by mouse papillomavirus, MmuPV1. Exp Mol Pathol 2017; 103:181-190. [PMID: 28939161 DOI: 10.1016/j.yexmp.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
Previous studies of naturally occurring mouse papillomavirus (PV) MmuPV1-induced tumors in B6.Cg-Foxn1nu/nu mice suggest that T cell deficiency is necessary and sufficient for the development of such tumors. To confirm this, MmuPV1-induced tumors were transplanted from T cell-deficient mice into immunocompetent congenic mice. Consequently, the tumors regressed and eventually disappeared. The elimination of MmuPV1-infected skin/tumors in immunocompetent mice was consistent with the induction of antitumor T cell immunity. This was confirmed by adoptive cell experiments using hyperimmune splenocytes collected from graft-recipient mice. In the present study, such splenocytes were injected into T cell-deficient mice infected with MmuPV1, and they eliminated both early-stage and fully formed tumors. We clearly show that anti-tumor T cell immunity activated during tumor regression in immunocompetent mice effectively eliminates tumors developing in T cell-deficient congenic mice. The results corroborate the notion that PV-induced tumors are strongly linked to the immune status of the host, and that PV antigens are major anti-tumor antigens. Successful anti-PV T cell responses should, therefore, lead to effective anti-tumor immune therapy in human PV-infected patients.
Collapse
Affiliation(s)
- Joongho Joh
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA.
| | - Paula M Chilton
- Christine M. Kleinert Institute for Hand & Microsurgery, 225 Abraham Flexner Way, Suite 850, Louisville, KY, USA
| | - Sarah A Wilcher
- Research Resources Center, 530 South Jackson Street, Louisville, KY, USA
| | - Maryam Zahin
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Jino Park
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Mary L Proctor
- Research Resources Center, 530 South Jackson Street, Louisville, KY, USA
| | - Shin-Je Ghim
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Alfred B Jenson
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
66
|
Glicksman R, Chaudary N, Pintilie M, Leung E, Clarke B, Sy K, Hill RP, Han K, Fyles A, Milosevic M. The predictive value of nadir neutrophil count during treatment of cervical cancer: Interactions with tumor hypoxia and interstitial fluid pressure (IFP). Clin Transl Radiat Oncol 2017; 6:15-20. [PMID: 29594218 PMCID: PMC5862663 DOI: 10.1016/j.ctro.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/04/2023] Open
Abstract
Background and purpose Hypoxia, high interstitial fluid pressure (IFP) and immune effects have individually been shown to modulate radiotherapy (RT) response in cervical cancer. The aim of this study was to investigate the interplay between hypoxia or IFP and circulating neutrophil levels, and their combined effect on survival following RT. Material and methods A total of 287 FIGO stage IB to IIIB cervical cancer patients treated with RT or RT and cisplatin (RTCT) were included. Tumor hypoxia and IFP were measured at baseline prior to treatment. Absolute neutrophil count (ANC) was measured at baseline and weekly during treatment. Median follow up was 7.1 years. Results High nadir ANC at the point of maximal myelosuppression was a stronger predictor of inferior survival than high baseline ANC after adjusting for clinical prognostic factors and treatment (RT vs. RTCT). The predictive effect of nadir ANC was most evident in patients with well-oxygenated tumors or tumors with high IFP at diagnosis. Conclusions This study provides new information about the combined influence of the tumor microenvironment and myeloid cells on the survival of cervical cancer patients treated with RT/RTCT to motivate the development of new treatments based on molecular targeting of immune–based radioresistance pathways.
Collapse
Affiliation(s)
- Rachel Glicksman
- Radiation Medicine Program, Princess Margaret Cancer Centre and University Health Network, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Naz Chaudary
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre and University Health Network, Toronto, Canada
| | - Melania Pintilie
- Department of Biostatistics, Princess Margaret Cancer Centre and University Health Network, Toronto, Canada
| | - Eric Leung
- Department of Radiation Oncology, Odette Regional Cancer Centre and Sunnybrook Hospital, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Blaise Clarke
- Department of Pathology, Princess Margaret Cancer Centre and University Health Network, Toronto, Canada.,Department of Pathology, University of Toronto, Toronto, Canada
| | - Kieyan Sy
- Department of Pathology, Princess Margaret Cancer Centre and University Health Network, Toronto, Canada.,Department of Pathology, University of Toronto, Toronto, Canada
| | - Richard P Hill
- Radiation Medicine Program, Princess Margaret Cancer Centre and University Health Network, Toronto, Canada.,Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre and University Health Network, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kathy Han
- Radiation Medicine Program, Princess Margaret Cancer Centre and University Health Network, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Anthony Fyles
- Radiation Medicine Program, Princess Margaret Cancer Centre and University Health Network, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Michael Milosevic
- Radiation Medicine Program, Princess Margaret Cancer Centre and University Health Network, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
67
|
Zhang SA, Niyazi HEXD, Hong W, Tuluwengjiang GLX, Zhang L, Zhang Y, Su WP, Bao YX. Effect of EBI3 on radiation-induced immunosuppression of cervical cancer HeLa cells by regulating Treg cells through PD-1/PD-L1 pathway. Tumour Biol 2017; 39:1010428317692237. [PMID: 28351328 DOI: 10.1177/1010428317692237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study aimed to investigate the effect of EBI3 on radiation-induced immunosuppression of cervical cancer HeLa cells by regulating Treg cells through PD-1/PD-L1 signaling pathway. A total of 43 adult female Wistar rats were selected and injected with HeLa cells in the caudal vein to construct a rat model of cervical cancer. All model rats were randomly divided into the radiotherapy group ( n = 31) and the control group ( n = 12). The immunophenotype of Treg cells was detected by the flow cytometry. The protein expressions of EBI3, PD-1, and PD-L1 in cervical cancer tissues were tested by the streptavidin-peroxidase method. HeLa cells in the logarithmic growth phase were divided into four groups: the blank, the negative control group, the EBI3 mimics group, and the EBI3 inhibitors group. Western blotting was used to detect PD-1 and PD-L1 protein expressions. MTT assay was performed to measure the proliferation of Treg cells. Flow cytometry was used to detect cell cycle and apoptosis, and CD4+/CD8+ T cell ratio in each group. Compared with before and 1 week after radiotherapy, the percentages of CD4+T cells and CD8+T cells were significantly decreased in the radiotherapy group at 1 month after radiotherapy. Furthermore, down-regulation of EBI3 and up-regulation of PD-1 and PD-L1 were observed in cervical cancer tissues at 1 month after radiotherapy. In comparison to the blank and negative control groups, increased expression of EBI3 and decreased expressions of PD-1 and PD-L1 were found in the EBI3 mimics group. However, the EBI3 inhibitors group had a lower expression of EBI3 and higher expressions of PD-1 and PD-L1 than those in the blank and negative control groups. The EBI3 mimics group showed an increase in the optical density value (0.43 ± 0.05), while a decrease in the optical density value (0.31 ± 0.02) was found in the EBI3 inhibitors group. Moreover, compared with the blank and negative control groups, the apoptosis rates of Treg/CD4+T/CD8+T cells were decreased in the EBI3 mimics group, but the EBI3 inhibitors group exhibited an increase in apoptosis rate. In conclusion, over-expression of EBI3 could reduce the apoptosis of Treg/CD4+T/CD8+T cells and prevent radiation-induced immunosuppression of cervical cancer HeLa cells by inhibiting the activation of PD-1/PD-L1 signaling pathway.
Collapse
Affiliation(s)
- Song-An Zhang
- 1 Cancer Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Hu-Er-Xi-Dan Niyazi
- 1 Cancer Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Wen Hong
- 2 Anus-Intestines Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | | | - Lei Zhang
- 1 Cancer Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Yang Zhang
- 1 Cancer Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Wei-Peng Su
- 1 Cancer Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Yong-Xing Bao
- 1 Cancer Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| |
Collapse
|
68
|
Enwere EK, Kornaga EN, Dean M, Koulis TA, Phan T, Kalantarian M, Köbel M, Ghatage P, Magliocco AM, Lees-Miller SP, Doll CM. Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer. Mod Pathol 2017; 30:577-586. [PMID: 28059093 DOI: 10.1038/modpathol.2016.221] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/26/2022]
Abstract
Several of the cancer immunotherapies under investigation or in clinical use target the programmed death-ligand 1/programmed death-1 (PD-L1/PD-1) signaling axis. PD-L1 expression in tumor samples has been used as a predictive marker for response to these therapeutics, and may also have independent prognostic utility when assessed along with immune cell markers. Our objectives were to assess the expression of PD-L1 in tumor specimens from a uniformly treated patient cohort with locally advanced cervical cancer, and to determine its prognostic significance along with the density of tumor-infiltrating T cells. We identified 120 patients with locally advanced cervical cancer treated with radical chemoradiotherapy, and built tissue microarrays from their formalin-fixed, paraffin-embedded pre-treatment biopsies. We used conventional brightfield and fluorescence immunohistochemistry to detect PD-L1, and quantified protein expression using both manual pathologist scoring and automated software analysis. We also evaluated the effect of PD-L1 expression in tumors, along with the presence and density of intra-tumoral CD8+ T cells, on patient survival outcomes. Approximately 96% of the tumor samples expressed PD-L1, as determined using quantitative software analysis. Neither expression of PD-L1 nor density of CD8+ T cells was associated with progression-free or overall survival. However, there was a trend towards worse progression-free survival in patients whose tumors expressed PD-L1 but lacked CD8+ T cells (hazard ratio=0.43 (0.18-1.01), P=0.053). Nevertheless, the high percentage of cervical cancer tumor samples expressing PD-L1 suggests that anti-PD-L1 or anti-PD-1 therapies are potential treatment options for this patient population.
Collapse
Affiliation(s)
- Emeka K Enwere
- Translational Laboratories, Tom Baker Cancer Centre, Calgary, AB, Canada
| | | | - Michelle Dean
- Translational Laboratories, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Theodora A Koulis
- Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Tien Phan
- Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Maria Kalantarian
- Translational Laboratories, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Calgary Laboratory Services, Calgary, AB, Canada
| | - Prafull Ghatage
- Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Anthony M Magliocco
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Corinne M Doll
- Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| |
Collapse
|
69
|
Culture supernatants of cervical cancer cells induce an M2 phenotypic profile in THP-1 macrophages. Cell Immunol 2016; 310:42-52. [DOI: 10.1016/j.cellimm.2016.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 07/02/2016] [Accepted: 07/03/2016] [Indexed: 11/19/2022]
|
70
|
Classical and non-classical HLA class I aberrations in primary cervical squamous- and adenocarcinomas and paired lymph node metastases. J Immunother Cancer 2016; 4:78. [PMID: 27895918 PMCID: PMC5109766 DOI: 10.1186/s40425-016-0184-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022] Open
Abstract
Background Tumors avoid destruction by cytotoxic T cells (CTL) and natural killer (NK) cells by downregulation of classical human leukocyte antigens (HLA) and overexpression of non-classical HLA. This is the first study to investigate HLA expression in relation to histology (squamous cell carcinoma (SCC) vs. adenocarcinoma (AC)), clinicopathological parameters and survival in a large cervical cancer patient cohort. Methods Classical (HLA-A and HLA-B/C)- and non-classical HLA molecules (HLA-E and HLA-G) were studied on primary tumors and paired lymph node (LN) metastases from cervical cancer patients (n = 136) by immunohistochemistry. The Chi2 test was used for the comparison of clinicopathological characteristics between SCC and AC patients. The Related-Samples Wilcoxon Signed Rank test was used to compare HLA expression between the primary tumor and metastasis in LN. Patient survival rates were analyzed by Kaplan-Meier curves and Log Rank test. The Mann-Whitney U Test was used to compare the distribution of HLA class I expression between SCC and AC. Results Decreased expression of HLA-A (SCC P < 0.001), HLA-B/C (SCC P < 0.01; AC P < 0.01) and total classical HLA (SCC P < 0.001; AC P = 0.02) was apparent in metastatic tumor cells compared to the primary tumor. In primary SCC, there was a clear trend towards complete loss of HLA-A (P = 0.05). SCC metastases showed more complete loss of HLA-A, while AC metastases showed more complete loss of HLA-B/C (P = 0.04). In addition, tumor size and parametrium involvement were also related to aberrant HLA class I expression. No significant associations between HLA expression and disease-specific (DSS) or disease-free survival (DFS) were found in this advanced disease cohort. However, in the SCC group, samples showing loss of HLA-A or loss of total classical HLA but positive for HLA-G were linked to poor patient survival (DSS P = 0.001 and P = 0.01; DFS P = 0.003 and P = 0.01, for HLA-A and total classical HLA, respectively). Conclusion These results strengthen the idea of tumor immune escape variants leading to metastasis. Moreover, SCC tumors showing downregulation of HLA-A or total classical HLA in combination with HLA-G expression had poor prognosis. Our findings warrant further analysis of HLA expression as a biomarker for patient selection for CTL- and NK- cell based immunotherapeutic intervention. Electronic supplementary material The online version of this article (doi:10.1186/s40425-016-0184-3) contains supplementary material, which is available to authorized users.
Collapse
|
71
|
Human Leukocyte Antigen-DR Expression is Significantly Related to an Increased Disease-Free and Disease-Specific Survival in Patients With Cervical Adenocarcinoma. Int J Gynecol Cancer 2016; 26:1503-1509. [PMID: 27654088 DOI: 10.1097/igc.0000000000000783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Human leukocyte antigen (HLA) class II antigens are expressed on antigen-presenting cells, that is, macrophages, dendritic cells, and B lymphocytes. Under the influence of IFN-γ, HLA class II molecules can also be expressed on T lymphocytes, epithelial and endothelial cells. In addition, HLA class II antigens can be expressed in a variety of malignancies; however, the link with prognosis and ultimately patient survival is controversial. METHODS The pattern of HLA-DRA expression in cervical carcinoma was studied using immunohistochemistry. In total, 124 cervical carcinomas were examined, of which 60 (48.4%) were squamous cell carcinomas and 64 (51.6%) were adenocarcinomas. RESULTS In squamous cell carcinoma, HLA-DRA was expressed in 41 (68.3%) of 60 tumors, whereas in adenocarcinoma, HLA-DRA was expressed in 60 (93.8%) of 64 tumors (P < 0.001). In adenocarcinoma, HLA-DRA expression was associated with an increased disease-free survival (211.0 ± 13.0 vs 53.3 ± 30.5 months; P = 0.004) and disease-specific survival (226.45 ± 11.5 vs 75.8 ± 27.6 months; P = 0.002). CONCLUSIONS Upregulation of HLA-DRA is significantly related to an increased disease-free and disease-specific survival in cervical adenocarcinoma. These data warrant further analysis of the functional role of HLA-DRA in these tumors.
Collapse
|
72
|
Systems-level effects of ectopic galectin-7 reconstitution in cervical cancer and its microenvironment. BMC Cancer 2016; 16:680. [PMID: 27558259 PMCID: PMC4997669 DOI: 10.1186/s12885-016-2700-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022] Open
Abstract
Background Galectin-7 (Gal-7) is negatively regulated in cervical cancer, and appears to be a link between the apoptotic response triggered by cancer and the anti-tumoral activity of the immune system. Our understanding of how cervical cancer cells and their molecular networks adapt in response to the expression of Gal-7 remains limited. Methods Meta-analysis of Gal-7 expression was conducted in three cervical cancer cohort studies and TCGA. In silico prediction and bisulfite sequencing were performed to inquire epigenetic alterations. To study the effect of Gal-7 on cervical cancer, we ectopically re-expressed it in the HeLa and SiHa cervical cancer cell lines, and analyzed their transcriptome and SILAC-based proteome. We also examined the tumor and microenvironment host cell transcriptomes after xenotransplantation into immunocompromised mice. Differences between samples were assessed with the Kruskall-Wallis, Dunn’s Multiple Comparison and T tests. Kaplan–Meier and log-rank tests were used to determine overall survival. Results Gal-7 was constantly downregulated in our meta-analysis (p < 0.0001). Tumors with combined high Gal-7 and low galectin-1 expression (p = 0.0001) presented significantly better prognoses (p = 0.005). In silico and bisulfite sequencing assays showed de novo methylation in the Gal-7 promoter and first intron. Cells re-expressing Gal-7 showed a high apoptosis ratio (p < 0.05) and their xenografts displayed strong growth retardation (p < 0.001). Multiple gene modules and transcriptional regulators were modulated in response to Gal-7 reconstitution, both in cervical cancer cells and their microenvironments (FDR < 0.05 %). Most of these genes and modules were associated with tissue morphogenesis, metabolism, transport, chemokine activity, and immune response. These functional modules could exert the same effects in vitro and in vivo, even despite different compositions between HeLa and SiHa samples. Conclusions Gal-7 re-expression affects the regulation of molecular networks in cervical cancer that are involved in diverse cancer hallmarks, such as metabolism, growth control, invasion and evasion of apoptosis. The effect of Gal-7 extends to the microenvironment, where networks involved in its configuration and in immune surveillance are particularly affected. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2700-8) contains supplementary material, which is available to authorized users.
Collapse
|
73
|
Heeren AM, de Boer E, Bleeker MCG, Musters RJP, Buist MR, Kenter GG, de Gruijl TD, Jordanova ES. Nodal metastasis in cervical cancer occurs in clearly delineated fields of immune suppression in the pelvic lymph catchment area. Oncotarget 2016; 6:32484-93. [PMID: 26431490 PMCID: PMC4741707 DOI: 10.18632/oncotarget.5398] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/16/2015] [Indexed: 01/10/2023] Open
Abstract
In cervical cancer, high frequencies of regulatory T cells (Tregs) and immunosuppressive PD-L1+CD14+ antigen-presenting cells dominate the microenvironment of tumor-positive lymph nodes (LN+). It is unknown whether this is restricted to LN+ or precedes metastasis, emanating from the primary tumor and spreading through tumor-draining lymph nodes (TDLNs). To investigate immunosuppression in the lymphatic basin of cervical tumors, all dissected TDLNs of five cervical cancer patients (in total 9 LN+ and 74 tumor-negative lymph nodes (LN−)) were analyzed for FoxP3+ Tregs, CD8+ T cells, HLA-DR+- and PD-L1+ myeloid cells by immunohistochemistry. Tregs and PD-L1+ cells were found to form an immunosuppressive cordon around metastatic tumor cells. Importantly, whereas high HLA-DR+- and PD-L1+ cell rates were strongly associated with LN+, elevated Treg levels and decreased CD8+ T cell/Treg ratios were found similar in LN+ and adjacent LN−, as compared to LN− at more distant anatomical localizations. These data suggest that delineated fields of Treg-associated immune suppression in anatomically co-localized TDLNs enable metastasis by creating metastatic niches. This may be of importance for decision-making regarding (surgical) intervention in cervical cancer. Future efforts should include the implementation of immunotherapeutic regimens to overcome this immune suppression, establish loco-regional control and halt systemic tumor spread.
Collapse
Affiliation(s)
- A Marijne Heeren
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.,Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Eline de Boer
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Maaike C G Bleeker
- Department of Pathology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - René J P Musters
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, 1081 BT Amsterdam, The Netherlands
| | - Marrije R Buist
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Gemma G Kenter
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.,Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands.,Center Gynecological Oncology Amsterdam (CGOA), Department of Gynecology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, 1006 BE Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ekaterina S Jordanova
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
74
|
Takeya M, Komohara Y. Role of tumor-associated macrophages in human malignancies: friend or foe? Pathol Int 2016; 66:491-505. [PMID: 27444136 DOI: 10.1111/pin.12440] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/29/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in tumor growth in human malignancies. Published studies have analyzed the relationship between TAM infiltration and the prognosis of patients for many human tumors. Most studies reported a positive correlation between TAM density and a poor prognosis. Studies focusing on macrophage phenotypes emphasized the protumor role of M2 anti-inflammatory macrophages in many types of human tumors. However, TAMs influence tumor progression in various ways that depend on differences in tumor sites, histology, and microenvironments. In this review, we summarize the function of TAMs in various human malignancies by reviewing the data provided in studies of TAMs in human malignancies.
Collapse
Affiliation(s)
- Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
75
|
Torres-Poveda K, Burguete-García AI, Bahena-Román M, Méndez-Martínez R, Zurita-Díaz MA, López-Estrada G, Delgado-Romero K, Peralta-Zaragoza O, Bermúdez-Morales VH, Cantú D, García-Carrancá A, Madrid-Marina V. Risk allelic load in Th2 and Th3 cytokines genes as biomarker of susceptibility to HPV-16 positive cervical cancer: a case control study. BMC Cancer 2016; 16:330. [PMID: 27220278 PMCID: PMC4879749 DOI: 10.1186/s12885-016-2364-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 05/16/2016] [Indexed: 01/20/2023] Open
Abstract
Background Alterations in the host cellular immune response allow persistent infections with High-Risk Human Papillomavirus (HR-HPV) and development of premalignant cervical lesions and cervical cancer (CC). Variations of immunosuppressive cytokine levels in cervix are associated with the natural history of CC. To assess the potential role of genetic host immunity and cytokines serum levels in the risk of developing CC, we conducted a case–control study paired by age. Methods Peripheral blood samples from patients with CC (n = 200) and hospital controls (n = 200), were used to evaluate nine biallelic SNPs of six cytokine genes of the adaptive immune system by allelic discrimination and cytokines serum levels by ELISA. Results After analyzing the SNP association by multivariate logistic regression adjusted by age, CC history and smoking history, three Th2 cytokines (IL-4, IL-6 and IL-10) and one Th3 (TGFB1) cytokine were significantly associated with CC. Individuals with at least one copy of the following risk alleles: T of SNP (−590C > T IL-4), C of SNP (−573G > C IL-6), A of SNP (−592C > A IL-10), T of SNP (−819C > T IL-10) and T of SNP (−509C > T TGFB1), had an adjusted odds ratio (OR) of 2.08 (95 % CI 1.475–2.934, p = 0.0001), an OR of 1.70 (95 % CI 1.208–2.404, p = 0.002), an OR of 1.87 (95 % CI 1.332–2.630, p = 0.0001), an OR of 1.67 (95 % CI 1.192–2.353, p = 0.003) and an OR of 1.91 (95 % CI 1.354–2.701, p = 0.0001), respectively, for CC. The burden of carrying two or more of these risk alleles was found to have an additive effect on the risk of CC (p trend = 0.0001). Finally, the serum levels of Th2 and Th3 cytokines were higher in CC cases than the controls; whereas IFNG levels, a Th1 cytokine, were higher in controls than CC cases. Conclusion The significant associations of five SNPs with CC indicate that these polymorphisms are potential candidates for predicting the risk of development of CC, representing a risk allelic load for CC and can be used as a biomarker of susceptibility to this disease.
Collapse
Affiliation(s)
- K Torres-Poveda
- Dirección de Infecciones Crónicas y Cáncer. Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), (Chronic Infectious Diseases and Cancer Division. Center for Research on Infectious Diseases. National Institute of Public Health Mexico), Av. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, C.P.62100, Morelos, Mexico.,CONACyT Research Fellow-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - A I Burguete-García
- Dirección de Infecciones Crónicas y Cáncer. Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), (Chronic Infectious Diseases and Cancer Division. Center for Research on Infectious Diseases. National Institute of Public Health Mexico), Av. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, C.P.62100, Morelos, Mexico
| | - M Bahena-Román
- Dirección de Infecciones Crónicas y Cáncer. Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), (Chronic Infectious Diseases and Cancer Division. Center for Research on Infectious Diseases. National Institute of Public Health Mexico), Av. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, C.P.62100, Morelos, Mexico
| | - R Méndez-Martínez
- Division of Basic Research, Instituto Nacional de Cancerología (INCan), SS. Mexico City, Mexico
| | - M A Zurita-Díaz
- Dirección de Infecciones Crónicas y Cáncer. Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), (Chronic Infectious Diseases and Cancer Division. Center for Research on Infectious Diseases. National Institute of Public Health Mexico), Av. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, C.P.62100, Morelos, Mexico
| | - G López-Estrada
- Private Health Center for Gynecology, Cuernavaca, Morelos, Mexico
| | - K Delgado-Romero
- Centro de Atención para la Salud de la Mujer (CAPASAM), (Center for Women's Health). Health Services of the State of Morelos, Cuernavaca, Mexico
| | - O Peralta-Zaragoza
- Dirección de Infecciones Crónicas y Cáncer. Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), (Chronic Infectious Diseases and Cancer Division. Center for Research on Infectious Diseases. National Institute of Public Health Mexico), Av. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, C.P.62100, Morelos, Mexico
| | - V H Bermúdez-Morales
- Dirección de Infecciones Crónicas y Cáncer. Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), (Chronic Infectious Diseases and Cancer Division. Center for Research on Infectious Diseases. National Institute of Public Health Mexico), Av. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, C.P.62100, Morelos, Mexico
| | - D Cantú
- Division of Clinical Research, Instituto Nacional de Cancerología (INCan), SS. Mexico City, Mexico
| | - A García-Carrancá
- Division of Basic Research, Instituto Nacional de Cancerología (INCan), SS. Mexico City, Mexico.,Unit of Biomedical Research in Cancer, Instituto Nacional de Cancerología (INCan), SS and Biomedical Research Institute. Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - V Madrid-Marina
- Dirección de Infecciones Crónicas y Cáncer. Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), (Chronic Infectious Diseases and Cancer Division. Center for Research on Infectious Diseases. National Institute of Public Health Mexico), Av. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, C.P.62100, Morelos, Mexico.
| |
Collapse
|
76
|
Liu Z, Zhou H, Wang W, Fu YX, Zhu M. A novel dendritic cell targeting HPV16 E7 synthetic vaccine in combination with PD-L1 blockade elicits therapeutic antitumor immunity in mice. Oncoimmunology 2016; 5:e1147641. [PMID: 27471615 DOI: 10.1080/2162402x.2016.1147641] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/18/2016] [Accepted: 01/24/2016] [Indexed: 10/22/2022] Open
Abstract
Human papilliomavirus (HPV) oncogene E7, essential for the transformation and maintenance of the malignancy of cervical cancer cells, represents an ideal tumor-specific antigen for vaccine development. However, due to the poor immunogenicity of E7 protein, an effective therapeutic E7 vaccine is still lacking. Dendritic cells (DCs) are probably the most potent antigen presenting cells for the induction of cytotoxic T lymphocyte (CTL) response, which is crucial for tumor control. In this study, we tested whether targeting the E7 antigen to DCs in vivo would elicit therapeutic antitumor CTL response. We generated the DEC205-specific single-chain variable fragment (scFv) and E7 long peptide fusion protein [scFv(DEC205)-E7] based on the novel method of protein assembly we recently developed. This fusion protein vaccine demonstrated highly efficient DC-targeting in vivo and elicited much stronger protective CTL response than non-DC-targeting control vaccine in naive mice. Furthermore, the scFv(DEC205)-E7 vaccine showed significant therapeutic antitumor response in TC-1 tumor bearing mice. Importantly, PD-L1 blockade further improved the therapeutic effect of the scFv(DEC205)-E7 vaccine. Thus, the current study suggests an efficient strategy for cervical cancer immunotherapy by combining the DC(DEC205)-targeting E7 vaccine and PD-L1 blockade.
Collapse
Affiliation(s)
- Zhida Liu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Department of Pathology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Hang Zhou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wenjun Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas, Southwestern Medical Center , Dallas, TX, USA
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
77
|
Tang LJ, Li Y, Liu YL, Wang JM, Liu DW, Tian QB. USP12 regulates cell cycle progression by involving c-Myc, cyclin D2 and BMI-1. Gene 2016; 578:92-9. [DOI: 10.1016/j.gene.2015.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/22/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022]
|
78
|
Menderes G, Black J, Schwab CL, Santin AD. Immunotherapy and targeted therapy for cervical cancer: an update. Expert Rev Anticancer Ther 2015; 16:83-98. [PMID: 26568261 DOI: 10.1586/14737140.2016.1121108] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The prognosis of patients with metastatic cervical cancer is poor with a median survival of 8-13 months. Despite the potency of chemotherapeutic drugs, this treatment is rarely curative and should be considered palliative only. In the last few years, a better understanding of Human papillomavirus tumor-host immune system interactions and the development of new therapeutics targeting immune check points have renewed interest in the use of immunotherapy in cervical cancer patients. Moreover, next generation sequencing has emerged as an attractive option for the identification of actionable driver mutations and other markers. In this review, we provide background information on the molecular biology of cervical cancer and summarize immunotherapy studies, targeted therapies, including those with angiogenesis inhibitors and tyrosine kinase inhibitors recently completed or currently on-going in cervical cancer patients.
Collapse
Affiliation(s)
- Gulden Menderes
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Jonathan Black
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Carlton L Schwab
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Alessandro D Santin
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
79
|
Venuti A, Curzio G, Mariani L, Paolini F. Immunotherapy of HPV-associated cancer: DNA/plant-derived vaccines and new orthotopic mouse models. Cancer Immunol Immunother 2015; 64:1329-38. [PMID: 26138695 PMCID: PMC4554738 DOI: 10.1007/s00262-015-1734-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/06/2015] [Indexed: 12/19/2022]
Abstract
Under the optimistic assumption of high-prophylactic HPV vaccine coverage, a significant reduction of cancer incidence can only be expected after decades. Thus, immune therapeutic strategies are needed for persistently infected individuals who do not benefit from the prophylactic vaccines. However, the therapeutic strategies inducing immunity to the E6 and/or E7 oncoprotein of HPV16 are more effective for curing HPV-expressing tumours in animal models than for treating human cancers. New strategies/technologies have been developed to improve these therapeutic vaccines. Our studies focussed on preparing therapeutic vaccines with low-cost technologies by DNA preparation fused to either plant-virus or plant-toxin genes, such as saporin, and by plant-produced antigens. In particular, plant-derived antigens possess an intrinsic adjuvant activity that makes these preparations especially attractive for future development. Additionally, discrepancy in vaccine effectiveness between animals and humans may be due to non-orthotopic localization of animal models. Orthotopic transplantation leads to tumours giving a more accurate representation of the parent tumour. Since HPV can cause cancer in two main localizations, anogenital and oropharynx area, we developed two orthotopic tumour mouse models in these two sites. Both models are bioluminescent in order to follow up the tumour growth by imaging and are induced by cell injection without the need to intervene surgically. These models were utilized for immunotherapies with genetic or plant-derived therapeutic vaccines. In particular, the head/neck orthotopic model appears to be very promising for studies combining chemo-radio-immune therapy that seems to be very effective in patients.
Collapse
Affiliation(s)
- Aldo Venuti
- HPV-UNIT, Laboratory of Virology, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy,
| | | | | | | |
Collapse
|
80
|
DENG XINCHAO, ZHANG PING, LIANG TINGTING, DENG SUYE, CHEN XIAOJIE, ZHU LIN. Ovarian cancer stem cells induce the M2 polarization of macrophages through the PPARγ and NF-κB pathways. Int J Mol Med 2015; 36:449-54. [DOI: 10.3892/ijmm.2015.2230] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/18/2015] [Indexed: 11/06/2022] Open
|
81
|
Song D, Li H, Li H, Dai J. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer. Oncol Lett 2015; 10:600-606. [PMID: 26622540 DOI: 10.3892/ol.2015.3295] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/13/2015] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus (HPV) is widely known as a cause of cervical intraepithelial neoplasia (CIN) and cervical cancer. The mechanisms involved have been studied by numerous studies. The integration of the virus genome into the host cells results in the abnormal regulation of cell cycle control. HPV can also induce immune evasion of the infected cells, which enable the virus to be undetectable for long periods of time. The induction of immunotolerance of the host's immune system by the persistent infection of HPV is one of the most important mechanisms for cervical lesions. The present review elaborates on the roles of several types of immune cells, such as macrophages and natural killer cells, which are classified as innate immune cells, and dendritic cells (DCs), cluster of differentiation (CD)4+/CD8+ T cells and regulatory T cells, which are classified as adaptive immune cells. HPV infection could effect the differentiation of these immune cells in a unique way, resulting in the host's immune tolerance to the infection. The immune system modifications induced by HPV infection include tumor-associated macrophage differentiation, a compromised cellular immune response, an abnormal imbalance between type 1 T-helper cells (Th1) and Th2 cells, regulatory T cell infiltration, and downregulated DC activation and maturation. To date, numerous types of preventative vaccines have been created to slow down carcinogenesis. Immune response activation-based therapeutic vaccine is becoming more and more attractive for the treatment of HPV-associated diseases.
Collapse
Affiliation(s)
- Dan Song
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Hong Li
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Haibo Li
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Jianrong Dai
- Department of Gynecology, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu 215002, P.R. China
| |
Collapse
|
82
|
Heeren AM, Koster BD, Samuels S, Ferns DM, Chondronasiou D, Kenter GG, Jordanova ES, de Gruijl TD. High and interrelated rates of PD-L1+CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol Res 2014; 3:48-58. [PMID: 25361854 DOI: 10.1158/2326-6066.cir-14-0149] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A better understanding of the microenvironment in relation to lymph node metastasis is essential for the development of effective immunotherapeutic strategies against cervical cancer. In the present study, we investigated the microenvironment of tumor-draining lymph nodes of patients with cervical cancer by comprehensive flow cytometry-based phenotyping and enumeration of immune-cell subsets in tumor-negative (LN(-), n = 20) versus tumor-positive lymph nodes (LN(+), n = 8), and by the study of cytokine release profiles (n = 4 for both LN(-) and LN(+)). We found significantly lower CD4(+) and higher CD8(+) T-cell frequencies in LN(+) samples, accompanied by increased surface levels of activation markers (HLA-DR; ICOS; PD-1; CTLA-4) and the memory marker CD45RO. Furthermore, in LN(+), we found increased rates of a potentially regulatory antigen-presenting cell (APC) subset (CD11c(hi)CD14(+)PD-L1(+)) and of myeloid-derived suppressor cell subsets; the LN(+) APC subset correlated with significantly elevated frequencies of FoxP3(+) regulatory T cells (Treg). After in vitro stimulation with different Toll-like receptor (TLR) ligands (PGN; Poly-IC; R848), we observed higher production levels of IL6, IL10, and TNFα but lower levels of IFNγ in LN(+) samples. We conclude that, despite increased T-cell differentiation and activation, a switch to a profound immune-suppressive microenvironment in LN(+) of patients with cervical cancer will enable immune escape. Our data indicate that the CD14(+)PD-L1(+) APC/Treg axis is a particularly attractive and relevant therapeutic target to specifically tackle microenvironmental immune suppression and thus enhances the efficacy of immunotherapy in patients with metastasized cervical cancer.
Collapse
Affiliation(s)
- A Marijne Heeren
- Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, Amsterdam, the Netherlands. Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, the Netherlands
| | - Bas D Koster
- Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sanne Samuels
- Center Gynecological Oncology Amsterdam (CGOA), Department of Gynecology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Debbie M Ferns
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, the Netherlands
| | - Dafni Chondronasiou
- Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Gemma G Kenter
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, the Netherlands. Center Gynecological Oncology Amsterdam (CGOA), Department of Gynecology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Ekaterina S Jordanova
- Center Gynecological Oncology Amsterdam (CGOA), Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center-Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
83
|
A synthetic chimeric peptide harboring human papillomavirus 16 cytotoxic T lymphocyte epitopes shows therapeutic potential in a murine model of cervical cancer. Immunol Res 2014; 58:132-8. [PMID: 24174302 DOI: 10.1007/s12026-013-8447-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Infection with human papillomavirus (HPV) such as HPV16 is known to be associated with cervical cancer. The E6 and E7 oncoproteins of this virus are attractive targets for T-cell-based immunotherapy to cervical cancer. In our study, software predicted, multiple H-2D(b) restricted HPV16 cytotoxic T lymphocytes (CTL) epitopes on a synthetic chimeric peptide, was used along with different immunopotentiating adjuvants such as alum, heat-killed Mycobacterium w (Mw) cells, and poly D,L-lactic-co-glycolide (PLGA) microspheres. We have shown that subcutaneous immunization with H-2D(b)-restricted HPV16 peptide was able to generate CTL-mediated cytolysis of HPV16 E6- and E7-expressing TC-1 tumor cells in vitro, as well as protect against in vivo challenge with TC-1 cells in C57BL/6 mice. In vitro, this chimeric peptide showed best efficacy with PLGA microspheres, moderate with alum, and least with Mw as adjuvant. This approach may thus provide a potential peptide-based therapeutic candidate vaccine for the control of HPV infection and hence cervical cancer.
Collapse
|
84
|
Singh A, Peppas NA. Hydrogels and scaffolds for immunomodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6530-41. [PMID: 25155610 PMCID: PMC4269549 DOI: 10.1002/adma.201402105] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/27/2014] [Indexed: 05/17/2023]
Abstract
For over two decades, immunologists and biomaterials scientists have co-existed in parallel world with the rationale of understanding the molecular profile of immune responses to vaccination, implantation, and treating incurable diseases. Much of the field of biomaterial-based immunotherapy has relied on evaluating model antigens such as chicken egg ovalbumin in mouse models but their relevance to humans has been point of much discussion. Nevertheless, such model antigens have provided important insights into the mechanisms of immune regulation and served as a proof-of-concept for plethora of biomaterial-based vaccines. After years of extensive development of numerous biomaterials for immunomodulation, it is only recently that an experimental scaffold vaccine implanted beneath the skin has begun to use the human model to study the immune responses to cancer vaccination by co-delivering patient-derived tumor lysates and immunomodulatory proteins. If successful, this scaffold vaccine will change the way we approached untreatable cancers, but more importantly, will allow a faster and more rational translation of therapeutic regimes to other cancers, chronic infections, and autoimmune diseases. Most materials reviews have focused on immunomodulatory adjuvants and micro-nano-particles. Here we provide an insight into emerging hydrogel and scaffold based immunomodulatory approaches that continue to demonstrate efficacy against immune associated diseases.
Collapse
Affiliation(s)
- Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Nicholas A. Peppas
- Department of Chemical Engineering, Department of Biomedical Engineering and College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
85
|
Purwada A, Roy K, Singh A. Engineering vaccines and niches for immune modulation. Acta Biomater 2014; 10:1728-40. [PMID: 24373907 DOI: 10.1016/j.actbio.2013.12.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 12/14/2022]
Abstract
Controlled modulation of immune response, especially the balance between immunostimulatory and immunosuppressive responses, is critical for a variety of clinical applications, including immunotherapies against cancer and infectious diseases, treatment of autoimmune disorders, transplant surgeries, regenerative medicine, prosthetic implants, etc. Our ability to precisely modify both innate and adaptive immune responses could provide new therapeutic directions in a variety of diseases. In the context of vaccines and immunotherapies, the interplay between antigen-presenting cells (e.g. dendritic cells and macrophages), B cells, T helper and killer subtypes, and regulatory T- and B-cell responses is critical for generating effective immunity against cancer, infectious diseases and autoimmune diseases. In recent years, immunoengineering has emerged as a new field that uses quantitative engineering tools to understand molecular-, cellular- and system-level interactions of the immune system and to develop design-driven approaches to control and modulate immune responses. Biomaterials are an integral part of this engineering toolbox and can exploit the intrinsic biological and mechanical cues of the immune system to directly modulate and train immune cells and direct their response to a particular phenotype. A large body of literature exists on strategies to evade or suppress the immune response in implants, transplantation and regenerative medicine. This review specifically focuses on the use of biomaterials for immunostimulation and controlled modulation, especially in the context of vaccines and immunotherapies against cancer, infectious diseases and autoimmune disorders. Bioengineering smart systems that can simultaneously deliver multiple bioactive agents in a controlled manner or can work as a niche for in situ priming and modulation of the immune system could significantly enhance the efficacy of next-generation immunotherapeutics. In this review, we describe our perspective on the important design aspects for the development of biomaterials that can actively modulate immune responses by stimulating receptor complexes and cells, and delivering multiple immunomodulatory biomolecules.
Collapse
|
86
|
Vici P, Mariani L, Pizzuti L, Sergi D, Di Lauro L, Vizza E, Tomao F, Tomao S, Cavallotti C, Paolini F, Venuti A. Immunologic treatments for precancerous lesions and uterine cervical cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:29. [PMID: 24667138 PMCID: PMC3986944 DOI: 10.1186/1756-9966-33-29] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/18/2014] [Indexed: 01/24/2023]
Abstract
Development of HPV-associated cancers not only depends on efficient negative regulation of cell cycle control that supports the accumulation of genetic damage, but also relies on immune evasion that enable the virus to go undetected for long periods of time. In this way, HPV-related tumors usually present MHC class I down-regulation, impaired antigen-processing ability, avoidance of T-cell mediated killing, increased immunosuppression due to Treg infiltration and secrete immunosuppressive cytokines. Thus, these are the main obstacles that immunotherapy has to face in the treatment of HPV-related pathologies where a number of different strategies have been developed to overcome them including new adjuvants. Although antigen-specific immunotherapy induced by therapeutic HPV vaccines was proved extremely efficacious in pre-clinical models, its progression through clinical trials suffered poor responses in the initial trials. Later attempts seem to have been more promising, particularly against the well-defined precursors of cervical, anal or vulvar cancer, where the local immunosuppressive milieu is less active. This review focuses on the advances made in these fields, highlighting several new technologies (such as mRNA vaccine, plant-derived vaccine). The most promising immunotherapies used in clinical trials are also summarized, along with integrated strategies, particularly promising in controlling tumor metastasis and in eliminating cancer cells altogether. After the early promising clinical results, the development of therapeutic HPV vaccines need to be implemented and applied to the users in order to eradicate HPV-associated malignancies, eradicating existing perception (after the effectiveness of commercial preventive vaccines) that we have already solved the problem.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Aldo Venuti
- HPV Unit, Regina Elena National Cancer Institute, V Elio Chianesi 53, Rome 00144, Italy.
| |
Collapse
|
87
|
Abstract
Cervical cancer is caused by human papillomavirus infection. Most human papillomavirus infection is harmless and clears spontaneously but persistent infection with high-risk human papillomavirus (especially type 16) can cause cancer of the cervix, vulva, vagina, anus, penis, and oropharynx. The virus exclusively infects epithelium and produces new viral particles only in fully mature epithelial cells. Human papillomavirus disrupts normal cell-cycle control, promoting uncontrolled cell division and the accumulation of genetic damage. Two effective prophylactic vaccines composed of human papillomavirus type 16 and 18, and human papillomavirus type 16, 18, 6, and 11 virus-like particles have been introduced in many developed countries as a primary prevention strategy. Human papillomavirus testing is clinically valuable for secondary prevention in triaging low-grade cytology and as a test of cure after treatment. More sensitive than cytology, primary screening by human papillomavirus testing could enable screening intervals to be extended. If these prevention strategies can be implemented in developing countries, many thousands of lives could be saved.
Collapse
Affiliation(s)
- Emma J Crosbie
- Institute of Cancer Sciences, University of Manchester, Oxford Road, Manchester, UK
| | | | | | | |
Collapse
|
88
|
Bao B, Thakur A, Li Y, Ahmad A, Azmi AS, Banerjee S, Kong D, Ali S, Lum LG, Sarkar FH. The immunological contribution of NF-κB within the tumor microenvironment: a potential protective role of zinc as an anti-tumor agent. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1825:160-72. [PMID: 22155217 PMCID: PMC3811120 DOI: 10.1016/j.bbcan.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/14/2011] [Accepted: 11/19/2011] [Indexed: 12/16/2022]
Abstract
Over decades, cancer treatment has been mainly focused on targeting cancer cells and not much attention to host tumor microenvironment. Recent advances suggest that the tumor microenvironment requires in-depth investigation for understanding the interactions between tumor cell biology and immunobiology in order to optimize therapeutic approaches. Tumor microenvironment consists of cancer cells and tumor associated reactive fibroblasts, infiltrating non-cancer cells, secreted soluble factors or molecules, and non-cellular support materials. Tumor associated host immune cells such as Th(1), Th(2), Th17, regulatory cells, dendritic cells, macrophages, and myeloid-derived suppressor cells are major components of the tumor microenvironment. Accumulating evidence suggests that these tumor associated immune cells may play important roles in cancer development and progression. However, the exact functions of these cells in the tumor microenvironment are poorly understood. In the tumor microenvironment, NF-κB plays an important role in cancer development and progression because this is a major transcription factor which regulates immune functions within the tumor microenvironment. In this review, we will focus our discussion on the immunological contribution of NF-κB in tumor associated host immune cells within the tumor microenvironment. We will also discuss the potential protective role of zinc, a well-known immune response mediator, in the regulation of these immune cells and cancer cells in the tumor microenvironment especially because zinc could be useful for conditioning the tumor microenvironment toward innovative cancer therapy.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Archana Thakur
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Asfar S. Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Shadan Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Lawrence G. Lum
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Immunology and Microbiology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|