51
|
Yun B, Maburutse BE, Kang M, Park MR, Park DJ, Kim Y, Oh S. Short communication: Dietary bovine milk-derived exosomes improve bone health in an osteoporosis-induced mouse model. J Dairy Sci 2020; 103:7752-7760. [PMID: 32622594 DOI: 10.3168/jds.2019-17501] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a systemic skeletal disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and fracture susceptibility. In an aged society with increased life expectancy, the incidence rate of osteoporosis is also rapidly increasing. Inadequate nutrition may negatively influence bone metabolism. Recently, many studies have investigated the functionality of milk-derived exosomes, which play important roles in cell-to-cell communication. However, there are few reports of how milk-derived exosomes influence osteoblast proliferation and differentiation. Here, we determined whether bovine colostrum-derived exosomes promote anti-osteoporosis in vitro and in vivo. Tartrate-resistant acid phosphatase-stained cells were significantly inhibited in Raw264.7 cells treated with exosomes, indicating reduced osteoclast differentiation. We induced osteoporosis in mice using glucocorticoid pellets after orally administering exosomes for 2 mo. Interestingly, the bone mineral density of exosome-fed mouse groups was significantly improved compared with the glucocorticoid-induced osteoporosis group without exosome treatment. In addition, Lactobacillus were decreased in the gut microbiota community of osteoporosis-induced mice, but the gut microbiota community composition was effectively restored by exosome intake. Taken together, we propose that exosomes isolated from bovine colostrum could be a potential candidate for osteoporosis prevention, bone remodeling improvement, and inhibition of bone resorption. To our knowledge, this is the first time that a protective effect of milk exosomes against osteoporosis has been demonstrated in vivo. Our results strongly suggest that bovine colostrum exosomes might be used as a prophylaxis to prevent the onset of osteoporosis. Indeed, our results offer promising alternative strategies in the nutritional management of age-related bone complications.
Collapse
Affiliation(s)
- B Yun
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - B E Maburutse
- Department of Animal Sciences and Health, Marondera University of Agricultural Sciences and Health, PO Box 35, Marondera, Zimbabwe
| | - M Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - M R Park
- Department of Pharmacology and System Physiology, University of Cincinnati, OH 45267
| | - D J Park
- Korea Food Research Institute, Jeollabuk-do 55365, Korea
| | - Y Kim
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea.
| | - S Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea.
| |
Collapse
|
52
|
Sanwlani R, Fonseka P, Chitti SV, Mathivanan S. Milk-Derived Extracellular Vesicles in Inter-Organism, Cross-Species Communication and Drug Delivery. Proteomes 2020; 8:11. [PMID: 32414045 PMCID: PMC7356197 DOI: 10.3390/proteomes8020011] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Milk is considered as more than a source of nutrition for infants and is a vector involved in the transfer of bioactive compounds and cells. Milk contains abundant quantities of extracellular vesicles (EVs) that may originate from multiple cellular sources. These nanosized vesicles have been well characterized and are known to carry a diverse cargo of proteins, nucleic acids, lipids and other biomolecules. Milk-derived EVs have been demonstrated to survive harsh and degrading conditions in gut, taken up by various cell types, cross biological barriers and reach peripheral tissues. The cargo carried by these dietary EVs has been suggested to have a role in cell growth, development, immune modulation and regulation. Hence, there is considerable interest in understanding the role of milk-derived EVs in mediating inter-organismal and cross-species communication. Furthermore, various attributes such as it being a natural source, as well as its abundance, scalability, economic viability and lack of unwarranted immunologic reactions, has generated significant interest in deploying milk-derived EVs for clinical applications such as drug delivery and disease therapy. In this review, the role of milk-derived EVs in inter-organismal, cross-species communication and in drug delivery is discussed.
Collapse
Affiliation(s)
| | | | | | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia; (R.S.); (P.F.); (S.V.C.)
| |
Collapse
|
53
|
Munir J, Lee M, Ryu S. Exosomes in Food: Health Benefits and Clinical Relevance in Diseases. Adv Nutr 2020; 11:687-696. [PMID: 31796948 PMCID: PMC7231590 DOI: 10.1093/advances/nmz123] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/14/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Exosomes are membrane-bound organelles generally secreted by eukaryotic cells that contain mRNAs, microRNAs, and/or proteins. However, recent studies have reported the isolation of these particles from foods such as lemon, ginger, and milk. Owing to their absorption by intestinal cells and further travel via the bloodstream, exosomes can reach distant organs and affect overall health in both infants and adults. The potential role of food-derived exosomes (FDEs) in alleviating diseases, as well as in modulating the gut microbiota has been shown, but the underlying mechanism is still unknown. Moreover, exosomes may provide biocompatible vehicles for the delivery of anti-cancer drugs, such as doxorubicin. Thus, exosomes may allow medical nutritionists and clinicians to develop safe and targeted therapies for the treatment of various pathologies. The present review introduces FDEs and their contents, highlights their role in disease and infant/adult health, and explores their potential use as therapeutic agents.
Collapse
Affiliation(s)
| | - Mihye Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Chungcheongnam-do, South Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-bioscience (SIMS), Soonchunhyang University, Cheonan, Chungcheongnam-do, South Korea
| |
Collapse
|
54
|
Lin D, Chen T, Xie M, Li M, Zeng B, Sun R, Zhu Y, Ye D, Wu J, Sun J, Xi Q, Jiang Q, Zhang Y. Oral Administration of Bovine and Porcine Milk Exosome Alter miRNAs Profiles in Piglet Serum. Sci Rep 2020; 10:6983. [PMID: 32332796 PMCID: PMC7181743 DOI: 10.1038/s41598-020-63485-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Breast milk is the most important nutrient source for newborn mammals. Studies have reported that milk contains microRNAs (miRNAs), which are potential regulatory components. Currently, existing functional and nutritional two competing hypotheses in milk field though little date have been provided for nutritional hypothesis. In this study, we used the qRT-PCR method to evaluated whether milk miRNAs can be absorbed by newborn piglets by feeding them porcine or bovine milk. The result showed that miRNA levels (miR-2284×, 2291, 7134, 1343, 500, 223) were significantly different between bovine and porcine milk. Four miRNAs (miR-2284×, 2291, 7134, 1343) were significantly different in piglet serum after feeding porcine or bovine milk. After separated milk exosomes by ultracentrifugation, the results showed the selected milk miRNAs (miR-2284×, 2291, 7134, 1343) were present in both exosomes and supernatants, and the miRNAs showed the coincidental expression in IPEC-J2 cells. All our founding suggested that the milk miRNAs can be absorbed both in vivo and in vitro, which will building the foundation for understanding whether these sort of miRNAs exert physiological functions after being absorbed and provided additional evidence for the nutritional hypotheses.
Collapse
Affiliation(s)
- Delin Lin
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Ting Chen
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Meiying Xie
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Meng Li
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Bin Zeng
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Ruiping Sun
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Yanling Zhu
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Dingze Ye
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jiahan Wu
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jiajie Sun
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qianyun Xi
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qingyan Jiang
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yongliang Zhang
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
55
|
Wang L, Shi Z, Wang X, Mu S, Xu X, Shen L, Li P. Protective effects of bovine milk exosomes against oxidative stress in IEC-6 cells. Eur J Nutr 2020; 60:317-327. [PMID: 32328746 DOI: 10.1007/s00394-020-02242-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Bovine milk exosomes, which are enriched with microRNAs (miRNAs) and proteins, regulate immune response and growth. In the present study, we aimed to assess the protective effects of bovine milk exosomes against oxidative stress of intestinal crypt epithelial cells (IEC-6). METHODS Bovine milk exosomes were isolated and characterized. To assess the protective effects of exosomes, IEC-6 cells were pretreated with exosomes, followed by H2O2. Cell viability and levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GPX), reactive oxidative species (ROS), and lactate dehydrogenase (LDH) were measured. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (Ho1) genes, and miR-146a, miR-155, and the HO-1 protein were also determined. RESULTS The isolated bovine milk exosome were positive for CD63 and CD9 expression. The exosomes were approximately circular and had a diameter of about 67.23 nm. Pretreatment of IEC-6 cells with bovine milk exosomes enhanced cell viability; increased SOD and GPX activities; and reduced LDH, ROS, and MDA levels after H2O2 challenge. Further analysis showed that exosome pretreatment increased intracellular miR-146a and miR-155 levels. Exosome pretreatment inhibited the elevation of Nrf2 and Ho1 gene expression induced by H2O2, but promoted HO-1 protein expression. CONCLUSION The results indicated that bovine milk exosomes exerted protective effects against oxidative stress in IEC-6 cells.
Collapse
Affiliation(s)
- Lanfang Wang
- Research Center for Translational Medicine at Shanghai East Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| | - Zhexi Shi
- Research Center for Translational Medicine at Shanghai East Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Xinyan Wang
- The People's Hospital of Zhaoyuan City, Zhaoyuan, 265400, Shandong Province, China
| | - Shu Mu
- Research Center for Translational Medicine at Shanghai East Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Xiaoyan Xu
- Research Center for Translational Medicine at Shanghai East Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Li Shen
- Department of Pathogen Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ping Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
56
|
Tong L, Hao H, Zhang X, Zhang Z, Lv Y, Zhang L, Yi H. Oral Administration of Bovine Milk-Derived Extracellular Vesicles Alters the Gut Microbiota and Enhances Intestinal Immunity in Mice. Mol Nutr Food Res 2020; 64:e1901251. [PMID: 32180343 DOI: 10.1002/mnfr.201901251] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/01/2020] [Indexed: 12/17/2022]
Abstract
SCOPE Milk-derived extracellular vesicles (mEVs) as nanoparticles are being developed as novel drug vehicles due to their pivotal role in cell-cell communication. As an important bioactive component in milk, little is known about their effect on the gut microbiota and intestinal immunity. Therefore, the effects of mEVs on gut microbiota and intestinal immunity in mice are investigated. METHODS AND RESULTS First, a new method to obtain high-yield mEVs is developed. Afterward, the colonic contents from C57BL/6 mice fed different doses of mEVs (8 weeks) are collected and the microbial composition via 16S rRNA gene sequencing is analyzed. It is found that mEVs could alter the gut microbiota composition and modulate their metabolites-short-chain fatty acids (SCFAs). Furthermore, the effects of mEVs on intestinal immunity are evaluated. It is observed that the expression levels of Muc2, RegIIIγ, Myd88, GATA4 genes, and IgA, sIgA are increased in the intestine, which are significant for the integrity of the mucus layer. CONCLUSION These findings reveal that the genes with critical importance for intestinal barrier function and immune regulation are modified in mice by oral administration mEVs, which also result in the changes of the relative composition of gut microbiome and SCFAs.
Collapse
Affiliation(s)
- Lingjun Tong
- Department of Food Science, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Haining Hao
- Department of Food Science, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Xinyi Zhang
- Department of Food Science, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Zhe Zhang
- Department of Food Science, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Youyou Lv
- Department of Food Science, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Lanwei Zhang
- Department of Food Science, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Huaxi Yi
- Department of Food Science, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| |
Collapse
|
57
|
Kirchner B, Buschmann D, Paul V, Pfaffl MW. Postprandial transfer of colostral extracellular vesicles and their protein and miRNA cargo in neonatal calves. PLoS One 2020; 15:e0229606. [PMID: 32109241 PMCID: PMC7048281 DOI: 10.1371/journal.pone.0229606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) such as exosomes are key regulators of intercellular communication that can be found in almost all bio fluids. Although studies in the last decade have made great headway in discerning the role of EVs in many physiological and pathophysiological processes, the bioavailability and impact of dietary EVs and their cargo still remain to be elucidated. Due to its widespread consumption and high content of EV-associated microRNAs and proteins, a major focus in this field has been set on EVs in bovine milk and colostrum. Despite promising in vitro studies in recent years that show high resiliency of milk EVs to degradation and uptake of milk EV cargo in a variety of intestinal and blood cell types, in vivo experiments continue to be inconclusive and sometimes outright contradictive. To resolve this discrepancy, we assessed the potential postprandial transfer of colostral EVs to the circulation of newborn calves by analysing colostrum-specific protein and miRNAs, including specific isoforms (isomiRs) in cells, EV isolations and unfractionated samples from blood and colostrum. Our findings reveal distinct populations of EVs in colostrum and blood from cows that can be clearly separated by density, particle concentration and protein content (BTN1A1, MFGE8). Postprandial blood samples of calves show a time-dependent increase in EVs that share morphological and protein characteristics of colostral EVs. Analysis of miRNA expression profiles by Next-Generation Sequencing gave a different picture however. Although significant postprandial expression changes could only be detected for calf EV samples, expression profiles show very limited overlap with highly expressed miRNAs in colostral EVs or colostrum in general. Taken together our results indicate a selective uptake of membrane-associated protein cargo but not luminal miRNAs from colostral EVs into the circulation of neonatal calves.
Collapse
Affiliation(s)
- Benedikt Kirchner
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
- * E-mail:
| | - Dominik Buschmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | - Vijay Paul
- National Research Centre on Yak, ICAR, Dirang, India
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| |
Collapse
|
58
|
Wu D, Kittana H, Shu J, Kachman SD, Cui J, Ramer-Tait AE, Zempleni J. Dietary Depletion of Milk Exosomes and Their MicroRNA Cargos Elicits a Depletion of miR-200a-3p and Elevated Intestinal Inflammation and Chemokine (C-X-C Motif) Ligand 9 Expression in Mdr1a-/- Mice. Curr Dev Nutr 2019; 3:nzz122. [PMID: 32154493 PMCID: PMC7053579 DOI: 10.1093/cdn/nzz122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Exosomes transfer regulatory microRNAs (miRs) from donor cells to recipient cells. Exosomes and miRs originate from both endogenous synthesis and dietary sources such as milk. miR-200a-3p is a negative regulator of the proinflammatory chemokine (C-X-C motif) ligand 9 (CXCL9). Male Mdr1a-/- mice spontaneously develop clinical signs of inflammatory bowel disease (IBD). OBJECTIVES We assessed whether dietary depletion of exosomes and miRs alters the severity of IBD in Mdr1a-/- mice owing to aberrant regulation of proinflammatory cytokines. METHODS Starting at 5 wk of age, 16 male Mdr1a-/- mice were fed either milk exosome- and RNA-sufficient (ERS) or milk exosome- and RNA-depleted (ERD) diets. The ERD diet is characterized by a near-complete depletion of miRs and a 60% loss of exosome bioavailability compared with ERS. Mice were killed when their weight loss exceeded 15% of peak body weight. Severity of IBD was assessed by histopathological evaluation of cecum. Serum cytokine and chemokine concentrations and mRNA and miR tissue expression were analyzed by multiplex ELISAs, RNA-sequencing analysis, and qRT-PCR, respectively. RESULTS Stromal collapse, gland hyperplasia, and additive microscopic disease scores were (mean ± SD) 56.7% ± 23.3%, 23.5% ± 11.8%, and 29.6% ± 8.2% lower, respectively, in ceca of ERS mice than of ERD mice (P < 0.05). The serum concentration of CXCL9 was 35.0% ± 31.0% lower in ERS mice than in ERD mice (P < 0.05). Eighty-seven mRNAs were differentially expressed in the ceca from ERS and ERD mice; 16 of these mRNAs are implicated in immune function. The concentrations of 4 and 1 out of 5 miRs assessed (including miR-200a-3p) were ≤63% lower in livers and ceca, respectively, from ERD mice than from ERS mice. CONCLUSIONS Milk exosome and miR depletion exacerbates cecal inflammation in Mdr1a-/- mice.
Collapse
Affiliation(s)
- Di Wu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hatem Kittana
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jiang Shu
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Stephen D Kachman
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
59
|
Van Hese I, Goossens K, Vandaele L, Opsomer G. Invited review: MicroRNAs in bovine colostrum-Focus on their origin and potential health benefits for the calf. J Dairy Sci 2019; 103:1-15. [PMID: 31677833 DOI: 10.3168/jds.2019-16959] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022]
Abstract
Colostrum is the first milk produced by a cow after she gives birth. Compared with mature milk, it has a high concentration of immunoglobulin G. Calves are born without circulating antibodies, thus ingestion of colostrum is necessary to protect the calf against pathogens in the first challenging weeks of life. In addition to the life-saving supply of antibodies, colostrum contains minerals, vitamins, growth factors, and immune cells. Recently, microRNAs (miRNAs) were added to that list. MicroRNAs are short, non-coding RNA molecules that can regulate gene expression at the post-transcriptional level. They are thought to act as key regulators of diverse biological and developmental processes. Colostrum contains higher amounts of miRNAs than mature milk; immune- and development-related miRNAs are prominent. Their expression pattern in milk is likely to be influenced by maternal nutrition and environment. The fat content of the maternal diet appears to have a major effect on expression of miRNAs in milk and in the neonate. The immunological state of the mammary gland seems to affect miRNA expression as well. In cows diagnosed with subclinical mastitis, alterations in the expression of miRNAs in milk have been observed. It is believed that miRNAs in colostrum and milk are signaling molecules passed from mother to newborn. They are packaged in extracellular vesicles, which makes them resistant to the harsh conditions in the gastrointestinal tract. Therefore, they can reach the small intestine, where they are absorbed and transferred into the bloodstream. MicroRNAs are important for the development of the intestines. For example, miRNAs stimulate cell viability, proliferation, and stem cell activity of the intestinal epithelium. Furthermore, miRNAs seem to act as key players in the development of the complete immune system. They can, among other things, regulate B- and T-cell differentiation and affect interleukin production of macrophages. The abundance of miRNAs in colostrum and milk and the possibility for their absorption in the intestines of the neonate supports the hypothesis that these tiny molecules are important for the development of the newborn. The probable relation of diet to the expression of miRNAs by the mother creates a possible avenue to optimize expression of miRNAs and improve neonatal maturation.
Collapse
Affiliation(s)
- I Van Hese
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg, Melle, 9090, Belgium; Department of Reproduction, Obstetrics and Herd Health Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, 9820, Belgium.
| | - K Goossens
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg, Melle, 9090, Belgium
| | - L Vandaele
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg, Melle, 9090, Belgium
| | - G Opsomer
- Department of Reproduction, Obstetrics and Herd Health Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, 9820, Belgium
| |
Collapse
|
60
|
Ylioja CM, Rolf MM, Mamedova LK, Bradford BJ. Associations between body condition score at parturition and microRNA profile in colostrum of dairy cows as evaluated by paired mapping programs. J Dairy Sci 2019; 102:11609-11621. [PMID: 31548065 DOI: 10.3168/jds.2019-16675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/03/2019] [Indexed: 12/18/2022]
Abstract
MicroRNA (miRNA) are abundant in milk, and likely have regulatory activity involving lactation and immunity. The objective of this study was to determine the miRNA profile in colostrum of overconditioned cows compared with cows of more moderate body condition score (BCS) at calving. Multiparous cows with either high (≥4.0 on a scale of 1 to 5; n = 7) or moderate BCS (2.75 to 3.50; n = 9) in the week before parturition were selected from a commercial dairy herd. Blood and colostrum were sampled within 24 h after calving. Blood serum was analyzed for free fatty acid (FFA) concentration. MicroRNA was isolated from colostrum samples after removing milk fat and cells. MicroRNA were sequenced, and reads were mapped to the bovine genome and to the existing database of miRNA at miRBase.org. Two programs, Oasis 2.0 and miRDeep2, were employed in parallel for read alignment, and analysis of miRNA count data was performed using DESeq2. Identification of differentially expressed miRNA from DESeq2 was not affected by the differences in miRNA detected by the 2 mapping programs. Most abundant miRNA included miR-30a, miR-148a, miR-181a, let-7f, miR-26a, miR-21, miR-22, and miR-92a. Large-scale shifts in miRNA profile were not observed; however, colostrum of cows with high BCS contained less miR-486, which has been linked with altered glucose metabolism. Colostrum from cows with elevated serum FFA contained less miR-885, which may be connected to hepatic function during the transition period. Potential functions of abundant miRNA suggest involvement in development and maintenance of cellular function in the mammary gland, with the additional possibility of influencing neonatal tissue and immune system development.
Collapse
Affiliation(s)
- C M Ylioja
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - M M Rolf
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - L K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - B J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506.
| |
Collapse
|
61
|
Zeng B, Chen T, Xie MY, Luo JY, He JJ, Xi QY, Sun JJ, Zhang YL. Exploration of long noncoding RNA in bovine milk exosomes and their stability during digestion in vitro. J Dairy Sci 2019; 102:6726-6737. [PMID: 31155266 DOI: 10.3168/jds.2019-16257] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
Previous studies have demonstrated that bovine milk contains mRNA and microRNA that are largely encapsulated in milk-derived exosomes. However, little information is available about long noncoding RNAs (lncRNA) in bovine milk. Increasing evidence suggests that lncRNA are of particular interest given their key role in gene expression and development. We performed a comprehensive analysis of lncRNA in bovine milk exosomes by RNA sequencing. We used a validated human in vitro digestion model to investigate the stability of lncRNA encapsulated in bovine milk exosomes during the digestion process. We identified 3,475 novel lncRNA and 6 annotated lncRNA. The lncRNA shared characteristics with those of other mammals in terms of length, exon number, and open reading frames. However, lncRNA showed higher expression than mRNAs. We selected 12 lncRNA of high-expression abundance and identified them by PCR. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that lncRNA regulate immune function, osteoblastogenesis, neurodevelopment, reproduction, cell proliferation, and cell-cell communication. We also investigated the 12 lncRNA using quantitative real-time PCR to reveal their expression profiles in milk exosomes during different stages of lactation (colostrum 2 d, 30 d, 150 d, and 270 d); their resulting expression levels in milk exosomes showed variations across the stages. A digestion experiment showed that bovine milk exosome lncRNA was resistant to in vitro digestion with different digestive juices, including saliva, gastric juice, pancreatic juice, and bile juice. Taken together, these results show for the first time that cow milk contains lncRNA, and that their abundance varied at different stages of lactation. As expected, bovine milk exosomal lncRNA were stable during in vitro digestion. These findings provide a basis for further understanding of the physiological role of milk lncRNA.
Collapse
Affiliation(s)
- Bin Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Mei-Ying Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jun-Yi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jia-Jian He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qian-Yun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jia-Jie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yong-Liang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
62
|
Lee BH, Chen BR, Huang CT, Lin CH. The Immune Activity of PT-Peptide Derived from Anti-Lipopolysaccharide Factor of the Swimming Crab Portunus trituberculatus Is Enhanced when Encapsulated in Milk-Derived Extracellular Vesicles. Mar Drugs 2019; 17:md17050248. [PMID: 31027390 PMCID: PMC6562578 DOI: 10.3390/md17050248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
PT-peptide is derived from the anti-lipopolysaccharide factor of the swimming crab Portunus trituberculatus. The peptide, consisting of 34 amino acids, contains a lipopolysaccharide binding domain. In this study, we investigated the effect of PT-peptide encapsulated in raw milk-derived extracellular vesicles (EVs), designated as EVs-PT peptide, on immune regulation. The results showed that raw milk-derived EVs efficaciously delivered the PT-peptide into monocytes and elevated immune activity, including reactive oxygen species level, superoxide anion production, and phagocytosis. PT-peptide and EVs-PT peptide also elevated the secretion of cytokines, such as interferon-γ, interleukin-6, and tumor necrosis factor-α in human monocytic THP-1 cells. These results suggest that the PT-peptide could be developed as an immune stimulator.
Collapse
Affiliation(s)
- Bao-Hong Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Department of Traditional Chinese Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Bo-Rui Chen
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Cheng-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Cheng-Hui Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
63
|
|
64
|
Huang B, Huang LF, Zhao L, Zeng Z, Wang X, Cao D, Yang L, Ye Z, Chen X, Liu B, He TC, Wang X. Microvesicles (MIVs) secreted from adipose-derived stem cells (ADSCs) contain multiple microRNAs and promote the migration and invasion of endothelial cells. Genes Dis 2019; 7:225-234. [PMID: 32215292 PMCID: PMC7083715 DOI: 10.1016/j.gendis.2019.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) such as microvesicles (MIVs) play an important role in intercellular communications. MIVs are small membrane vesicles sized 100–1000 nm in diameter that are released by many types of cells, such as mesenchymal stem cells (MSCs), tumor cells and adipose-derived stem cells (ADSC). As EVs can carry out autocrine and paracrine functions by controlling multiple cell processes, it is conceivable that EVs can be used as delivery vehicles for treating several clinical conditions, such as to improve cardiac angiogenesis after myocardial infarction (MI). Here, we seek to investigate whether ADSC-derived MIVs contain microRNAs that regulate angiogenesis and affect cell migration of endothelial cells. We first characterized the ADSC-derived MIVs and found that the MIVs had a size range of 100–300 nm, and expressed the MIV marker protein Alix. We then analyzed the microRNAs in ADSCs and ADSC-derived MIVs and demonstrated that ADSC-derived MIVs selectively released a panel of microRNAs, several of which were related to angiogenesis, including two members of the let-7 family. Furthermore, we demonstrated that ADSC-derived MIVs promoted the cell migration and invasion of the HUVEC endothelial cells. The PKH26-labeled ADSC-derived MIVs were effectively uptaken into the cytoplasm of HUVEC cells. Collectively, our results demonstrate that the ADSC-derived MIVs can promote migration and invasion abilities of endothelial cells, suggesting pro-angiogenetic potential. Future studies should focus on investigating the roles and mechanisms through which ADSC-derived MIVs regulate angiogenesis.
Collapse
Affiliation(s)
- Bo Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.,Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Lin-Feng Huang
- Department of Clinical Laboratory Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, 330006, China
| | - Ling Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Zongyue Zeng
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Xi Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Daigui Cao
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.,Department of Orthopaedic Surgery, Chongqing General Hospital Affiliated with the University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Lijuan Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.,Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.,Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.,Department of Clinical Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266061, China
| | - Bin Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.,Department of Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Xiaozhong Wang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| |
Collapse
|
65
|
Wang Y, Li D, Wang Y, Li M, Fang X, Chen H, Zhang C. The landscape of circular RNAs and mRNAs in bovine milk exosomes. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
66
|
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med 2019; 17:3. [PMID: 30602375 PMCID: PMC6317263 DOI: 10.1186/s12967-018-1760-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Milk consumption is a hallmark of western diet. According to common believes, milk consumption has beneficial effects for human health. Pasteurization of cow's milk protects thermolabile vitamins and other organic compounds including bioactive and bioavailable exosomes and extracellular vesicles in the range of 40-120 nm, which are pivotal mediators of cell communication via systemic transfer of specific micro-ribonucleic acids, mRNAs and regulatory proteins such as transforming growth factor-β. There is compelling evidence that human and bovine milk exosomes play a crucial role for adequate metabolic and immunological programming of the newborn infant at the beginning of extrauterine life. Milk exosomes assist in executing an anabolic, growth-promoting and immunological program confined to the postnatal period in all mammals. However, epidemiological and translational evidence presented in this review indicates that continuous exposure of humans to exosomes of pasteurized milk may confer a substantial risk for the development of chronic diseases of civilization including obesity, type 2 diabetes mellitus, osteoporosis, common cancers (prostate, breast, liver, B-cells) as well as Parkinson's disease. Exosomes of pasteurized milk may represent new pathogens that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, 49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
67
|
Gao HN, Guo HY, Zhang H, Xie XL, Wen PC, Ren FZ. Yak-milk-derived exosomes promote proliferation of intestinal epithelial cells in an hypoxic environment. J Dairy Sci 2018; 102:985-996. [PMID: 30580945 DOI: 10.3168/jds.2018-14946] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022]
Abstract
Intestinal epithelial cells (IEC) are an important part of the intestinal barrier. Barrier function was disrupted under hypoxia, but milk-derived exosomes can regulate the intestinal barrier function. However, the mechanisms underlying the association between yak milk exosomes and hypoxia in IEC remain poorly understood. In this follow-up study, we proposed an effective optimization method for purifying yak-milk-derived exosomes. The Western blot analyses indicated that the expression of the proteins of the endosomal sorting complexes required for transport (TSG101), proteins of the tetraspanin family (CD63), and heat shock protein 70 (Hsp-70) proteins from yak-milk-derived exosomes were significantly higher than those in cow-milk-derived exosomes. Flow cytometry analysis showed that yak milk had 3.7 times the number of exosomes compared with cow milk. Moreover, we explored whether yak milk exosomes could facilitate intestinal cell survival under hypoxic conditions in vitro. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide results showed that yak-milk-derived exosomes significantly increased survival of IEC-6 cells with rates of up to 29% for cells incubated in hypoxic conditions for 12 h, compared with those of cow-milk-derived exosomes posttreatment (rates of up to 22% for cells incubated in hypoxic conditions for 12 h). Confocal microscopy revealed that the IEC-6 cells uptake more yak-milk-derived exosomes than cow milk in hypoxic conditions. Furthermore, the Western blot analyses indicated that yak-milk-derived exosomes significantly promote oxygen-sensitive prolyl hydroxylase (PHD)-1 expression and decrease the expression of hypoxia-inducible factor-α and its downstream target vascular endothelial growth factor (VEGF) in the IEC-6 cells. Further, yak-milk-derived exosomes significantly inhibited p53 levels. In conclusion, our findings demonstrate that yak-milk-derived exosomes more effectively activate the hypoxia-inducible factor signaling pathway, thus promoting IEC-6 cell survival, which may result in higher hypoxia tolerance than cow-milk-derived exosomes.
Collapse
Affiliation(s)
- H N Gao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - H Y Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100094, China
| | - H Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100094, China
| | - X L Xie
- Treasure of Tibet Yak Dairy Co., Ltd., Lhasa, 610000, China
| | - P C Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - F Z Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
68
|
Induction of Trained Innate Immunity in Human Monocytes by Bovine Milk and Milk-Derived Immunoglobulin G. Nutrients 2018; 10:nu10101378. [PMID: 30262772 PMCID: PMC6213000 DOI: 10.3390/nu10101378] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/12/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Innate immune memory, also termed “trained immunity” in vertebrates, has been recently described in a large variety of plants and animals. In most cases, trained innate immunity is induced by pathogens or pathogen-associated molecular patterns (PAMPs), and is associated with long-term epigenetic, metabolic, and functional reprogramming. Interestingly, recent findings indicate that food components can mimic PAMPs effects and induce trained immunity. The aim of this study was to investigate whether bovine milk or its components can induce trained immunity in human monocytes. To this aim, monocytes were exposed for 24 h to β-glucan, Toll-like receptor (TLR)-ligands, bovine milk, milk fractions, bovine lactoferrin (bLF), and bovine Immunoglobulin G (bIgG). After washing away the stimulus and a resting period of five days, the cells were re-stimulated with TLR ligands and Tumor necrosis factor (TNF-) and interleukin (IL)-6 production was measured. Training with β-glucan resulted in higher cytokine production after TLR1/2, TLR4, and TLR7/8 stimulation. When monocytes trained with raw milk were re-stimulated with TLR1/2 ligand Pam3CSK4, trained cells produced more IL-6 compared to non-trained cells. Training with bIgG resulted in higher cytokine production after TLR4 and TLR7/8 stimulation. These results show that bovine milk and bIgG can induce trained immunity in human monocytes. This confirms the hypothesis that diet components can influence the long-term responsiveness of the innate immune system.
Collapse
|
69
|
Giri BR, Mahato RI, Cheng G. Roles of microRNAs in T cell immunity: Implications for strategy development against infectious diseases. Med Res Rev 2018; 39:706-732. [PMID: 30272819 DOI: 10.1002/med.21539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
T cell immunity plays a vital role in pathogen infections. MicroRNA (miRNAs) are small, single-stranded noncoding RNAs that regulate T cell immunity by targeting key transcriptional factors, signaling proteins, and cytokines associated with T cell activation, differentiation, and function. The dysregulation of miRNA expression in T cells may lead to specific immune responses and can provide new therapeutic opportunities against various infectious diseases. Here, we summarize recent studies that focus on the roles of miRNAs in T cell immunity and highlight miRNA functions in prevalent infectious diseases. Additionally, we also provide insights into the functions of extracellular vesicle miRNAs and attempt to delineate the mechanism of miRNA sorting into extracellular vesicles and their immunomodulatory functions. Moreover, methodologies and strategies for miRNA delivery against infectious diseases are summarized. Finally, potential strategies for miRNA-based therapies are proposed.
Collapse
Affiliation(s)
- Bikash R Giri
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Guofeng Cheng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
70
|
Chokeshaiusaha K, Sananmuang T, Puthier D, Nguyen C. An innovative approach to predict immune-associated genes mutually targeted by cow and human milk microRNAs expression profiles. Vet World 2018; 11:1203-1209. [PMID: 30410222 PMCID: PMC6200572 DOI: 10.14202/vetworld.2018.1203-1209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Aim: Milk is rich in miRNAs - the endogenous small non-coding RNA responsible for gene post-transcriptional silencing. Milk miRNAs were previously evidenced to affect consumer’s immune response. While most studies relied on a few well-characterized milk miRNAs to relate their immunoregulatory roles on target genes among mammals, this study introduced a procedure to predict the target genes based on overall milk miRNA expression profiles - the miRNome data of cow and human. Materials and Methods: Cow and human milk miRNome expression datasets of cow and human milk lipids at 2, 4, and 6 months of lactation periods were preprocessed and predicted for their target genes using TargetScanHuman. Enrichment analysis was performed using target genes to extract the immune-associated gene ontology (GO) terms shared between the two species. The genes within these terms with more than 50 different miRNAs of each species targeting were selected and reviewed for their immunological functions. Results: A total of 146 and 129 miRNAs were identified in cow and human milk with several miRNAs reproduced from other previous reports. Enrichment analysis revealed nine immune-related GO terms shared between cow and human (adjusted p≤0.01). There were 14 genes related to these terms with more than 50 miRNA genes of each species targeting them. These genes were evidenced for their major roles in lymphocyte stimulation and differentiation. Conclusion: A novel procedure to determine mutual immune-associated genes targeted by milk miRNAs was demonstrated using cow and human milk miRNome data. As far as we know, this was the 1st time that milk miRNA target genes had been identified based on such cross-species approach. Hopefully, the introduced strategy should hereby facilitate a variety of cross-species miRNA studies in the future.
Collapse
Affiliation(s)
- Kaj Chokeshaiusaha
- Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand
| | - Thanida Sananmuang
- Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand
| | - Denis Puthier
- Aix-Marseille Université, INSERM UMR 1090, TAGC, Marseille, France
| | - Catherine Nguyen
- Aix-Marseille Université, INSERM UMR 1090, TAGC, Marseille, France
| |
Collapse
|
71
|
Tomé-Carneiro J, Fernández-Alonso N, Tomás-Zapico C, Visioli F, Iglesias-Gutierrez E, Dávalos A. Breast milk microRNAs harsh journey towards potential effects in infant development and maturation. Lipid encapsulation can help. Pharmacol Res 2018; 132:21-32. [PMID: 29627443 DOI: 10.1016/j.phrs.2018.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
The possibility that diet-derived miRNAs survive the gastrointestinal tract and exert biological effects in target cells is triggering considerable research in the potential abilities of alimentary preventive and therapeutic approaches. Many validation attempts have been carried out and investigators disagree on several issues. The barriers exogenous RNAs must surpass are harsh and adequate copies must reach target cells for biological actions to be carried out. This prospect opened a window for previously unlikely scenarios concerning exogenous non-coding RNAs, such as a potential role for breast milk microRNAs in infants' development and maturation. This review is focused on the thorny path breast milk miRNAs face towards confirmation as relevant role players in infants' development and maturation, taking into consideration the research carried out so far on the uptake, gastrointestinal barriers and potential biological effects of diet-derived miRNAs. We also discuss the future pharmacological and pharma-nutritional consequences of appropriate miRNAs research.
Collapse
Affiliation(s)
- João Tomé-Carneiro
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid 28049, Spain
| | | | - Cristina Tomás-Zapico
- Department of Functional Biology (Physiology), University of Oviedo, Oviedo 33006, Spain; Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Francesco Visioli
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid 28049, Spain; Department of Molecular Medicine, University of Padova, Padova 35121, Italy
| | | | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid 28049, Spain.
| |
Collapse
|
72
|
Lukasik A, Brzozowska I, Zielenkiewicz U, Zielenkiewicz P. Detection of Plant miRNAs Abundance in Human Breast Milk. Int J Mol Sci 2017; 19:ijms19010037. [PMID: 29295476 PMCID: PMC5795987 DOI: 10.3390/ijms19010037] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022] Open
Abstract
Breast milk is a natural food and important component of infant nutrition. Apart from the alimentary substances, breast milk contains many important bioactive compounds, including endogenous microRNA molecules (miRNAs). These regulatory molecules were identified in various mammalian biological fluids and were shown to be mostly packed in exosomes. Recently, it was revealed that plant food-derived miRNAs are stably present in human blood and regulate the expression of specific human genes. Since then, the scientific community has focused its efforts on contradicting or confirming this discovery. With the same intention, qRT-PCR experiments were performed to evaluate the presence of five plant food-derived miRNAs (miR166a, miR156a, miR157a, miR172a and miR168a) in breast milk (whole milk and exosomes) from healthy volunteers. In whole milk samples, all examined miRNAs were identified, while only two of these miRNAs were confirmed to be present in exosomes. The plant miRNA concentration in the samples ranged from 4 to 700 fM. Complementary bioinformatics analysis suggests that the evaluated plant miRNAs may potentially influence several crucial biological pathways in the infant organism.
Collapse
Affiliation(s)
- Anna Lukasik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Iwona Brzozowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
- Department of Plant Molecular Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland.
| |
Collapse
|
73
|
Shandilya S, Rani P, Onteru SK, Singh D. Small Interfering RNA in Milk Exosomes Is Resistant to Digestion and Crosses the Intestinal Barrier In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9506-9513. [PMID: 28967249 DOI: 10.1021/acs.jafc.7b03123] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Milk is not only a composite of nutrients but emerged as a source of exosomes acting as a promising drug delivery vehicle for small interfering RNA (siRNA). siRNA is known for its immense therapeutic potential but has various physiological limitations, including stable delivery. To investigate the suitability of siRNA for physiological stability and oral delivery, we encapsulated scrambled Alexa Fluor (AF)-488 siRNA in milk whey exosomes using lipofection and evaluated stability against the digestive processes along with its uptake and transepithelial transport by intestinal epithelial cells. Milk exosomal siRNA were found resistant to different digestive juices, including saliva, gastric, bile, and pancreatic juices, in vitro and were internalized by Caco-2 cells. The stable delivery of exosomal AF-488 siRNA along with its transepithelial transport was confirmed by fluorescence microscopy and fluorescence intensity measurements. In summary, the encapsulation of siRNA in milk exosomes resists harsh digestive processes, improving intestinal permeability and payload protection.
Collapse
Affiliation(s)
- Shruti Shandilya
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute (NDRI) , Karnal, Haryana 132001, India
| | - Payal Rani
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute (NDRI) , Karnal, Haryana 132001, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute (NDRI) , Karnal, Haryana 132001, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute (NDRI) , Karnal, Haryana 132001, India
| |
Collapse
|
74
|
Banikazemi Z, Haji HA, Mohammadi M, Taheripak G, Iranifar E, Poursadeghiyan M, Moridikia A, Rashidi B, Taghizadeh M, Mirzaei H. Diet and cancer prevention: Dietary compounds, dietary MicroRNAs, and dietary exosomes. J Cell Biochem 2017; 119:185-196. [DOI: 10.1002/jcb.26244] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Zarrin Banikazemi
- Biochemistry of Nutrition Research Center, School of MedicineMashhad University of Medical ScienceMashhadIran
| | | | - Mohsen Mohammadi
- Faculty of PharmacyRazi Herbal Medicines Research Center and Department of Pharmaceutical BiotechnologyLorestan University of Medical SciencesKhorramabadIran
| | - Gholamreza Taheripak
- Faculty of MedicineDepartment of BiochemistryIran University of Medical SciencesTehranIran
| | - Elmira Iranifar
- Torbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
| | - Mohsen Poursadeghiyan
- Research Center in Emergency and Disaster HealthUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | - Abdullah Moridikia
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Bahman Rashidi
- Department of Anatomical Sciences and Molecular BiologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical SciencesKashanI.R. Iran
| | - Hamed Mirzaei
- Department of Medical BiotechnologySchool of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
75
|
Abstract
Our perception of milk has changed from a "simple food" to a highly sophisticated maternal-neonatal nutrient and communication system orchestrating early programming of the infant. Milk miRNAs delivered by exosomes and milk fat globules derived from mammary gland epithelial cells play a key role in this process. Exosomes resist the harsh intestinal environment, are taken up by intestinal cells via endocytosis, and reach the systemic circulation of the milk recipient. The most abundant miRNA found in exosomes and milk fat globules of human and cow's milk, miRNA-148a, attenuates the expression of DNA methyltransferase 1, which is critically involved in epigenetic regulation. Another important miRNA of milk, miRNA-125b, targets p53, the guardian of the genome, and its diverse transcriptional network. The deficiency of exosomal miRNAs in infant formula and the persistent uptake of milk miRNAs after the nursing period via consumption of cow's milk are two epigenetic aberrations that may induce adverse long-term effects on human health.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine, and Health Theory, University of Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
76
|
Milk miRNAs encapsulated in exosomes are stable to human digestion and permeable to intestinal barrier in vitro. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
77
|
Rani P, Yenuganti VR, Shandilya S, Onteru SK, Singh D. miRNAs: The hidden bioactive component of milk. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
78
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
79
|
Curcumin Encapsulated in Milk Exosomes Resists Human Digestion and Possesses Enhanced Intestinal Permeability in Vitro. Appl Biochem Biotechnol 2017; 183:993-1007. [DOI: 10.1007/s12010-017-2478-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/10/2017] [Indexed: 01/06/2023]
|
80
|
Blans K, Hansen MS, Sørensen LV, Hvam ML, Howard KA, Möller A, Wiking L, Larsen LB, Rasmussen JT. Pellet-free isolation of human and bovine milk extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 2017; 6:1294340. [PMID: 28386391 PMCID: PMC5373680 DOI: 10.1080/20013078.2017.1294340] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
Studies have suggested that nanoscale extracellular vesicles (EV) in human and bovine milk carry immune modulatory properties which could provide beneficial health effects to infants. In order to assess the possible health effects of milk EV, it is essential to use isolates of high purity from other more abundant milk structures with well-documented bioactive properties. Furthermore, gentle isolation procedures are important for reducing the risk of generating vesicle artefacts, particularly when EV subpopulations are investigated. In this study, we present two isolation approaches accomplished in three steps based on size-exclusion chromatography (SEC) resulting in effective and reproducible EV isolation from raw milk. The approaches do not require any EV pelleting and can be applied to both human and bovine milk. We show that SEC effectively separates phospholipid membrane vesicles from the primary casein and whey protein components in two differently obtained casein reduced milk fractions, with one of the fractions obtained without the use of ultracentrifugation. Milk EV isolates were enriched in lactadherin, CD9, CD63 and CD81 compared to minimal levels of the EV-marker proteins in other relevant milk fractions such as milk fat globules. Nanoparticle tracking analysis and electron microscopy reveals the presence of heterogeneous sized vesicle structures in milk EV isolates. Lipid analysis by thin layer chromatography shows that EV isolates are devoid of triacylglycerides and presents a phospholipid profile differing from milk fat globules surrounded by epithelial cell plasma membrane. Moreover, the milk EV fractions are enriched in RNA with distinct and diverging profiles from milk fat globules. Collectively, our data supports that successful milk EV isolation can be accomplished in few steps without the use of ultracentrifugation, as the presented isolation approaches based on SEC effectively isolates EV in both human and bovine milk.
Collapse
Affiliation(s)
- Kristine Blans
- Department of Molecular Biology and Genetics, Aarhus University , Aarhus , Denmark
| | - Maria S Hansen
- Department of Molecular Biology and Genetics, Aarhus University , Aarhus , Denmark
| | | | - Michael L Hvam
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Kenneth A Howard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Arne Möller
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus , Denmark
| | - Lars Wiking
- Department of Food Science, Aarhus University , Tjele , Denmark
| | - Lotte B Larsen
- Department of Food Science, Aarhus University , Tjele , Denmark
| | - Jan T Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University , Aarhus , Denmark
| |
Collapse
|
81
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
82
|
Nikolic I, Stojanovic I, Vujicic M, Fagone P, Mangano K, Stosic-Grujicic S, Nicoletti F, Saksida T. Standardized bovine colostrum derivative impedes development of type 1 diabetes in rodents. Immunobiology 2017; 222:272-279. [DOI: 10.1016/j.imbio.2016.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
|
83
|
Zempleni J, Aguilar-Lozano A, Sadri M, Sukreet S, Manca S, Wu D, Zhou F, Mutai E. Biological Activities of Extracellular Vesicles and Their Cargos from Bovine and Human Milk in Humans and Implications for Infants. J Nutr 2017; 147:3-10. [PMID: 27852870 PMCID: PMC5177735 DOI: 10.3945/jn.116.238949] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/19/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) in milk harbor a variety of compounds, including lipids, proteins, noncoding RNAs, and mRNAs. Among the various classes of EVs, exosomes are of particular interest, because cargo sorting in exosomes is a regulated, nonrandom process and exosomes play essential roles in cell-to-cell communication. Encapsulation in exosomes confers protection against enzymatic and nonenzymatic degradation of cargos and provides a pathway for cellular uptake of cargos by endocytosis of exosomes. Compelling evidence suggests that exosomes in bovine milk are transported by intestinal cells, vascular endothelial cells, and macrophages in human and rodent cell cultures, and bovine-milk exosomes are delivered to peripheral tissues in mice. Evidence also suggests that cargos in bovine-milk exosomes, in particular RNAs, are delivered to circulating immune cells in humans. Some microRNAs and mRNAs in bovine-milk exosomes may regulate the expression of human genes and be translated into protein, respectively. Some exosome cargos are quantitatively minor in the diet compared with endogenous synthesis. However, noncanonical pathways have been identified through which low concentrations of dietary microRNAs may alter gene expression, such as the accumulation of exosomes in the immune cell microenvironment and the binding of microRNAs to Toll-like receptors. Phenotypes observed in infant-feeding studies include higher Mental Developmental Index, Psychomotor Development Index, and Preschool Language Scale-3 scores in breastfed infants than in those fed various formulas. In mice, supplementation with plant-derived MIR-2911 improved the antiviral response compared with controls. Porcine-milk exosomes promote the proliferation of intestinal cells in mice. This article discusses the above-mentioned advances in research concerning milk exosomes and their cargos in human nutrition. Implications for infant nutrition are emphasized, where permitted, but data in infants are limited.
Collapse
Affiliation(s)
- Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ana Aguilar-Lozano
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Mahrou Sadri
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Sonal Sukreet
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Sonia Manca
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Di Wu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Fang Zhou
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ezra Mutai
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
84
|
Lukasik A, Zielenkiewicz P. Plant MicroRNAs-Novel Players in Natural Medicine? Int J Mol Sci 2016; 18:ijms18010009. [PMID: 28025496 PMCID: PMC5297644 DOI: 10.3390/ijms18010009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding RNAs that act as efficient gene expression regulators and thus play many important roles in living organisms. Due to their involvement in several known human pathological and pathogenic states, miRNA molecules have become an important issue in medicine and gained the attention of scientists from the pharmaceutical industry. In recent few years, a growing number of studies have provided evidence that miRNAs may be transferred from one species to another and regulate gene expression in the recipients’ cells. The most intriguing results revealed that stable miRNAs derived from food plants may enter the mammals’ circulatory system and, after reaching the target, inhibit the production of specific mammalian protein. Part of the scientific community has perceived this as an attractive hypothesis that may provide a foundation for novel therapeutic approaches. In turn, others are convinced about the “false positive” effect of performed experiments from which the mentioned results were achieved. In this article, we review the recent literature that provides evidence (from both fronts) of dietary, plant miRNA uptake and functionality in various consumers. Additionally, we discuss possible miRNA transport mechanisms from plant food sources to human cells.
Collapse
Affiliation(s)
- Anna Lukasik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
- Department of Plant Molecular Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
85
|
Nazimek K, Bryniarski K, Askenase PW. Functions of Exosomes and Microbial Extracellular Vesicles in Allergy and Contact and Delayed-Type Hypersensitivity. Int Arch Allergy Immunol 2016; 171:1-26. [PMID: 27820941 PMCID: PMC5131095 DOI: 10.1159/000449249] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles, such as exosomes, are newly recognized intercellular conveyors of functional molecular mechanisms. Notably, they transfer RNAs and proteins between different cells that can then participate in the complex pathogenesis of allergic and related hypersensitivity responses and disease mechanisms, as described herein. This review highlights this important new appreciation of the in vivo participation of such extracellular vesicles in the interactions between allergy-mediating cells. We take into account paracrine epigenetic exchanges mediated by surrounding stromal cells and the endocrine receipt of exosomes from distant cells via the circulation. Exosomes are natural ancient nanoparticles of life. They are made by all cells and in some form by all species down to fungi and bacteria, and are present in all fluids. Besides a new focus on their role in the transmission of genetic regulation, exosome transfer of allergens was recently shown to induce allergic inflammation. Importantly, regulatory and tolerogenic exosomes can potently inhibit allergy and hypersensitivity responses, usually acting nonspecifically, but can also proceed in an antigen-specific manner due to the coating of the exosome surface with antibodies. Deep analysis of processes mediated by exosomes should result in the development of early diagnostic biomarkers, as well as allergen-specific, preventive and therapeutic strategies. These will likely significantly diminish the risks of current allergen-specific parenteral desensitization procedures, and of the use of systemic immunosuppressive drugs. Since extracellular vesicles are physiological, they can be fashioned for the specific delivery of therapeutic molecular instructions through easily tolerated, noninvasive routes, such as oral ingestion, nasal administration, and perhaps even inhalation.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Philip W. Askenase
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
86
|
Saad K, Abo-Elela MGM, El-Baseer KAA, Ahmed AE, Ahmad FA, Tawfeek MSK, El-Houfey AA, Aboul_Khair MD, Abdel-Salam AM, Abo-elgheit A, Qubaisy H, Ali AM, Abdel-Mawgoud E. Effects of bovine colostrum on recurrent respiratory tract infections and diarrhea in children. Medicine (Baltimore) 2016; 95:e4560. [PMID: 27631207 PMCID: PMC5402550 DOI: 10.1097/md.0000000000004560] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Bovine colostrum (BC) has direct antimicrobial and endotoxin-neutralizing effects throughout the alimentary tract, as well as other bioactivities that suppress gut inflammation and promote mucosal integrity and tissue repair under various conditions related to tissue injury. The precise role of BC in respiratory and gastrointestinal (GI) infections in children is not well defined. The aim of this study was to evaluate the efficacy and tolerability of BC administration in preventing recurrent upper respiratory tract infections (URTI) and diarrhea in children. METHODS One hundred sixty children (aged 1-6 years) having recurrent episodes of URTI or diarrhea received BC for 4 weeks. The number of episodes of URTI, diarrhea, and frequency of hospitalization required for URTI and diarrhea occurring during the study period were assessed at weeks 8 and 24. RESULTS From a total number of 160 children, 81 patients (50.63%) were males. The mean age (± SD) was 3.65 (± 2.01) years. The mean (± SD) total number of infections was significantly decreased after BC therapy from 8.6 ± 5.1 at baseline to 5.5 ± 1.2 after 2 months (P < 0.001) and to 5.7 ± 1.6 after 6 months (P < 0.001). The mean (± SD) total number of URTI (P < 0.0001), number of episodes of diarrhea (P < 0.001), and number of hospital admissions (P < 0.001) were significantly decreased after BC therapy. CONCLUSION BC is effective in the prophylaxis of recurrent URTI and diarrhea as it reduces the number of episodes and the hospitalization due to these infections. Results of this study suggest that BC could be provided as a therapeutic option for children with recurrent URTI and diarrhea.
Collapse
Affiliation(s)
- Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University
- Correspondence: Khaled Saad, Faculty of Medicine, Assiut University, Assiut 71516, Egypt (e-mail: ; )
| | | | | | - Ahmed E. Ahmed
- Department of Pediatrics, Qena Faculty of Medicine, South Valley University
| | | | | | - Amira A. El-Houfey
- Department of Community Health Nursing, Faculty of Nursing, Assiut University
| | | | | | - Amir Abo-elgheit
- Department of Pediatrics, Faculty of Medicine, Assiut University
| | - Heba Qubaisy
- Department of Pediatrics, Qena Faculty of Medicine, South Valley University
| | - Ahmed M. Ali
- Department of Pediatrics, Faculty of Medicine, Assiut University
| | - Eman Abdel-Mawgoud
- Department of Pediatrics, Qena Faculty of Medicine, South Valley University
| |
Collapse
|
87
|
Oliveira MC, Di Ceglie I, Arntz OJ, van den Berg WB, van den Hoogen FHJ, Ferreira AVM, van Lent PLEM, van de Loo FAJ. Milk-Derived Nanoparticle Fraction Promotes the Formation of Small Osteoclasts But Reduces Bone Resorption. J Cell Physiol 2016; 232:225-33. [PMID: 27138291 DOI: 10.1002/jcp.25414] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/29/2016] [Indexed: 01/15/2023]
Abstract
The general consensus is that milk promotes bone growth and density because is a source of calcium and contains components that enhance intestinal calcium uptake or directly affect bone metabolism. In this study, we investigated the effect of bovine-derived milk 100,000 g pellet (P100), which contains nanoparticles (<220 nm) including extracellular vesicles, on osteoclast differentiation and bone resorption. Bone marrow-derived osteoclast precursor cells were differentiated into osteoclasts by M-CSF and RANKL (control) and in the presence of milk P100. Milk P100 treatment until day 4 increased the number of TRAP-positive mononuclear cells and small (≤5 nuclei) osteoclasts. The number of large (≥6 nuclei) osteoclasts remained the same. These alterations were associated with increased expression of TRAP, NFATc1, and c-Fos. Cells seeded in a calcium-phosphate coated plate or bone slices showed reduced resorption area when exposed to milk P100 during the differentiation phase and even after osteoclast formation. Interestingly, milk P100 treatment enhanced Cathepsin K expression but reduced Carbonic Anhydrase 2 gene expression. Moreover, intracellular acid production was also decreased by milk P100 treatment. Oral delivery of milk P100 to female DBA1/J mice for 7 weeks did not alter bone area; however, increased osteoclast number and area in tibia without changes in serum RANKL and CTX-I levels. We showed for the first time the effect of milk P100 on osteoclast differentiation both in vitro and in vivo and found that milk P100 increased the formation of small osteoclasts but this does not lead to more bone resorption probably due to reduced acid secretion. J. Cell. Physiol. 232: 225-233, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marina C Oliveira
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Onno J Arntz
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim B van den Berg
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Adaliene V M Ferreira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fons A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
88
|
Li R, Dudemaine PL, Zhao X, Lei C, Ibeagha-Awemu EM. Comparative Analysis of the miRNome of Bovine Milk Fat, Whey and Cells. PLoS One 2016; 11:e0154129. [PMID: 27100870 PMCID: PMC4839614 DOI: 10.1371/journal.pone.0154129] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/08/2016] [Indexed: 12/19/2022] Open
Abstract
Abundant miRNAs have been identified in milk and mammary gland tissues of different species. Typically, RNA in milk can be extracted from different fractions including fat, whey and cells and the mRNA transcriptome of milk could serve as an indicator of the transcriptome of mammary gland tissue. However, it has not been adequately validated if the miRNA transcriptome of any milk fraction could be representative of that of mammary gland tissue. The objectives of this study were to (1) characterize the miRNA expression spectra from three milk fractions- fat, whey and cells; (2) compare miRNome profiles of milk fractions (fat, whey and cells) with mammary gland tissue miRNome, and (3) determine which milk fraction miRNome profile could be a better representative of the miRNome profile of mammary gland tissue. Milk from four healthy Canadian Holstein cows in mid lactation was collected and fractionated. Total RNA extracted from each fraction was used for library preparation followed by small RNA sequencing. In addition, miRNA transcripts of mammary gland tissues from twelve Holstein cows in our previous study were used to compare our data. We identified 210, 200 and 249 known miRNAs from milk fat, whey and cells, respectively, with 188 universally expressed in the three fractions. In addition, 33, 31 and 36 novel miRNAs from milk fat, whey and cells were identified, with 28 common in the three fractions. Among 20 most highly expressed miRNAs in each fraction, 14 were expressed in common and 11 were further shared with mammary gland tissue. The three milk fractions demonstrated a clear separation from each other using a hierarchical cluster analysis with milk fat and whey being most closely related. The miRNome correlation between milk fat and mammary gland tissue (rmean = 0.866) was significantly higher than the other two pairs (p < 0.01), whey/mammary gland tissue (rmean = 0.755) and milk cell/mammary gland tissue (rmean = 0.75), suggesting that milk fat could be an alternative non-invasive source of RNA in assessing miRNA activities in bovine mammary gland. Predicted target genes (1802) of 14 highly expressed miRNAs in milk fractions were enriched in fundamental cellular functions, infection, organ and tissue development. Furthermore, some miRNAs were highly enriched (FDR <0.05) in milk whey (3), cells (11) and mammary gland tissue (14) suggesting specific regulatory functions in the various fractions. In conclusion, we have obtained a comprehensive miRNA profile of the different milk fractions using high throughput sequencing. Our comparative analysis showed that miRNAs from milk fat accurately portrayed the miRNome of mammary gland tissue. Functional annotation of the top expressed miRNAs in milk confirmed their critical regulatory roles in mammary gland functions and potentially to milk recipients.
Collapse
Affiliation(s)
- Ran Li
- College of Animal Science and Technology, Northwest A & F University, Xi’an, Shaanxi, 712100, China
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Pier-Luc Dudemaine
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A & F University, Xi’an, Shaanxi, 712100, China
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Ste-Anne-de Bellevue, Quebec, J1M 0C8, Canada
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A & F University, Xi’an, Shaanxi, 712100, China
| | - Eveline Mengwi Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada
| |
Collapse
|
89
|
Jin XL, Wei ZH, Liu L, Liu HY, Liu JX. Comparative studies of two methods for miRNA isolation from milk whey. J Zhejiang Univ Sci B 2016; 16:533-40. [PMID: 26055915 DOI: 10.1631/jzus.b1400355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MicroRNAs (miRNAs) from milk whey have been considered for their potential as noninvasive biomarkers for milk quality control and disease diagnosis. However, standard protocols for miRNA isolation and quantification from milk whey are not well established. The objective of this study was to compare two methods for the isolation of miRNAs from milk whey. These two methods were modified phenol-based technique (Trizol LS(®) followed by phenol precipitation, the TP method) and combined phenol and column-based approach (Trizol LS(®) followed by cleanup using the miRNeasy kit, the TM method). Yield and quality of RNA were rigorously measured using a NanoDrop ND-1000 spectrophotometer and then the distribution of RNA was precisely detected in a Bioanalyzer 2100 instrument by microchip gel electrophoresis. Several endogenous miRNAs (bta-miR-141, bta-miR-146a, bta-miR-148a, bta-miR-200c, bta-miR-362, and bta-miR-375) and an exogenous spike-in synthetic control miRNA (cel-miR-39) were quantified by real-time polymerase chain reaction (PCR) to examine the apparent recovery efficiency of milk whey miRNAs. Both methods could successfully isolate sufficient small RNA (<200 nt) from milk whey, and their yields were quite similar. However, the quantification results show that the total miRNA recovery efficiency by the TM method is superior to that by the TP method. The TM method performed better than the TP for recovery of milk whey miRNA due to its consistency and good repeatability in endogenous and spike-in miRNA recovery. Additionally, quantitative recovery analysis of a spike-in miRNA may be more accurate to reflect the milk whey miRNA recovery efficiency than using traditional RNA quality analysis instruments (NanoDrop or Bioanalyzer 2100).
Collapse
Affiliation(s)
- Xiao-lu Jin
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
90
|
Muroya S, Hagi T, Kimura A, Aso H, Matsuzaki M, Nomura M. Lactogenic hormones alter cellular and extracellular microRNA expression in bovine mammary epithelial cell culture. J Anim Sci Biotechnol 2016; 7:8. [PMID: 26889380 PMCID: PMC4756532 DOI: 10.1186/s40104-016-0068-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 02/04/2016] [Indexed: 01/08/2023] Open
Abstract
Background Bovine milk contains not only a variety of nutritional ingredients but also microRNAs (miRNAs) that are thought to be secreted by the bovine mammary epithelial cells (BMECs). The objective of this study was to elucidate the production of milk-related miRNAs in BMECs under the influence of lactogenic hormones. Results According to a microarray result of milk exosomal miRNAs prior to cellular analyses, a total of 257 miRNAs were detected in a Holstein cow milk. Of these, 18 major miRNAs of interest in the milk were selected for an expression analysis in BMEC culture that was treated with or without dexamethasone, insulin, and prolactin (DIP) to induce a lactogenic differentiation. Quantitative polymerase chain reaction (qPCR) results showed that the expressions of miR-21–5p (P = 0.005), miR-26a (P = 0.016), and miR-320a (P = 0.011) were lower in the DIP-treated cells than in the untreated cells. In contrast, the expression of miR-339a (P = 0.017) in the cell culture medium were lower in the DIP-treated culture than in the untreated culture. Intriguingly, the miR-148a expression in cell culture medium was elevated by DIP treatment of BMEC culture (P = 0.018). The medium-to-cell expression ratios of miR-103 (P = 0.025), miR-148a (P < 0.001), and miR-223 (P = 0.013) were elevated in the DIP-treated BMECs, suggesting that the lactogenic differentiation-induced secretion of these three miRNAs in BMECs. A bioinformatic analysis showed that the miRNAs down-regulated in the BMECs were associated with the suppression of genes related to transcriptional regulation, protein phosphorylation, and tube development. Conclusion The results suggest that the miRNAs changed by lactogenic hormones are associated with milk protein synthesis, and mammary gland development and maturation. The elevated miR-148a level in DIP-treated BMECs may be associated with its increase in milk during the lactation period of cows.
Collapse
Affiliation(s)
- Susumu Muroya
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901 Japan
| | - Tatsuro Hagi
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901 Japan
| | - Ataru Kimura
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan
| | - Hisashi Aso
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Aoba Sendai, Japan
| | - Masatoshi Matsuzaki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan
| | - Masaru Nomura
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901 Japan
| |
Collapse
|
91
|
Melnik BC. Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. J Transl Med 2015; 13:385. [PMID: 26691922 PMCID: PMC4687119 DOI: 10.1186/s12967-015-0746-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
Single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity-associated) gene are associated with enhanced FTO expression, increased body weight, obesity and type 2 diabetes mellitus (T2DM). The N6-methyladenosine (m6A) demethylase FTO plays a pivotal regulatory role for postnatal growth and energy expenditure. The purpose of this review is to provide translational evidence that links milk signaling with FTO-activated transcription of the milk recipient. FTO-dependent demethylation of m6A regulates mRNA splicing required for adipogenesis, increases the stability of mRNAs, and affects microRNA (miRNA) expression and miRNA biosynthesis. FTO senses branched-chain amino acids (BCAAs) and activates the nutrient sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), which plays a key role in translation. Milk provides abundant BCAAs and glutamine, critical components increasing FTO expression. CpG hypomethylation in the first intron of FTO has recently been associated with T2DM. CpG methylation is generally associated with gene silencing. In contrast, CpG demethylation generally increases transcription. DNA de novo methylation of CpG sites is facilitated by DNA methyltransferases (DNMT) 3A and 3B, whereas DNA maintenance methylation is controlled by DNMT1. MiRNA-29s target all DNMTs and thus reduce DNA CpG methylation. Cow´s milk provides substantial amounts of exosomal miRNA-29s that reach the systemic circulation and target mRNAs of the milk recipient. Via DNMT suppression, milk exosomal miRNA-29s may reduce the magnitude of FTO methylation, thereby epigenetically increasing FTO expression in the milk consumer. High lactation performance with increased milk yield has recently been associated with excessive miRNA-29 expression of dairy cow mammary epithelial cells (DCMECs). Notably, the galactopoietic hormone prolactin upregulates the transcription factor STAT3, which induces miRNA-29 expression. In a retrovirus-like manner milk exosomes may transfer DCMEC-derived miRNA-29s and bovine FTO mRNA to the milk consumer amplifying FTO expression. There is compelling evidence that obesity, T2DM, prostate and breast cancer, and neurodegenerative diseases are all associated with increased FTO expression. Maximization of lactation performance by veterinary medicine with enhanced miRNA-29s and FTO expression associated with increased exosomal miRNA-29 and FTO mRNA transfer to the milk consumer may represent key epigenetic mechanisms promoting FTO/mTORC1-mediated diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090, Osnabrück, Germany.
| |
Collapse
|
92
|
Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett 2015; 371:48-61. [PMID: 26604130 DOI: 10.1016/j.canlet.2015.10.020] [Citation(s) in RCA: 592] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
Abstract
Exosomes are biological nanovesicles that are involved in cell-cell communication via the functionally-active cargo (such as miRNA, mRNA, DNA and proteins). Because of their nanosize, exosomes are explored as nanodevices for the development of new therapeutic applications. However, bulk, safe and cost-effective production of exosomes is not available. Here, we show that bovine milk can serve as a scalable source of exosomes that can act as a carrier for chemotherapeutic/chemopreventive agents. Drug-loaded exosomes showed significantly higher efficacy compared to free drug in cell culture studies and against lung tumor xenografts in vivo. Moreover, tumor targeting ligands such as folate increased cancer-cell targeting of the exosomes resulting in enhanced tumor reduction. Milk exosomes exhibited cross-species tolerance with no adverse immune and inflammatory response. Thus, we show the versatility of milk exosomes with respect to the cargo it can carry and ability to achieve tumor targetability. This is the first report to identify a biocompatible and cost-effective means of exosomes to enhance oral bioavailability, improve efficacy and safety of drugs.
Collapse
Affiliation(s)
- Radha Munagala
- Department of Medicine, University of Louisville, Louisville, KY 40202.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Farrukh Aqil
- Department of Medicine, University of Louisville, Louisville, KY 40202.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | | | - Ramesh C Gupta
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202
| |
Collapse
|
93
|
MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13981-4020. [PMID: 26529003 PMCID: PMC4661628 DOI: 10.3390/ijerph121113981] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/21/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022]
Abstract
Human milk (HM) is the optimal source of nutrition, protection and developmental programming for infants. It is species-specific and consists of various bioactive components, including microRNAs, small non-coding RNAs regulating gene expression at the post-transcriptional level. microRNAs are both intra- and extra-cellular and are present in body fluids of humans and animals. Of these body fluids, HM appears to be one of the richest sources of microRNA, which are highly conserved in its different fractions, with milk cells containing more microRNAs than milk lipids, followed by skim milk. Potential effects of exogenous food-derived microRNAs on gene expression have been demonstrated, together with the stability of milk-derived microRNAs in the gastrointestinal tract. Taken together, these strongly support the notion that milk microRNAs enter the systemic circulation of the HM fed infant and exert tissue-specific immunoprotective and developmental functions. This has initiated intensive research on the origin, fate and functional significance of milk microRNAs. Importantly, recent studies have provided evidence of endogenous synthesis of HM microRNA within the human lactating mammary epithelium. These findings will now form the basis for investigations of the role of microRNA in the epigenetic control of normal and aberrant mammary development, and particularly lactation performance.
Collapse
|
94
|
Oh S, Park MR, Son SJ, Kim Y. Comparison of Total RNA Isolation Methods for Analysis of Immune-Related microRNAs in Market Milks. Korean J Food Sci Anim Resour 2015; 35:459-65. [PMID: 26761866 PMCID: PMC4662127 DOI: 10.5851/kosfa.2015.35.4.459] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 01/06/2023] Open
Abstract
Bovine milk provides essential nutrients, including immunologically important molecules, as the primary source of nutrition to newborns. Recent studies showed that RNAs from bovine milk contain immune-related microRNAs (miRNA) that regulate various immune systems. To evaluate the biological and immunological activity of miRNAs from milk products, isolation methods need to be established. Six methods for extracting total RNAs from bovine colostrums were adopted to evaluate the isolating efficiency and expression of miRNAs. Total RNA from milk was presented in formulation of small RNAs, rather than ribosomal RNAs. Column-combined phenol isolating methods showed high recovery of total RNAs, especially the commercial columns for biofluid samples, which demonstrated outstanding efficiency for recovering miRNAs. We also evaluated the quantity of five immune-related miRNAs (miR-93, miR-106a, miR-155, miR-181a, miR-451) in milk processed by temperature treatments including low temperature for long time (LTLT, 63℃ for 30 min)-, high temperature for short time (HTST, 75℃ for 15 s)-, and ultra heat treatment (UHT, 120-130℃ for 0.5-4 s). All targeted miRNAs had significantly reduced levels in processed milks compared to colostrum and raw mature milk. Interestingly, the amount of immune-related miRNAs from HTST milk was more resistant than those of LTLT and UHT milks. Our present study examined defined methods of RNA isolation and quantification of immune-specific miRNAs from small volumes of milk for use in further analysis.
Collapse
Affiliation(s)
- Sangnam Oh
- BK21 Plus Graduate Program, Department of Animal Science and Institute of Agricultural Science & Technology, Chonbuk National University, Jeonju, 561-756, Korea
| | - Mi Ri Park
- BK21 Plus Graduate Program, Department of Animal Science and Institute of Agricultural Science & Technology, Chonbuk National University, Jeonju, 561-756, Korea
| | - Seok Jun Son
- BK21 Plus Graduate Program, Department of Animal Science and Institute of Agricultural Science & Technology, Chonbuk National University, Jeonju, 561-756, Korea
| | - Younghoon Kim
- BK21 Plus Graduate Program, Department of Animal Science and Institute of Agricultural Science & Technology, Chonbuk National University, Jeonju, 561-756, Korea
| |
Collapse
|
95
|
Parigi SM, Eldh M, Larssen P, Gabrielsson S, Villablanca EJ. Breast Milk and Solid Food Shaping Intestinal Immunity. Front Immunol 2015; 6:415. [PMID: 26347740 PMCID: PMC4541369 DOI: 10.3389/fimmu.2015.00415] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/28/2015] [Indexed: 12/22/2022] Open
Abstract
After birth, the intestinal immune system enters a critical developmental stage, in which tolerogenic and pro-inflammatory cells emerge to contribute to the overall health of the host. The neonatal health is continuously challenged by microbial colonization and food intake, first in the form of breast milk or formula and later in the form of solid food. The microbiota and dietary compounds shape the newborn immune system, which acquires the ability to induce tolerance against innocuous antigens or induce pro-inflammatory immune responses against pathogens. Disruption of these homeostatic mechanisms might lead to undesired immune reactions, such as food allergies and inflammatory bowel disease. Hence, a proper education and maturation of the intestinal immune system is likely important to maintain life-long intestinal homeostasis. In this review, the most recent literature regarding the effects of dietary compounds in the development of the intestinal immune system are discussed.
Collapse
Affiliation(s)
- Sara M Parigi
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital , Stockholm , Sweden
| | - Maria Eldh
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital , Stockholm , Sweden
| | - Pia Larssen
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital , Stockholm , Sweden
| | - Susanne Gabrielsson
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital , Stockholm , Sweden
| | - Eduardo J Villablanca
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital , Stockholm , Sweden
| |
Collapse
|
96
|
Abstract
Based on own translational research of the biochemical and hormonal effects of cow's milk consumption in humans, this review presents milk as a signaling system of mammalian evolution that activates the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the pivotal regulator of translation. Milk, a mammary gland-derived secretory product, is required for species-specific gene-nutrient interactions that promote appropriate growth and development of the newborn mammal. This signaling system is highly conserved and tightly controlled by the lactation genome. Milk is sufficient to activate mTORC1, the crucial regulator of protein, lipid, and nucleotide synthesis orchestrating anabolism, cell growth and proliferation. To fulfill its mTORC1-activating function, milk delivers four key metabolic messengers: (1) essential branched-chain amino acids (BCAAs); (2) glutamine; (3) palmitic acid; and (4) bioactive exosomal microRNAs, which in a synergistical fashion promote mTORC1-dependent translation. In all mammals except Neolithic humans, postnatal activation of mTORC1 by milk intake is restricted to the postnatal lactation period. It is of critical concern that persistent hyperactivation of mTORC1 is associated with aging and the development of age-related disorders such as obesity, type 2 diabetes mellitus, cancer, and neurodegenerative diseases. Persistent mTORC1 activation promotes endoplasmic reticulum (ER) stress and drives an aimless quasi-program, which promotes aging and age-related diseases.
Collapse
|
97
|
Arntz OJ, Pieters BCH, Oliveira MC, Broeren MGA, Bennink MB, de Vries M, van Lent PLEM, Koenders MI, van den Berg WB, van der Kraan PM, van de Loo FAJ. Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Mol Nutr Food Res 2015; 59:1701-12. [PMID: 26047123 DOI: 10.1002/mnfr.201500222] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/17/2022]
Abstract
SCOPE This study shows the effect of bovine milk derived extracellular vesicles (BMEVs) on spontaneous polyarthritis in IL-1Ra-deficient mice and collagen-induced arthritis. METHODS AND RESULTS BMEVs were isolated from semi-skimmed milk by ultracentrifugation and the particle size was around 100 nm by dynamic light scattering and electron microscopy. BMEVs expressed exosome marker CD63, immunoregulatory microRNA's (miR-30a, -223, -92a), and milk-specific beta-casein and beta-lactoglobulin mRNA. In vitro, PKH-67-labeled BMEVs were taken up by RAW264.7, splenocytes, and intestinal cells as determined by flow cytometry and confocal microscopy. IL-1Ra(-/-) mice received BMEVs by daily oral gavage starting at wk 5 till 15 after birth and collagen-induced arthritis mice via their drinking water starting 1 wk before immunization till day 40. Macroscopically, BMEV treatment delayed the onset of arthritis and histology showed diminished cartilage pathology and bone marrow inflammation in both models. BMEV treatment also reduced the serum levels of MCP-1 and IL-6 and their production by splenic cells. BMEV treatment diminished the anticollagen IgG2a levels, which was accompanied by reduced splenic Th1 (Tbet) and Th17 (RORγT) mRNA. CONCLUSION This is the first report that oral delivery of BMEVs ameliorates experimental arthritis and this warrants further research to determine whether this beneficial effect can be seen in rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Onno J Arntz
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bartijn C H Pieters
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marina C Oliveira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mathijs G A Broeren
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Miranda B Bennink
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marieke de Vries
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marije I Koenders
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim B van den Berg
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fons A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
98
|
Melnik BC. MiR-21: an environmental driver of malignant melanoma? J Transl Med 2015; 13:202. [PMID: 26116372 PMCID: PMC4482047 DOI: 10.1186/s12967-015-0570-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/10/2015] [Indexed: 01/04/2023] Open
Abstract
Since the mid-1950’s, melanoma incidence has been rising steadily in industrialized Caucasian populations, thereby pointing to the pivotal involvement of environmental factors in melanomagenesis. Recent evidence underlines the crucial role of microRNA (miR) signaling in cancer initiation and progression. Increased miR-21 expression has been observed during the transition from a benign melanocytic lesion to malignant melanoma, exhibiting highest expression of miR-21. Notably, common BRAF and NRAS mutations in cutaneous melanoma are associated with increased miR-21 expression. MiR-21 is an oncomiR that affects critical target genes of malignant melanoma, resulting in sustained proliferation (PTEN, PI3K, Sprouty, PDCD4, FOXO1, TIPE2, p53, cyclin D1), evasion from apoptosis (FOXO1, FBXO11, APAF1, TIMP3, TIPE2), genetic instability (MSH2, FBXO11, hTERT), increased oxidative stress (FOXO1), angiogenesis (PTEN, HIF1α, TIMP3), invasion and metastasis (APAF1, PTEN, PDCD4, TIMP3). The purpose of this review is to provide translational evidence for major environmental and individual factors that increase the risk of melanoma, such as UV irradiation, chemical noxes, air pollution, smoking, chronic inflammation, Western nutrition, obesity, sedentary lifestyle and higher age, which are associated with increased miR-21 signaling. Exosomal miR-21 induced by extrinsic and intrinsic stimuli may be superimposed on mutation-induced miR-21 pathways of melanoma cells. Thus, oncogenic miR-21 signaling may be the converging point of intrinsic and extrinsic stimuli driving melanomagenesis. Future strategies of melanoma treatment and prevention should thus aim at reducing the burden of miR-21 signal transduction.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090, Osnabrück, Germany.
| |
Collapse
|
99
|
Izumi H, Tsuda M, Sato Y, Kosaka N, Ochiya T, Iwamoto H, Namba K, Takeda Y. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. J Dairy Sci 2015; 98:2920-33. [PMID: 25726110 DOI: 10.3168/jds.2014-9076] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/07/2015] [Indexed: 11/19/2022]
Abstract
We reported previously that microRNA (miRNA) are present in whey fractions of human breast milk, bovine milk, and rat milk. Moreover, we also confirmed that so many mRNA species are present in rat milk whey. These RNA were resistant to acidic conditions and to RNase, but were degraded by detergent. Thus, these RNA are likely packaged in membrane vesicles such as exosomes. However, functional extracellular circulating RNA in bodily fluids, such as blood miRNA, are present in various forms. In the current study, we used bovine raw milk and total RNA purified from exosomes (prepared by ultracentrifugation) and ultracentrifuged supernatants, and analyzed them using miRNA and mRNA microarrays to clarify which miRNA and mRNA species are present in exosomes, and which species exist in other forms. Microarray analyses revealed that most mRNA in milk whey were present in exosomes, whereas miRNA in milk whey were present in supernatant as well as exosomes. The RNA in exosomes might exert functional effects because of their stability. Therefore, we also investigated whether bovine milk-derived exosomes could affect human cells using THP-1 cells. Flow cytometry and fluorescent microscopy studies revealed that bovine milk exosomes were incorporated into differentiated THP-1 cells. These results suggest that bovine milk exosomes might have effects in human cells by containing RNA.
Collapse
Affiliation(s)
- Hirohisa Izumi
- Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan.
| | - Muneya Tsuda
- Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Yohei Sato
- Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroshi Iwamoto
- Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Kazuyoshi Namba
- Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Yasuhiro Takeda
- Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| |
Collapse
|
100
|
Zhang L, Valencia CA, Dong B, Chen M, Guan PJ, Pan L. Transfer of microRNAs by extracellular membrane microvesicles: a nascent crosstalk model in tumor pathogenesis, especially tumor cell-microenvironment interactions. J Hematol Oncol 2015; 8:14. [PMID: 25885907 PMCID: PMC4344735 DOI: 10.1186/s13045-015-0111-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 02/05/2023] Open
Abstract
Anticancer treatments aiming at killing malignant cells have been applied for decades but have been unsuccessful at curing the disease. The modern concept of tumor microenvironment, especially angiogenesis, suggests that the tumor is not only composed of malignant cells, but also consists of other groups of cells that work together. Recently, genetic message transfer has been revealed between tumor cells and their microenvironment. The latest cell-derived vector, extracellular membrane microvesicles (EMVs), has been found to provide membrane protection and allowed to deliver genetic information beyond the cells. Additionally, EMV-associated microRNAs are involved in a variety of cellular pathways for tumor initiation and progression. Previous published reviews have focused on miRNA that included EMVs as a sensitive marker for tumor monitoring in clinical applications that are based on the alteration of their expression levels in conjunction with disease occurrence and progression. From the aspect of cellular crosstalk, this article will review the role of EMV-mediated microRNA transfer in tumor pathogenesis, including tumor treatment obstacles, history and features, and current research in inflammatory/immune pathologies, as well as in solid tumors and hematological malignancies. This nascent crosstalk model will provide a novel insight into complementing the classic mechanisms of intercellular communication and contribute to the potential therapeutic strategy via small RNA molecule-carrying EMVs for multimodality treatment of cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - C Alexander Valencia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA.
| | - Biao Dong
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA.
| | - Meng Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Pu-Jun Guan
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ling Pan
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|